1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // A btree implementation of the STL set and map interfaces. A btree is smaller
16 // and generally also faster than STL set/map (refer to the benchmarks below).
17 // The red-black tree implementation of STL set/map has an overhead of 3
18 // pointers (left, right and parent) plus the node color information for each
19 // stored value. So a set<int32_t> consumes 40 bytes for each value stored in
20 // 64-bit mode. This btree implementation stores multiple values on fixed
21 // size nodes (usually 256 bytes) and doesn't store child pointers for leaf
22 // nodes. The result is that a btree_set<int32_t> may use much less memory per
23 // stored value. For the random insertion benchmark in btree_bench.cc, a
24 // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
25 //
26 // The packing of multiple values on to each node of a btree has another effect
27 // besides better space utilization: better cache locality due to fewer cache
28 // lines being accessed. Better cache locality translates into faster
29 // operations.
30 //
31 // CAVEATS
32 //
33 // Insertions and deletions on a btree can cause splitting, merging or
34 // rebalancing of btree nodes. And even without these operations, insertions
35 // and deletions on a btree will move values around within a node. In both
36 // cases, the result is that insertions and deletions can invalidate iterators
37 // pointing to values other than the one being inserted/deleted. Therefore, this
38 // container does not provide pointer stability. This is notably different from
39 // STL set/map which takes care to not invalidate iterators on insert/erase
40 // except, of course, for iterators pointing to the value being erased. A
41 // partial workaround when erasing is available: erase() returns an iterator
42 // pointing to the item just after the one that was erased (or end() if none
43 // exists).
44
45 #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
46 #define ABSL_CONTAINER_INTERNAL_BTREE_H_
47
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <functional>
54 #include <iterator>
55 #include <limits>
56 #include <new>
57 #include <string>
58 #include <type_traits>
59 #include <utility>
60
61 #include "absl/base/internal/raw_logging.h"
62 #include "absl/base/macros.h"
63 #include "absl/container/internal/common.h"
64 #include "absl/container/internal/common_policy_traits.h"
65 #include "absl/container/internal/compressed_tuple.h"
66 #include "absl/container/internal/container_memory.h"
67 #include "absl/container/internal/layout.h"
68 #include "absl/memory/memory.h"
69 #include "absl/meta/type_traits.h"
70 #include "absl/strings/cord.h"
71 #include "absl/strings/string_view.h"
72 #include "absl/types/compare.h"
73 #include "absl/utility/utility.h"
74
75 namespace absl {
76 ABSL_NAMESPACE_BEGIN
77 namespace container_internal {
78
79 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
80 #error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set
81 #elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
82 defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \
83 defined(ABSL_HAVE_MEMORY_SANITIZER)
84 // When compiled in sanitizer mode, we add generation integers to the nodes and
85 // iterators. When iterators are used, we validate that the container has not
86 // been mutated since the iterator was constructed.
87 #define ABSL_BTREE_ENABLE_GENERATIONS
88 #endif
89
90 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
BtreeGenerationsEnabled()91 constexpr bool BtreeGenerationsEnabled() { return true; }
92 #else
93 constexpr bool BtreeGenerationsEnabled() { return false; }
94 #endif
95
96 template <typename Compare, typename T, typename U>
97 using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>;
98
99 // A helper class that indicates if the Compare parameter is a key-compare-to
100 // comparator.
101 template <typename Compare, typename T>
102 using btree_is_key_compare_to =
103 std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>;
104
105 struct StringBtreeDefaultLess {
106 using is_transparent = void;
107
108 StringBtreeDefaultLess() = default;
109
110 // Compatibility constructor.
StringBtreeDefaultLessStringBtreeDefaultLess111 StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT
StringBtreeDefaultLessStringBtreeDefaultLess112 StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT
113
114 // Allow converting to std::less for use in key_comp()/value_comp().
115 explicit operator std::less<std::string>() const { return {}; }
116 explicit operator std::less<absl::string_view>() const { return {}; }
117 explicit operator std::less<absl::Cord>() const { return {}; }
118
operatorStringBtreeDefaultLess119 absl::weak_ordering operator()(absl::string_view lhs,
120 absl::string_view rhs) const {
121 return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
122 }
StringBtreeDefaultLessStringBtreeDefaultLess123 StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT
operatorStringBtreeDefaultLess124 absl::weak_ordering operator()(const absl::Cord &lhs,
125 const absl::Cord &rhs) const {
126 return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
127 }
operatorStringBtreeDefaultLess128 absl::weak_ordering operator()(const absl::Cord &lhs,
129 absl::string_view rhs) const {
130 return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
131 }
operatorStringBtreeDefaultLess132 absl::weak_ordering operator()(absl::string_view lhs,
133 const absl::Cord &rhs) const {
134 return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
135 }
136 };
137
138 struct StringBtreeDefaultGreater {
139 using is_transparent = void;
140
141 StringBtreeDefaultGreater() = default;
142
StringBtreeDefaultGreaterStringBtreeDefaultGreater143 StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT
StringBtreeDefaultGreaterStringBtreeDefaultGreater144 StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT
145
146 // Allow converting to std::greater for use in key_comp()/value_comp().
147 explicit operator std::greater<std::string>() const { return {}; }
148 explicit operator std::greater<absl::string_view>() const { return {}; }
149 explicit operator std::greater<absl::Cord>() const { return {}; }
150
operatorStringBtreeDefaultGreater151 absl::weak_ordering operator()(absl::string_view lhs,
152 absl::string_view rhs) const {
153 return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
154 }
StringBtreeDefaultGreaterStringBtreeDefaultGreater155 StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT
operatorStringBtreeDefaultGreater156 absl::weak_ordering operator()(const absl::Cord &lhs,
157 const absl::Cord &rhs) const {
158 return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
159 }
operatorStringBtreeDefaultGreater160 absl::weak_ordering operator()(const absl::Cord &lhs,
161 absl::string_view rhs) const {
162 return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs));
163 }
operatorStringBtreeDefaultGreater164 absl::weak_ordering operator()(absl::string_view lhs,
165 const absl::Cord &rhs) const {
166 return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
167 }
168 };
169
170 // See below comments for checked_compare.
171 template <typename Compare, bool is_class = std::is_class<Compare>::value>
172 struct checked_compare_base : Compare {
173 using Compare::Compare;
checked_compare_basechecked_compare_base174 explicit checked_compare_base(Compare c) : Compare(std::move(c)) {}
compchecked_compare_base175 const Compare &comp() const { return *this; }
176 };
177 template <typename Compare>
178 struct checked_compare_base<Compare, false> {
179 explicit checked_compare_base(Compare c) : compare(std::move(c)) {}
180 const Compare &comp() const { return compare; }
181 Compare compare;
182 };
183
184 // A mechanism for opting out of checked_compare for use only in btree_test.cc.
185 struct BtreeTestOnlyCheckedCompareOptOutBase {};
186
187 // A helper class to adapt the specified comparator for two use cases:
188 // (1) When using common Abseil string types with common comparison functors,
189 // convert a boolean comparison into a three-way comparison that returns an
190 // `absl::weak_ordering`. This helper class is specialized for
191 // less<std::string>, greater<std::string>, less<string_view>,
192 // greater<string_view>, less<absl::Cord>, and greater<absl::Cord>.
193 // (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see
194 // https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever
195 // a comparison is made, we will make assertions to verify that the comparator
196 // is valid.
197 template <typename Compare, typename Key>
198 struct key_compare_adapter {
199 // Inherit from checked_compare_base to support function pointers and also
200 // keep empty-base-optimization (EBO) support for classes.
201 // Note: we can't use CompressedTuple here because that would interfere
202 // with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a
203 // CompressedTuple and nested `CompressedTuple`s don't support EBO.
204 // TODO(b/214288561): use CompressedTuple instead once it supports EBO for
205 // nested `CompressedTuple`s.
206 struct checked_compare : checked_compare_base<Compare> {
207 private:
208 using Base = typename checked_compare::checked_compare_base;
209 using Base::comp;
210
211 // If possible, returns whether `t` is equivalent to itself. We can only do
212 // this for `Key`s because we can't be sure that it's safe to call
213 // `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a
214 // compilation failure inside the implementation of the comparison operator.
215 bool is_self_equivalent(const Key &k) const {
216 // Note: this works for both boolean and three-way comparators.
217 return comp()(k, k) == 0;
218 }
219 // If we can't compare `t` with itself, returns true unconditionally.
220 template <typename T>
221 bool is_self_equivalent(const T &) const {
222 return true;
223 }
224
225 public:
226 using Base::Base;
227 checked_compare(Compare comp) : Base(std::move(comp)) {} // NOLINT
228
229 // Allow converting to Compare for use in key_comp()/value_comp().
230 explicit operator Compare() const { return comp(); }
231
232 template <typename T, typename U,
233 absl::enable_if_t<
234 std::is_same<bool, compare_result_t<Compare, T, U>>::value,
235 int> = 0>
236 bool operator()(const T &lhs, const U &rhs) const {
237 // NOTE: if any of these assertions fail, then the comparator does not
238 // establish a strict-weak-ordering (see
239 // https://en.cppreference.com/w/cpp/named_req/Compare).
240 assert(is_self_equivalent(lhs));
241 assert(is_self_equivalent(rhs));
242 const bool lhs_comp_rhs = comp()(lhs, rhs);
243 assert(!lhs_comp_rhs || !comp()(rhs, lhs));
244 return lhs_comp_rhs;
245 }
246
247 template <
248 typename T, typename U,
249 absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>,
250 absl::weak_ordering>::value,
251 int> = 0>
252 absl::weak_ordering operator()(const T &lhs, const U &rhs) const {
253 // NOTE: if any of these assertions fail, then the comparator does not
254 // establish a strict-weak-ordering (see
255 // https://en.cppreference.com/w/cpp/named_req/Compare).
256 assert(is_self_equivalent(lhs));
257 assert(is_self_equivalent(rhs));
258 const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs);
259 #ifndef NDEBUG
260 const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs);
261 if (lhs_comp_rhs > 0) {
262 assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0");
263 } else if (lhs_comp_rhs == 0) {
264 assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0");
265 } else {
266 assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0");
267 }
268 #endif
269 return lhs_comp_rhs;
270 }
271 };
272 using type = absl::conditional_t<
273 std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value,
274 Compare, checked_compare>;
275 };
276
277 template <>
278 struct key_compare_adapter<std::less<std::string>, std::string> {
279 using type = StringBtreeDefaultLess;
280 };
281
282 template <>
283 struct key_compare_adapter<std::greater<std::string>, std::string> {
284 using type = StringBtreeDefaultGreater;
285 };
286
287 template <>
288 struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> {
289 using type = StringBtreeDefaultLess;
290 };
291
292 template <>
293 struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> {
294 using type = StringBtreeDefaultGreater;
295 };
296
297 template <>
298 struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> {
299 using type = StringBtreeDefaultLess;
300 };
301
302 template <>
303 struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> {
304 using type = StringBtreeDefaultGreater;
305 };
306
307 // Detects an 'absl_btree_prefer_linear_node_search' member. This is
308 // a protocol used as an opt-in or opt-out of linear search.
309 //
310 // For example, this would be useful for key types that wrap an integer
311 // and define their own cheap operator<(). For example:
312 //
313 // class K {
314 // public:
315 // using absl_btree_prefer_linear_node_search = std::true_type;
316 // ...
317 // private:
318 // friend bool operator<(K a, K b) { return a.k_ < b.k_; }
319 // int k_;
320 // };
321 //
322 // btree_map<K, V> m; // Uses linear search
323 //
324 // If T has the preference tag, then it has a preference.
325 // Btree will use the tag's truth value.
326 template <typename T, typename = void>
327 struct has_linear_node_search_preference : std::false_type {};
328 template <typename T, typename = void>
329 struct prefers_linear_node_search : std::false_type {};
330 template <typename T>
331 struct has_linear_node_search_preference<
332 T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
333 : std::true_type {};
334 template <typename T>
335 struct prefers_linear_node_search<
336 T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
337 : T::absl_btree_prefer_linear_node_search {};
338
339 template <typename Compare, typename Key>
340 constexpr bool compare_has_valid_result_type() {
341 using compare_result_type = compare_result_t<Compare, Key, Key>;
342 return std::is_same<compare_result_type, bool>::value ||
343 std::is_convertible<compare_result_type, absl::weak_ordering>::value;
344 }
345
346 template <typename original_key_compare, typename value_type>
347 class map_value_compare {
348 template <typename Params>
349 friend class btree;
350
351 // Note: this `protected` is part of the API of std::map::value_compare. See
352 // https://en.cppreference.com/w/cpp/container/map/value_compare.
353 protected:
354 explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {}
355
356 original_key_compare comp; // NOLINT
357
358 public:
359 auto operator()(const value_type &lhs, const value_type &rhs) const
360 -> decltype(comp(lhs.first, rhs.first)) {
361 return comp(lhs.first, rhs.first);
362 }
363 };
364
365 template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
366 bool IsMulti, bool IsMap, typename SlotPolicy>
367 struct common_params : common_policy_traits<SlotPolicy> {
368 using original_key_compare = Compare;
369
370 // If Compare is a common comparator for a string-like type, then we adapt it
371 // to use heterogeneous lookup and to be a key-compare-to comparator.
372 // We also adapt the comparator to diagnose invalid comparators in debug mode.
373 // We disable this when `Compare` is invalid in a way that will cause
374 // adaptation to fail (having invalid return type) so that we can give a
375 // better compilation failure in static_assert_validation. If we don't do
376 // this, then there will be cascading compilation failures that are confusing
377 // for users.
378 using key_compare =
379 absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(),
380 Compare,
381 typename key_compare_adapter<Compare, Key>::type>;
382
383 static constexpr bool kIsKeyCompareStringAdapted =
384 std::is_same<key_compare, StringBtreeDefaultLess>::value ||
385 std::is_same<key_compare, StringBtreeDefaultGreater>::value;
386 static constexpr bool kIsKeyCompareTransparent =
387 IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted;
388
389 // A type which indicates if we have a key-compare-to functor or a plain old
390 // key-compare functor.
