1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // An open-addressing
16 // hashtable with quadratic probing.
17 //
18 // This is a low level hashtable on top of which different interfaces can be
19 // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
20 //
21 // The table interface is similar to that of std::unordered_set. Notable
22 // differences are that most member functions support heterogeneous keys when
23 // BOTH the hash and eq functions are marked as transparent. They do so by
24 // providing a typedef called `is_transparent`.
25 //
26 // When heterogeneous lookup is enabled, functions that take key_type act as if
27 // they have an overload set like:
28 //
29 // iterator find(const key_type& key);
30 // template <class K>
31 // iterator find(const K& key);
32 //
33 // size_type erase(const key_type& key);
34 // template <class K>
35 // size_type erase(const K& key);
36 //
37 // std::pair<iterator, iterator> equal_range(const key_type& key);
38 // template <class K>
39 // std::pair<iterator, iterator> equal_range(const K& key);
40 //
41 // When heterogeneous lookup is disabled, only the explicit `key_type` overloads
42 // exist.
43 //
44 // find() also supports passing the hash explicitly:
45 //
46 // iterator find(const key_type& key, size_t hash);
47 // template <class U>
48 // iterator find(const U& key, size_t hash);
49 //
50 // In addition the pointer to element and iterator stability guarantees are
51 // weaker: all iterators and pointers are invalidated after a new element is
52 // inserted.
53 //
54 // IMPLEMENTATION DETAILS
55 //
56 // # Table Layout
57 //
58 // A raw_hash_set's backing array consists of control bytes followed by slots
59 // that may or may not contain objects.
60 //
61 // The layout of the backing array, for `capacity` slots, is thus, as a
62 // pseudo-struct:
63 //
64 // struct BackingArray {
65 // // Sampling handler. This field isn't present when the sampling is
66 // // disabled or this allocation hasn't been selected for sampling.
67 // HashtablezInfoHandle infoz_;
68 // // The number of elements we can insert before growing the capacity.
69 // size_t growth_left;
70 // // Control bytes for the "real" slots.
71 // ctrl_t ctrl[capacity];
72 // // Always `ctrl_t::kSentinel`. This is used by iterators to find when to
73 // // stop and serves no other purpose.
74 // ctrl_t sentinel;
75 // // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so
76 // // that if a probe sequence picks a value near the end of `ctrl`,
77 // // `Group` will have valid control bytes to look at.
78 // ctrl_t clones[kWidth - 1];
79 // // The actual slot data.
80 // slot_type slots[capacity];
81 // };
82 //
83 // The length of this array is computed by `AllocSize()` below.
84 //
85 // Control bytes (`ctrl_t`) are bytes (collected into groups of a
86 // platform-specific size) that define the state of the corresponding slot in
87 // the slot array. Group manipulation is tightly optimized to be as efficient
88 // as possible: SSE and friends on x86, clever bit operations on other arches.
89 //
90 // Group 1 Group 2 Group 3
91 // +---------------+---------------+---------------+
92 // | | | | | | | | | | | | | | | | | | | | | | | | |
93 // +---------------+---------------+---------------+
94 //
95 // Each control byte is either a special value for empty slots, deleted slots
96 // (sometimes called *tombstones*), and a special end-of-table marker used by
97 // iterators, or, if occupied, seven bits (H2) from the hash of the value in the
98 // corresponding slot.
99 //
100 // Storing control bytes in a separate array also has beneficial cache effects,
101 // since more logical slots will fit into a cache line.
102 //
103 // # Hashing
104 //
105 // We compute two separate hashes, `H1` and `H2`, from the hash of an object.
106 // `H1(hash(x))` is an index into `slots`, and essentially the starting point
107 // for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out
108 // objects that cannot possibly be the one we are looking for.
109 //
110 // # Table operations.
111 //
112 // The key operations are `insert`, `find`, and `erase`.
113 //
114 // Since `insert` and `erase` are implemented in terms of `find`, we describe
115 // `find` first. To `find` a value `x`, we compute `hash(x)`. From
116 // `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every
117 // group of slots in some interesting order.
118 //
119 // We now walk through these indices. At each index, we select the entire group
120 // starting with that index and extract potential candidates: occupied slots
121 // with a control byte equal to `H2(hash(x))`. If we find an empty slot in the
122 // group, we stop and return an error. Each candidate slot `y` is compared with
123 // `x`; if `x == y`, we are done and return `&y`; otherwise we continue to the
124 // next probe index. Tombstones effectively behave like full slots that never
125 // match the value we're looking for.
126 //
127 // The `H2` bits ensure when we compare a slot to an object with `==`, we are
128 // likely to have actually found the object. That is, the chance is low that
129 // `==` is called and returns `false`. Thus, when we search for an object, we
130 // are unlikely to call `==` many times. This likelyhood can be analyzed as
131 // follows (assuming that H2 is a random enough hash function).
132 //
133 // Let's assume that there are `k` "wrong" objects that must be examined in a
134 // probe sequence. For example, when doing a `find` on an object that is in the
135 // table, `k` is the number of objects between the start of the probe sequence
136 // and the final found object (not including the final found object). The
137 // expected number of objects with an H2 match is then `k/128`. Measurements
138 // and analysis indicate that even at high load factors, `k` is less than 32,
139 // meaning that the number of "false positive" comparisons we must perform is
140 // less than 1/8 per `find`.
141
142 // `insert` is implemented in terms of `unchecked_insert`, which inserts a
143 // value presumed to not be in the table (violating this requirement will cause
144 // the table to behave erratically). Given `x` and its hash `hash(x)`, to insert
145 // it, we construct a `probe_seq` once again, and use it to find the first
146 // group with an unoccupied (empty *or* deleted) slot. We place `x` into the
147 // first such slot in the group and mark it as full with `x`'s H2.
148 //
149 // To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and
150 // perform a `find` to see if it's already present; if it is, we're done. If
151 // it's not, we may decide the table is getting overcrowded (i.e. the load
152 // factor is greater than 7/8 for big tables; `is_small()` tables use a max load
153 // factor of 1); in this case, we allocate a bigger array, `unchecked_insert`
154 // each element of the table into the new array (we know that no insertion here
155 // will insert an already-present value), and discard the old backing array. At
156 // this point, we may `unchecked_insert` the value `x`.
157 //
158 // Below, `unchecked_insert` is partly implemented by `prepare_insert`, which
159 // presents a viable, initialized slot pointee to the caller.
160 //
161 // `erase` is implemented in terms of `erase_at`, which takes an index to a
162 // slot. Given an offset, we simply create a tombstone and destroy its contents.
163 // If we can prove that the slot would not appear in a probe sequence, we can
164 // make the slot as empty, instead. We can prove this by observing that if a
165 // group has any empty slots, it has never been full (assuming we never create
166 // an empty slot in a group with no empties, which this heuristic guarantees we
167 // never do) and find would stop at this group anyways (since it does not probe
168 // beyond groups with empties).
169 //
170 // `erase` is `erase_at` composed with `find`: if we
171 // have a value `x`, we can perform a `find`, and then `erase_at` the resulting
172 // slot.
173 //
174 // To iterate, we simply traverse the array, skipping empty and deleted slots
175 // and stopping when we hit a `kSentinel`.
176
177 #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
178 #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
179
180 #include <algorithm>
181 #include <cassert>
182 #include <cmath>
183 #include <cstddef>
184 #include <cstdint>
185 #include <cstring>
186 #include <initializer_list>
187 #include <iterator>
188 #include <limits>
189 #include <memory>
190 #include <tuple>
191 #include <type_traits>
192 #include <utility>
193
194 #include "absl/base/attributes.h"
195 #include "absl/base/config.h"
196 #include "absl/base/internal/endian.h"
197 #include "absl/base/internal/raw_logging.h"
198 #include "absl/base/macros.h"
199 #include "absl/base/optimization.h"
200 #include "absl/base/options.h"
201 #include "absl/base/port.h"
202 #include "absl/base/prefetch.h"
203 #include "absl/container/internal/common.h" // IWYU pragma: export // for node_handle
204 #include "absl/container/internal/compressed_tuple.h"
205 #include "absl/container/internal/container_memory.h"
206 #include "absl/container/internal/hash_policy_traits.h"
207 #include "absl/container/internal/hashtable_debug_hooks.h"
208 #include "absl/container/internal/hashtablez_sampler.h"
209 #include "absl/memory/memory.h"
210 #include "absl/meta/type_traits.h"
211 #include "absl/numeric/bits.h"
212 #include "absl/utility/utility.h"
213
214 #ifdef ABSL_INTERNAL_HAVE_SSE2
215 #include <emmintrin.h>
216 #endif
217
218 #ifdef ABSL_INTERNAL_HAVE_SSSE3
219 #include <tmmintrin.h>
220 #endif
221
222 #ifdef _MSC_VER
223 #include <intrin.h>
224 #endif
225
226 #ifdef ABSL_INTERNAL_HAVE_ARM_NEON
227 #include <arm_neon.h>
228 #endif
229
230 namespace absl {
231 ABSL_NAMESPACE_BEGIN
232 namespace container_internal {
233
234 #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
235 #error ABSL_SWISSTABLE_ENABLE_GENERATIONS cannot be directly set
236 #elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
237 defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \
238 defined(ABSL_HAVE_MEMORY_SANITIZER)
239 // When compiled in sanitizer mode, we add generation integers to the backing
240 // array and iterators. In the backing array, we store the generation between
241 // the control bytes and the slots. When iterators are dereferenced, we assert
242 // that the container has not been mutated in a way that could cause iterator
243 // invalidation since the iterator was initialized.
244 #define ABSL_SWISSTABLE_ENABLE_GENERATIONS
245 #endif
246
247 // We use uint8_t so we don't need to worry about padding.
248 using GenerationType = uint8_t;
249
250 // A sentinel value for empty generations. Using 0 makes it easy to constexpr
251 // initialize an array of this value.
SentinelEmptyGeneration()252 constexpr GenerationType SentinelEmptyGeneration() { return 0; }
253
NextGeneration(GenerationType generation)254 constexpr GenerationType NextGeneration(GenerationType generation) {
255 return ++generation == SentinelEmptyGeneration() ? ++generation : generation;
256 }
257
258 #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
SwisstableGenerationsEnabled()259 constexpr bool SwisstableGenerationsEnabled() { return true; }
NumGenerationBytes()260 constexpr size_t NumGenerationBytes() { return sizeof(GenerationType); }
261 #else
SwisstableGenerationsEnabled()262 constexpr bool SwisstableGenerationsEnabled() { return false; }
NumGenerationBytes()263 constexpr size_t NumGenerationBytes() { return 0; }
264 #endif
265
266 template <typename AllocType>
SwapAlloc(AllocType & lhs,AllocType & rhs,std::true_type)267 void SwapAlloc(AllocType& lhs, AllocType& rhs,
268 std::true_type /* propagate_on_container_swap */) {
269 using std::swap;
270 swap(lhs, rhs);
271 }
272 template <typename AllocType>
SwapAlloc(AllocType & lhs,AllocType & rhs,std::false_type)273 void SwapAlloc(AllocType& lhs, AllocType& rhs,
274 std::false_type /* propagate_on_container_swap */) {
275 (void)lhs;
276 (void)rhs;
277 assert(lhs == rhs &&
278 "It's UB to call swap with unequal non-propagating allocators.");
279 }
280
281 template <typename AllocType>
CopyAlloc(AllocType & lhs,AllocType & rhs,std::true_type)282 void CopyAlloc(AllocType& lhs, AllocType& rhs,
283 std::true_type /* propagate_alloc */) {
284 lhs = rhs;
285 }
286 template <typename AllocType>
CopyAlloc(AllocType &,AllocType &,std::false_type)287 void CopyAlloc(AllocType&, AllocType&, std::false_type /* propagate_alloc */) {}
288
289 // The state for a probe sequence.
290 //
291 // Currently, the sequence is a triangular progression of the form
292 //
293 // p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1)
294 //
295 // The use of `Width` ensures that each probe step does not overlap groups;
296 // the sequence effectively outputs the addresses of *groups* (although not
297 // necessarily aligned to any boundary). The `Group` machinery allows us
298 // to check an entire group with minimal branching.
299 //
300 // Wrapping around at `mask + 1` is important, but not for the obvious reason.
301 // As described above, the first few entries of the control byte array
302 // are mirrored at the end of the array, which `Group` will find and use
303 // for selecting candidates. However, when those candidates' slots are
304 // actually inspected, there are no corresponding slots for the cloned bytes,
305 // so we need to make sure we've treated those offsets as "wrapping around".
306 //
307 // It turns out that this probe sequence visits every group exactly once if the
308 // number of groups is a power of two, since (i^2+i)/2 is a bijection in
309 // Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing
310 template <size_t Width>
311 class probe_seq {
312 public:
313 // Creates a new probe sequence using `hash` as the initial value of the
314 // sequence and `mask` (usually the capacity of the table) as the mask to
315 // apply to each value in the progression.
probe_seq(size_t hash,size_t mask)316 probe_seq(size_t hash, size_t mask) {
317 assert(((mask + 1) & mask) == 0 && "not a mask");
318 mask_ = mask;
319 offset_ = hash & mask_;
320 }
321
322 // The offset within the table, i.e., the value `p(i)` above.
offset()323 size_t offset() const { return offset_; }
offset(size_t i)324 size_t offset(size_t i) const { return (offset_ + i) & mask_; }
325
next()326 void next() {
327 index_ += Width;
328 offset_ += index_;
329 offset_ &= mask_;
330 }
331 // 0-based probe index, a multiple of `Width`.
index()332 size_t index() const { return index_; }
333
334 private:
335 size_t mask_;
336 size_t offset_;
337 size_t index_ = 0;
338 };
339
340 template <class ContainerKey, class Hash, class Eq>
341 struct RequireUsableKey {
342 template <class PassedKey, class... Args>
343 std::pair<
344 decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
345 decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
346 std::declval<const PassedKey&>()))>*
347 operator()(const PassedKey&, const Args&...) const;
348 };
349
350 template <class E, class Policy, class Hash, class Eq, class... Ts>
351 struct IsDecomposable : std::false_type {};
352
353 template <class Policy, class Hash, class Eq, class... Ts>
354 struct IsDecomposable<
355 absl::void_t<decltype(Policy::apply(
356 RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
357 std::declval<Ts>()...))>,
358 Policy, Hash, Eq, Ts...> : std::true_type {};
359
360 // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
361 template <class T>
362 constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) {
363 using std::swap;
364 return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
365 }
366 template <class T>
367 constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) {
368 return false;
369 }
370
371 template <typename T>
372 uint32_t TrailingZeros(T x) {
373 ABSL_ASSUME(x != 0);
374 return static_cast<uint32_t>(countr_zero(x));
375 }
376
377 // An abstract bitmask, such as that emitted by a SIMD instruction.
378 //
379 // Specifically, this type implements a simple bitset whose representation is
380 // controlled by `SignificantBits` and `Shift`. `SignificantBits` is the number
381 // of abstract bits in the bitset, while `Shift` is the log-base-two of the
382 // width of an abstract bit in the representation.
383 // This mask provides operations for any number of real bits set in an abstract
384 // bit. To add iteration on top of that, implementation must guarantee no more
385 // than the most significant real bit is set in a set abstract bit.
386 template <class T, int SignificantBits, int Shift = 0>
387 class NonIterableBitMask {
388 public:
389 explicit NonIterableBitMask(T mask) : mask_(mask) {}
390
391 explicit operator bool() const { return this->mask_ != 0; }
392
393 // Returns the index of the lowest *abstract* bit set in `self`.
394 uint32_t LowestBitSet() const {
395 return container_internal::TrailingZeros(mask_) >> Shift;
396 }
397
398 // Returns the index of the highest *abstract* bit set in `self`.
399 uint32_t HighestBitSet() const {
400 return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift);
401 }
402
403 // Returns the number of trailing zero *abstract* bits.
404 uint32_t TrailingZeros() const {
405 return container_internal::TrailingZeros(mask_) >> Shift;
406 }
407
408 // Returns the number of leading zero *abstract* bits.
409 uint32_t LeadingZeros() const {
410 constexpr int total_significant_bits = SignificantBits << Shift;
411 constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
412 return static_cast<uint32_t>(
413 countl_zero(static_cast<T>(mask_ << extra_bits))) >>
414 Shift;
415 }
416
417 T mask_;
418 };
419
420 // Mask that can be iterable
421 //
422 // For example, when `SignificantBits` is 16 and `Shift` is zero, this is just
423 // an ordinary 16-bit bitset occupying the low 16 bits of `mask`. When
424 // `SignificantBits` is 8 and `Shift` is 3, abstract bits are represented as
425 // the bytes `0x00` and `0x80`, and it occupies all 64 bits of the bitmask.
426 //
427 // For example:
428 // for (int i : BitMask<uint32_t, 16>(0b101)) -> yields 0, 2
429 // for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
430 template <class T, int SignificantBits, int Shift = 0>
431 class BitMask : public NonIterableBitMask<T, SignificantBits, Shift> {
432 using Base = NonIterableBitMask<T, SignificantBits, Shift>;
433 static_assert(std::is_unsigned<T>::value, "");
434 static_assert(Shift == 0 || Shift == 3, "");
435
436 public:
437 explicit BitMask(T mask) : Base(mask) {}
438 // BitMask is an iterator over the indices of its abstract bits.
439 using value_type = int;
440 using iterator = BitMask;
441 using const_iterator = BitMask;
442
443 BitMask& operator++() {
444 if (Shift == 3) {
445 constexpr uint64_t msbs = 0x8080808080808080ULL;
446 this->mask_ &= msbs;
447 }
448 this->mask_ &= (this->mask_ - 1);
449 return *this;
450 }
451
452 uint32_t operator*() const { return Base::LowestBitSet(); }
453
454 BitMask begin() const { return *this; }
455 BitMask end() const { return BitMask(0); }
456
457 private:
458 friend bool operator==(const BitMask& a, const BitMask& b) {
459 return a.mask_ == b.mask_;
460 }
461 friend bool operator!=(const BitMask& a, const BitMask& b) {
462 return a.mask_ != b.mask_;
463 }
464 };
465
466 using h2_t = uint8_t;
467
468 // The values here are selected for maximum performance. See the static asserts
469 // below for details.
470
471 // A `ctrl_t` is a single control byte, which can have one of four
472 // states: empty, deleted, full (which has an associated seven-bit h2_t value)
473 // and the sentinel. They have the following bit patterns:
474 //
475 // empty: 1 0 0 0 0 0 0 0
476 // deleted: 1 1 1 1 1 1 1 0
477 // full: 0 h h h h h h h // h represents the hash bits.
478 // sentinel: 1 1 1 1 1 1 1 1
479 //
480 // These values are specifically tuned for SSE-flavored SIMD.
481 // The static_asserts below detail the source of these choices.
482 //
483 // We use an enum class so that when strict aliasing is enabled, the compiler
484 // knows ctrl_t doesn't alias other types.
485 enum class ctrl_t : int8_t {
486 kEmpty = -128, // 0b10000000
487 kDeleted = -2, // 0b11111110
488 kSentinel = -1, // 0b11111111
489 };
490 static_assert(
491 (static_cast<int8_t>(ctrl_t::kEmpty) &
492 static_cast<int8_t>(ctrl_t::kDeleted) &
493 static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0,
494 "Special markers need to have the MSB to make checking for them efficient");
495 static_assert(
496 ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel,
497 "ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than "
498 "ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient");
499 static_assert(
500 ctrl_t::kSentinel == static_cast<ctrl_t>(-1),
501 "ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD "
502 "registers (pcmpeqd xmm, xmm)");
503 static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128),
504 "ctrl_t::kEmpty must be -128 to make the SIMD check for its "
505 "existence efficient (psignb xmm, xmm)");
506 static_assert(
507 (~static_cast<int8_t>(ctrl_t::kEmpty) &
508 ~static_cast<int8_t>(ctrl_t::kDeleted) &
509 static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0,
510 "ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not "
511 "shared by ctrl_t::kSentinel to make the scalar test for "
512 "MaskEmptyOrDeleted() efficient");
513 static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2),
514 "ctrl_t::kDeleted must be -2 to make the implementation of "
515 "ConvertSpecialToEmptyAndFullToDeleted efficient");
516
517 // See definition comment for why this is size 32.
518 ABSL_DLL extern const ctrl_t kEmptyGroup[32];
519
520 // Returns a pointer to a control byte group that can be used by empty tables.
521 inline ctrl_t* EmptyGroup() {
522 // Const must be cast away here; no uses of this function will actually write
523 // to it, because it is only used for empty tables.
524 return const_cast<ctrl_t*>(kEmptyGroup + 16);
525 }
526
527 // Returns a pointer to a generation to use for an empty hashtable.
528 GenerationType* EmptyGeneration();
529
530 // Returns whether `generation` is a generation for an empty hashtable that
531 // could be returned by EmptyGeneration().
532 inline bool IsEmptyGeneration(const GenerationType* generation) {
533 return *generation == SentinelEmptyGeneration();
534 }
535
536 // Mixes a randomly generated per-process seed with `hash` and `ctrl` to
537 // randomize insertion order within groups.
538 bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl);
539
540 // Returns a per-table, hash salt, which changes on resize. This gets mixed into
541 // H1 to randomize iteration order per-table.
542 //
543 // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure
544 // non-determinism of iteration order in most cases.
545 inline size_t PerTableSalt(const ctrl_t* ctrl) {
546 // The low bits of the pointer have little or no entropy because of
547 // alignment. We shift the pointer to try to use higher entropy bits. A
548 // good number seems to be 12 bits, because that aligns with page size.
549 return reinterpret_cast<uintptr_t>(ctrl) >> 12;
550 }
551 // Extracts the H1 portion of a hash: 57 bits mixed with a per-table salt.
552 inline size_t H1(size_t hash, const ctrl_t* ctrl) {
553 return (hash >> 7) ^ PerTableSalt(ctrl);
554 }
555
556 // Extracts the H2 portion of a hash: the 7 bits not used for H1.
557 //
558 // These are used as an occupied control byte.
559 inline h2_t H2(size_t hash) { return hash & 0x7F; }
560
561 // Helpers for checking the state of a control byte.
562 inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; }
563 inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); }
564 inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; }
565 inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; }
566
567 #ifdef ABSL_INTERNAL_HAVE_SSE2
568 // Quick reference guide for intrinsics used below:
569 //
570 // * __m128i: An XMM (128-bit) word.
571 //
572 // * _mm_setzero_si128: Returns a zero vector.
573 // * _mm_set1_epi8: Returns a vector with the same i8 in each lane.
574 //
575 // * _mm_subs_epi8: Saturating-subtracts two i8 vectors.
576 // * _mm_and_si128: Ands two i128s together.
577 // * _mm_or_si128: Ors two i128s together.
578 // * _mm_andnot_si128: And-nots two i128s together.
579 //
580 // * _mm_cmpeq_epi8: Component-wise compares two i8 vectors for equality,
581 // filling each lane with 0x00 or 0xff.
582 // * _mm_cmpgt_epi8: Same as above, but using > rather than ==.
583 //
584 // * _mm_loadu_si128: Performs an unaligned load of an i128.
585 // * _mm_storeu_si128: Performs an unaligned store of an i128.
586 //
587 // * _mm_sign_epi8: Retains, negates, or zeroes each i8 lane of the first
588 // argument if the corresponding lane of the second
589 // argument is positive, negative, or zero, respectively.
590 // * _mm_movemask_epi8: Selects the sign bit out of each i8 lane and produces a
591 // bitmask consisting of those bits.
592 // * _mm_shuffle_epi8: Selects i8s from the first argument, using the low
593 // four bits of each i8 lane in the second argument as
594 // indices.
595
596 // https://github.com/abseil/abseil-cpp/issues/209
597 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
598 // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char
599 // Work around this by using the portable implementation of Group
600 // when using -funsigned-char under GCC.
601 inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
602 #if defined(__GNUC__) && !defined(__clang__)
603 if (std::is_unsigned<char>::value) {
604 const __m128i mask = _mm_set1_epi8(0x80);
605 const __m128i diff = _mm_subs_epi8(b, a);
606 return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
607 }
608 #endif
609 return _mm_cmpgt_epi8(a, b);
610 }
611
612 struct GroupSse2Impl {
613 static constexpr size_t kWidth = 16; // the number of slots per group
614
615 explicit GroupSse2Impl(const ctrl_t* pos) {
616 ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
617 }
618
619 // Returns a bitmask representing the positions of slots that match hash.
620 BitMask<uint16_t, kWidth> Match(h2_t hash) const {
621 auto match = _mm_set1_epi8(static_cast<char>(hash));
622 BitMask<uint16_t, kWidth> result = BitMask<uint16_t, kWidth>(0);
623 result = BitMask<uint16_t, kWidth>(
624 static_cast<uint16_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
625 return result;
626 }
627
628 // Returns a bitmask representing the positions of empty slots.
629 NonIterableBitMask<uint16_t, kWidth> MaskEmpty() const {
630 #ifdef ABSL_INTERNAL_HAVE_SSSE3
631 // This only works because ctrl_t::kEmpty is -128.
632 return NonIterableBitMask<uint16_t, kWidth>(
633 static_cast<uint16_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))));
634 #else
635 auto match = _mm_set1_epi8(static_cast<char>(ctrl_t::kEmpty));
636 return NonIterableBitMask<uint16_t, kWidth>(
637 static_cast<uint16_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
638 #endif
639 }
640
641 // Returns a bitmask representing the positions of full slots.
642 // Note: for `is_small()` tables group may contain the "same" slot twice:
643 // original and mirrored.
644 BitMask<uint16_t, kWidth> MaskFull() const {
645 return BitMask<uint16_t, kWidth>(
646 static_cast<uint16_t>(_mm_movemask_epi8(ctrl) ^ 0xffff));
647 }
648
649 // Returns a bitmask representing the positions of empty or deleted slots.
650 NonIterableBitMask<uint16_t, kWidth> MaskEmptyOrDeleted() const {
651 auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
652 return NonIterableBitMask<uint16_t, kWidth>(static_cast<uint16_t>(
653 _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))));
654 }
655
656 // Returns the number of trailing empty or deleted elements in the group.
657 uint32_t CountLeadingEmptyOrDeleted() const {
658 auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
659 return TrailingZeros(static_cast<uint32_t>(
660 _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1));
661 }
662
663 void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
664 auto msbs = _mm_set1_epi8(static_cast<char>(-128));
665 auto x126 = _mm_set1_epi8(126);
666 #ifdef ABSL_INTERNAL_HAVE_SSSE3
667 auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
668 #else
669 auto zero = _mm_setzero_si128();
670 auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
671 auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
672 #endif
673 _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
674 }
675
676 __m128i ctrl;
677 };
678 #endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
679
680 #if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
681 struct GroupAArch64Impl {
682 static constexpr size_t kWidth = 8;
683
684 explicit GroupAArch64Impl(const ctrl_t* pos) {
685 ctrl = vld1_u8(reinterpret_cast<const uint8_t*>(pos));
686 }
687
688 BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
689 uint8x8_t dup = vdup_n_u8(hash);
690 auto mask = vceq_u8(ctrl, dup);
691 return BitMask<uint64_t, kWidth, 3>(
692 vget_lane_u64(vreinterpret_u64_u8(mask), 0));
693 }
694
695 NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
696 uint64_t mask =
697 vget_lane_u64(vreinterpret_u64_u8(vceq_s8(
698 vdup_n_s8(static_cast<int8_t>(ctrl_t::kEmpty)),
699 vreinterpret_s8_u8(ctrl))),
700 0);
701 return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
702 }
703
704 // Returns a bitmask representing the positions of full slots.
705 // Note: for `is_small()` tables group may contain the "same" slot twice:
706 // original and mirrored.
707 BitMask<uint64_t, kWidth, 3> MaskFull() const {
708 uint64_t mask = vget_lane_u64(
709 vreinterpret_u64_u8(vcge_s8(vreinterpret_s8_u8(ctrl),
710 vdup_n_s8(static_cast<int8_t>(0)))),
711 0);
712 return BitMask<uint64_t, kWidth, 3>(mask);
713 }
714
715 NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
716 uint64_t mask =
717 vget_lane_u64(vreinterpret_u64_u8(vcgt_s8(
718 vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)),
719 vreinterpret_s8_u8(ctrl))),
720 0);
721 return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
722 }
723
724 uint32_t CountLeadingEmptyOrDeleted() const {
725 uint64_t mask =
726 vget_lane_u64(vreinterpret_u64_u8(vcle_s8(
727 vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)),
728 vreinterpret_s8_u8(ctrl))),
729 0);
730 // Similar to MaskEmptyorDeleted() but we invert the logic to invert the
731 // produced bitfield. We then count number of trailing zeros.
732 // Clang and GCC optimize countr_zero to rbit+clz without any check for 0,
733 // so we should be fine.