391 using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
392
393 using allocator_type = Alloc;
394 using key_type = Key;
395 using size_type = size_t;
396 using difference_type = ptrdiff_t;
397
398 using slot_policy = SlotPolicy;
399 using slot_type = typename slot_policy::slot_type;
400 using value_type = typename slot_policy::value_type;
401 using init_type = typename slot_policy::mutable_value_type;
402 using pointer = value_type *;
403 using const_pointer = const value_type *;
404 using reference = value_type &;
405 using const_reference = const value_type &;
406
407 using value_compare =
408 absl::conditional_t<IsMap,
409 map_value_compare<original_key_compare, value_type>,
410 original_key_compare>;
411 using is_map_container = std::integral_constant<bool, IsMap>;
412
413 // For the given lookup key type, returns whether we can have multiple
414 // equivalent keys in the btree. If this is a multi-container, then we can.
415 // Otherwise, we can have multiple equivalent keys only if all of the
416 // following conditions are met:
417 // - The comparator is transparent.
418 // - The lookup key type is not the same as key_type.
419 // - The comparator is not a StringBtreeDefault{Less,Greater} comparator
420 // that we know has the same equivalence classes for all lookup types.
421 template <typename LookupKey>
422 constexpr static bool can_have_multiple_equivalent_keys() {
423 return IsMulti || (IsTransparent<key_compare>::value &&
424 !std::is_same<LookupKey, Key>::value &&
425 !kIsKeyCompareStringAdapted);
426 }
427
428 enum {
429 kTargetNodeSize = TargetNodeSize,
430
431 // Upper bound for the available space for slots. This is largest for leaf
432 // nodes, which have overhead of at least a pointer + 4 bytes (for storing
433 // 3 field_types and an enum).
434 kNodeSlotSpace = TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
435 };
436
437 // This is an integral type large enough to hold as many slots as will fit a
438 // node of TargetNodeSize bytes.
439 using node_count_type =
440 absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) >
441 (std::numeric_limits<uint8_t>::max)()),
442 uint16_t, uint8_t>; // NOLINT
443 };
444
445 // An adapter class that converts a lower-bound compare into an upper-bound
446 // compare. Note: there is no need to make a version of this adapter specialized
447 // for key-compare-to functors because the upper-bound (the first value greater
448 // than the input) is never an exact match.
449 template <typename Compare>
450 struct upper_bound_adapter {
451 explicit upper_bound_adapter(const Compare &c) : comp(c) {}
452 template <typename K1, typename K2>
453 bool operator()(const K1 &a, const K2 &b) const {
454 // Returns true when a is not greater than b.
455 return !compare_internal::compare_result_as_less_than(comp(b, a));
456 }
457
458 private:
459 Compare comp;
460 };
461
462 enum class MatchKind : uint8_t { kEq, kNe };
463
464 template <typename V, bool IsCompareTo>
465 struct SearchResult {
466 V value;
467 MatchKind match;
468
469 static constexpr bool HasMatch() { return true; }
470 bool IsEq() const { return match == MatchKind::kEq; }
471 };
472
473 // When we don't use CompareTo, `match` is not present.
474 // This ensures that callers can't use it accidentally when it provides no
475 // useful information.
476 template <typename V>
477 struct SearchResult<V, false> {
478 SearchResult() {}
479 explicit SearchResult(V v) : value(v) {}
480 SearchResult(V v, MatchKind /*match*/) : value(v) {}
481
482 V value;
483
484 static constexpr bool HasMatch() { return false; }
485 static constexpr bool IsEq() { return false; }
486 };
487
488 // A node in the btree holding. The same node type is used for both internal
489 // and leaf nodes in the btree, though the nodes are allocated in such a way
490 // that the children array is only valid in internal nodes.
491 template <typename Params>
492 class btree_node {
493 using is_key_compare_to = typename Params::is_key_compare_to;
494 using field_type = typename Params::node_count_type;
495 using allocator_type = typename Params::allocator_type;
496 using slot_type = typename Params::slot_type;
497 using original_key_compare = typename Params::original_key_compare;
498
499 public:
500 using params_type = Params;
501 using key_type = typename Params::key_type;
502 using value_type = typename Params::value_type;
503 using pointer = typename Params::pointer;
504 using const_pointer = typename Params::const_pointer;
505 using reference = typename Params::reference;
506 using const_reference = typename Params::const_reference;
507 using key_compare = typename Params::key_compare;
508 using size_type = typename Params::size_type;
509 using difference_type = typename Params::difference_type;
510
511 // Btree decides whether to use linear node search as follows:
512 // - If the comparator expresses a preference, use that.
513 // - If the key expresses a preference, use that.
514 // - If the key is arithmetic and the comparator is std::less or
515 // std::greater, choose linear.
516 // - Otherwise, choose binary.
517 // TODO(ezb): Might make sense to add condition(s) based on node-size.
518 using use_linear_search = std::integral_constant<
519 bool, has_linear_node_search_preference<original_key_compare>::value
520 ? prefers_linear_node_search<original_key_compare>::value
521 : has_linear_node_search_preference<key_type>::value
522 ? prefers_linear_node_search<key_type>::value
523 : std::is_arithmetic<key_type>::value &&
524 (std::is_same<std::less<key_type>,
525 original_key_compare>::value ||
526 std::is_same<std::greater<key_type>,
527 original_key_compare>::value)>;
528
529 // This class is organized by absl::container_internal::Layout as if it had
530 // the following structure:
531 // // A pointer to the node's parent.
532 // btree_node *parent;
533 //
534 // // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a
535 // // generation integer in order to check that when iterators are
536 // // used, they haven't been invalidated already. Only the generation on
537 // // the root is used, but we have one on each node because whether a node
538 // // is root or not can change.
539 // uint32_t generation;
540 //
541 // // The position of the node in the node's parent.
542 // field_type position;
543 // // The index of the first populated value in `values`.
544 // // TODO(ezb): right now, `start` is always 0. Update insertion/merge
545 // // logic to allow for floating storage within nodes.
546 // field_type start;
547 // // The index after the last populated value in `values`. Currently, this
548 // // is the same as the count of values.
549 // field_type finish;
550 // // The maximum number of values the node can hold. This is an integer in
551 // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf
552 // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
553 // // nodes (even though there are still kNodeSlots values in the node).
554 // // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
555 // // to free extra bits for is_root, etc.
556 // field_type max_count;
557 //
558 // // The array of values. The capacity is `max_count` for leaf nodes and
559 // // kNodeSlots for internal nodes. Only the values in
560 // // [start, finish) have been initialized and are valid.
561 // slot_type values[max_count];
562 //
563 // // The array of child pointers. The keys in children[i] are all less
564 // // than key(i). The keys in children[i + 1] are all greater than key(i).
565 // // There are 0 children for leaf nodes and kNodeSlots + 1 children for
566 // // internal nodes.
567 // btree_node *children[kNodeSlots + 1];
568 //
569 // This class is only constructed by EmptyNodeType. Normally, pointers to the
570 // layout above are allocated, cast to btree_node*, and de-allocated within
571 // the btree implementation.
572 ~btree_node() = default;
573 btree_node(btree_node const &) = delete;
574 btree_node &operator=(btree_node const &) = delete;
575
576 protected:
577 btree_node() = default;
578
579 private:
580 using layout_type =
581 absl::container_internal::Layout<btree_node *, uint32_t, field_type,
582 slot_type, btree_node *>;
583 constexpr static size_type SizeWithNSlots(size_type n) {
584 return layout_type(
585 /*parent*/ 1,
586 /*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
587 /*position, start, finish, max_count*/ 4,
588 /*slots*/ n,
589 /*children*/ 0)
590 .AllocSize();
591 }
592 // A lower bound for the overhead of fields other than slots in a leaf node.
593 constexpr static size_type MinimumOverhead() {
594 return SizeWithNSlots(1) - sizeof(slot_type);
595 }
596
597 // Compute how many values we can fit onto a leaf node taking into account
598 // padding.
599 constexpr static size_type NodeTargetSlots(const size_type begin,
600 const size_type end) {
601 return begin == end ? begin
602 : SizeWithNSlots((begin + end) / 2 + 1) >
603 params_type::kTargetNodeSize
604 ? NodeTargetSlots(begin, (begin + end) / 2)
605 : NodeTargetSlots((begin + end) / 2 + 1, end);
606 }
607
608 constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize;
609 constexpr static size_type kNodeTargetSlots =
610 NodeTargetSlots(0, kTargetNodeSize);
611
612 // We need a minimum of 3 slots per internal node in order to perform
613 // splitting (1 value for the two nodes involved in the split and 1 value
614 // propagated to the parent as the delimiter for the split). For performance
615 // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy of
616 // 1/3 (for a node, not a b-tree).
617 constexpr static size_type kMinNodeSlots = 4;
618
619 constexpr static size_type kNodeSlots =
620 kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots;
621
622 // The node is internal (i.e. is not a leaf node) if and only if `max_count`
623 // has this value.
624 constexpr static field_type kInternalNodeMaxCount = 0;
625
626 constexpr static layout_type Layout(const size_type slot_count,
627 const size_type child_count) {
628 return layout_type(
629 /*parent*/ 1,
630 /*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
631 /*position, start, finish, max_count*/ 4,
632 /*slots*/ slot_count,
633 /*children*/ child_count);
634 }
635 // Leaves can have less than kNodeSlots values.
636 constexpr static layout_type LeafLayout(
637 const size_type slot_count = kNodeSlots) {
638 return Layout(slot_count, 0);
639 }
640 constexpr static layout_type InternalLayout() {
641 return Layout(kNodeSlots, kNodeSlots + 1);
642 }
643 constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) {
644 return LeafLayout(slot_count).AllocSize();
645 }
646 constexpr static size_type InternalSize() {
647 return InternalLayout().AllocSize();
648 }
649
650 constexpr static size_type Alignment() {
651 static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
652 "Alignment of all nodes must be equal.");
653 return InternalLayout().Alignment();
654 }
655
656 // N is the index of the type in the Layout definition.
657 // ElementType<N> is the Nth type in the Layout definition.
658 template <size_type N>
659 inline typename layout_type::template ElementType<N> *GetField() {
660 // We assert that we don't read from values that aren't there.
661 assert(N < 4 || is_internal());
662 return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
663 }
664 template <size_type N>
665 inline const typename layout_type::template ElementType<N> *GetField() const {
666 assert(N < 4 || is_internal());
667 return InternalLayout().template Pointer<N>(
668 reinterpret_cast<const char *>(this));
669 }
670 void set_parent(btree_node *p) { *GetField<0>() = p; }
671 field_type &mutable_finish() { return GetField<2>()[2]; }
672 slot_type *slot(size_type i) { return &GetField<3>()[i]; }
673 slot_type *start_slot() { return slot(start()); }
674 slot_type *finish_slot() { return slot(finish()); }
675 const slot_type *slot(size_type i) const { return &GetField<3>()[i]; }
676 void set_position(field_type v) { GetField<2>()[0] = v; }
677 void set_start(field_type v) { GetField<2>()[1] = v; }
678 void set_finish(field_type v) { GetField<2>()[2] = v; }
679 // This method is only called by the node init methods.
680 void set_max_count(field_type v) { GetField<2>()[3] = v; }
681
682 public:
683 // Whether this is a leaf node or not. This value doesn't change after the
684 // node is created.
685 bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; }
686 // Whether this is an internal node or not. This value doesn't change after
687 // the node is created.
688 bool is_internal() const { return !is_leaf(); }
689
690 // Getter for the position of this node in its parent.
691 field_type position() const { return GetField<2>()[0]; }
692
693 // Getter for the offset of the first value in the `values` array.
694 field_type start() const {
695 // TODO(ezb): when floating storage is implemented, return GetField<2>()[1];
696 assert(GetField<2>()[1] == 0);
697 return 0;
698 }
699
700 // Getter for the offset after the last value in the `values` array.
701 field_type finish() const { return GetField<2>()[2]; }
702
703 // Getters for the number of values stored in this node.
704 field_type count() const {
705 assert(finish() >= start());
706 return finish() - start();
707 }
708 field_type max_count() const {
709 // Internal nodes have max_count==kInternalNodeMaxCount.
710 // Leaf nodes have max_count in [1, kNodeSlots].
711 const field_type max_count = GetField<2>()[3];
712 return max_count == field_type{kInternalNodeMaxCount}
713 ? field_type{kNodeSlots}
714 : max_count;
715 }
716
717 // Getter for the parent of this node.
718 btree_node *parent() const { return *GetField<0>(); }
719 // Getter for whether the node is the root of the tree. The parent of the
720 // root of the tree is the leftmost node in the tree which is guaranteed to
721 // be a leaf.
722 bool is_root() const { return parent()->is_leaf(); }
723 void make_root() {
724 assert(parent()->is_root());
725 set_generation(parent()->generation());
726 set_parent(parent()->parent());
727 }
728
729 // Gets the root node's generation integer, which is the one used by the tree.
730 uint32_t *get_root_generation() const {
731 assert(BtreeGenerationsEnabled());
732 const btree_node *curr = this;
733 for (; !curr->is_root(); curr = curr->parent()) continue;
734 return const_cast<uint32_t *>(&curr->GetField<1>()[0]);
735 }
736
737 // Returns the generation for iterator validation.
738 uint32_t generation() const {
739 return BtreeGenerationsEnabled() ? *get_root_generation() : 0;
740 }
741 // Updates generation. Should only be called on a root node or during node
742 // initialization.
743 void set_generation(uint32_t generation) {
744 if (BtreeGenerationsEnabled()) GetField<1>()[0] = generation;
745 }
746 // Updates the generation. We do this whenever the node is mutated.
747 void next_generation() {
748 if (BtreeGenerationsEnabled()) ++*get_root_generation();
749 }
750
751 // Getters for the key/value at position i in the node.
752 const key_type &key(size_type i) const { return params_type::key(slot(i)); }
753 reference value(size_type i) { return params_type::element(slot(i)); }
754 const_reference value(size_type i) const {
755 return params_type::element(slot(i));
756 }
757
758 // Getters/setter for the child at position i in the node.