734 return static_cast<uint32_t>(countr_zero(mask)) >> 3;
735 }
736
737 void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
738 uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0);
739 constexpr uint64_t msbs = 0x8080808080808080ULL;
740 constexpr uint64_t slsbs = 0x0202020202020202ULL;
741 constexpr uint64_t midbs = 0x7e7e7e7e7e7e7e7eULL;
742 auto x = slsbs & (mask >> 6);
743 auto res = (x + midbs) | msbs;
744 little_endian::Store64(dst, res);
745 }
746
747 uint8x8_t ctrl;
748 };
749 #endif // ABSL_INTERNAL_HAVE_ARM_NEON && ABSL_IS_LITTLE_ENDIAN
750
751 struct GroupPortableImpl {
752 static constexpr size_t kWidth = 8;
753
754 explicit GroupPortableImpl(const ctrl_t* pos)
755 : ctrl(little_endian::Load64(pos)) {}
756
757 BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
758 // For the technique, see:
759 // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
760 // (Determine if a word has a byte equal to n).
761 //
762 // Caveat: there are false positives but:
763 // - they only occur if there is a real match
764 // - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel
765 // - they will be handled gracefully by subsequent checks in code
766 //
767 // Example:
768 // v = 0x1716151413121110
769 // hash = 0x12
770 // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
771 constexpr uint64_t msbs = 0x8080808080808080ULL;
772 constexpr uint64_t lsbs = 0x0101010101010101ULL;
773 auto x = ctrl ^ (lsbs * hash);
774 return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs);
775 }
776
777 NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
778 constexpr uint64_t msbs = 0x8080808080808080ULL;
779 return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & ~(ctrl << 6)) &
780 msbs);
781 }
782
783 // Returns a bitmask representing the positions of full slots.
784 // Note: for `is_small()` tables group may contain the "same" slot twice:
785 // original and mirrored.
786 BitMask<uint64_t, kWidth, 3> MaskFull() const {
787 constexpr uint64_t msbs = 0x8080808080808080ULL;
788 return BitMask<uint64_t, kWidth, 3>((ctrl ^ msbs) & msbs);
789 }
790
791 NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
792 constexpr uint64_t msbs = 0x8080808080808080ULL;
793 return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & ~(ctrl << 7)) &
794 msbs);
795 }
796
797 uint32_t CountLeadingEmptyOrDeleted() const {
798 // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and
799 // kDeleted. We lower all other bits and count number of trailing zeros.
800 constexpr uint64_t bits = 0x0101010101010101ULL;
801 return static_cast<uint32_t>(countr_zero((ctrl | ~(ctrl >> 7)) & bits) >>
802 3);
803 }
804
805 void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
806 constexpr uint64_t msbs = 0x8080808080808080ULL;
807 constexpr uint64_t lsbs = 0x0101010101010101ULL;
808 auto x = ctrl & msbs;
809 auto res = (~x + (x >> 7)) & ~lsbs;
810 little_endian::Store64(dst, res);
811 }
812
813 uint64_t ctrl;
814 };
815
816 #ifdef ABSL_INTERNAL_HAVE_SSE2
817 using Group = GroupSse2Impl;
818 using GroupEmptyOrDeleted = GroupSse2Impl;
819 #elif defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
820 using Group = GroupAArch64Impl;
821 // For Aarch64, we use the portable implementation for counting and masking
822 // empty or deleted group elements. This is to avoid the latency of moving
823 // between data GPRs and Neon registers when it does not provide a benefit.
824 // Using Neon is profitable when we call Match(), but is not when we don't,
825 // which is the case when we do *EmptyOrDeleted operations. It is difficult to
826 // make a similar approach beneficial on other architectures such as x86 since
827 // they have much lower GPR <-> vector register transfer latency and 16-wide
828 // Groups.
829 using GroupEmptyOrDeleted = GroupPortableImpl;
830 #else
831 using Group = GroupPortableImpl;
832 using GroupEmptyOrDeleted = GroupPortableImpl;
833 #endif
834
835 // When there is an insertion with no reserved growth, we rehash with
836 // probability `min(1, RehashProbabilityConstant() / capacity())`. Using a
837 // constant divided by capacity ensures that inserting N elements is still O(N)
838 // in the average case. Using the constant 16 means that we expect to rehash ~8
839 // times more often than when generations are disabled. We are adding expected
840 // rehash_probability * #insertions/capacity_growth = 16/capacity * ((7/8 -
841 // 7/16) * capacity)/capacity_growth = ~7 extra rehashes per capacity growth.
842 inline size_t RehashProbabilityConstant() { return 16; }
843
844 class CommonFieldsGenerationInfoEnabled {
845 // A sentinel value for reserved_growth_ indicating that we just ran out of
846 // reserved growth on the last insertion. When reserve is called and then
847 // insertions take place, reserved_growth_'s state machine is N, ..., 1,
848 // kReservedGrowthJustRanOut, 0.
849 static constexpr size_t kReservedGrowthJustRanOut =
850 (std::numeric_limits<size_t>::max)();
851
852 public:
853 CommonFieldsGenerationInfoEnabled() = default;
854 CommonFieldsGenerationInfoEnabled(CommonFieldsGenerationInfoEnabled&& that)
855 : reserved_growth_(that.reserved_growth_),
856 reservation_size_(that.reservation_size_),
857 generation_(that.generation_) {
858 that.reserved_growth_ = 0;
859 that.reservation_size_ = 0;
860 that.generation_ = EmptyGeneration();
861 }
862 CommonFieldsGenerationInfoEnabled& operator=(
863 CommonFieldsGenerationInfoEnabled&&) = default;
864
865 // Whether we should rehash on insert in order to detect bugs of using invalid
866 // references. We rehash on the first insertion after reserved_growth_ reaches
867 // 0 after a call to reserve. We also do a rehash with low probability
868 // whenever reserved_growth_ is zero.
869 bool should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl,
870 size_t capacity) const;
871 // Similar to above, except that we don't depend on reserved_growth_.
872 bool should_rehash_for_bug_detection_on_move(const ctrl_t* ctrl,
873 size_t capacity) const;
874 void maybe_increment_generation_on_insert() {
875 if (reserved_growth_ == kReservedGrowthJustRanOut) reserved_growth_ = 0;
876
877 if (reserved_growth_ > 0) {
878 if (--reserved_growth_ == 0) reserved_growth_ = kReservedGrowthJustRanOut;
879 } else {
880 increment_generation();
881 }
882 }
883 void increment_generation() { *generation_ = NextGeneration(*generation_); }
884 void reset_reserved_growth(size_t reservation, size_t size) {
885 reserved_growth_ = reservation - size;
886 }
887 size_t reserved_growth() const { return reserved_growth_; }
888 void set_reserved_growth(size_t r) { reserved_growth_ = r; }
889 size_t reservation_size() const { return reservation_size_; }
890 void set_reservation_size(size_t r) { reservation_size_ = r; }
891 GenerationType generation() const { return *generation_; }
892 void set_generation(GenerationType g) { *generation_ = g; }
893 GenerationType* generation_ptr() const { return generation_; }
894 void set_generation_ptr(GenerationType* g) { generation_ = g; }
895
896 private:
897 // The number of insertions remaining that are guaranteed to not rehash due to
898 // a prior call to reserve. Note: we store reserved growth in addition to
899 // reservation size because calls to erase() decrease size_ but don't decrease
900 // reserved growth.
901 size_t reserved_growth_ = 0;
902 // The maximum argument to reserve() since the container was cleared. We need
903 // to keep track of this, in addition to reserved growth, because we reset
904 // reserved growth to this when erase(begin(), end()) is called.
905 size_t reservation_size_ = 0;
906 // Pointer to the generation counter, which is used to validate iterators and
907 // is stored in the backing array between the control bytes and the slots.
908 // Note that we can't store the generation inside the container itself and
909 // keep a pointer to the container in the iterators because iterators must
910 // remain valid when the container is moved.
911 // Note: we could derive this pointer from the control pointer, but it makes
912 // the code more complicated, and there's a benefit in having the sizes of
913 // raw_hash_set in sanitizer mode and non-sanitizer mode a bit more different,
914 // which is that tests are less likely to rely on the size remaining the same.
915 GenerationType* generation_ = EmptyGeneration();
916 };
917
918 class CommonFieldsGenerationInfoDisabled {
919 public:
920 CommonFieldsGenerationInfoDisabled() = default;
921 CommonFieldsGenerationInfoDisabled(CommonFieldsGenerationInfoDisabled&&) =
922 default;
923 CommonFieldsGenerationInfoDisabled& operator=(
924 CommonFieldsGenerationInfoDisabled&&) = default;
925
926 bool should_rehash_for_bug_detection_on_insert(const ctrl_t*, size_t) const {
927 return false;
928 }
929 bool should_rehash_for_bug_detection_on_move(const ctrl_t*, size_t) const {
930 return false;
931 }
932 void maybe_increment_generation_on_insert() {}
933 void increment_generation() {}
934 void reset_reserved_growth(size_t, size_t) {}
935 size_t reserved_growth() const { return 0; }
936 void set_reserved_growth(size_t) {}
937 size_t reservation_size() const { return 0; }
938 void set_reservation_size(size_t) {}
939 GenerationType generation() const { return 0; }
940 void set_generation(GenerationType) {}
941 GenerationType* generation_ptr() const { return nullptr; }
942 void set_generation_ptr(GenerationType*) {}
943 };
944
945 class HashSetIteratorGenerationInfoEnabled {
946 public:
947 HashSetIteratorGenerationInfoEnabled() = default;
948 explicit HashSetIteratorGenerationInfoEnabled(
949 const GenerationType* generation_ptr)
950 : generation_ptr_(generation_ptr), generation_(*generation_ptr) {}
951
952 GenerationType generation() const { return generation_; }
953 void reset_generation() { generation_ = *generation_ptr_; }
954 const GenerationType* generation_ptr() const { return generation_ptr_; }
955 void set_generation_ptr(const GenerationType* ptr) { generation_ptr_ = ptr; }
956
957 private:
958 const GenerationType* generation_ptr_ = EmptyGeneration();
959 GenerationType generation_ = *generation_ptr_;
960 };
961
962 class HashSetIteratorGenerationInfoDisabled {
963 public:
964 HashSetIteratorGenerationInfoDisabled() = default;
965 explicit HashSetIteratorGenerationInfoDisabled(const GenerationType*) {}
966
967 GenerationType generation() const { return 0; }
968 void reset_generation() {}
969 const GenerationType* generation_ptr() const { return nullptr; }
970 void set_generation_ptr(const GenerationType*) {}
971 };
972
973 #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
974 using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoEnabled;
975 using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoEnabled;
976 #else
977 using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoDisabled;
978 using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoDisabled;
979 #endif
980
981 // Returns whether `n` is a valid capacity (i.e., number of slots).
982 //
983 // A valid capacity is a non-zero integer `2^m - 1`.
984 inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
985
986 // Computes the offset from the start of the backing allocation of control.
987 // infoz and growth_left are stored at the beginning of the backing array.
988 inline size_t ControlOffset(bool has_infoz) {
989 return (has_infoz ? sizeof(HashtablezInfoHandle) : 0) + sizeof(size_t);
990 }
991
992 // Returns the number of "cloned control bytes".
993 //
994 // This is the number of control bytes that are present both at the beginning
995 // of the control byte array and at the end, such that we can create a
996 // `Group::kWidth`-width probe window starting from any control byte.
997 constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }
998
999 // Given the capacity of a table, computes the offset (from the start of the
1000 // backing allocation) of the generation counter (if it exists).
1001 inline size_t GenerationOffset(size_t capacity, bool has_infoz) {
1002 assert(IsValidCapacity(capacity));
1003 const size_t num_control_bytes = capacity + 1 + NumClonedBytes();
1004 return ControlOffset(has_infoz) + num_control_bytes;
1005 }
1006
1007 // Given the capacity of a table, computes the offset (from the start of the
1008 // backing allocation) at which the slots begin.
1009 inline size_t SlotOffset(size_t capacity, size_t slot_align, bool has_infoz) {
1010 assert(IsValidCapacity(capacity));
1011 return (GenerationOffset(capacity, has_infoz) + NumGenerationBytes() +
1012 slot_align - 1) &
1013 (~slot_align + 1);
1014 }
1015
1016 // Given the capacity of a table, computes the total size of the backing
1017 // array.
1018 inline size_t AllocSize(size_t capacity, size_t slot_size, size_t slot_align,
1019 bool has_infoz) {
1020 return SlotOffset(capacity, slot_align, has_infoz) + capacity * slot_size;
1021 }
1022
1023 // CommonFields hold the fields in raw_hash_set that do not depend
1024 // on template parameters. This allows us to conveniently pass all
1025 // of this state to helper functions as a single argument.
1026 class CommonFields : public CommonFieldsGenerationInfo {
1027 public:
1028 CommonFields() = default;
1029
1030 // Not copyable
1031 CommonFields(const CommonFields&) = delete;
1032 CommonFields& operator=(const CommonFields&) = delete;
1033
1034 // Movable
1035 CommonFields(CommonFields&& that) = default;
1036 CommonFields& operator=(CommonFields&&) = default;
1037
1038 ctrl_t* control() const { return control_; }
1039 void set_control(ctrl_t* c) { control_ = c; }
1040 void* backing_array_start() const {
1041 // growth_left (and maybe infoz) is stored before control bytes.
1042 assert(reinterpret_cast<uintptr_t>(control()) % alignof(size_t) == 0);
1043 return control() - ControlOffset(has_infoz());
1044 }
1045
1046 // Note: we can't use slots() because Qt defines "slots" as a macro.
1047 void* slot_array() const { return slots_; }
1048 void set_slots(void* s) { slots_ = s; }
1049
1050 // The number of filled slots.
1051 size_t size() const { return size_ >> HasInfozShift(); }
1052 void set_size(size_t s) {
1053 size_ = (s << HasInfozShift()) | (size_ & HasInfozMask());
1054 }
1055 void increment_size() {
1056 assert(size() < capacity());
1057 size_ += size_t{1} << HasInfozShift();
1058 }
1059 void decrement_size() {
1060 assert(size() > 0);
1061 size_ -= size_t{1} << HasInfozShift();
1062 }
1063
1064 // The total number of available slots.
1065 size_t capacity() const { return capacity_; }
1066 void set_capacity(size_t c) {
1067 assert(c == 0 || IsValidCapacity(c));
1068 capacity_ = c;
1069 }
1070
1071 // The number of slots we can still fill without needing to rehash.
1072 // This is stored in the heap allocation before the control bytes.
1073 size_t growth_left() const {
1074 const size_t* gl_ptr = reinterpret_cast<size_t*>(control()) - 1;
1075 assert(reinterpret_cast<uintptr_t>(gl_ptr) % alignof(size_t) == 0);
1076 return *gl_ptr;
1077 }
1078 void set_growth_left(size_t gl) {
1079 size_t* gl_ptr = reinterpret_cast<size_t*>(control()) - 1;
1080 assert(reinterpret_cast<uintptr_t>(gl_ptr) % alignof(size_t) == 0);
1081 *gl_ptr = gl;
1082 }
1083
1084 bool has_infoz() const {
1085 return ABSL_PREDICT_FALSE((size_ & HasInfozMask()) != 0);
1086 }
1087 void set_has_infoz(bool has_infoz) {
1088 size_ = (size() << HasInfozShift()) | static_cast<size_t>(has_infoz);
1089 }
1090
1091 HashtablezInfoHandle infoz() {
1092 return has_infoz()
1093 ? *reinterpret_cast<HashtablezInfoHandle*>(backing_array_start())
1094 : HashtablezInfoHandle();
1095 }
1096 void set_infoz(HashtablezInfoHandle infoz) {
1097 assert(has_infoz());
1098 *reinterpret_cast<HashtablezInfoHandle*>(backing_array_start()) = infoz;
1099 }
1100
1101 bool should_rehash_for_bug_detection_on_insert() const {
1102 return CommonFieldsGenerationInfo::
1103 should_rehash_for_bug_detection_on_insert(control(), capacity());
1104 }
1105 bool should_rehash_for_bug_detection_on_move() const {
1106 return CommonFieldsGenerationInfo::
1107 should_rehash_for_bug_detection_on_move(control(), capacity());
1108 }
1109 void maybe_increment_generation_on_move() {
1110 if (capacity() == 0) return;
1111 increment_generation();
1112 }
1113 void reset_reserved_growth(size_t reservation) {
1114 CommonFieldsGenerationInfo::reset_reserved_growth(reservation, size());
1115 }
1116
1117 // The size of the backing array allocation.
1118 size_t alloc_size(size_t slot_size, size_t slot_align) const {
1119 return AllocSize(capacity(), slot_size, slot_align, has_infoz());
1120 }
1121
1122 // Returns the number of control bytes set to kDeleted. For testing only.
1123 size_t TombstonesCount() const {
1124 return static_cast<size_t>(
1125 std::count(control(), control() + capacity(), ctrl_t::kDeleted));
1126 }
1127
1128 private:
1129 // We store the has_infoz bit in the lowest bit of size_.
1130 static constexpr size_t HasInfozShift() { return 1; }
1131 static constexpr size_t HasInfozMask() {
1132 return (size_t{1} << HasInfozShift()) - 1;
1133 }
1134
1135 // TODO(b/182800944): Investigate removing some of these fields:
1136 // - control/slots can be derived from each other
1137
1138 // The control bytes (and, also, a pointer near to the base of the backing
1139 // array).
1140 //
1141 // This contains `capacity + 1 + NumClonedBytes()` entries, even
1142 // when the table is empty (hence EmptyGroup).
1143 //
1144 // Note that growth_left is stored immediately before this pointer.
1145 ctrl_t* control_ = EmptyGroup();
1146
1147 // The beginning of the slots, located at `SlotOffset()` bytes after
1148 // `control`. May be null for empty tables.
1149 void* slots_ = nullptr;
1150
1151 // The number of slots in the backing array. This is always 2^N-1 for an
1152 // integer N. NOTE: we tried experimenting with compressing the capacity and
1153 // storing it together with size_: (a) using 6 bits to store the corresponding
1154 // power (N in 2^N-1), and (b) storing 2^N as the most significant bit of
1155 // size_ and storing size in the low bits. Both of these experiments were
1156 // regressions, presumably because we need capacity to do find operations.
1157 size_t capacity_ = 0;
1158
1159 // The size and also has one bit that stores whether we have infoz.
1160 size_t size_ = 0;
1161 };
1162
1163 template <class Policy, class Hash, class Eq, class Alloc>
1164 class raw_hash_set;
1165
1166 // Returns the next valid capacity after `n`.
1167 inline size_t NextCapacity(size_t n) {
1168 assert(IsValidCapacity(n) || n == 0);
1169 return n * 2 + 1;
1170 }
1171
1172 // Applies the following mapping to every byte in the control array:
1173 // * kDeleted -> kEmpty
1174 // * kEmpty -> kEmpty
1175 // * _ -> kDeleted
1176 // PRECONDITION:
1177 // IsValidCapacity(capacity)
1178 // ctrl[capacity] == ctrl_t::kSentinel
1179 // ctrl[i] != ctrl_t::kSentinel for all i < capacity
1180 void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity);
1181
1182 // Converts `n` into the next valid capacity, per `IsValidCapacity`.
1183 inline size_t NormalizeCapacity(size_t n) {
1184 return n ? ~size_t{} >> countl_zero(n) : 1;
1185 }
1186
1187 // General notes on capacity/growth methods below:
1188 // - We use 7/8th as maximum load factor. For 16-wide groups, that gives an
1189 // average of two empty slots per group.
1190 // - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity.
1191 // - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we
1192 // never need to probe (the whole table fits in one group) so we don't need a
1193 // load factor less than 1.
1194
1195 // Given `capacity`, applies the load factor; i.e., it returns the maximum
1196 // number of values we should put into the table before a resizing rehash.
1197 inline size_t CapacityToGrowth(size_t capacity) {
1198 assert(IsValidCapacity(capacity));
1199 // `capacity*7/8`
1200 if (Group::kWidth == 8 && capacity == 7) {
1201 // x-x/8 does not work when x==7.
1202 return 6;
1203 }
1204 return capacity - capacity / 8;
1205 }
1206
1207 // Given `growth`, "unapplies" the load factor to find how large the capacity
1208 // should be to stay within the load factor.
1209 //
1210 // This might not be a valid capacity and `NormalizeCapacity()` should be
1211 // called on this.
1212 inline size_t GrowthToLowerboundCapacity(size_t growth) {
1213 // `growth*8/7`
1214 if (Group::kWidth == 8 && growth == 7) {
1215 // x+(x-1)/7 does not work when x==7.
1216 return 8;
1217 }
1218 return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7);
1219 }
1220
1221 template <class InputIter>
1222 size_t SelectBucketCountForIterRange(InputIter first, InputIter last,
1223 size_t bucket_count) {
1224 if (bucket_count != 0) {
1225 return bucket_count;
1226 }
1227 using InputIterCategory =
1228 typename std::iterator_traits<InputIter>::iterator_category;
1229 if (std::is_base_of<std::random_access_iterator_tag,
1230 InputIterCategory>::value) {
1231 return GrowthToLowerboundCapacity(
1232 static_cast<size_t>(std::distance(first, last)));
1233 }
1234 return 0;
1235 }
1236
1237 constexpr bool SwisstableDebugEnabled() {
1238 #if defined(ABSL_SWISSTABLE_ENABLE_GENERATIONS) || \
1239 ABSL_OPTION_HARDENED == 1 || !defined(NDEBUG)
1240 return true;
1241 #else
1242 return false;
1243 #endif
1244 }
1245
1246 inline void AssertIsFull(const ctrl_t* ctrl, GenerationType generation,
1247 const GenerationType* generation_ptr,
1248 const char* operation) {
1249 if (!SwisstableDebugEnabled()) return;
1250 // `SwisstableDebugEnabled()` is also true for release builds with hardening
1251 // enabled. To minimize their impact in those builds:
1252 // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout
1253 // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve
1254 // the chances that the hot paths will be inlined.
1255 if (ABSL_PREDICT_FALSE(ctrl == nullptr)) {
1256 ABSL_RAW_LOG(FATAL, "%s called on end() iterator.", operation);
1257 }
1258 if (ABSL_PREDICT_FALSE(ctrl == EmptyGroup())) {
1259 ABSL_RAW_LOG(FATAL, "%s called on default-constructed iterator.",
1260 operation);
1261 }
1262 if (SwisstableGenerationsEnabled()) {
1263 if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) {
1264 ABSL_RAW_LOG(FATAL,
1265 "%s called on invalid iterator. The table could have "
1266 "rehashed or moved since this iterator was initialized.",
1267 operation);
1268 }
1269 if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) {
1270 ABSL_RAW_LOG(
1271 FATAL,
1272 "%s called on invalid iterator. The element was likely erased.",
1273 operation);
1274 }
1275 } else {
1276 if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) {
1277 ABSL_RAW_LOG(
1278 FATAL,
1279 "%s called on invalid iterator. The element might have been erased "
1280 "or the table might have rehashed. Consider running with "
1281 "--config=asan to diagnose rehashing issues.",
1282 operation);
1283 }
1284 }
1285 }
1286
1287 // Note that for comparisons, null/end iterators are valid.
1288 inline void AssertIsValidForComparison(const ctrl_t* ctrl,
1289 GenerationType generation,
1290 const GenerationType* generation_ptr) {
1291 if (!SwisstableDebugEnabled()) return;
1292 const bool ctrl_is_valid_for_comparison =
1293 ctrl == nullptr || ctrl == EmptyGroup() || IsFull(*ctrl);
1294 if (SwisstableGenerationsEnabled()) {
1295 if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) {
1296 ABSL_RAW_LOG(FATAL,
1297 "Invalid iterator comparison. The table could have rehashed "
1298 "or moved since this iterator was initialized.");
1299 }
1300 if (ABSL_PREDICT_FALSE(!ctrl_is_valid_for_comparison)) {
1301 ABSL_RAW_LOG(
1302 FATAL, "Invalid iterator comparison. The element was likely erased.");
1303 }
1304 } else {
1305 ABSL_HARDENING_ASSERT(
1306 ctrl_is_valid_for_comparison &&
1307 "Invalid iterator comparison. The element might have been erased or "
1308 "the table might have rehashed. Consider running with --config=asan to "
1309 "diagnose rehashing issues.");
1310 }
1311 }
1312
1313 // If the two iterators come from the same container, then their pointers will
1314 // interleave such that ctrl_a <= ctrl_b < slot_a <= slot_b or vice/versa.
1315 // Note: we take slots by reference so that it's not UB if they're uninitialized
1316 // as long as we don't read them (when ctrl is null).
1317 inline bool AreItersFromSameContainer(const ctrl_t* ctrl_a,
1318 const ctrl_t* ctrl_b,
1319 const void* const& slot_a,
1320 const void* const& slot_b) {
1321 // If either control byte is null, then we can't tell.
1322 if (ctrl_a == nullptr || ctrl_b == nullptr) return true;
1323 const void* low_slot = slot_a;
1324 const void* hi_slot = slot_b;
1325 if (ctrl_a > ctrl_b) {
1326 std::swap(ctrl_a, ctrl_b);
1327 std::swap(low_slot, hi_slot);
1328 }
1329 return ctrl_b < low_slot && low_slot <= hi_slot;
1330 }
1331
1332 // Asserts that two iterators come from the same container.
1333 // Note: we take slots by reference so that it's not UB if they're uninitialized
1334 // as long as we don't read them (when ctrl is null).
1335 inline void AssertSameContainer(const ctrl_t* ctrl_a, const ctrl_t* ctrl_b,
1336 const void* const& slot_a,
1337 const void* const& slot_b,
1338 const GenerationType* generation_ptr_a,
1339 const GenerationType* generation_ptr_b) {
1340 if (!SwisstableDebugEnabled()) return;
1341 // `SwisstableDebugEnabled()` is also true for release builds with hardening
1342 // enabled. To minimize their impact in those builds:
1343 // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout
1344 // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve
1345 // the chances that the hot paths will be inlined.
1346 const bool a_is_default = ctrl_a == EmptyGroup();
1347 const bool b_is_default = ctrl_b == EmptyGroup();
1348 if (ABSL_PREDICT_FALSE(a_is_default != b_is_default)) {
1349 ABSL_RAW_LOG(
1350 FATAL,
1351 "Invalid iterator comparison. Comparing default-constructed iterator "
1352 "with non-default-constructed iterator.");
1353 }
1354 if (a_is_default && b_is_default) return;
1355
1356 if (SwisstableGenerationsEnabled()) {
1357 if (ABSL_PREDICT_TRUE(generation_ptr_a == generation_ptr_b)) return;
1358 const bool a_is_empty = IsEmptyGeneration(generation_ptr_a);
1359 const bool b_is_empty = IsEmptyGeneration(generation_ptr_b);
1360 if (a_is_empty != b_is_empty) {
1361 ABSL_RAW_LOG(FATAL,
1362 "Invalid iterator comparison. Comparing iterator from a "
1363 "non-empty hashtable with an iterator from an empty "
1364 "hashtable.");
1365 }
1366 if (a_is_empty && b_is_empty) {
1367 ABSL_RAW_LOG(FATAL,
1368 "Invalid iterator comparison. Comparing iterators from "
1369 "different empty hashtables.");
1370 }
1371 const bool a_is_end = ctrl_a == nullptr;
1372 const bool b_is_end = ctrl_b == nullptr;
1373 if (a_is_end || b_is_end) {
1374 ABSL_RAW_LOG(FATAL,
1375 "Invalid iterator comparison. Comparing iterator with an "
1376 "end() iterator from a different hashtable.");
1377 }
1378 ABSL_RAW_LOG(FATAL,
1379 "Invalid iterator comparison. Comparing non-end() iterators "
1380 "from different hashtables.");
1381 } else {
1382 ABSL_HARDENING_ASSERT(
1383 AreItersFromSameContainer(ctrl_a, ctrl_b, slot_a, slot_b) &&
1384 "Invalid iterator comparison. The iterators may be from different "
1385 "containers or the container might have rehashed or moved. Consider "
1386 "running with --config=asan to diagnose issues.");
1387 }
1388 }
1389
1390 struct FindInfo {
1391 size_t offset;
1392 size_t probe_length;
1393 };
1394
1395 // Whether a table is "small". A small table fits entirely into a probing
1396 // group, i.e., has a capacity < `Group::kWidth`.
1397 //
1398 // In small mode we are able to use the whole capacity. The extra control
1399 // bytes give us at least one "empty" control byte to stop the iteration.
1400 // This is important to make 1 a valid capacity.
1401 //
1402 // In small mode only the first `capacity` control bytes after the sentinel
1403 // are valid. The rest contain dummy ctrl_t::kEmpty values that do not
1404 // represent a real slot. This is important to take into account on
1405 // `find_first_non_full()`, where we never try
1406 // `ShouldInsertBackwards()` for small tables.
1407 inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; }
1408
1409 // Whether a table fits entirely into a probing group.
1410 // Arbitrary order of elements in such tables is correct.
1411 inline bool is_single_group(size_t capacity) {
1412 return capacity <= Group::kWidth;
1413 }
1414
1415 // Begins a probing operation on `common.control`, using `hash`.