759 btree_node *child(field_type i) const { return GetField<4>()[i]; }
760 btree_node *start_child() const { return child(start()); }
761 btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; }
762 void clear_child(field_type i) {
763 absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
764 }
765 void set_child_noupdate_position(field_type i, btree_node *c) {
766 absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
767 mutable_child(i) = c;
768 }
769 void set_child(field_type i, btree_node *c) {
770 set_child_noupdate_position(i, c);
771 c->set_position(i);
772 }
773 void init_child(field_type i, btree_node *c) {
774 set_child(i, c);
775 c->set_parent(this);
776 }
777
778 // Returns the position of the first value whose key is not less than k.
779 template <typename K>
780 SearchResult<size_type, is_key_compare_to::value> lower_bound(
781 const K &k, const key_compare &comp) const {
782 return use_linear_search::value ? linear_search(k, comp)
783 : binary_search(k, comp);
784 }
785 // Returns the position of the first value whose key is greater than k.
786 template <typename K>
787 size_type upper_bound(const K &k, const key_compare &comp) const {
788 auto upper_compare = upper_bound_adapter<key_compare>(comp);
789 return use_linear_search::value ? linear_search(k, upper_compare).value
790 : binary_search(k, upper_compare).value;
791 }
792
793 template <typename K, typename Compare>
794 SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
795 linear_search(const K &k, const Compare &comp) const {
796 return linear_search_impl(k, start(), finish(), comp,
797 btree_is_key_compare_to<Compare, key_type>());
798 }
799
800 template <typename K, typename Compare>
801 SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
802 binary_search(const K &k, const Compare &comp) const {
803 return binary_search_impl(k, start(), finish(), comp,
804 btree_is_key_compare_to<Compare, key_type>());
805 }
806
807 // Returns the position of the first value whose key is not less than k using
808 // linear search performed using plain compare.
809 template <typename K, typename Compare>
810 SearchResult<size_type, false> linear_search_impl(
811 const K &k, size_type s, const size_type e, const Compare &comp,
812 std::false_type /* IsCompareTo */) const {
813 while (s < e) {
814 if (!comp(key(s), k)) {
815 break;
816 }
817 ++s;
818 }
819 return SearchResult<size_type, false>{s};
820 }
821
822 // Returns the position of the first value whose key is not less than k using
823 // linear search performed using compare-to.
824 template <typename K, typename Compare>
825 SearchResult<size_type, true> linear_search_impl(
826 const K &k, size_type s, const size_type e, const Compare &comp,
827 std::true_type /* IsCompareTo */) const {
828 while (s < e) {
829 const absl::weak_ordering c = comp(key(s), k);
830 if (c == 0) {
831 return {s, MatchKind::kEq};
832 } else if (c > 0) {
833 break;
834 }
835 ++s;
836 }
837 return {s, MatchKind::kNe};
838 }
839
840 // Returns the position of the first value whose key is not less than k using
841 // binary search performed using plain compare.
842 template <typename K, typename Compare>
843 SearchResult<size_type, false> binary_search_impl(
844 const K &k, size_type s, size_type e, const Compare &comp,
845 std::false_type /* IsCompareTo */) const {
846 while (s != e) {
847 const size_type mid = (s + e) >> 1;
848 if (comp(key(mid), k)) {
849 s = mid + 1;
850 } else {
851 e = mid;
852 }
853 }
854 return SearchResult<size_type, false>{s};
855 }
856
857 // Returns the position of the first value whose key is not less than k using
858 // binary search performed using compare-to.
859 template <typename K, typename CompareTo>
860 SearchResult<size_type, true> binary_search_impl(
861 const K &k, size_type s, size_type e, const CompareTo &comp,
862 std::true_type /* IsCompareTo */) const {
863 if (params_type::template can_have_multiple_equivalent_keys<K>()) {
864 MatchKind exact_match = MatchKind::kNe;
865 while (s != e) {
866 const size_type mid = (s + e) >> 1;
867 const absl::weak_ordering c = comp(key(mid), k);
868 if (c < 0) {
869 s = mid + 1;
870 } else {
871 e = mid;
872 if (c == 0) {
873 // Need to return the first value whose key is not less than k,
874 // which requires continuing the binary search if there could be
875 // multiple equivalent keys.
876 exact_match = MatchKind::kEq;
877 }
878 }
879 }
880 return {s, exact_match};
881 } else { // Can't have multiple equivalent keys.
882 while (s != e) {
883 const size_type mid = (s + e) >> 1;
884 const absl::weak_ordering c = comp(key(mid), k);
885 if (c < 0) {
886 s = mid + 1;
887 } else if (c > 0) {
888 e = mid;
889 } else {
890 return {mid, MatchKind::kEq};
891 }
892 }
893 return {s, MatchKind::kNe};
894 }
895 }
896
897 // Returns whether key i is ordered correctly with respect to the other keys
898 // in the node. The motivation here is to detect comparators that violate
899 // transitivity. Note: we only do comparisons of keys on this node rather than
900 // the whole tree so that this is constant time.
901 template <typename Compare>
902 bool is_ordered_correctly(field_type i, const Compare &comp) const {
903 if (std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase,
904 Compare>::value ||
905 params_type::kIsKeyCompareStringAdapted) {
906 return true;
907 }
908
909 const auto compare = [&](field_type a, field_type b) {
910 const absl::weak_ordering cmp =
911 compare_internal::do_three_way_comparison(comp, key(a), key(b));
912 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
913 };
914 int cmp = -1;
915 constexpr bool kCanHaveEquivKeys =
916 params_type::template can_have_multiple_equivalent_keys<key_type>();
917 for (field_type j = start(); j < finish(); ++j) {
918 if (j == i) {
919 if (cmp > 0) return false;
920 continue;
921 }
922 int new_cmp = compare(j, i);
923 if (new_cmp < cmp || (!kCanHaveEquivKeys && new_cmp == 0)) return false;
924 cmp = new_cmp;
925 }
926 return true;
927 }
928
929 // Emplaces a value at position i, shifting all existing values and
930 // children at positions >= i to the right by 1.
931 template <typename... Args>
932 void emplace_value(field_type i, allocator_type *alloc, Args &&...args);
933
934 // Removes the values at positions [i, i + to_erase), shifting all existing
935 // values and children after that range to the left by to_erase. Clears all
936 // children between [i, i + to_erase).
937 void remove_values(field_type i, field_type to_erase, allocator_type *alloc);
938
939 // Rebalances a node with its right sibling.
940 void rebalance_right_to_left(field_type to_move, btree_node *right,
941 allocator_type *alloc);
942 void rebalance_left_to_right(field_type to_move, btree_node *right,
943 allocator_type *alloc);
944
945 // Splits a node, moving a portion of the node's values to its right sibling.
946 void split(int insert_position, btree_node *dest, allocator_type *alloc);
947
948 // Merges a node with its right sibling, moving all of the values and the
949 // delimiting key in the parent node onto itself, and deleting the src node.
950 void merge(btree_node *src, allocator_type *alloc);
951
952 // Node allocation/deletion routines.
953 void init_leaf(field_type position, field_type max_count,
954 btree_node *parent) {
955 set_generation(0);
956 set_parent(parent);
957 set_position(position);
958 set_start(0);
959 set_finish(0);
960 set_max_count(max_count);
961 absl::container_internal::SanitizerPoisonMemoryRegion(
962 start_slot(), max_count * sizeof(slot_type));
963 }
964 void init_internal(field_type position, btree_node *parent) {
965 init_leaf(position, kNodeSlots, parent);
966 // Set `max_count` to a sentinel value to indicate that this node is
967 // internal.
968 set_max_count(kInternalNodeMaxCount);
969 absl::container_internal::SanitizerPoisonMemoryRegion(
970 &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *));
971 }
972
973 static void deallocate(const size_type size, btree_node *node,
974 allocator_type *alloc) {
975 absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size);
976 absl::container_internal::Deallocate<Alignment()>(alloc, node, size);
977 }
978
979 // Deletes a node and all of its children.
980 static void clear_and_delete(btree_node *node, allocator_type *alloc);
981
982 private:
983 template <typename... Args>
984 void value_init(const field_type i, allocator_type *alloc, Args &&...args) {
985 next_generation();
986 absl::container_internal::SanitizerUnpoisonObject(slot(i));
987 params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
988 }
989 void value_destroy(const field_type i, allocator_type *alloc) {
990 next_generation();
991 params_type::destroy(alloc, slot(i));
992 absl::container_internal::SanitizerPoisonObject(slot(i));
993 }
994 void value_destroy_n(const field_type i, const field_type n,
995 allocator_type *alloc) {
996 next_generation();
997 for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
998 params_type::destroy(alloc, s);
999 absl::container_internal::SanitizerPoisonObject(s);
1000 }
1001 }
1002
1003 static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) {
1004 absl::container_internal::SanitizerUnpoisonObject(dest);
1005 params_type::transfer(alloc, dest, src);
1006 absl::container_internal::SanitizerPoisonObject(src);
1007 }
1008
1009 // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
1010 void transfer(const size_type dest_i, const size_type src_i,
1011 btree_node *src_node, allocator_type *alloc) {
1012 next_generation();
1013 transfer(slot(dest_i), src_node->slot(src_i), alloc);
1014 }
1015
1016 // Transfers `n` values starting at value `src_i` in `src_node` into the
1017 // values starting at value `dest_i` in `this`.
1018 void transfer_n(const size_type n, const size_type dest_i,
1019 const size_type src_i, btree_node *src_node,
1020 allocator_type *alloc) {
1021 next_generation();
1022 for (slot_type *src = src_node->slot(src_i), *end = src + n,
1023 *dest = slot(dest_i);
1024 src != end; ++src, ++dest) {
1025 transfer(dest, src, alloc);
1026 }
1027 }
1028
1029 // Same as above, except that we start at the end and work our way to the
1030 // beginning.
1031 void transfer_n_backward(const size_type n, const size_type dest_i,
1032 const size_type src_i, btree_node *src_node,
1033 allocator_type *alloc) {
1034 next_generation();
1035 for (slot_type *src = src_node->slot(src_i + n), *end = src - n,
1036 *dest = slot(dest_i + n);
1037 src != end; --src, --dest) {
1038 // If we modified the loop index calculations above to avoid the -1s here,
1039 // it would result in UB in the computation of `end` (and possibly `src`
1040 // as well, if n == 0), since slot() is effectively an array index and it
1041 // is UB to compute the address of any out-of-bounds array element except
1042 // for one-past-the-end.
1043 transfer(dest - 1, src - 1, alloc);
1044 }
1045 }
1046
1047 template <typename P>
1048 friend class btree;
1049 template <typename N, typename R, typename P>
1050 friend class btree_iterator;
1051 friend class BtreeNodePeer;
1052 friend struct btree_access;
1053 };
1054
1055 template <typename Node>
1056 bool AreNodesFromSameContainer(const Node *node_a, const Node *node_b) {
1057 // If either node is null, then give up on checking whether they're from the
1058 // same container. (If exactly one is null, then we'll trigger the
1059 // default-constructed assert in Equals.)
1060 if (node_a == nullptr || node_b == nullptr) return true;
1061 while (!node_a->is_root()) node_a = node_a->parent();
1062 while (!node_b->is_root()) node_b = node_b->parent();
1063 return node_a == node_b;
1064 }
1065
1066 class btree_iterator_generation_info_enabled {
1067 public:
1068 explicit btree_iterator_generation_info_enabled(uint32_t g)
1069 : generation_(g) {}
1070
1071 // Updates the generation. For use internally right before we return an
1072 // iterator to the user.
1073 template <typename Node>
1074 void update_generation(const Node *node) {
1075 if (node != nullptr) generation_ = node->generation();
1076 }
1077 uint32_t generation() const { return generation_; }
1078
1079 template <typename Node>
1080 void assert_valid_generation(const Node *node) const {
1081 if (node != nullptr && node->generation() != generation_) {
1082 ABSL_INTERNAL_LOG(
1083 FATAL,
1084 "Attempting to use an invalidated iterator. The corresponding b-tree "
1085 "container has been mutated since this iterator was constructed.");
1086 }
1087 }
1088
1089 private:
1090 // Used to check that the iterator hasn't been invalidated.
1091 uint32_t generation_;
1092 };
1093
1094 class btree_iterator_generation_info_disabled {
1095 public:
1096 explicit btree_iterator_generation_info_disabled(uint32_t) {}
1097 static void update_generation(const void *) {}
1098 static uint32_t generation() { return 0; }
1099 static void assert_valid_generation(const void *) {}
1100 };
1101
1102 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
1103 using btree_iterator_generation_info = btree_iterator_generation_info_enabled;
1104 #else
1105 using btree_iterator_generation_info = btree_iterator_generation_info_disabled;
1106 #endif
1107
1108 template <typename Node, typename Reference, typename Pointer>
1109 class btree_iterator : private btree_iterator_generation_info {
1110 using field_type = typename Node::field_type;
1111 using key_type = typename Node::key_type;
1112 using size_type = typename Node::size_type;
1113 using params_type = typename Node::params_type;
1114 using is_map_container = typename params_type::is_map_container;
1115
1116 using node_type = Node;
1117 using normal_node = typename std::remove_const<Node>::type;
1118 using const_node = const Node;
1119 using normal_pointer = typename params_type::pointer;
1120 using normal_reference = typename params_type::reference;
1121 using const_pointer = typename params_type::const_pointer;
1122 using const_reference = typename params_type::const_reference;
1123 using slot_type = typename params_type::slot_type;
1124
1125 // In sets, all iterators are const.
1126 using iterator = absl::conditional_t<
1127 is_map_container::value,
1128 btree_iterator<normal_node, normal_reference, normal_pointer>,
1129 btree_iterator<normal_node, const_reference, const_pointer>>;
1130 using const_iterator =
1131 btree_iterator<const_node, const_reference, const_pointer>;
1132
1133 public:
1134 // These aliases are public for std::iterator_traits.
1135 using difference_type = typename Node::difference_type;
1136 using value_type = typename params_type::value_type;
1137 using pointer = Pointer;
1138 using reference = Reference;
1139 using iterator_category = std::bidirectional_iterator_tag;
1140
1141 btree_iterator() : btree_iterator(nullptr, -1) {}
1142 explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {}
1143 btree_iterator(Node *n, int p)
1144 : btree_iterator_generation_info(n != nullptr ? n->generation()
1145 : ~uint32_t{}),
1146 node_(n),
1147 position_(p) {}
1148
1149 // NOTE: this SFINAE allows for implicit conversions from iterator to
1150 // const_iterator, but it specifically avoids hiding the copy constructor so
1151 // that the trivial one will be used when possible.
1152 template <typename N, typename R, typename P,
1153 absl::enable_if_t<
1154 std::is_same<btree_iterator<N, R, P>, iterator>::value &&
1155 std::is_same<btree_iterator, const_iterator>::value,
1156 int> = 0>
1157 btree_iterator(const btree_iterator<N, R, P> other) // NOLINT
1158 : btree_iterator_generation_info(other),
1159 node_(other.node_),
1160 position_(other.position_) {}
1161
1162 bool operator==(const iterator &other) const {
1163 return Equals(other);
1164 }
1165 bool operator==(const const_iterator &other) const {
1166 return Equals(other);
1167 }
1168 bool operator!=(const iterator &other) const {
1169 return !Equals(other);
1170 }
1171 bool operator!=(const const_iterator &other) const {
1172 return !Equals(other);
1173 }
1174
1175 // Returns n such that n calls to ++other yields *this.
1176 // Precondition: n exists.
1177 difference_type operator-(const_iterator other) const {
1178 if (node_ == other.node_) {
1179 if (node_->is_leaf()) return position_ - other.position_;
1180 if (position_ == other.position_) return 0;
1181 }
1182 return distance_slow(other);
1183 }
1184
1185 // Accessors for the key/value the iterator is pointing at.
1186 reference operator*() const {
1187 ABSL_HARDENING_ASSERT(node_ != nullptr);
1188 assert_valid_generation(node_);
1189 ABSL_HARDENING_ASSERT(position_ >= node_->start());
1190 if (position_ >= node_->finish()) {
1191 ABSL_HARDENING_ASSERT(!IsEndIterator() && "Dereferencing end() iterator");
1192 ABSL_HARDENING_ASSERT(position_ < node_->finish());
1193 }
1194 return node_->value(static_cast<field_type>(position_));
1195 }
1196 pointer operator->() const { return &operator*(); }
1197
1198 btree_iterator &operator++() {
1199 increment();
1200 return *this;
1201 }
1202 btree_iterator &operator--() {
1203 decrement();
1204 return *this;
1205 }
1206 btree_iterator operator++(int) {
1207 btree_iterator tmp = *this;
1208 ++*this;
1209 return tmp;
1210 }
1211 btree_iterator operator--(int) {
1212 btree_iterator tmp = *this;
1213 --*this;
1214 return tmp;
1215 }
1216
1217 private:
1218 friend iterator;
1219 friend const_iterator;
1220 template <typename Params>
1221 friend class btree;
1222 template <typename Tree>
1223 friend class btree_container;
1224 template <typename Tree>
1225 friend class btree_set_container;
1226 template <typename Tree>
1227 friend class btree_map_container;
1228 template <typename Tree>
1229 friend class btree_multiset_container;
1230 template <typename TreeType, typename CheckerType>
1231 friend class base_checker;
1232 friend struct btree_access;
1233
1234 // This SFINAE allows explicit conversions from const_iterator to
1235 // iterator, but also avoids hiding the copy constructor.
1236 // NOTE: the const_cast is safe because this constructor is only called by
1237 // non-const methods and the container owns the nodes.
1238 template <typename N, typename R, typename P,
1239 absl::enable_if_t<
1240 std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
1241 std::is_same<btree_iterator, iterator>::value,
1242 int> = 0>
1243 explicit btree_iterator(const btree_iterator<N, R, P> other)
1244 : btree_iterator_generation_info(other.generation()),
1245 node_(const_cast<node_type *>(other.node_)),
1246 position_(other.position_) {}
1247
1248 bool Equals(const const_iterator other) const {
1249 ABSL_HARDENING_ASSERT(((node_ == nullptr && other.node_ == nullptr) ||
1250 (node_ != nullptr && other.node_ != nullptr)) &&
1251 "Comparing default-constructed iterator with "
1252 "non-default-constructed iterator.");
1253 // Note: we use assert instead of ABSL_HARDENING_ASSERT here because this
1254 // changes the complexity of Equals from O(1) to O(log(N) + log(M)) where
1255 // N/M are sizes of the containers containing node_/other.node_.
1256 assert(AreNodesFromSameContainer(node_, other.node_) &&
1257 "Comparing iterators from different containers.");
1258 assert_valid_generation(node_);
1259 other.assert_valid_generation(other.node_);
1260 return node_ == other.node_ && position_ == other.position_;
1261 }
1262
1263 bool IsEndIterator() const {
1264 if (position_ != node_->finish()) return false;
1265 node_type *node = node_;
1266 while (!node->is_root()) {
1267 if (node->position() != node->parent()->finish()) return false;
1268 node = node->parent();
1269 }
1270 return true;
1271 }
1272
1273 // Returns n such that n calls to ++other yields *this.
1274 // Precondition: n exists && (this->node_ != other.node_ ||
1275 // !this->node_->is_leaf() || this->position_ != other.position_).
1276 difference_type distance_slow(const_iterator other) const;
1277
1278 // Increment/decrement the iterator.
1279 void increment() {
1280 assert_valid_generation(node_);
1281 if (node_->is_leaf() && ++position_ < node_->finish()) {
1282 return;
1283 }
1284 increment_slow();
1285 }
1286 void increment_slow();
1287
1288 void decrement() {
1289 assert_valid_generation(node_);
1290 if (node_->is_leaf() && --position_ >= node_->start()) {
1291 return;
1292 }
1293 decrement_slow();
1294 }
1295 void decrement_slow();
1296
1297 const key_type &key() const {
1298 return node_->key(static_cast<size_type>(position_));
1299 }
1300 decltype(std::declval<Node *>()->slot(0)) slot() {
1301 return node_->slot(static_cast<size_type>(position_));
1302 }
1303
1304 void update_generation() {
1305 btree_iterator_generation_info::update_generation(node_);
1306 }
1307
1308 // The node in the tree the iterator is pointing at.
1309 Node *node_;
1310 // The position within the node of the tree the iterator is pointing at.
1311 // NOTE: this is an int rather than a field_type because iterators can point
1312 // to invalid positions (such as -1) in certain circumstances.
1313 int position_;
1314 };
1315
1316 template <typename Params>
1317 class btree {
1318 using node_type = btree_node<Params>;
1319 using is_key_compare_to = typename Params::is_key_compare_to;
1320 using field_type = typename node_type::field_type;
1321
1322 // We use a static empty node for the root/leftmost/rightmost of empty btrees
1323 // in order to avoid branching in begin()/end().
1324 struct EmptyNodeType : node_type {
1325 using field_type = typename node_type::field_type;
1326 node_type *parent;
1327 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
1328 uint32_t generation = 0;
1329 #endif
1330 field_type position = 0;
1331 field_type start = 0;
1332 field_type finish = 0;
1333 // max_count must be != kInternalNodeMaxCount (so that this node is regarded
1334 // as a leaf node). max_count() is never called when the tree is empty.
1335 field_type max_count = node_type::kInternalNodeMaxCount + 1;
1336
1337 constexpr EmptyNodeType() : parent(this) {}
1338 };
1339
1340 static node_type *EmptyNode() {
1341 alignas(node_type::Alignment()) static constexpr EmptyNodeType empty_node;
1342 return const_cast<EmptyNodeType *>(&empty_node);
1343 }
1344
1345 enum : uint32_t {
1346 kNodeSlots = node_type::kNodeSlots,
1347 kMinNodeValues = kNodeSlots / 2,
1348 };
1349
1350 struct node_stats {
1351 using size_type = typename Params::size_type;
1352
1353 node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
1354
1355 node_stats &operator+=(const node_stats &other) {
1356 leaf_nodes += other.leaf_nodes;
1357 internal_nodes += other.internal_nodes;
1358 return *this;
1359 }
1360
1361 size_type leaf_nodes;
1362 size_type internal_nodes;
1363 };
1364
1365 public:
1366 using key_type = typename Params::key_type;
1367 using value_type = typename Params::value_type;
1368 using size_type = typename Params::size_type;
1369 using difference_type = typename Params::difference_type;
1370 using key_compare = typename Params::key_compare;
1371 using original_key_compare = typename Params::original_key_compare;
1372 using value_compare = typename Params::value_compare;
1373 using allocator_type = typename Params::allocator_type;
1374 using reference = typename Params::reference;
1375 using const_reference = typename Params::const_reference;
1376 using pointer = typename Params::pointer;
1377 using const_pointer = typename Params::const_pointer;
1378 using iterator =
1379 typename btree_iterator<node_type, reference, pointer>::iterator;
1380 using const_iterator = typename iterator::const_iterator;
1381 using reverse_iterator = std::reverse_iterator<iterator>;
1382 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
1383 using node_handle_type = node_handle<Params, Params, allocator_type>;
1384
1385 // Internal types made public for use by btree_container types.
1386 using params_type = Params;
1387 using slot_type = typename Params::slot_type;
1388
1389 private:
1390 // Copies or moves (depending on the template parameter) the values in
1391 // other into this btree in their order in other. This btree must be empty
1392 // before this method is called. This method is used in copy construction,
1393 // copy assignment, and move assignment.
1394 template <typename Btree>
1395 void copy_or_move_values_in_order(Btree &other);
1396
1397 // Validates that various assumptions/requirements are true at compile time.
1398 constexpr static bool static_assert_validation();
1399
1400 public:
1401 btree(const key_compare &comp, const allocator_type &alloc)
1402 : root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {}
1403
1404 btree(const btree &other) : btree(other, other.allocator()) {}
1405 btree(const btree &other, const allocator_type &alloc)
1406 : btree(other.key_comp(), alloc) {
1407 copy_or_move_values_in_order(other);
1408 }
1409 btree(btree &&other) noexcept
1410 : root_(absl::exchange(other.root_, EmptyNode())),
1411 rightmost_(std::move(other.rightmost_)),
1412 size_(absl::exchange(other.size_, 0u)) {
1413 other.mutable_rightmost() = EmptyNode();
1414 }
1415 btree(btree &&other, const allocator_type &alloc)
1416 : btree(other.key_comp(), alloc) {
1417 if (alloc == other.allocator()) {
1418 swap(other);
1419 } else {
1420 // Move values from `other` one at a time when allocators are different.
1421 copy_or_move_values_in_order(other);
1422 }
1423 }
1424
1425 ~btree() {
1426 // Put static_asserts in destructor to avoid triggering them before the type
1427 // is complete.
1428 static_assert(static_assert_validation(), "This call must be elided.");
1429 clear();
1430 }
1431
1432 // Assign the contents of other to *this.
1433 btree &operator=(const btree &other);
1434 btree &operator=(btree &&other) noexcept;
1435
1436 iterator begin() { return iterator(leftmost()); }
1437 const_iterator begin() const { return const_iterator(leftmost()); }
1438 iterator end() { return iterator(rightmost(), rightmost()->finish()); }
1439 const_iterator end() const {
1440 return const_iterator(rightmost(), rightmost()->finish());
1441 }
1442 reverse_iterator rbegin() { return reverse_iterator(end()); }
1443 const_reverse_iterator rbegin() const {
1444 return const_reverse_iterator(end());
1445 }
1446 reverse_iterator rend() { return reverse_iterator(begin()); }
1447 const_reverse_iterator rend() const {
1448 return const_reverse_iterator(begin());
1449 }
1450
1451 // Finds the first element whose key is not less than `key`.
1452 template <typename K>
1453 iterator lower_bound(const K &key) {
1454 return internal_end(internal_lower_bound(key).value);
1455 }
1456 template <typename K>
1457 const_iterator lower_bound(const K &key) const {
1458 return internal_end(internal_lower_bound(key).value);
1459 }
1460
1461 // Finds the first element whose key is not less than `key` and also returns
1462 // whether that element is equal to `key`.
1463 template <typename K>
1464 std::pair<iterator, bool> lower_bound_equal(const K &key) const;
1465
1466 // Finds the first element whose key is greater than `key`.
1467 template <typename K>
1468 iterator upper_bound(const K &key) {
1469 return internal_end(internal_upper_bound(key));
1470 }
1471 template <typename K>
1472 const_iterator upper_bound(const K &key) const {
1473 return internal_end(internal_upper_bound(key));
1474 }
1475
1476 // Finds the range of values which compare equal to key. The first member of
1477 // the returned pair is equal to lower_bound(key). The second member of the
1478 // pair is equal to upper_bound(key).
1479 template <typename K>
1480 std::pair<iterator, iterator> equal_range(const K &key);
1481 template <typename K>
1482 std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
1483 return const_cast<btree *>(this)->equal_range(key);
1484 }
1485
1486 // Inserts a value into the btree only if it does not already exist. The
1487 // boolean return value indicates whether insertion succeeded or failed.
1488 // Requirement: if `key` already exists in the btree, does not consume `args`.
1489 // Requirement: `key` is never referenced after consuming `args`.
1490 template <typename K, typename... Args>
1491 std::pair<iterator, bool> insert_unique(const K &key, Args &&...args);
1492
1493 // Inserts with hint. Checks to see if the value should be placed immediately
1494 // before `position` in the tree. If so, then the insertion will take
1495 // amortized constant time. If not, the insertion will take amortized
1496 // logarithmic time as if a call to insert_unique() were made.
1497 // Requirement: if `key` already exists in the btree, does not consume `args`.
1498 // Requirement: `key` is never referenced after consuming `args`.
1499 template <typename K, typename... Args>
1500 std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key,
1501 Args &&...args);
1502
1503 // Insert a range of values into the btree.
1504 // Note: the first overload avoids constructing a value_type if the key
1505 // already exists in the btree.
1506 template <typename InputIterator,
1507 typename = decltype(std::declval<const key_compare &>()(
1508 params_type::key(*std::declval<InputIterator>()),
1509 std::declval<const key_type &>()))>
1510 void insert_iterator_unique(InputIterator b, InputIterator e, int);
1511 // We need the second overload for cases in which we need to construct a
1512 // value_type in order to compare it with the keys already in the btree.