1416 inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, const size_t capacity,
1417 size_t hash) {
1418 return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity);
1419 }
1420 inline probe_seq<Group::kWidth> probe(const CommonFields& common, size_t hash) {
1421 return probe(common.control(), common.capacity(), hash);
1422 }
1423
1424 // Probes an array of control bits using a probe sequence derived from `hash`,
1425 // and returns the offset corresponding to the first deleted or empty slot.
1426 //
1427 // Behavior when the entire table is full is undefined.
1428 //
1429 // NOTE: this function must work with tables having both empty and deleted
1430 // slots in the same group. Such tables appear during `erase()`.
1431 template <typename = void>
1432 inline FindInfo find_first_non_full(const CommonFields& common, size_t hash) {
1433 auto seq = probe(common, hash);
1434 const ctrl_t* ctrl = common.control();
1435 while (true) {
1436 GroupEmptyOrDeleted g{ctrl + seq.offset()};
1437 auto mask = g.MaskEmptyOrDeleted();
1438 if (mask) {
1439 #if !defined(NDEBUG)
1440 // We want to add entropy even when ASLR is not enabled.
1441 // In debug build we will randomly insert in either the front or back of
1442 // the group.
1443 // TODO(kfm,sbenza): revisit after we do unconditional mixing
1444 if (!is_small(common.capacity()) && ShouldInsertBackwards(hash, ctrl)) {
1445 return {seq.offset(mask.HighestBitSet()), seq.index()};
1446 }
1447 #endif
1448 return {seq.offset(mask.LowestBitSet()), seq.index()};
1449 }
1450 seq.next();
1451 assert(seq.index() <= common.capacity() && "full table!");
1452 }
1453 }
1454
1455 // Extern template for inline function keep possibility of inlining.
1456 // When compiler decided to not inline, no symbols will be added to the
1457 // corresponding translation unit.
1458 extern template FindInfo find_first_non_full(const CommonFields&, size_t);
1459
1460 // Non-inlined version of find_first_non_full for use in less
1461 // performance critical routines.
1462 FindInfo find_first_non_full_outofline(const CommonFields&, size_t);
1463
1464 inline void ResetGrowthLeft(CommonFields& common) {
1465 common.set_growth_left(CapacityToGrowth(common.capacity()) - common.size());
1466 }
1467
1468 // Sets `ctrl` to `{kEmpty, kSentinel, ..., kEmpty}`, marking the entire
1469 // array as marked as empty.
1470 inline void ResetCtrl(CommonFields& common, size_t slot_size) {
1471 const size_t capacity = common.capacity();
1472 ctrl_t* ctrl = common.control();
1473 std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
1474 capacity + 1 + NumClonedBytes());
1475 ctrl[capacity] = ctrl_t::kSentinel;
1476 SanitizerPoisonMemoryRegion(common.slot_array(), slot_size * capacity);
1477 }
1478
1479 // Sets `ctrl[i]` to `h`.
1480 //
1481 // Unlike setting it directly, this function will perform bounds checks and
1482 // mirror the value to the cloned tail if necessary.
1483 inline void SetCtrl(const CommonFields& common, size_t i, ctrl_t h,
1484 size_t slot_size) {
1485 const size_t capacity = common.capacity();
1486 assert(i < capacity);
1487
1488 auto* slot_i = static_cast<const char*>(common.slot_array()) + i * slot_size;
1489 if (IsFull(h)) {
1490 SanitizerUnpoisonMemoryRegion(slot_i, slot_size);
1491 } else {
1492 SanitizerPoisonMemoryRegion(slot_i, slot_size);
1493 }
1494
1495 ctrl_t* ctrl = common.control();
1496 ctrl[i] = h;
1497 ctrl[((i - NumClonedBytes()) & capacity) + (NumClonedBytes() & capacity)] = h;
1498 }
1499
1500 // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
1501 inline void SetCtrl(const CommonFields& common, size_t i, h2_t h,
1502 size_t slot_size) {
1503 SetCtrl(common, i, static_cast<ctrl_t>(h), slot_size);
1504 }
1505
1506 // growth_left (which is a size_t) is stored with the backing array.
1507 constexpr size_t BackingArrayAlignment(size_t align_of_slot) {
1508 return (std::max)(align_of_slot, alignof(size_t));
1509 }
1510
1511 // Returns the address of the ith slot in slots where each slot occupies
1512 // slot_size.
1513 inline void* SlotAddress(void* slot_array, size_t slot, size_t slot_size) {
1514 return reinterpret_cast<void*>(reinterpret_cast<char*>(slot_array) +
1515 (slot * slot_size));
1516 }
1517
1518 // Helper class to perform resize of the hash set.
1519 //
1520 // It contains special optimizations for small group resizes.
1521 // See GrowIntoSingleGroupShuffleControlBytes for details.
1522 class HashSetResizeHelper {
1523 public:
1524 explicit HashSetResizeHelper(CommonFields& c)
1525 : old_ctrl_(c.control()),
1526 old_capacity_(c.capacity()),
1527 had_infoz_(c.has_infoz()) {}
1528
1529 // Optimized for small groups version of `find_first_non_full` applicable
1530 // only right after calling `raw_hash_set::resize`.
1531 // It has implicit assumption that `resize` will call
1532 // `GrowSizeIntoSingleGroup*` in case `IsGrowingIntoSingleGroupApplicable`.
1533 // Falls back to `find_first_non_full` in case of big groups, so it is
1534 // safe to use after `rehash_and_grow_if_necessary`.
1535 static FindInfo FindFirstNonFullAfterResize(const CommonFields& c,
1536 size_t old_capacity,
1537 size_t hash) {
1538 if (!IsGrowingIntoSingleGroupApplicable(old_capacity, c.capacity())) {
1539 return find_first_non_full(c, hash);
1540 }
1541 // Find a location for the new element non-deterministically.
1542 // Note that any position is correct.
1543 // It will located at `half_old_capacity` or one of the other
1544 // empty slots with approximately 50% probability each.
1545 size_t offset = probe(c, hash).offset();
1546
1547 // Note that we intentionally use unsigned int underflow.
1548 if (offset - (old_capacity + 1) >= old_capacity) {
1549 // Offset fall on kSentinel or into the mostly occupied first half.
1550 offset = old_capacity / 2;
1551 }
1552 assert(IsEmpty(c.control()[offset]));
1553 return FindInfo{offset, 0};
1554 }
1555
1556 ctrl_t* old_ctrl() const { return old_ctrl_; }
1557 size_t old_capacity() const { return old_capacity_; }
1558
1559 // Allocates a backing array for the hashtable.
1560 // Reads `capacity` and updates all other fields based on the result of
1561 // the allocation.
1562 //
1563 // It also may do the folowing actions:
1564 // 1. initialize control bytes
1565 // 2. initialize slots
1566 // 3. deallocate old slots.
1567 //
1568 // We are bundling a lot of functionality
1569 // in one ABSL_ATTRIBUTE_NOINLINE function in order to minimize binary code
1570 // duplication in raw_hash_set<>::resize.
1571 //
1572 // `c.capacity()` must be nonzero.
1573 // POSTCONDITIONS:
1574 // 1. CommonFields is initialized.
1575 //
1576 // if IsGrowingIntoSingleGroupApplicable && TransferUsesMemcpy
1577 // Both control bytes and slots are fully initialized.
1578 // old_slots are deallocated.
1579 // infoz.RecordRehash is called.
1580 //
1581 // if IsGrowingIntoSingleGroupApplicable && !TransferUsesMemcpy
1582 // Control bytes are fully initialized.
1583 // infoz.RecordRehash is called.
1584 // GrowSizeIntoSingleGroup must be called to finish slots initialization.
1585 //
1586 // if !IsGrowingIntoSingleGroupApplicable
1587 // Control bytes are initialized to empty table via ResetCtrl.
1588 // raw_hash_set<>::resize must insert elements regularly.
1589 // infoz.RecordRehash is called if old_capacity == 0.
1590 //
1591 // Returns IsGrowingIntoSingleGroupApplicable result to avoid recomputation.
1592 template <typename Alloc, size_t SizeOfSlot, bool TransferUsesMemcpy,
1593 size_t AlignOfSlot>
1594 ABSL_ATTRIBUTE_NOINLINE bool InitializeSlots(CommonFields& c, void* old_slots,
1595 Alloc alloc) {
1596 assert(c.capacity());
1597 // Folks with custom allocators often make unwarranted assumptions about the
1598 // behavior of their classes vis-a-vis trivial destructability and what
1599 // calls they will or won't make. Avoid sampling for people with custom
1600 // allocators to get us out of this mess. This is not a hard guarantee but
1601 // a workaround while we plan the exact guarantee we want to provide.
1602 const size_t sample_size =
1603 (std::is_same<Alloc, std::allocator<char>>::value &&
1604 c.slot_array() == nullptr)
1605 ? SizeOfSlot
1606 : 0;
1607 HashtablezInfoHandle infoz =
1608 sample_size > 0 ? Sample(sample_size) : c.infoz();
1609
1610 const bool has_infoz = infoz.IsSampled();
1611 const size_t cap = c.capacity();
1612 const size_t alloc_size =
1613 AllocSize(cap, SizeOfSlot, AlignOfSlot, has_infoz);
1614 char* mem = static_cast<char*>(
1615 Allocate<BackingArrayAlignment(AlignOfSlot)>(&alloc, alloc_size));
1616 const GenerationType old_generation = c.generation();
1617 c.set_generation_ptr(reinterpret_cast<GenerationType*>(
1618 mem + GenerationOffset(cap, has_infoz)));
1619 c.set_generation(NextGeneration(old_generation));
1620 c.set_control(reinterpret_cast<ctrl_t*>(mem + ControlOffset(has_infoz)));
1621 c.set_slots(mem + SlotOffset(cap, AlignOfSlot, has_infoz));
1622 ResetGrowthLeft(c);
1623
1624 const bool grow_single_group =
1625 IsGrowingIntoSingleGroupApplicable(old_capacity_, c.capacity());
1626 if (old_capacity_ != 0 && grow_single_group) {
1627 if (TransferUsesMemcpy) {
1628 GrowSizeIntoSingleGroupTransferable(c, old_slots, SizeOfSlot);
1629 DeallocateOld<AlignOfSlot>(alloc, SizeOfSlot, old_slots);
1630 } else {
1631 GrowIntoSingleGroupShuffleControlBytes(c.control(), c.capacity());
1632 }
1633 } else {
1634 ResetCtrl(c, SizeOfSlot);
1635 }
1636
1637 c.set_has_infoz(has_infoz);
1638 if (has_infoz) {
1639 infoz.RecordStorageChanged(c.size(), cap);
1640 if (grow_single_group || old_capacity_ == 0) {
1641 infoz.RecordRehash(0);
1642 }
1643 c.set_infoz(infoz);
1644 }
1645 return grow_single_group;
1646 }
1647
1648 // Relocates slots into new single group consistent with
1649 // GrowIntoSingleGroupShuffleControlBytes.
1650 //
1651 // PRECONDITIONS:
1652 // 1. GrowIntoSingleGroupShuffleControlBytes was already called.
1653 template <class PolicyTraits, class Alloc>
1654 void GrowSizeIntoSingleGroup(CommonFields& c, Alloc& alloc_ref,
1655 typename PolicyTraits::slot_type* old_slots) {
1656 assert(old_capacity_ < Group::kWidth / 2);
1657 assert(IsGrowingIntoSingleGroupApplicable(old_capacity_, c.capacity()));
1658 using slot_type = typename PolicyTraits::slot_type;
1659 assert(is_single_group(c.capacity()));
1660
1661 auto* new_slots = reinterpret_cast<slot_type*>(c.slot_array());
1662
1663 size_t shuffle_bit = old_capacity_ / 2 + 1;
1664 for (size_t i = 0; i < old_capacity_; ++i) {
1665 if (IsFull(old_ctrl_[i])) {
1666 size_t new_i = i ^ shuffle_bit;
1667 SanitizerUnpoisonMemoryRegion(new_slots + new_i, sizeof(slot_type));
1668 PolicyTraits::transfer(&alloc_ref, new_slots + new_i, old_slots + i);
1669 }
1670 }
1671 PoisonSingleGroupEmptySlots(c, sizeof(slot_type));
1672 }
1673
1674 // Deallocates old backing array.
1675 template <size_t AlignOfSlot, class CharAlloc>
1676 void DeallocateOld(CharAlloc alloc_ref, size_t slot_size, void* old_slots) {
1677 SanitizerUnpoisonMemoryRegion(old_slots, slot_size * old_capacity_);
1678 Deallocate<BackingArrayAlignment(AlignOfSlot)>(
1679 &alloc_ref, old_ctrl_ - ControlOffset(had_infoz_),
1680 AllocSize(old_capacity_, slot_size, AlignOfSlot, had_infoz_));
1681 }
1682
1683 private:
1684 // Returns true if `GrowSizeIntoSingleGroup` can be used for resizing.
1685 static bool IsGrowingIntoSingleGroupApplicable(size_t old_capacity,
1686 size_t new_capacity) {
1687 // NOTE that `old_capacity < new_capacity` in order to have
1688 // `old_capacity < Group::kWidth / 2` to make faster copies of 8 bytes.
1689 return is_single_group(new_capacity) && old_capacity < new_capacity;
1690 }
1691
1692 // Relocates control bytes and slots into new single group for
1693 // transferable objects.
1694 // Must be called only if IsGrowingIntoSingleGroupApplicable returned true.
1695 void GrowSizeIntoSingleGroupTransferable(CommonFields& c, void* old_slots,
1696 size_t slot_size);
1697
1698 // Shuffle control bits deterministically to the next capacity.
1699 // Returns offset for newly added element with given hash.
1700 //
1701 // PRECONDITIONs:
1702 // 1. new_ctrl is allocated for new_capacity,
1703 // but not initialized.
1704 // 2. new_capacity is a single group.
1705 //
1706 // All elements are transferred into the first `old_capacity + 1` positions
1707 // of the new_ctrl. Elements are rotated by `old_capacity_ / 2 + 1` positions
1708 // in order to change an order and keep it non deterministic.
1709 // Although rotation itself deterministic, position of the new added element
1710 // will be based on `H1` and is not deterministic.
1711 //
1712 // Examples:
1713 // S = kSentinel, E = kEmpty
1714 //
1715 // old_ctrl = SEEEEEEEE...
1716 // new_ctrl = ESEEEEEEE...
1717 //
1718 // old_ctrl = 0SEEEEEEE...
1719 // new_ctrl = E0ESE0EEE...