1513 template <typename InputIterator>
1514 void insert_iterator_unique(InputIterator b, InputIterator e, char);
1515
1516 // Inserts a value into the btree.
1517 template <typename ValueType>
1518 iterator insert_multi(const key_type &key, ValueType &&v);
1519
1520 // Inserts a value into the btree.
1521 template <typename ValueType>
1522 iterator insert_multi(ValueType &&v) {
1523 return insert_multi(params_type::key(v), std::forward<ValueType>(v));
1524 }
1525
1526 // Insert with hint. Check to see if the value should be placed immediately
1527 // before position in the tree. If it does, then the insertion will take
1528 // amortized constant time. If not, the insertion will take amortized
1529 // logarithmic time as if a call to insert_multi(v) were made.
1530 template <typename ValueType>
1531 iterator insert_hint_multi(iterator position, ValueType &&v);
1532
1533 // Insert a range of values into the btree.
1534 template <typename InputIterator>
1535 void insert_iterator_multi(InputIterator b,
1536 InputIterator e);
1537
1538 // Erase the specified iterator from the btree. The iterator must be valid
1539 // (i.e. not equal to end()). Return an iterator pointing to the node after
1540 // the one that was erased (or end() if none exists).
1541 // Requirement: does not read the value at `*iter`.
1542 iterator erase(iterator iter);
1543
1544 // Erases range. Returns the number of keys erased and an iterator pointing
1545 // to the element after the last erased element.
1546 std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
1547
1548 // Finds an element with key equivalent to `key` or returns `end()` if `key`
1549 // is not present.
1550 template <typename K>
1551 iterator find(const K &key) {
1552 return internal_end(internal_find(key));
1553 }
1554 template <typename K>
1555 const_iterator find(const K &key) const {
1556 return internal_end(internal_find(key));
1557 }
1558
1559 // Clear the btree, deleting all of the values it contains.
1560 void clear();
1561
1562 // Swaps the contents of `this` and `other`.
1563 void swap(btree &other);
1564
1565 const key_compare &key_comp() const noexcept {
1566 return rightmost_.template get<0>();
1567 }
1568 template <typename K1, typename K2>
1569 bool compare_keys(const K1 &a, const K2 &b) const {
1570 return compare_internal::compare_result_as_less_than(key_comp()(a, b));
1571 }
1572
1573 value_compare value_comp() const {
1574 return value_compare(original_key_compare(key_comp()));
1575 }
1576
1577 // Verifies the structure of the btree.
1578 void verify() const;
1579
1580 // Size routines.
1581 size_type size() const { return size_; }
1582 size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
1583 bool empty() const { return size_ == 0; }
1584
1585 // The height of the btree. An empty tree will have height 0.
1586 size_type height() const {
1587 size_type h = 0;
1588 if (!empty()) {
1589 // Count the length of the chain from the leftmost node up to the
1590 // root. We actually count from the root back around to the level below
1591 // the root, but the calculation is the same because of the circularity
1592 // of that traversal.
1593 const node_type *n = root();
1594 do {
1595 ++h;
1596 n = n->parent();
1597 } while (n != root());
1598 }
1599 return h;
1600 }
1601
1602 // The number of internal, leaf and total nodes used by the btree.
1603 size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
1604 size_type internal_nodes() const {
1605 return internal_stats(root()).internal_nodes;
1606 }
1607 size_type nodes() const {
1608 node_stats stats = internal_stats(root());
1609 return stats.leaf_nodes + stats.internal_nodes;
1610 }
1611
1612 // The total number of bytes used by the btree.
1613 // TODO(b/169338300): update to support node_btree_*.
1614 size_type bytes_used() const {
1615 node_stats stats = internal_stats(root());
1616 if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
1617 return sizeof(*this) + node_type::LeafSize(root()->max_count());
1618 } else {
1619 return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
1620 stats.internal_nodes * node_type::InternalSize();
1621 }
1622 }
1623
1624 // The average number of bytes used per value stored in the btree assuming
1625 // random insertion order.
1626 static double average_bytes_per_value() {
1627 // The expected number of values per node with random insertion order is the
1628 // average of the maximum and minimum numbers of values per node.
1629 const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0;
1630 return node_type::LeafSize() / expected_values_per_node;
1631 }
1632
1633 // The fullness of the btree. Computed as the number of elements in the btree
1634 // divided by the maximum number of elements a tree with the current number
1635 // of nodes could hold. A value of 1 indicates perfect space
1636 // utilization. Smaller values indicate space wastage.
1637 // Returns 0 for empty trees.
1638 double fullness() const {
1639 if (empty()) return 0.0;
1640 return static_cast<double>(size()) / (nodes() * kNodeSlots);
1641 }
1642 // The overhead of the btree structure in bytes per node. Computed as the
1643 // total number of bytes used by the btree minus the number of bytes used for
1644 // storing elements divided by the number of elements.
1645 // Returns 0 for empty trees.
1646 double overhead() const {
1647 if (empty()) return 0.0;
1648 return (bytes_used() - size() * sizeof(value_type)) /
1649 static_cast<double>(size());
1650 }
1651
1652 // The allocator used by the btree.
1653 allocator_type get_allocator() const { return allocator(); }
1654
1655 private:
1656 friend struct btree_access;
1657
1658 // Internal accessor routines.
1659 node_type *root() { return root_; }
1660 const node_type *root() const { return root_; }
1661 node_type *&mutable_root() noexcept { return root_; }
1662 node_type *rightmost() { return rightmost_.template get<2>(); }
1663 const node_type *rightmost() const { return rightmost_.template get<2>(); }
1664 node_type *&mutable_rightmost() noexcept {
1665 return rightmost_.template get<2>();
1666 }
1667 key_compare *mutable_key_comp() noexcept {
1668 return &rightmost_.template get<0>();
1669 }
1670
1671 // The leftmost node is stored as the parent of the root node.
1672 node_type *leftmost() { return root()->parent(); }
1673 const node_type *leftmost() const { return root()->parent(); }
1674
1675 // Allocator routines.
1676 allocator_type *mutable_allocator() noexcept {
1677 return &rightmost_.template get<1>();
1678 }
1679 const allocator_type &allocator() const noexcept {
1680 return rightmost_.template get<1>();
1681 }
1682
1683 // Allocates a correctly aligned node of at least size bytes using the
1684 // allocator.
1685 node_type *allocate(size_type size) {
1686 return reinterpret_cast<node_type *>(
1687 absl::container_internal::Allocate<node_type::Alignment()>(
1688 mutable_allocator(), size));
1689 }
1690
1691 // Node creation/deletion routines.
1692 node_type *new_internal_node(field_type position, node_type *parent) {
1693 node_type *n = allocate(node_type::InternalSize());
1694 n->init_internal(position, parent);
1695 return n;
1696 }
1697 node_type *new_leaf_node(field_type position, node_type *parent) {
1698 node_type *n = allocate(node_type::LeafSize());
1699 n->init_leaf(position, kNodeSlots, parent);
1700 return n;
1701 }
1702 node_type *new_leaf_root_node(field_type max_count) {
1703 node_type *n = allocate(node_type::LeafSize(max_count));
1704 n->init_leaf(/*position=*/0, max_count, /*parent=*/n);
1705 return n;
1706 }
1707
1708 // Deletion helper routines.
1709 iterator rebalance_after_delete(iterator iter);
1710
1711 // Rebalances or splits the node iter points to.
1712 void rebalance_or_split(iterator *iter);
1713
1714 // Merges the values of left, right and the delimiting key on their parent
1715 // onto left, removing the delimiting key and deleting right.
1716 void merge_nodes(node_type *left, node_type *right);
1717
1718 // Tries to merge node with its left or right sibling, and failing that,
1719 // rebalance with its left or right sibling. Returns true if a merge
1720 // occurred, at which point it is no longer valid to access node. Returns
1721 // false if no merging took place.
1722 bool try_merge_or_rebalance(iterator *iter);
1723
1724 // Tries to shrink the height of the tree by 1.
1725 void try_shrink();
1726
1727 iterator internal_end(iterator iter) {
1728 return iter.node_ != nullptr ? iter : end();
1729 }
1730 const_iterator internal_end(const_iterator iter) const {
1731 return iter.node_ != nullptr ? iter : end();
1732 }
1733
1734 // Emplaces a value into the btree immediately before iter. Requires that
1735 // key(v) <= iter.key() and (--iter).key() <= key(v).
1736 template <typename... Args>
1737 iterator internal_emplace(iterator iter, Args &&...args);
1738
1739 // Returns an iterator pointing to the first value >= the value "iter" is
1740 // pointing at. Note that "iter" might be pointing to an invalid location such
1741 // as iter.position_ == iter.node_->finish(). This routine simply moves iter
1742 // up in the tree to a valid location. Requires: iter.node_ is non-null.
1743 template <typename IterType>
1744 static IterType internal_last(IterType iter);
1745
1746 // Returns an iterator pointing to the leaf position at which key would
1747 // reside in the tree, unless there is an exact match - in which case, the
1748 // result may not be on a leaf. When there's a three-way comparator, we can
1749 // return whether there was an exact match. This allows the caller to avoid a
1750 // subsequent comparison to determine if an exact match was made, which is
1751 // important for keys with expensive comparison, such as strings.
1752 template <typename K>
1753 SearchResult<iterator, is_key_compare_to::value> internal_locate(
1754 const K &key) const;
1755
1756 // Internal routine which implements lower_bound().
1757 template <typename K>
1758 SearchResult<iterator, is_key_compare_to::value> internal_lower_bound(
1759 const K &key) const;
1760
1761 // Internal routine which implements upper_bound().
1762 template <typename K>
1763 iterator internal_upper_bound(const K &key) const;
1764
1765 // Internal routine which implements find().
1766 template <typename K>
1767 iterator internal_find(const K &key) const;
1768
1769 // Verifies the tree structure of node.
1770 size_type internal_verify(const node_type *node, const key_type *lo,
1771 const key_type *hi) const;
1772
1773 node_stats internal_stats(const node_type *node) const {
1774 // The root can be a static empty node.
1775 if (node == nullptr || (node == root() && empty())) {
1776 return node_stats(0, 0);
1777 }
1778 if (node->is_leaf()) {
1779 return node_stats(1, 0);
1780 }
1781 node_stats res(0, 1);
1782 for (int i = node->start(); i <= node->finish(); ++i) {
1783 res += internal_stats(node->child(i));
1784 }
1785 return res;
1786 }
1787
1788 node_type *root_;
1789
1790 // A pointer to the rightmost node. Note that the leftmost node is stored as
1791 // the root's parent. We use compressed tuple in order to save space because
1792 // key_compare and allocator_type are usually empty.
1793 absl::container_internal::CompressedTuple<key_compare, allocator_type,
1794 node_type *>
1795 rightmost_;
1796
1797 // Number of values.
1798 size_type size_;
1799 };
1800
1801 ////
1802 // btree_node methods
1803 template <typename P>
1804 template <typename... Args>
1805 inline void btree_node<P>::emplace_value(const field_type i,
1806 allocator_type *alloc,
1807 Args &&...args) {
1808 assert(i >= start());
1809 assert(i <= finish());
1810 // Shift old values to create space for new value and then construct it in
1811 // place.
1812 if (i < finish()) {
1813 transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
1814 alloc);
1815 }
1816 value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...);
1817 set_finish(finish() + 1);
1818
1819 if (is_internal() && finish() > i + 1) {
1820 for (field_type j = finish(); j > i + 1; --j) {
1821 set_child(j, child(j - 1));
1822 }
1823 clear_child(i + 1);
1824 }
1825 }
1826
1827 template <typename P>
1828 inline void btree_node<P>::remove_values(const field_type i,
1829 const field_type to_erase,
1830 allocator_type *alloc) {
1831 // Transfer values after the removed range into their new places.
1832 value_destroy_n(i, to_erase, alloc);
1833 const field_type orig_finish = finish();
1834 const field_type src_i = i + to_erase;
1835 transfer_n(orig_finish - src_i, i, src_i, this, alloc);
1836
1837 if (is_internal()) {
1838 // Delete all children between begin and end.
1839 for (field_type j = 0; j < to_erase; ++j) {
1840 clear_and_delete(child(i + j + 1), alloc);
1841 }
1842 // Rotate children after end into new positions.
1843 for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) {
1844 set_child(j - to_erase, child(j));
1845 clear_child(j);
1846 }
1847 }
1848 set_finish(orig_finish - to_erase);
1849 }
1850
1851 template <typename P>
1852 void btree_node<P>::rebalance_right_to_left(field_type to_move,
1853 btree_node *right,
1854 allocator_type *alloc) {
1855 assert(parent() == right->parent());
1856 assert(position() + 1 == right->position());
1857 assert(right->count() >= count());
1858 assert(to_move >= 1);
1859 assert(to_move <= right->count());
1860
1861 // 1) Move the delimiting value in the parent to the left node.
1862 transfer(finish(), position(), parent(), alloc);
1863
1864 // 2) Move the (to_move - 1) values from the right node to the left node.
1865 transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
1866
1867 // 3) Move the new delimiting value to the parent from the right node.
1868 parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
1869
1870 // 4) Shift the values in the right node to their correct positions.
1871 right->transfer_n(right->count() - to_move, right->start(),
1872 right->start() + to_move, right, alloc);
1873
1874 if (is_internal()) {
1875 // Move the child pointers from the right to the left node.
1876 for (field_type i = 0; i < to_move; ++i) {
1877 init_child(finish() + i + 1, right->child(i));
1878 }
1879 for (field_type i = right->start(); i <= right->finish() - to_move; ++i) {
1880 assert(i + to_move <= right->max_count());
1881 right->init_child(i, right->child(i + to_move));
1882 right->clear_child(i + to_move);
1883 }
1884 }
1885
1886 // Fixup `finish` on the left and right nodes.
1887 set_finish(finish() + to_move);
1888 right->set_finish(right->finish() - to_move);
1889 }
1890
1891 template <typename P>
1892 void btree_node<P>::rebalance_left_to_right(field_type to_move,
1893 btree_node *right,
1894 allocator_type *alloc) {
1895 assert(parent() == right->parent());
1896 assert(position() + 1 == right->position());
1897 assert(count() >= right->count());
1898 assert(to_move >= 1);
1899 assert(to_move <= count());
1900
1901 // Values in the right node are shifted to the right to make room for the
1902 // new to_move values. Then, the delimiting value in the parent and the
1903 // other (to_move - 1) values in the left node are moved into the right node.
1904 // Lastly, a new delimiting value is moved from the left node into the
1905 // parent, and the remaining empty left node entries are destroyed.
1906
1907 // 1) Shift existing values in the right node to their correct positions.
1908 right->transfer_n_backward(right->count(), right->start() + to_move,
1909 right->start(), right, alloc);
1910
1911 // 2) Move the delimiting value in the parent to the right node.
1912 right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
1913
1914 // 3) Move the (to_move - 1) values from the left node to the right node.
1915 right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
1916 alloc);
1917
1918 // 4) Move the new delimiting value to the parent from the left node.
1919 parent()->transfer(position(), finish() - to_move, this, alloc);
1920
1921 if (is_internal()) {
1922 // Move the child pointers from the left to the right node.
1923 for (field_type i = right->finish() + 1; i > right->start(); --i) {
1924 right->init_child(i - 1 + to_move, right->child(i - 1));
1925 right->clear_child(i - 1);
1926 }
1927 for (field_type i = 1; i <= to_move; ++i) {
1928 right->init_child(i - 1, child(finish() - to_move + i));
1929 clear_child(finish() - to_move + i);
1930 }
1931 }
1932
1933 // Fixup the counts on the left and right nodes.
1934 set_finish(finish() - to_move);
1935 right->set_finish(right->finish() + to_move);
1936 }
1937
1938 template <typename P>
1939 void btree_node<P>::split(const int insert_position, btree_node *dest,
1940 allocator_type *alloc) {
1941 assert(dest->count() == 0);
1942 assert(max_count() == kNodeSlots);
1943 assert(position() + 1 == dest->position());
1944 assert(parent() == dest->parent());
1945
1946 // We bias the split based on the position being inserted. If we're
1947 // inserting at the beginning of the left node then bias the split to put
1948 // more values on the right node. If we're inserting at the end of the
1949 // right node then bias the split to put more values on the left node.
1950 if (insert_position == start()) {
1951 dest->set_finish(dest->start() + finish() - 1);
1952 } else if (insert_position == kNodeSlots) {
1953 dest->set_finish(dest->start());
1954 } else {
1955 dest->set_finish(dest->start() + count() / 2);
1956 }
1957 set_finish(finish() - dest->count());
1958 assert(count() >= 1);
1959
1960 // Move values from the left sibling to the right sibling.
1961 dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
1962
1963 // The split key is the largest value in the left sibling.
1964 --mutable_finish();
1965 parent()->emplace_value(position(), alloc, finish_slot());
1966 value_destroy(finish(), alloc);
1967 parent()->set_child_noupdate_position(position() + 1, dest);
1968
1969 if (is_internal()) {
1970 for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish();
1971 ++i, ++j) {
1972 assert(child(j) != nullptr);
1973 dest->init_child(i, child(j));
1974 clear_child(j);
1975 }
1976 }
1977 }
1978
1979 template <typename P>
1980 void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
1981 assert(parent() == src->parent());
1982 assert(position() + 1 == src->position());
1983
1984 // Move the delimiting value to the left node.
1985 value_init(finish(), alloc, parent()->slot(position()));
1986
1987 // Move the values from the right to the left node.
1988 transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
1989
1990 if (is_internal()) {
1991 // Move the child pointers from the right to the left node.
1992 for (field_type i = src->start(), j = finish() + 1; i <= src->finish();
1993 ++i, ++j) {
1994 init_child(j, src->child(i));
1995 src->clear_child(i);
1996 }
1997 }
1998
1999 // Fixup `finish` on the src and dest nodes.
2000 set_finish(start() + 1 + count() + src->count());
2001 src->set_finish(src->start());
2002
2003 // Remove the value on the parent node and delete the src node.
2004 parent()->remove_values(position(), /*to_erase=*/1, alloc);
2005 }
2006
2007 template <typename P>
2008 void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
2009 if (node->is_leaf()) {
2010 node->value_destroy_n(node->start(), node->count(), alloc);
2011 deallocate(LeafSize(node->max_count()), node, alloc);
2012 return;
2013 }
2014 if (node->count() == 0) {
2015 deallocate(InternalSize(), node, alloc);
2016 return;
2017 }
2018
2019 // The parent of the root of the subtree we are deleting.
2020 btree_node *delete_root_parent = node->parent();
2021
2022 // Navigate to the leftmost leaf under node, and then delete upwards.
2023 while (node->is_internal()) node = node->start_child();
2024 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
2025 // When generations are enabled, we delete the leftmost leaf last in case it's
2026 // the parent of the root and we need to check whether it's a leaf before we
2027 // can update the root's generation.
2028 // TODO(ezb): if we change btree_node::is_root to check a bool inside the node
2029 // instead of checking whether the parent is a leaf, we can remove this logic.
2030 btree_node *leftmost_leaf = node;
2031 #endif
2032 // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
2033 // which isn't guaranteed to be a valid `field_type`.
2034 size_type pos = node->position();
2035 btree_node *parent = node->parent();
2036 for (;;) {
2037 // In each iteration of the next loop, we delete one leaf node and go right.
2038 assert(pos <= parent->finish());
2039 do {
2040 node = parent->child(static_cast<field_type>(pos));
2041 if (node->is_internal()) {
2042 // Navigate to the leftmost leaf under node.
2043 while (node->is_internal()) node = node->start_child();
2044 pos = node->position();
2045 parent = node->parent();
2046 }
2047 node->value_destroy_n(node->start(), node->count(), alloc);
2048 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
2049 if (leftmost_leaf != node)
2050 #endif
2051 deallocate(LeafSize(node->max_count()), node, alloc);
2052 ++pos;
2053 } while (pos <= parent->finish());
2054
2055 // Once we've deleted all children of parent, delete parent and go up/right.
2056 assert(pos > parent->finish());
2057 do {
2058 node = parent;
2059 pos = node->position();
2060 parent = node->parent();
2061 node->value_destroy_n(node->start(), node->count(), alloc);
2062 deallocate(InternalSize(), node, alloc);
2063 if (parent == delete_root_parent) {
2064 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
2065 deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc);
2066 #endif
2067 return;
2068 }
2069 ++pos;
2070 } while (pos > parent->finish());
2071 }
2072 }
2073
2074 ////
2075 // btree_iterator methods
2076
2077 // Note: the implementation here is based on btree_node::clear_and_delete.
2078 template <typename N, typename R, typename P>
2079 auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const
2080 -> difference_type {
2081 const_iterator begin = other;
2082 const_iterator end = *this;
2083 assert(begin.node_ != end.node_ || !begin.node_->is_leaf() ||
2084 begin.position_ != end.position_);
2085
2086 const node_type *node = begin.node_;
2087 // We need to compensate for double counting if begin.node_ is a leaf node.
2088 difference_type count = node->is_leaf() ? -begin.position_ : 0;
2089
2090 // First navigate to the leftmost leaf node past begin.
2091 if (node->is_internal()) {
2092 ++count;
2093 node = node->child(begin.position_ + 1);
2094 }
2095 while (node->is_internal()) node = node->start_child();
2096
2097 // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
2098 // which isn't guaranteed to be a valid `field_type`.
2099 size_type pos = node->position();
2100 const node_type *parent = node->parent();
2101 for (;;) {
2102 // In each iteration of the next loop, we count one leaf node and go right.
2103 assert(pos <= parent->finish());
2104 do {
2105 node = parent->child(static_cast<field_type>(pos));
2106 if (node->is_internal()) {
2107 // Navigate to the leftmost leaf under node.
2108 while (node->is_internal()) node = node->start_child();
2109 pos = node->position();
2110 parent = node->parent();
2111 }
2112 if (node == end.node_) return count + end.position_;
2113 if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
2114 return count + node->count();
2115 // +1 is for the next internal node value.
2116 count += node->count() + 1;
2117 ++pos;
2118 } while (pos <= parent->finish());
2119
2120 // Once we've counted all children of parent, go up/right.
2121 assert(pos > parent->finish());
2122 do {
2123 node = parent;
2124 pos = node->position();
2125 parent = node->parent();
2126 // -1 because we counted the value at end and shouldn't.
2127 if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
2128 return count - 1;
2129 ++pos;
2130 } while (pos > parent->finish());
2131 }
2132 }
2133
2134 template <typename N, typename R, typename P>
2135 void btree_iterator<N, R, P>::increment_slow() {
2136 if (node_->is_leaf()) {
2137 assert(position_ >= node_->finish());
2138 btree_iterator save(*this);
2139 while (position_ == node_->finish() && !node_->is_root()) {
2140 assert(node_->parent()->child(node_->position()) == node_);
2141 position_ = node_->position();
2142 node_ = node_->parent();
2143 }
2144 // TODO(ezb): assert we aren't incrementing end() instead of handling.
2145 if (position_ == node_->finish()) {
2146 *this = save;
2147 }
2148 } else {
2149 assert(position_ < node_->finish());
2150 node_ = node_->child(static_cast<field_type>(position_ + 1));
2151 while (node_->is_internal()) {
2152 node_ = node_->start_child();
2153 }
2154 position_ = node_->start();
2155 }
2156 }
2157
2158 template <typename N, typename R, typename P>
2159 void btree_iterator<N, R, P>::decrement_slow() {
2160 if (node_->is_leaf()) {
2161 assert(position_ <= -1);
2162 btree_iterator save(*this);
2163 while (position_ < node_->start() && !node_->is_root()) {
2164 assert(node_->parent()->child(node_->position()) == node_);
2165 position_ = node_->position() - 1;
2166 node_ = node_->parent();
2167 }
2168 // TODO(ezb): assert we aren't decrementing begin() instead of handling.
2169 if (position_ < node_->start()) {
2170 *this = save;
2171 }
2172 } else {
2173 assert(position_ >= node_->start());
2174 node_ = node_->child(static_cast<field_type>(position_));
2175 while (node_->is_internal()) {
2176 node_ = node_->child(node_->finish());
2177 }
2178 position_ = node_->finish() - 1;
2179 }
2180 }
2181
2182 ////
2183 // btree methods
2184 template <typename P>
2185 template <typename Btree>
2186 void btree<P>::copy_or_move_values_in_order(Btree &other) {
2187 static_assert(std::is_same<btree, Btree>::value ||
2188 std::is_same<const btree, Btree>::value,
2189 "Btree type must be same or const.");
2190 assert(empty());
2191
2192 // We can avoid key comparisons because we know the order of the
2193 // values is the same order we'll store them in.
2194 auto iter = other.begin();
2195 if (iter == other.end()) return;
2196 insert_multi(iter.slot());
2197 ++iter;
2198 for (; iter != other.end(); ++iter) {
2199 // If the btree is not empty, we can just insert the new value at the end
2200 // of the tree.
2201 internal_emplace(end(), iter.slot());
2202 }
2203 }
2204
2205 template <typename P>
2206 constexpr bool btree<P>::static_assert_validation() {
2207 static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
2208 "Key comparison must be nothrow copy constructible");
2209 static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
2210 "Allocator must be nothrow copy constructible");
2211 static_assert(std::is_trivially_copyable<iterator>::value,
2212 "iterator not trivially copyable.");
2213
2214 // Note: We assert that kTargetValues, which is computed from
2215 // Params::kTargetNodeSize, must fit the node_type::field_type.
2216 static_assert(
2217 kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))),
2218 "target node size too large");
2219
2220 // Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
2221 static_assert(
2222 compare_has_valid_result_type<key_compare, key_type>(),
2223 "key comparison function must return absl::{weak,strong}_ordering or "
2224 "bool.");
2225
2226 // Test the assumption made in setting kNodeSlotSpace.
2227 static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
2228 "node space assumption incorrect");
2229
2230 return true;
2231 }
2232
2233 template <typename P>
2234 template <typename K>
2235 auto btree<P>::lower_bound_equal(const K &key) const
2236 -> std::pair<iterator, bool> {
2237 const SearchResult<iterator, is_key_compare_to::value> res =
2238 internal_lower_bound(key);
2239 const iterator lower = iterator(internal_end(res.value));
2240 const bool equal = res.HasMatch()
2241 ? res.IsEq()
2242 : lower != end() && !compare_keys(key, lower.key());
2243 return {lower, equal};
2244 }
2245
2246 template <typename P>
2247 template <typename K>
2248 auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
2249 const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key);
2250 const iterator lower = lower_and_equal.first;
2251 if (!lower_and_equal.second) {
2252 return {lower, lower};
2253 }
2254
2255 const iterator next = std::next(lower);
2256 if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
2257 // The next iterator after lower must point to a key greater than `key`.
2258 // Note: if this assert fails, then it may indicate that the comparator does
2259 // not meet the equivalence requirements for Compare
2260 // (see https://en.cppreference.com/w/cpp/named_req/Compare).
2261 assert(next == end() || compare_keys(key, next.key()));
2262 return {lower, next};
2263 }
2264 // Try once more to avoid the call to upper_bound() if there's only one
2265 // equivalent key. This should prevent all calls to upper_bound() in cases of
2266 // unique-containers with heterogeneous comparators in which all comparison
2267 // operators have the same equivalence classes.
2268 if (next == end() || compare_keys(key, next.key())) return {lower, next};
2269
2270 // In this case, we need to call upper_bound() to avoid worst case O(N)
2271 // behavior if we were to iterate over equal keys.
2272 return {lower, upper_bound(key)};
2273 }
2274
2275 template <typename P>
2276 template <typename K, typename... Args>
2277 auto btree<P>::insert_unique(const K &key, Args &&...args)
2278 -> std::pair<iterator, bool> {
2279 if (empty()) {
2280 mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
2281 }
2282
2283 SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
2284 iterator iter = res.value;
2285
2286 if (res.HasMatch()) {
2287 if (res.IsEq()) {
2288 // The key already exists in the tree, do nothing.
2289 return {iter, false};
2290 }
2291 } else {
2292 iterator last = internal_last(iter);
2293 if (last.node_ && !compare_keys(key, last.key())) {
2294 // The key already exists in the tree, do nothing.