1720 //
1721 // old_ctrl = 012S012EEEEEEEEE...
1722 // new_ctrl = 2E01EEES2E01EEE...
1723 //
1724 // old_ctrl = 0123456S0123456EEEEEEEEEEE...
1725 // new_ctrl = 456E0123EEEEEES456E0123EEE...
1726 void GrowIntoSingleGroupShuffleControlBytes(ctrl_t* new_ctrl,
1727 size_t new_capacity) const;
1728
1729 // Shuffle trivially transferable slots in the way consistent with
1730 // GrowIntoSingleGroupShuffleControlBytes.
1731 //
1732 // PRECONDITIONs:
1733 // 1. old_capacity must be non-zero.
1734 // 2. new_ctrl is fully initialized using
1735 // GrowIntoSingleGroupShuffleControlBytes.
1736 // 3. new_slots is allocated and *not* poisoned.
1737 //
1738 // POSTCONDITIONS:
1739 // 1. new_slots are transferred from old_slots_ consistent with
1740 // GrowIntoSingleGroupShuffleControlBytes.
1741 // 2. Empty new_slots are *not* poisoned.
1742 void GrowIntoSingleGroupShuffleTransferableSlots(void* old_slots,
1743 void* new_slots,
1744 size_t slot_size) const;
1745
1746 // Poison empty slots that were transferred using the deterministic algorithm
1747 // described above.
1748 // PRECONDITIONs:
1749 // 1. new_ctrl is fully initialized using
1750 // GrowIntoSingleGroupShuffleControlBytes.
1751 // 2. new_slots is fully initialized consistent with
1752 // GrowIntoSingleGroupShuffleControlBytes.
1753 void PoisonSingleGroupEmptySlots(CommonFields& c, size_t slot_size) const {
1754 // poison non full items
1755 for (size_t i = 0; i < c.capacity(); ++i) {
1756 if (!IsFull(c.control()[i])) {
1757 SanitizerPoisonMemoryRegion(SlotAddress(c.slot_array(), i, slot_size),
1758 slot_size);
1759 }
1760 }
1761 }
1762
1763 ctrl_t* old_ctrl_;
1764 size_t old_capacity_;
1765 bool had_infoz_;
1766 };
1767
1768 // PolicyFunctions bundles together some information for a particular
1769 // raw_hash_set<T, ...> instantiation. This information is passed to
1770 // type-erased functions that want to do small amounts of type-specific
1771 // work.
1772 struct PolicyFunctions {
1773 size_t slot_size;
1774
1775 // Returns the hash of the pointed-to slot.
1776 size_t (*hash_slot)(void* set, void* slot);
1777
1778 // Transfer the contents of src_slot to dst_slot.
1779 void (*transfer)(void* set, void* dst_slot, void* src_slot);
1780
1781 // Deallocate the backing store from common.
1782 void (*dealloc)(CommonFields& common, const PolicyFunctions& policy);
1783 };
1784
1785 // ClearBackingArray clears the backing array, either modifying it in place,
1786 // or creating a new one based on the value of "reuse".
1787 // REQUIRES: c.capacity > 0
1788 void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy,
1789 bool reuse);
1790
1791 // Type-erased version of raw_hash_set::erase_meta_only.
1792 void EraseMetaOnly(CommonFields& c, size_t index, size_t slot_size);
1793
1794 // Function to place in PolicyFunctions::dealloc for raw_hash_sets
1795 // that are using std::allocator. This allows us to share the same
1796 // function body for raw_hash_set instantiations that have the
1797 // same slot alignment.
1798 template <size_t AlignOfSlot>
1799 ABSL_ATTRIBUTE_NOINLINE void DeallocateStandard(CommonFields& common,
1800 const PolicyFunctions& policy) {
1801 // Unpoison before returning the memory to the allocator.
1802 SanitizerUnpoisonMemoryRegion(common.slot_array(),
1803 policy.slot_size * common.capacity());
1804
1805 std::allocator<char> alloc;
1806 common.infoz().Unregister();
1807 Deallocate<BackingArrayAlignment(AlignOfSlot)>(
1808 &alloc, common.backing_array_start(),
1809 common.alloc_size(policy.slot_size, AlignOfSlot));
1810 }
1811
1812 // For trivially relocatable types we use memcpy directly. This allows us to
1813 // share the same function body for raw_hash_set instantiations that have the
1814 // same slot size as long as they are relocatable.
1815 template <size_t SizeOfSlot>
1816 ABSL_ATTRIBUTE_NOINLINE void TransferRelocatable(void*, void* dst, void* src) {
1817 memcpy(dst, src, SizeOfSlot);
1818 }
1819
1820 // Type-erased version of raw_hash_set::drop_deletes_without_resize.
1821 void DropDeletesWithoutResize(CommonFields& common,
1822 const PolicyFunctions& policy, void* tmp_space);
1823
1824 // A SwissTable.
1825 //
1826 // Policy: a policy defines how to perform different operations on
1827 // the slots of the hashtable (see hash_policy_traits.h for the full interface
1828 // of policy).
1829 //
1830 // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
1831 // functor should accept a key and return size_t as hash. For best performance
1832 // it is important that the hash function provides high entropy across all bits
1833 // of the hash.
1834 //
1835 // Eq: a (possibly polymorphic) functor that compares two keys for equality. It
1836 // should accept two (of possibly different type) keys and return a bool: true
1837 // if they are equal, false if they are not. If two keys compare equal, then
1838 // their hash values as defined by Hash MUST be equal.
1839 //
1840 // Allocator: an Allocator
1841 // [https://en.cppreference.com/w/cpp/named_req/Allocator] with which
1842 // the storage of the hashtable will be allocated and the elements will be
1843 // constructed and destroyed.
1844 template <class Policy, class Hash, class Eq, class Alloc>
1845 class raw_hash_set {
1846 using PolicyTraits = hash_policy_traits<Policy>;
1847 using KeyArgImpl =
1848 KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
1849
1850 public:
1851 using init_type = typename PolicyTraits::init_type;
1852 using key_type = typename PolicyTraits::key_type;
1853 // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
1854 // code fixes!
1855 using slot_type = typename PolicyTraits::slot_type;
1856 using allocator_type = Alloc;
1857 using size_type = size_t;
1858 using difference_type = ptrdiff_t;
1859 using hasher = Hash;
1860 using key_equal = Eq;
1861 using policy_type = Policy;
1862 using value_type = typename PolicyTraits::value_type;
1863 using reference = value_type&;
1864 using const_reference = const value_type&;
1865 using pointer = typename absl::allocator_traits<
1866 allocator_type>::template rebind_traits<value_type>::pointer;
1867 using const_pointer = typename absl::allocator_traits<
1868 allocator_type>::template rebind_traits<value_type>::const_pointer;
1869
1870 // Alias used for heterogeneous lookup functions.
1871 // `key_arg<K>` evaluates to `K` when the functors are transparent and to
1872 // `key_type` otherwise. It permits template argument deduction on `K` for the
1873 // transparent case.
1874 template <class K>
1875 using key_arg = typename KeyArgImpl::template type<K, key_type>;
1876
1877 private:
1878 // Give an early error when key_type is not hashable/eq.
1879 auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
1880 auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
1881
1882 using AllocTraits = absl::allocator_traits<allocator_type>;
1883 using SlotAlloc = typename absl::allocator_traits<
1884 allocator_type>::template rebind_alloc<slot_type>;
1885 // People are often sloppy with the exact type of their allocator (sometimes
1886 // it has an extra const or is missing the pair, but rebinds made it work
1887 // anyway).
1888 using CharAlloc =
1889 typename absl::allocator_traits<Alloc>::template rebind_alloc<char>;
1890 using SlotAllocTraits = typename absl::allocator_traits<
1891 allocator_type>::template rebind_traits<slot_type>;
1892
1893 static_assert(std::is_lvalue_reference<reference>::value,
1894 "Policy::element() must return a reference");
1895
1896 template <typename T>
1897 struct SameAsElementReference
1898 : std::is_same<typename std::remove_cv<
1899 typename std::remove_reference<reference>::type>::type,
1900 typename std::remove_cv<
1901 typename std::remove_reference<T>::type>::type> {};
1902
1903 // An enabler for insert(T&&): T must be convertible to init_type or be the
1904 // same as [cv] value_type [ref].
1905 // Note: we separate SameAsElementReference into its own type to avoid using
1906 // reference unless we need to. MSVC doesn't seem to like it in some
1907 // cases.
1908 template <class T>
1909 using RequiresInsertable = typename std::enable_if<
1910 absl::disjunction<std::is_convertible<T, init_type>,
1911 SameAsElementReference<T>>::value,
1912 int>::type;
1913
1914 // RequiresNotInit is a workaround for gcc prior to 7.1.
1915 // See https://godbolt.org/g/Y4xsUh.
1916 template <class T>
1917 using RequiresNotInit =
1918 typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
1919
1920 template <class... Ts>
1921 using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
1922
1923 public:
1924 static_assert(std::is_same<pointer, value_type*>::value,
1925 "Allocators with custom pointer types are not supported");
1926 static_assert(std::is_same<const_pointer, const value_type*>::value,
1927 "Allocators with custom pointer types are not supported");
1928
1929 class iterator : private HashSetIteratorGenerationInfo {
1930 friend class raw_hash_set;
1931
1932 public:
1933 using iterator_category = std::forward_iterator_tag;
1934 using value_type = typename raw_hash_set::value_type;
1935 using reference =
1936 absl::conditional_t<PolicyTraits::constant_iterators::value,
1937 const value_type&, value_type&>;
1938 using pointer = absl::remove_reference_t<reference>*;
1939 using difference_type = typename raw_hash_set::difference_type;
1940
1941 iterator() {}
1942
1943 // PRECONDITION: not an end() iterator.
1944 reference operator*() const {
1945 AssertIsFull(ctrl_, generation(), generation_ptr(), "operator*()");
1946 return unchecked_deref();
1947 }
1948
1949 // PRECONDITION: not an end() iterator.
1950 pointer operator->() const {
1951 AssertIsFull(ctrl_, generation(), generation_ptr(), "operator->");
1952 return &operator*();
1953 }
1954
1955 // PRECONDITION: not an end() iterator.
1956 iterator& operator++() {
1957 AssertIsFull(ctrl_, generation(), generation_ptr(), "operator++");
1958 ++ctrl_;
1959 ++slot_;
1960 skip_empty_or_deleted();
1961 return *this;
1962 }
1963 // PRECONDITION: not an end() iterator.
1964 iterator operator++(int) {
1965 auto tmp = *this;
1966 ++*this;
1967 return tmp;
1968 }
1969
1970 friend bool operator==(const iterator& a, const iterator& b) {
1971 AssertIsValidForComparison(a.ctrl_, a.generation(), a.generation_ptr());
1972 AssertIsValidForComparison(b.ctrl_, b.generation(), b.generation_ptr());
1973 AssertSameContainer(a.ctrl_, b.ctrl_, a.slot_, b.slot_,
1974 a.generation_ptr(), b.generation_ptr());
1975 return a.ctrl_ == b.ctrl_;
1976 }
1977 friend bool operator!=(const iterator& a, const iterator& b) {
1978 return !(a == b);
1979 }
1980
1981 private:
1982 iterator(ctrl_t* ctrl, slot_type* slot,
1983 const GenerationType* generation_ptr)
1984 : HashSetIteratorGenerationInfo(generation_ptr),
1985 ctrl_(ctrl),
1986 slot_(slot) {
1987 // This assumption helps the compiler know that any non-end iterator is
1988 // not equal to any end iterator.
1989 ABSL_ASSUME(ctrl != nullptr);
1990 }
1991 // For end() iterators.
1992 explicit iterator(const GenerationType* generation_ptr)
1993 : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(nullptr) {}
1994
1995 // Fixes up `ctrl_` to point to a full by advancing it and `slot_` until
1996 // they reach one.
1997 //
1998 // If a sentinel is reached, we null `ctrl_` out instead.
1999 void skip_empty_or_deleted() {
2000 while (IsEmptyOrDeleted(*ctrl_)) {
2001 uint32_t shift =
2002 GroupEmptyOrDeleted{ctrl_}.CountLeadingEmptyOrDeleted();
2003 ctrl_ += shift;
2004 slot_ += shift;
2005 }
2006 if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr;
2007 }
2008
2009 ctrl_t* control() const { return ctrl_; }
2010 slot_type* slot() const { return slot_; }
2011
2012 // We use EmptyGroup() for default-constructed iterators so that they can
2013 // be distinguished from end iterators, which have nullptr ctrl_.
2014 ctrl_t* ctrl_ = EmptyGroup();
2015 // To avoid uninitialized member warnings, put slot_ in an anonymous union.
2016 // The member is not initialized on singleton and end iterators.
2017 union {
2018 slot_type* slot_;
2019 };
2020
2021 // An equality check which skips ABSL Hardening iterator invalidation
2022 // checks.
2023 // Should be used when the lifetimes of the iterators are well-enough
2024 // understood to prove that they cannot be invalid.
2025 bool unchecked_equals(const iterator& b) { return ctrl_ == b.control(); }
2026
2027 // Dereferences the iterator without ABSL Hardening iterator invalidation
2028 // checks.
2029 reference unchecked_deref() const { return PolicyTraits::element(slot_); }
2030 };
2031
2032 class const_iterator {
2033 friend class raw_hash_set;
2034 template <class Container, typename Enabler>
2035 friend struct absl::container_internal::hashtable_debug_internal::
2036 HashtableDebugAccess;
2037
2038 public:
2039 using iterator_category = typename iterator::iterator_category;
2040 using value_type = typename raw_hash_set::value_type;
2041 using reference = typename raw_hash_set::const_reference;
2042 using pointer = typename raw_hash_set::const_pointer;
2043 using difference_type = typename raw_hash_set::difference_type;
2044
2045 const_iterator() = default;
2046 // Implicit construction from iterator.