2295 return {last, false};
2296 }
2297 }
2298 return {internal_emplace(iter, std::forward<Args>(args)...), true};
2299 }
2300
2301 template <typename P>
2302 template <typename K, typename... Args>
2303 inline auto btree<P>::insert_hint_unique(iterator position, const K &key,
2304 Args &&...args)
2305 -> std::pair<iterator, bool> {
2306 if (!empty()) {
2307 if (position == end() || compare_keys(key, position.key())) {
2308 if (position == begin() || compare_keys(std::prev(position).key(), key)) {
2309 // prev.key() < key < position.key()
2310 return {internal_emplace(position, std::forward<Args>(args)...), true};
2311 }
2312 } else if (compare_keys(position.key(), key)) {
2313 ++position;
2314 if (position == end() || compare_keys(key, position.key())) {
2315 // {original `position`}.key() < key < {current `position`}.key()
2316 return {internal_emplace(position, std::forward<Args>(args)...), true};
2317 }
2318 } else {
2319 // position.key() == key
2320 return {position, false};
2321 }
2322 }
2323 return insert_unique(key, std::forward<Args>(args)...);
2324 }
2325
2326 template <typename P>
2327 template <typename InputIterator, typename>
2328 void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) {
2329 for (; b != e; ++b) {
2330 insert_hint_unique(end(), params_type::key(*b), *b);
2331 }
2332 }
2333
2334 template <typename P>
2335 template <typename InputIterator>
2336 void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
2337 for (; b != e; ++b) {
2338 // Use a node handle to manage a temp slot.
2339 auto node_handle =
2340 CommonAccess::Construct<node_handle_type>(get_allocator(), *b);
2341 slot_type *slot = CommonAccess::GetSlot(node_handle);
2342 insert_hint_unique(end(), params_type::key(slot), slot);
2343 }
2344 }
2345
2346 template <typename P>
2347 template <typename ValueType>
2348 auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
2349 if (empty()) {
2350 mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
2351 }
2352
2353 iterator iter = internal_upper_bound(key);
2354 if (iter.node_ == nullptr) {
2355 iter = end();
2356 }
2357 return internal_emplace(iter, std::forward<ValueType>(v));
2358 }
2359
2360 template <typename P>
2361 template <typename ValueType>
2362 auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
2363 if (!empty()) {
2364 const key_type &key = params_type::key(v);
2365 if (position == end() || !compare_keys(position.key(), key)) {
2366 if (position == begin() ||
2367 !compare_keys(key, std::prev(position).key())) {
2368 // prev.key() <= key <= position.key()
2369 return internal_emplace(position, std::forward<ValueType>(v));
2370 }
2371 } else {
2372 ++position;
2373 if (position == end() || !compare_keys(position.key(), key)) {
2374 // {original `position`}.key() < key < {current `position`}.key()
2375 return internal_emplace(position, std::forward<ValueType>(v));
2376 }
2377 }
2378 }
2379 return insert_multi(std::forward<ValueType>(v));
2380 }
2381
2382 template <typename P>
2383 template <typename InputIterator>
2384 void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
2385 for (; b != e; ++b) {
2386 insert_hint_multi(end(), *b);
2387 }
2388 }
2389
2390 template <typename P>
2391 auto btree<P>::operator=(const btree &other) -> btree & {
2392 if (this != &other) {
2393 clear();
2394
2395 *mutable_key_comp() = other.key_comp();
2396 if (absl::allocator_traits<
2397 allocator_type>::propagate_on_container_copy_assignment::value) {
2398 *mutable_allocator() = other.allocator();
2399 }
2400
2401 copy_or_move_values_in_order(other);
2402 }
2403 return *this;
2404 }
2405
2406 template <typename P>
2407 auto btree<P>::operator=(btree &&other) noexcept -> btree & {
2408 if (this != &other) {
2409 clear();
2410
2411 using std::swap;
2412 if (absl::allocator_traits<
2413 allocator_type>::propagate_on_container_move_assignment::value) {
2414 swap(root_, other.root_);
2415 // Note: `rightmost_` also contains the allocator and the key comparator.
2416 swap(rightmost_, other.rightmost_);
2417 swap(size_, other.size_);
2418 } else {
2419 if (allocator() == other.allocator()) {
2420 swap(mutable_root(), other.mutable_root());
2421 swap(*mutable_key_comp(), *other.mutable_key_comp());
2422 swap(mutable_rightmost(), other.mutable_rightmost());
2423 swap(size_, other.size_);
2424 } else {
2425 // We aren't allowed to propagate the allocator and the allocator is
2426 // different so we can't take over its memory. We must move each element
2427 // individually. We need both `other` and `this` to have `other`s key
2428 // comparator while moving the values so we can't swap the key
2429 // comparators.
2430 *mutable_key_comp() = other.key_comp();
2431 copy_or_move_values_in_order(other);
2432 }
2433 }
2434 }
2435 return *this;
2436 }
2437
2438 template <typename P>
2439 auto btree<P>::erase(iterator iter) -> iterator {
2440 iter.node_->value_destroy(static_cast<field_type>(iter.position_),
2441 mutable_allocator());
2442 iter.update_generation();
2443
2444 const bool internal_delete = iter.node_->is_internal();
2445 if (internal_delete) {
2446 // Deletion of a value on an internal node. First, transfer the largest
2447 // value from our left child here, then erase/rebalance from that position.
2448 // We can get to the largest value from our left child by decrementing iter.
2449 iterator internal_iter(iter);
2450 --iter;
2451 assert(iter.node_->is_leaf());
2452 internal_iter.node_->transfer(
2453 static_cast<size_type>(internal_iter.position_),
2454 static_cast<size_type>(iter.position_), iter.node_,
2455 mutable_allocator());
2456 } else {
2457 // Shift values after erased position in leaf. In the internal case, we
2458 // don't need to do this because the leaf position is the end of the node.
2459 const field_type transfer_from =
2460 static_cast<field_type>(iter.position_ + 1);
2461 const field_type num_to_transfer = iter.node_->finish() - transfer_from;
2462 iter.node_->transfer_n(num_to_transfer,
2463 static_cast<size_type>(iter.position_),
2464 transfer_from, iter.node_, mutable_allocator());
2465 }
2466 // Update node finish and container size.
2467 iter.node_->set_finish(iter.node_->finish() - 1);
2468 --size_;
2469
2470 // We want to return the next value after the one we just erased. If we
2471 // erased from an internal node (internal_delete == true), then the next
2472 // value is ++(++iter). If we erased from a leaf node (internal_delete ==
2473 // false) then the next value is ++iter. Note that ++iter may point to an
2474 // internal node and the value in the internal node may move to a leaf node
2475 // (iter.node_) when rebalancing is performed at the leaf level.
2476
2477 iterator res = rebalance_after_delete(iter);
2478
2479 // If we erased from an internal node, advance the iterator.
2480 if (internal_delete) {
2481 ++res;
2482 }
2483 return res;
2484 }
2485
2486 template <typename P>
2487 auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
2488 // Merge/rebalance as we walk back up the tree.
2489 iterator res(iter);
2490 bool first_iteration = true;
2491 for (;;) {
2492 if (iter.node_ == root()) {
2493 try_shrink();
2494 if (empty()) {
2495 return end();
2496 }
2497 break;
2498 }
2499 if (iter.node_->count() >= kMinNodeValues) {
2500 break;
2501 }
2502 bool merged = try_merge_or_rebalance(&iter);
2503 // On the first iteration, we should update `res` with `iter` because `res`
2504 // may have been invalidated.
2505 if (first_iteration) {
2506 res = iter;
2507 first_iteration = false;
2508 }
2509 if (!merged) {
2510 break;
2511 }
2512 iter.position_ = iter.node_->position();
2513 iter.node_ = iter.node_->parent();
2514 }
2515 res.update_generation();
2516
2517 // Adjust our return value. If we're pointing at the end of a node, advance
2518 // the iterator.
2519 if (res.position_ == res.node_->finish()) {
2520 res.position_ = res.node_->finish() - 1;
2521 ++res;
2522 }
2523
2524 return res;
2525 }
2526
2527 // Note: we tried implementing this more efficiently by erasing all of the
2528 // elements in [begin, end) at once and then doing rebalancing once at the end
2529 // (rather than interleaving deletion and rebalancing), but that adds a lot of
2530 // complexity, which seems to outweigh the performance win.
2531 template <typename P>
2532 auto btree<P>::erase_range(iterator begin, iterator end)
2533 -> std::pair<size_type, iterator> {
2534 size_type count = static_cast<size_type>(end - begin);
2535 assert(count >= 0);
2536
2537 if (count == 0) {
2538 return {0, begin};
2539 }
2540
2541 if (static_cast<size_type>(count) == size_) {
2542 clear();
2543 return {count, this->end()};
2544 }
2545
2546 if (begin.node_ == end.node_) {
2547 assert(end.position_ > begin.position_);
2548 begin.node_->remove_values(
2549 static_cast<field_type>(begin.position_),
2550 static_cast<field_type>(end.position_ - begin.position_),
2551 mutable_allocator());
2552 size_ -= count;
2553 return {count, rebalance_after_delete(begin)};
2554 }
2555
2556 const size_type target_size = size_ - count;
2557 while (size_ > target_size) {
2558 if (begin.node_->is_leaf()) {
2559 const size_type remaining_to_erase = size_ - target_size;
2560 const size_type remaining_in_node =
2561 static_cast<size_type>(begin.node_->finish() - begin.position_);
2562 const field_type to_erase = static_cast<field_type>(
2563 (std::min)(remaining_to_erase, remaining_in_node));
2564 begin.node_->remove_values(static_cast<field_type>(begin.position_),
2565 to_erase, mutable_allocator());
2566 size_ -= to_erase;
2567 begin = rebalance_after_delete(begin);
2568 } else {
2569 begin = erase(begin);
2570 }
2571 }
2572 begin.update_generation();
2573 return {count, begin};
2574 }
2575
2576 template <typename P>
2577 void btree<P>::clear() {
2578 if (!empty()) {
2579 node_type::clear_and_delete(root(), mutable_allocator());
2580 }
2581 mutable_root() = mutable_rightmost() = EmptyNode();
2582 size_ = 0;
2583 }
2584
2585 template <typename P>
2586 void btree<P>::swap(btree &other) {
2587 using std::swap;
2588 if (absl::allocator_traits<
2589 allocator_type>::propagate_on_container_swap::value) {
2590 // Note: `rightmost_` also contains the allocator and the key comparator.
2591 swap(rightmost_, other.rightmost_);
2592 } else {
2593 // It's undefined behavior if the allocators are unequal here.
2594 assert(allocator() == other.allocator());
2595 swap(mutable_rightmost(), other.mutable_rightmost());
2596 swap(*mutable_key_comp(), *other.mutable_key_comp());
2597 }
2598 swap(mutable_root(), other.mutable_root());
2599 swap(size_, other.size_);
2600 }
2601
2602 template <typename P>
2603 void btree<P>::verify() const {
2604 assert(root() != nullptr);
2605 assert(leftmost() != nullptr);
2606 assert(rightmost() != nullptr);
2607 assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
2608 assert(leftmost() == (++const_iterator(root(), -1)).node_);
2609 assert(rightmost() == (--const_iterator(root(), root()->finish())).node_);
2610 assert(leftmost()->is_leaf());
2611 assert(rightmost()->is_leaf());
2612 }
2613
2614 template <typename P>
2615 void btree<P>::rebalance_or_split(iterator *iter) {
2616 node_type *&node = iter->node_;
2617 int &insert_position = iter->position_;
2618 assert(node->count() == node->max_count());
2619 assert(kNodeSlots == node->max_count());
2620
2621 // First try to make room on the node by rebalancing.
2622 node_type *parent = node->parent();
2623 if (node != root()) {
2624 if (node->position() > parent->start()) {
2625 // Try rebalancing with our left sibling.
2626 node_type *left = parent->child(node->position() - 1);
2627 assert(left->max_count() == kNodeSlots);
2628 if (left->count() < kNodeSlots) {
2629 // We bias rebalancing based on the position being inserted. If we're
2630 // inserting at the end of the right node then we bias rebalancing to
2631 // fill up the left node.
2632 field_type to_move =
2633 (kNodeSlots - left->count()) /
2634 (1 + (static_cast<field_type>(insert_position) < kNodeSlots));
2635 to_move = (std::max)(field_type{1}, to_move);
2636
2637 if (static_cast<field_type>(insert_position) - to_move >=
2638 node->start() ||
2639 left->count() + to_move < kNodeSlots) {
2640 left->rebalance_right_to_left(to_move, node, mutable_allocator());
2641
2642 assert(node->max_count() - node->count() == to_move);
2643 insert_position = static_cast<int>(
2644 static_cast<field_type>(insert_position) - to_move);
2645 if (insert_position < node->start()) {
2646 insert_position = insert_position + left->count() + 1;
2647 node = left;
2648 }
2649
2650 assert(node->count() < node->max_count());
2651 return;
2652 }
2653 }
2654 }
2655
2656 if (node->position() < parent->finish()) {
2657 // Try rebalancing with our right sibling.
2658 node_type *right = parent->child(node->position() + 1);
2659 assert(right->max_count() == kNodeSlots);
2660 if (right->count() < kNodeSlots) {
2661 // We bias rebalancing based on the position being inserted. If we're
2662 // inserting at the beginning of the left node then we bias rebalancing
2663 // to fill up the right node.
2664 field_type to_move = (kNodeSlots - right->count()) /
2665 (1 + (insert_position > node->start()));
2666 to_move = (std::max)(field_type{1}, to_move);
2667
2668 if (static_cast<field_type>(insert_position) <=
2669 node->finish() - to_move ||
2670 right->count() + to_move < kNodeSlots) {
2671 node->rebalance_left_to_right(to_move, right, mutable_allocator());
2672
2673 if (insert_position > node->finish()) {
2674 insert_position = insert_position - node->count() - 1;
2675 node = right;
2676 }
2677
2678 assert(node->count() < node->max_count());
2679 return;
2680 }
2681 }
2682 }
2683
2684 // Rebalancing failed, make sure there is room on the parent node for a new
2685 // value.
2686 assert(parent->max_count() == kNodeSlots);
2687 if (parent->count() == kNodeSlots) {
2688 iterator parent_iter(parent, node->position());
2689 rebalance_or_split(&parent_iter);
2690 parent = node->parent();
2691 }
2692 } else {
2693 // Rebalancing not possible because this is the root node.
2694 // Create a new root node and set the current root node as the child of the
2695 // new root.
2696 parent = new_internal_node(/*position=*/0, parent);
2697 parent->set_generation(root()->generation());
2698 parent->init_child(parent->start(), node);
2699 mutable_root() = parent;
2700 // If the former root was a leaf node, then it's now the rightmost node.
2701 assert(parent->start_child()->is_internal() ||
2702 parent->start_child() == rightmost());
2703 }
2704
2705 // Split the node.
2706 node_type *split_node;
2707 if (node->is_leaf()) {
2708 split_node = new_leaf_node(node->position() + 1, parent);
2709 node->split(insert_position, split_node, mutable_allocator());
2710 if (rightmost() == node) mutable_rightmost() = split_node;
2711 } else {
2712 split_node = new_internal_node(node->position() + 1, parent);
2713 node->split(insert_position, split_node, mutable_allocator());
2714 }
2715
2716 if (insert_position > node->finish()) {
2717 insert_position = insert_position - node->count() - 1;
2718 node = split_node;
2719 }
2720 }
2721
2722 template <typename P>
2723 void btree<P>::merge_nodes(node_type *left, node_type *right) {
2724 left->merge(right, mutable_allocator());
2725 if (rightmost() == right) mutable_rightmost() = left;
2726 }
2727
2728 template <typename P>
2729 bool btree<P>::try_merge_or_rebalance(iterator *iter) {
2730 node_type *parent = iter->node_->parent();
2731 if (iter->node_->position() > parent->start()) {
2732 // Try merging with our left sibling.
2733 node_type *left = parent->child(iter->node_->position() - 1);
2734 assert(left->max_count() == kNodeSlots);
2735 if (1U + left->count() + iter->node_->count() <= kNodeSlots) {
2736 iter->position_ += 1 + left->count();
2737 merge_nodes(left, iter->node_);
2738 iter->node_ = left;
2739 return true;
2740 }
2741 }
2742 if (iter->node_->position() < parent->finish()) {
2743 // Try merging with our right sibling.
2744 node_type *right = parent->child(iter->node_->position() + 1);
2745 assert(right->max_count() == kNodeSlots);
2746 if (1U + iter->node_->count() + right->count() <= kNodeSlots) {
2747 merge_nodes(iter->node_, right);
2748 return true;
2749 }
2750 // Try rebalancing with our right sibling. We don't perform rebalancing if
2751 // we deleted the first element from iter->node_ and the node is not
2752 // empty. This is a small optimization for the common pattern of deleting
2753 // from the front of the tree.
2754 if (right->count() > kMinNodeValues &&
2755 (iter->node_->count() == 0 || iter->position_ > iter->node_->start())) {
2756 field_type to_move = (right->count() - iter->node_->count()) / 2;
2757 to_move =
2758 (std::min)(to_move, static_cast<field_type>(right->count() - 1));
2759 iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator());
2760 return false;
2761 }
2762 }
2763 if (iter->node_->position() > parent->start()) {
2764 // Try rebalancing with our left sibling. We don't perform rebalancing if
2765 // we deleted the last element from iter->node_ and the node is not
2766 // empty. This is a small optimization for the common pattern of deleting
2767 // from the back of the tree.
2768 node_type *left = parent->child(iter->node_->position() - 1);
2769 if (left->count() > kMinNodeValues &&
2770 (iter->node_->count() == 0 ||
2771 iter->position_ < iter->node_->finish())) {
2772 field_type to_move = (left->count() - iter->node_->count()) / 2;
2773 to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1));
2774 left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator());
2775 iter->position_ += to_move;
2776 return false;
2777 }
2778 }
2779 return false;
2780 }
2781
2782 template <typename P>
2783 void btree<P>::try_shrink() {
2784 node_type *orig_root = root();
2785 if (orig_root->count() > 0) {
2786 return;
2787 }
2788 // Deleted the last item on the root node, shrink the height of the tree.
2789 if (orig_root->is_leaf()) {
2790 assert(size() == 0);
2791 mutable_root() = mutable_rightmost() = EmptyNode();
2792 } else {
2793 node_type *child = orig_root->start_child();
2794 child->make_root();
2795 mutable_root() = child;
2796 }
2797 node_type::clear_and_delete(orig_root, mutable_allocator());
2798 }
2799
2800 template <typename P>
2801 template <typename IterType>
2802 inline IterType btree<P>::internal_last(IterType iter) {
2803 assert(iter.node_ != nullptr);
2804 while (iter.position_ == iter.node_->finish()) {
2805 iter.position_ = iter.node_->position();
2806 iter.node_ = iter.node_->parent();
2807 if (iter.node_->is_leaf()) {
2808 iter.node_ = nullptr;
2809 break;
2810 }
2811 }
2812 iter.update_generation();
2813 return iter;
2814 }
2815
2816 template <typename P>
2817 template <typename... Args>
2818 inline auto btree<P>::internal_emplace(iterator iter, Args &&...args)
2819 -> iterator {
2820 if (iter.node_->is_internal()) {
2821 // We can't insert on an internal node. Instead, we'll insert after the
2822 // previous value which is guaranteed to be on a leaf node.
2823 --iter;
2824 ++iter.position_;
2825 }
2826 const field_type max_count = iter.node_->max_count();
2827 allocator_type *alloc = mutable_allocator();
2828
2829 const auto transfer_and_delete = [&](node_type *old_node,
2830 node_type *new_node) {
2831 new_node->transfer_n(old_node->count(), new_node->start(),
2832 old_node->start(), old_node, alloc);
2833 new_node->set_finish(old_node->finish());
2834 old_node->set_finish(old_node->start());
2835 new_node->set_generation(old_node->generation());
2836 node_type::clear_and_delete(old_node, alloc);
2837 };
2838 const auto replace_leaf_root_node = [&](field_type new_node_size) {
2839 assert(iter.node_ == root());
2840 node_type *old_root = iter.node_;
2841 node_type *new_root = iter.node_ = new_leaf_root_node(new_node_size);
2842 transfer_and_delete(old_root, new_root);
2843 mutable_root() = mutable_rightmost() = new_root;
2844 };
2845
2846 bool replaced_node = false;
2847 if (iter.node_->count() == max_count) {
2848 // Make room in the leaf for the new item.
2849 if (max_count < kNodeSlots) {
2850 // Insertion into the root where the root is smaller than the full node
2851 // size. Simply grow the size of the root node.
2852 replace_leaf_root_node(static_cast<field_type>(
2853 (std::min)(static_cast<int>(kNodeSlots), 2 * max_count)));
2854 replaced_node = true;
2855 } else {
2856 rebalance_or_split(&iter);
2857 }
2858 }
2859 (void)replaced_node;
2860 #if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
2861 defined(ABSL_HAVE_HWADDRESS_SANITIZER)
2862 if (!replaced_node) {
2863 assert(iter.node_->is_leaf());
2864 if (iter.node_->is_root()) {
2865 replace_leaf_root_node(max_count);
2866 } else {
2867 node_type *old_node = iter.node_;
2868 const bool was_rightmost = rightmost() == old_node;
2869 const bool was_leftmost = leftmost() == old_node;
2870 node_type *parent = old_node->parent();
2871 const field_type position = old_node->position();
2872 node_type *new_node = iter.node_ = new_leaf_node(position, parent);
2873 parent->set_child_noupdate_position(position, new_node);
2874 transfer_and_delete(old_node, new_node);
2875 if (was_rightmost) mutable_rightmost() = new_node;
2876 // The leftmost node is stored as the parent of the root node.
2877 if (was_leftmost) root()->set_parent(new_node);
2878 }
2879 }
2880 #endif
2881 iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc,
2882 std::forward<Args>(args)...);
2883 assert(
2884 iter.node_->is_ordered_correctly(static_cast<field_type>(iter.position_),
2885 original_key_compare(key_comp())) &&
2886 "If this assert fails, then either (1) the comparator may violate "
2887 "transitivity, i.e. comp(a,b) && comp(b,c) -> comp(a,c) (see "
2888 "https://en.cppreference.com/w/cpp/named_req/Compare), or (2) a "
2889 "key may have been mutated after it was inserted into the tree.");
2890 ++size_;
2891 iter.update_generation();
2892 return iter;
2893 }
2894
2895 template <typename P>
2896 template <typename K>
2897 inline auto btree<P>::internal_locate(const K &key) const
2898 -> SearchResult<iterator, is_key_compare_to::value> {
2899 iterator iter(const_cast<node_type *>(root()));
2900 for (;;) {
2901 SearchResult<size_type, is_key_compare_to::value> res =
2902 iter.node_->lower_bound(key, key_comp());
2903 iter.position_ = static_cast<int>(res.value);
2904 if (res.IsEq()) {
2905 return {iter, MatchKind::kEq};
2906 }
2907 // Note: in the non-key-compare-to case, we don't need to walk all the way
2908 // down the tree if the keys are equal, but determining equality would
2909 // require doing an extra comparison on each node on the way down, and we
2910 // will need to go all the way to the leaf node in the expected case.
2911 if (iter.node_->is_leaf()) {
2912 break;
2913 }
2914 iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
2915 }
2916 // Note: in the non-key-compare-to case, the key may actually be equivalent
2917 // here (and the MatchKind::kNe is ignored).
2918 return {iter, MatchKind::kNe};
2919 }
2920
2921 template <typename P>
2922 template <typename K>
2923 auto btree<P>::internal_lower_bound(const K &key) const
2924 -> SearchResult<iterator, is_key_compare_to::value> {
2925 if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
2926 SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key);
2927 ret.value = internal_last(ret.value);
2928 return ret;
2929 }
2930 iterator iter(const_cast<node_type *>(root()));
2931 SearchResult<size_type, is_key_compare_to::value> res;
2932 bool seen_eq = false;
2933 for (;;) {
2934 res = iter.node_->lower_bound(key, key_comp());
2935 iter.position_ = static_cast<int>(res.value);
2936 if (iter.node_->is_leaf()) {
2937 break;
2938 }
2939 seen_eq = seen_eq || res.IsEq();
2940 iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
2941 }
2942 if (res.IsEq()) return {iter, MatchKind::kEq};
2943 return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe};
2944 }
2945
2946 template <typename P>
2947 template <typename K>
2948 auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
2949 iterator iter(const_cast<node_type *>(root()));
2950 for (;;) {
2951 iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp()));
2952 if (iter.node_->is_leaf()) {
2953 break;
2954 }
2955 iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
2956 }
2957 return internal_last(iter);
2958 }
2959
2960 template <typename P>
2961 template <typename K>
2962 auto btree<P>::internal_find(const K &key) const -> iterator {
2963 SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
2964 if (res.HasMatch()) {
2965 if (res.IsEq()) {
2966 return res.value;
2967 }
2968 } else {
2969 const iterator iter = internal_last(res.value);
2970 if (iter.node_ != nullptr && !compare_keys(key, iter.key())) {
2971 return iter;
2972 }
2973 }
2974 return {nullptr, 0};
2975 }
2976
2977 template <typename P>
2978 typename btree<P>::size_type btree<P>::internal_verify(
2979 const node_type *node, const key_type *lo, const key_type *hi) const {
2980 assert(node->count() > 0);
2981 assert(node->count() <= node->max_count());
2982 if (lo) {
2983 assert(!compare_keys(node->key(node->start()), *lo));
2984 }
2985 if (hi) {
2986 assert(!compare_keys(*hi, node->key(node->finish() - 1)));
2987 }
2988 for (int i = node->start() + 1; i < node->finish(); ++i) {
2989 assert(!compare_keys(node->key(i), node->key(i - 1)));
2990 }
2991 size_type count = node->count();
2992 if (node->is_internal()) {
2993 for (field_type i = node->start(); i <= node->finish(); ++i) {
2994 assert(node->child(i) != nullptr);
2995 assert(node->child(i)->parent() == node);
2996 assert(node->child(i)->position() == i);
2997 count += internal_verify(node->child(i),
2998 i == node->start() ? lo : &node->key(i - 1),
2999 i == node->finish() ? hi : &node->key(i));
3000 }
3001 }
3002 return count;
3003 }
3004
3005 struct btree_access {
3006 template <typename BtreeContainer, typename Pred>
3007 static auto erase_if(BtreeContainer &container, Pred pred) ->
3008 typename BtreeContainer::size_type {
3009 const auto initial_size = container.size();
3010 auto &tree = container.tree_;
3011 auto *alloc = tree.mutable_allocator();
3012 for (auto it = container.begin(); it != container.end();) {
3013 if (!pred(*it)) {
3014 ++it;
3015 continue;
3016 }
3017 auto *node = it.node_;
3018 if (node->is_internal()) {
3019 // Handle internal nodes normally.
3020 it = container.erase(it);
3021 continue;
3022 }
3023 // If this is a leaf node, then we do all the erases from this node
3024 // at once before doing rebalancing.
3025
3026 // The current position to transfer slots to.
3027 int to_pos = it.position_;
3028 node->value_destroy(it.position_, alloc);
3029 while (++it.position_ < node->finish()) {
3030 it.update_generation();
3031 if (pred(*it)) {
3032 node->value_destroy(it.position_, alloc);
3033 } else {
3034 node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc);
3035 }
3036 }
3037 const int num_deleted = node->finish() - to_pos;
3038 tree.size_ -= num_deleted;
3039 node->set_finish(to_pos);
3040 it.position_ = to_pos;
3041 it = tree.rebalance_after_delete(it);
3042 }
3043 return initial_size - container.size();
3044 }
3045 };
3046
3047 #undef ABSL_BTREE_ENABLE_GENERATIONS
3048
3049 } // namespace container_internal
3050 ABSL_NAMESPACE_END
3051 } // namespace absl
3052
3053 #endif // ABSL_CONTAINER_INTERNAL_BTREE_H_
3054