2047 const_iterator(iterator i) : inner_(std::move(i)) {} // NOLINT
2048
2049 reference operator*() const { return *inner_; }
2050 pointer operator->() const { return inner_.operator->(); }
2051
2052 const_iterator& operator++() {
2053 ++inner_;
2054 return *this;
2055 }
2056 const_iterator operator++(int) { return inner_++; }
2057
2058 friend bool operator==(const const_iterator& a, const const_iterator& b) {
2059 return a.inner_ == b.inner_;
2060 }
2061 friend bool operator!=(const const_iterator& a, const const_iterator& b) {
2062 return !(a == b);
2063 }
2064
2065 private:
2066 const_iterator(const ctrl_t* ctrl, const slot_type* slot,
2067 const GenerationType* gen)
2068 : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot), gen) {
2069 }
2070 ctrl_t* control() const { return inner_.control(); }
2071 slot_type* slot() const { return inner_.slot(); }
2072
2073 iterator inner_;
2074
2075 bool unchecked_equals(const const_iterator& b) {
2076 return inner_.unchecked_equals(b.inner_);
2077 }
2078 };
2079
2080 using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
2081 using insert_return_type = InsertReturnType<iterator, node_type>;
2082
2083 // Note: can't use `= default` due to non-default noexcept (causes
2084 // problems for some compilers). NOLINTNEXTLINE
2085 raw_hash_set() noexcept(
2086 std::is_nothrow_default_constructible<hasher>::value &&
2087 std::is_nothrow_default_constructible<key_equal>::value &&
2088 std::is_nothrow_default_constructible<allocator_type>::value) {}
2089
2090 ABSL_ATTRIBUTE_NOINLINE explicit raw_hash_set(
2091 size_t bucket_count, const hasher& hash = hasher(),
2092 const key_equal& eq = key_equal(),
2093 const allocator_type& alloc = allocator_type())
2094 : settings_(CommonFields{}, hash, eq, alloc) {
2095 if (bucket_count) {
2096 resize(NormalizeCapacity(bucket_count));
2097 }
2098 }
2099
2100 raw_hash_set(size_t bucket_count, const hasher& hash,
2101 const allocator_type& alloc)
2102 : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
2103
2104 raw_hash_set(size_t bucket_count, const allocator_type& alloc)
2105 : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
2106
2107 explicit raw_hash_set(const allocator_type& alloc)
2108 : raw_hash_set(0, hasher(), key_equal(), alloc) {}
2109
2110 template <class InputIter>
2111 raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
2112 const hasher& hash = hasher(), const key_equal& eq = key_equal(),
2113 const allocator_type& alloc = allocator_type())
2114 : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count),
2115 hash, eq, alloc) {
2116 insert(first, last);
2117 }
2118
2119 template <class InputIter>
2120 raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
2121 const hasher& hash, const allocator_type& alloc)
2122 : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
2123
2124 template <class InputIter>
2125 raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
2126 const allocator_type& alloc)
2127 : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
2128
2129 template <class InputIter>
2130 raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
2131 : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
2132
2133 // Instead of accepting std::initializer_list<value_type> as the first
2134 // argument like std::unordered_set<value_type> does, we have two overloads
2135 // that accept std::initializer_list<T> and std::initializer_list<init_type>.
2136 // This is advantageous for performance.
2137 //
2138 // // Turns {"abc", "def"} into std::initializer_list<std::string>, then
2139 // // copies the strings into the set.
2140 // std::unordered_set<std::string> s = {"abc", "def"};
2141 //
2142 // // Turns {"abc", "def"} into std::initializer_list<const char*>, then
2143 // // copies the strings into the set.
2144 // absl::flat_hash_set<std::string> s = {"abc", "def"};
2145 //
2146 // The same trick is used in insert().
2147 //
2148 // The enabler is necessary to prevent this constructor from triggering where
2149 // the copy constructor is meant to be called.
2150 //
2151 // absl::flat_hash_set<int> a, b{a};
2152 //
2153 // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
2154 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
2155 raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
2156 const hasher& hash = hasher(), const key_equal& eq = key_equal(),
2157 const allocator_type& alloc = allocator_type())
2158 : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
2159
2160 raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
2161 const hasher& hash = hasher(), const key_equal& eq = key_equal(),
2162 const allocator_type& alloc = allocator_type())
2163 : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
2164
2165 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
2166 raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
2167 const hasher& hash, const allocator_type& alloc)
2168 : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
2169
2170 raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
2171 const hasher& hash, const allocator_type& alloc)
2172 : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
2173
2174 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
2175 raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
2176 const allocator_type& alloc)
2177 : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
2178
2179 raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
2180 const allocator_type& alloc)
2181 : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
2182
2183 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
2184 raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
2185 : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
2186
2187 raw_hash_set(std::initializer_list<init_type> init,
2188 const allocator_type& alloc)
2189 : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
2190
2191 raw_hash_set(const raw_hash_set& that)
2192 : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
2193 that.alloc_ref())) {}
2194
2195 raw_hash_set(const raw_hash_set& that, const allocator_type& a)
2196 : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
2197 const size_t size = that.size();
2198 if (size == 0) return;
2199 reserve(size);
2200 // Because the table is guaranteed to be empty, we can do something faster
2201 // than a full `insert`.
2202 for (const auto& v : that) {
2203 const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
2204 auto target = find_first_non_full_outofline(common(), hash);
2205 SetCtrl(common(), target.offset, H2(hash), sizeof(slot_type));
2206 emplace_at(target.offset, v);
2207 common().maybe_increment_generation_on_insert();
2208 infoz().RecordInsert(hash, target.probe_length);
2209 }
2210 common().set_size(size);
2211 set_growth_left(growth_left() - size);
2212 }
2213
2214 ABSL_ATTRIBUTE_NOINLINE raw_hash_set(raw_hash_set&& that) noexcept(
2215 std::is_nothrow_copy_constructible<hasher>::value &&
2216 std::is_nothrow_copy_constructible<key_equal>::value &&
2217 std::is_nothrow_copy_constructible<allocator_type>::value)
2218 : // Hash, equality and allocator are copied instead of moved because
2219 // `that` must be left valid. If Hash is std::function<Key>, moving it
2220 // would create a nullptr functor that cannot be called.
2221 // TODO(b/296061262): move instead of copying hash/eq/alloc.
2222 // Note: we avoid using exchange for better generated code.
2223 settings_(std::move(that.common()), that.hash_ref(), that.eq_ref(),
2224 that.alloc_ref()) {
2225 that.common() = CommonFields{};
2226 maybe_increment_generation_or_rehash_on_move();
2227 }
2228
2229 raw_hash_set(raw_hash_set&& that, const allocator_type& a)
2230 : settings_(CommonFields{}, that.hash_ref(), that.eq_ref(), a) {
2231 if (a == that.alloc_ref()) {
2232 std::swap(common(), that.common());
2233 maybe_increment_generation_or_rehash_on_move();
2234 } else {
2235 move_elements_allocs_unequal(std::move(that));
2236 }
2237 }
2238
2239 raw_hash_set& operator=(const raw_hash_set& that) {
2240 if (ABSL_PREDICT_FALSE(this == &that)) return *this;
2241 constexpr bool propagate_alloc =
2242 AllocTraits::propagate_on_container_copy_assignment::value;
2243 // TODO(ezb): maybe avoid allocating a new backing array if this->capacity()
2244 // is an exact match for that.size(). If this->capacity() is too big, then
2245 // it would make iteration very slow to reuse the allocation. Maybe we can
2246 // do the same heuristic as clear() and reuse if it's small enough.
2247 raw_hash_set tmp(that, propagate_alloc ? that.alloc_ref() : alloc_ref());
2248 // NOLINTNEXTLINE: not returning *this for performance.
2249 return assign_impl<propagate_alloc>(std::move(tmp));
2250 }
2251
2252 raw_hash_set& operator=(raw_hash_set&& that) noexcept(
2253 absl::allocator_traits<allocator_type>::is_always_equal::value &&
2254 std::is_nothrow_move_assignable<hasher>::value &&
2255 std::is_nothrow_move_assignable<key_equal>::value) {
2256 // TODO(sbenza): We should only use the operations from the noexcept clause
2257 // to make sure we actually adhere to that contract.
2258 // NOLINTNEXTLINE: not returning *this for performance.
2259 return move_assign(
2260 std::move(that),
2261 typename AllocTraits::propagate_on_container_move_assignment());
2262 }
2263
2264 ~raw_hash_set() { destructor_impl(); }
2265
2266 iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
2267 auto it = iterator_at(0);
2268 it.skip_empty_or_deleted();
2269 return it;
2270 }
2271 iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND {
2272 return iterator(common().generation_ptr());
2273 }
2274
2275 const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2276 return const_cast<raw_hash_set*>(this)->begin();
2277 }
2278 const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2279 return iterator(common().generation_ptr());
2280 }
2281 const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2282 return begin();
2283 }
2284 const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
2285
2286 bool empty() const { return !size(); }
2287 size_t size() const { return common().size(); }
2288 size_t capacity() const { return common().capacity(); }
2289 size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }
2290
2291 ABSL_ATTRIBUTE_REINITIALIZES void clear() {
2292 // Iterating over this container is O(bucket_count()). When bucket_count()
2293 // is much greater than size(), iteration becomes prohibitively expensive.
2294 // For clear() it is more important to reuse the allocated array when the
2295 // container is small because allocation takes comparatively long time
2296 // compared to destruction of the elements of the container. So we pick the
2297 // largest bucket_count() threshold for which iteration is still fast and
2298 // past that we simply deallocate the array.
2299 const size_t cap = capacity();
2300 if (cap == 0) {
2301 // Already guaranteed to be empty; so nothing to do.
2302 } else {
2303 destroy_slots();
2304 ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/cap < 128);
2305 }
2306 common().set_reserved_growth(0);
2307 common().set_reservation_size(0);
2308 }
2309
2310 // This overload kicks in when the argument is an rvalue of insertable and
2311 // decomposable type other than init_type.
2312 //
2313 // flat_hash_map<std::string, int> m;
2314 // m.insert(std::make_pair("abc", 42));
2315 // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
2316 // bug.
2317 template <class T, RequiresInsertable<T> = 0, class T2 = T,
2318 typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
2319 T* = nullptr>
2320 std::pair<iterator, bool> insert(T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2321 return emplace(std::forward<T>(value));
2322 }
2323
2324 // This overload kicks in when the argument is a bitfield or an lvalue of
2325 // insertable and decomposable type.
2326 //
2327 // union { int n : 1; };
2328 // flat_hash_set<int> s;
2329 // s.insert(n);
2330 //
2331 // flat_hash_set<std::string> s;
2332 // const char* p = "hello";
2333 // s.insert(p);
2334 //
2335 template <
2336 class T, RequiresInsertable<const T&> = 0,
2337 typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
2338 std::pair<iterator, bool> insert(const T& value)
2339 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2340 return emplace(value);
2341 }
2342
2343 // This overload kicks in when the argument is an rvalue of init_type. Its
2344 // purpose is to handle brace-init-list arguments.
2345 //
2346 // flat_hash_map<std::string, int> s;
2347 // s.insert({"abc", 42});
2348 std::pair<iterator, bool> insert(init_type&& value)
2349 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2350 return emplace(std::move(value));
2351 }
2352
2353 // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
2354 // bug.
2355 template <class T, RequiresInsertable<T> = 0, class T2 = T,
2356 typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
2357 T* = nullptr>
2358 iterator insert(const_iterator, T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2359 return insert(std::forward<T>(value)).first;
2360 }
2361
2362 template <
2363 class T, RequiresInsertable<const T&> = 0,
2364 typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
2365 iterator insert(const_iterator,
2366 const T& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2367 return insert(value).first;
2368 }
2369
2370 iterator insert(const_iterator,
2371 init_type&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2372 return insert(std::move(value)).first;
2373 }
2374
2375 template <class InputIt>
2376 void insert(InputIt first, InputIt last) {
2377 for (; first != last; ++first) emplace(*first);
2378 }
2379
2380 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
2381 void insert(std::initializer_list<T> ilist) {
2382 insert(ilist.begin(), ilist.end());
2383 }
2384
2385 void insert(std::initializer_list<init_type> ilist) {
2386 insert(ilist.begin(), ilist.end());
2387 }
2388
2389 insert_return_type insert(node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2390 if (!node) return {end(), false, node_type()};
2391 const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
2392 auto res = PolicyTraits::apply(
2393 InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
2394 elem);
2395 if (res.second) {
2396 CommonAccess::Reset(&node);
2397 return {res.first, true, node_type()};
2398 } else {
2399 return {res.first, false, std::move(node)};
2400 }
2401 }
2402
2403 iterator insert(const_iterator,
2404 node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2405 auto res = insert(std::move(node));
2406 node = std::move(res.node);
2407 return res.position;
2408 }
2409
2410 // This overload kicks in if we can deduce the key from args. This enables us
2411 // to avoid constructing value_type if an entry with the same key already
2412 // exists.
2413 //
2414 // For example:
2415 //
2416 // flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
2417 // // Creates no std::string copies and makes no heap allocations.
2418 // m.emplace("abc", "xyz");
2419 template <class... Args, typename std::enable_if<
2420 IsDecomposable<Args...>::value, int>::type = 0>
2421 std::pair<iterator, bool> emplace(Args&&... args)
2422 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2423 return PolicyTraits::apply(EmplaceDecomposable{*this},
2424 std::forward<Args>(args)...);
2425 }
2426
2427 // This overload kicks in if we cannot deduce the key from args. It constructs
2428 // value_type unconditionally and then either moves it into the table or
2429 // destroys.
2430 template <class... Args, typename std::enable_if<
2431 !IsDecomposable<Args...>::value, int>::type = 0>
2432 std::pair<iterator, bool> emplace(Args&&... args)
2433 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2434 alignas(slot_type) unsigned char raw[sizeof(slot_type)];
2435 slot_type* slot = reinterpret_cast<slot_type*>(&raw);
2436
2437 construct(slot, std::forward<Args>(args)...);
2438 const auto& elem = PolicyTraits::element(slot);
2439 return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
2440 }
2441
2442 template <class... Args>
2443 iterator emplace_hint(const_iterator,
2444 Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2445 return emplace(std::forward<Args>(args)...).first;
2446 }
2447
2448 // Extension API: support for lazy emplace.
2449 //
2450 // Looks up key in the table. If found, returns the iterator to the element.
2451 // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`,
2452 // and returns an iterator to the new element.
2453 //
2454 // `f` must abide by several restrictions:
2455 // - it MUST call `raw_hash_set::constructor` with arguments as if a
2456 // `raw_hash_set::value_type` is constructed,
2457 // - it MUST NOT access the container before the call to
2458 // `raw_hash_set::constructor`, and
2459 // - it MUST NOT erase the lazily emplaced element.
2460 // Doing any of these is undefined behavior.
2461 //
2462 // For example:
2463 //
2464 // std::unordered_set<ArenaString> s;
2465 // // Makes ArenaStr even if "abc" is in the map.
2466 // s.insert(ArenaString(&arena, "abc"));
2467 //
2468 // flat_hash_set<ArenaStr> s;
2469 // // Makes ArenaStr only if "abc" is not in the map.
2470 // s.lazy_emplace("abc", [&](const constructor& ctor) {
2471 // ctor(&arena, "abc");
2472 // });
2473 //
2474 // WARNING: This API is currently experimental. If there is a way to implement
2475 // the same thing with the rest of the API, prefer that.
2476 class constructor {
2477 friend class raw_hash_set;
2478
2479 public:
2480 template <class... Args>
2481 void operator()(Args&&... args) const {
2482 assert(*slot_);
2483 PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
2484 *slot_ = nullptr;
2485 }
2486
2487 private:
2488 constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
2489
2490 allocator_type* alloc_;
2491 slot_type** slot_;
2492 };
2493
2494 template <class K = key_type, class F>
2495 iterator lazy_emplace(const key_arg<K>& key,
2496 F&& f) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2497 auto res = find_or_prepare_insert(key);
2498 if (res.second) {
2499 slot_type* slot = slot_array() + res.first;
2500 std::forward<F>(f)(constructor(&alloc_ref(), &slot));
2501 assert(!slot);
2502 }
2503 return iterator_at(res.first);
2504 }
2505
2506 // Extension API: support for heterogeneous keys.
2507 //
2508 // std::unordered_set<std::string> s;
2509 // // Turns "abc" into std::string.
2510 // s.erase("abc");
2511 //
2512 // flat_hash_set<std::string> s;
2513 // // Uses "abc" directly without copying it into std::string.
2514 // s.erase("abc");
2515 template <class K = key_type>
2516 size_type erase(const key_arg<K>& key) {
2517 auto it = find(key);
2518 if (it == end()) return 0;
2519 erase(it);
2520 return 1;
2521 }
2522
2523 // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`,
2524 // this method returns void to reduce algorithmic complexity to O(1). The
2525 // iterator is invalidated, so any increment should be done before calling
2526 // erase. In order to erase while iterating across a map, use the following
2527 // idiom (which also works for standard containers):
2528 //
2529 // for (auto it = m.begin(), end = m.end(); it != end;) {
2530 // // `erase()` will invalidate `it`, so advance `it` first.
2531 // auto copy_it = it++;
2532 // if (<pred>) {
2533 // m.erase(copy_it);
2534 // }
2535 // }
2536 void erase(const_iterator cit) { erase(cit.inner_); }
2537
2538 // This overload is necessary because otherwise erase<K>(const K&) would be
2539 // a better match if non-const iterator is passed as an argument.
2540 void erase(iterator it) {
2541 AssertIsFull(it.control(), it.generation(), it.generation_ptr(), "erase()");
2542 destroy(it.slot());
2543 erase_meta_only(it);
2544 }
2545
2546 iterator erase(const_iterator first,
2547 const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2548 // We check for empty first because ClearBackingArray requires that
2549 // capacity() > 0 as a precondition.
2550 if (empty()) return end();
2551 if (first == begin() && last == end()) {
2552 // TODO(ezb): we access control bytes in destroy_slots so it could make
2553 // sense to combine destroy_slots and ClearBackingArray to avoid cache
2554 // misses when the table is large. Note that we also do this in clear().
2555 destroy_slots();
2556 ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/true);
2557 common().set_reserved_growth(common().reservation_size());
2558 return end();
2559 }
2560 while (first != last) {
2561 erase(first++);
2562 }
2563 return last.inner_;
2564 }
2565
2566 // Moves elements from `src` into `this`.
2567 // If the element already exists in `this`, it is left unmodified in `src`.
2568 template <typename H, typename E>
2569 void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT
2570 assert(this != &src);
2571 for (auto it = src.begin(), e = src.end(); it != e;) {
2572 auto next = std::next(it);
2573 if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot())},
2574 PolicyTraits::element(it.slot()))
2575 .second) {
2576 src.erase_meta_only(it);
2577 }
2578 it = next;
2579 }
2580 }
2581
2582 template <typename H, typename E>
2583 void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
2584 merge(src);
2585 }
2586
2587 node_type extract(const_iterator position) {
2588 AssertIsFull(position.control(), position.inner_.generation(),
2589 position.inner_.generation_ptr(), "extract()");
2590 auto node = CommonAccess::Transfer<node_type>(alloc_ref(), position.slot());
2591 erase_meta_only(position);
2592 return node;
2593 }
2594
2595 template <
2596 class K = key_type,
2597 typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
2598 node_type extract(const key_arg<K>& key) {
2599 auto it = find(key);
2600 return it == end() ? node_type() : extract(const_iterator{it});
2601 }
2602
2603 void swap(raw_hash_set& that) noexcept(
2604 IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
2605 IsNoThrowSwappable<allocator_type>(
2606 typename AllocTraits::propagate_on_container_swap{})) {
2607 using std::swap;
2608 swap(common(), that.common());
2609 swap(hash_ref(), that.hash_ref());
2610 swap(eq_ref(), that.eq_ref());
2611 SwapAlloc(alloc_ref(), that.alloc_ref(),
2612 typename AllocTraits::propagate_on_container_swap{});
2613 }
2614
2615 void rehash(size_t n) {
2616 if (n == 0 && capacity() == 0) return;
2617 if (n == 0 && size() == 0) {
2618 ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/false);
2619 return;
2620 }
2621
2622 // bitor is a faster way of doing `max` here. We will round up to the next
2623 // power-of-2-minus-1, so bitor is good enough.
2624 auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size()));
2625 // n == 0 unconditionally rehashes as per the standard.
2626 if (n == 0 || m > capacity()) {
2627 resize(m);
2628
2629 // This is after resize, to ensure that we have completed the allocation
2630 // and have potentially sampled the hashtable.
2631 infoz().RecordReservation(n);
2632 }
2633 }
2634
2635 void reserve(size_t n) {
2636 if (n > size() + growth_left()) {
2637 size_t m = GrowthToLowerboundCapacity(n);
2638 resize(NormalizeCapacity(m));
2639
2640 // This is after resize, to ensure that we have completed the allocation
2641 // and have potentially sampled the hashtable.
2642 infoz().RecordReservation(n);
2643 }
2644 common().reset_reserved_growth(n);
2645 common().set_reservation_size(n);
2646 }
2647
2648 // Extension API: support for heterogeneous keys.
2649 //
2650 // std::unordered_set<std::string> s;
2651 // // Turns "abc" into std::string.
2652 // s.count("abc");
2653 //
2654 // ch_set<std::string> s;
2655 // // Uses "abc" directly without copying it into std::string.
2656 // s.count("abc");
2657 template <class K = key_type>
2658 size_t count(const key_arg<K>& key) const {
2659 return find(key) == end() ? 0 : 1;
2660 }
2661
2662 // Issues CPU prefetch instructions for the memory needed to find or insert
2663 // a key. Like all lookup functions, this support heterogeneous keys.
2664 //
2665 // NOTE: This is a very low level operation and should not be used without
2666 // specific benchmarks indicating its importance.
2667 template <class K = key_type>
2668 void prefetch(const key_arg<K>& key) const {
2669 (void)key;
2670 // Avoid probing if we won't be able to prefetch the addresses received.
2671 #ifdef ABSL_HAVE_PREFETCH
2672 prefetch_heap_block();
2673 auto seq = probe(common(), hash_ref()(key));
2674 PrefetchToLocalCache(control() + seq.offset());
2675 PrefetchToLocalCache(slot_array() + seq.offset());
2676 #endif // ABSL_HAVE_PREFETCH
2677 }
2678
2679 // The API of find() has two extensions.
2680 //
2681 // 1. The hash can be passed by the user. It must be equal to the hash of the
2682 // key.
2683 //
2684 // 2. The type of the key argument doesn't have to be key_type. This is so
2685 // called heterogeneous key support.
2686 template <class K = key_type>
2687 iterator find(const key_arg<K>& key,
2688 size_t hash) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2689 auto seq = probe(common(), hash);
2690 slot_type* slot_ptr = slot_array();
2691 const ctrl_t* ctrl = control();
2692 while (true) {
2693 Group g{ctrl + seq.offset()};
2694 for (uint32_t i : g.Match(H2(hash))) {
2695 if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
2696 EqualElement<K>{key, eq_ref()},
2697 PolicyTraits::element(slot_ptr + seq.offset(i)))))
2698 return iterator_at(seq.offset(i));
2699 }
2700 if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end();
2701 seq.next();
2702 assert(seq.index() <= capacity() && "full table!");
2703 }
2704 }
2705 template <class K = key_type>
2706 iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2707 prefetch_heap_block();
2708 return find(key, hash_ref()(key));
2709 }
2710
2711 template <class K = key_type>
2712 const_iterator find(const key_arg<K>& key,
2713 size_t hash) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2714 return const_cast<raw_hash_set*>(this)->find(key, hash);
2715 }
2716 template <class K = key_type>
2717 const_iterator find(const key_arg<K>& key) const
2718 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2719 prefetch_heap_block();
2720 return find(key, hash_ref()(key));
2721 }
2722
2723 template <class K = key_type>
2724 bool contains(const key_arg<K>& key) const {
2725 // Here neither the iterator returned by `find()` nor `end()` can be invalid
2726 // outside of potential thread-safety issues.
2727 // `find()`'s return value is constructed, used, and then destructed
2728 // all in this context.
2729 return !find(key).unchecked_equals(end());
2730 }
2731
2732 template <class K = key_type>
2733 std::pair<iterator, iterator> equal_range(const key_arg<K>& key)
2734 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2735 auto it = find(key);
2736 if (it != end()) return {it, std::next(it)};
2737 return {it, it};
2738 }
2739 template <class K = key_type>
2740 std::pair<const_iterator, const_iterator> equal_range(
2741 const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2742 auto it = find(key);
2743 if (it != end()) return {it, std::next(it)};
2744 return {it, it};
2745 }
2746
2747 size_t bucket_count() const { return capacity(); }
2748 float load_factor() const {
2749 return capacity() ? static_cast<double>(size()) / capacity() : 0.0;
2750 }
2751 float max_load_factor() const { return 1.0f; }
2752 void max_load_factor(float) {
2753 // Does nothing.
2754 }
2755
2756 hasher hash_function() const { return hash_ref(); }
2757 key_equal key_eq() const { return eq_ref(); }
2758 allocator_type get_allocator() const { return alloc_ref(); }
2759
2760 friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
2761 if (a.size() != b.size()) return false;
2762 const raw_hash_set* outer = &a;
2763 const raw_hash_set* inner = &b;
2764 if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
2765 for (const value_type& elem : *outer) {
2766 auto it = PolicyTraits::apply(FindElement{*inner}, elem);
2767 if (it == inner->end() || !(*it == elem)) return false;
2768 }
2769 return true;
2770 }
2771
2772 friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
2773 return !(a == b);
2774 }
2775
2776 template <typename H>
2777 friend typename std::enable_if<H::template is_hashable<value_type>::value,
2778 H>::type
2779 AbslHashValue(H h, const raw_hash_set& s) {
2780 return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()),
2781 s.size());
2782 }
2783
2784 friend void swap(raw_hash_set& a,
2785 raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
2786 a.swap(b);
2787 }
2788
2789 private:
2790 template <class Container, typename Enabler>
2791 friend struct absl::container_internal::hashtable_debug_internal::
2792 HashtableDebugAccess;
2793
2794 struct FindElement {
2795 template <class K, class... Args>
2796 const_iterator operator()(const K& key, Args&&...) const {
2797 return s.find(key);
2798 }
2799 const raw_hash_set& s;
2800 };
2801
2802 struct HashElement {
2803 template <class K, class... Args>
2804 size_t operator()(const K& key, Args&&...) const {
2805 return h(key);
2806 }
2807 const hasher& h;
2808 };
2809
2810 template <class K1>
2811 struct EqualElement {
2812 template <class K2, class... Args>
2813 bool operator()(const K2& lhs, Args&&...) const {
2814 return eq(lhs, rhs);
2815 }
2816 const K1& rhs;
2817 const key_equal& eq;
2818 };
2819
2820 struct EmplaceDecomposable {
2821 template <class K, class... Args>
2822 std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
2823 auto res = s.find_or_prepare_insert(key);
2824 if (res.second) {
2825 s.emplace_at(res.first, std::forward<Args>(args)...);
2826 }
2827 return {s.iterator_at(res.first), res.second};
2828 }
2829 raw_hash_set& s;
2830 };
2831
2832 template <bool do_destroy>
2833 struct InsertSlot {
2834 template <class K, class... Args>
2835 std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
2836 auto res = s.find_or_prepare_insert(key);
2837 if (res.second) {
2838 s.transfer(s.slot_array() + res.first, &slot);
2839 } else if (do_destroy) {
2840 s.destroy(&slot);
2841 }
2842 return {s.iterator_at(res.first), res.second};
2843 }
2844 raw_hash_set& s;
2845 // Constructed slot. Either moved into place or destroyed.
2846 slot_type&& slot;
2847 };
2848
2849 // TODO(b/303305702): re-enable reentrant validation.
2850 template <typename... Args>
2851 inline void construct(slot_type* slot, Args&&... args) {
2852 PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
2853 }
2854 inline void destroy(slot_type* slot) {
2855 PolicyTraits::destroy(&alloc_ref(), slot);
2856 }
2857 inline void transfer(slot_type* to, slot_type* from) {
2858 PolicyTraits::transfer(&alloc_ref(), to, from);
2859 }
2860
2861 inline void destroy_slots() {
2862 const size_t cap = capacity();
2863 const ctrl_t* ctrl = control();
2864 slot_type* slot = slot_array();
2865 for (size_t i = 0; i != cap; ++i) {
2866 if (IsFull(ctrl[i])) {
2867 destroy(slot + i);
2868 }
2869 }
2870 }
2871
2872 inline void dealloc() {
2873 assert(capacity() != 0);
2874 // Unpoison before returning the memory to the allocator.
2875 SanitizerUnpoisonMemoryRegion(slot_array(), sizeof(slot_type) * capacity());
2876 infoz().Unregister();
2877 Deallocate<BackingArrayAlignment(alignof(slot_type))>(
2878 &alloc_ref(), common().backing_array_start(),
2879 common().alloc_size(sizeof(slot_type), alignof(slot_type)));
2880 }
2881
2882 inline void destructor_impl() {
2883 if (capacity() == 0) return;
2884 destroy_slots();
2885 dealloc();
2886 }
2887
2888 // Erases, but does not destroy, the value pointed to by `it`.
2889 //
2890 // This merely updates the pertinent control byte. This can be used in
2891 // conjunction with Policy::transfer to move the object to another place.
2892 void erase_meta_only(const_iterator it) {
2893 EraseMetaOnly(common(), static_cast<size_t>(it.control() - control()),
2894 sizeof(slot_type));
2895 }
2896
2897 // Resizes table to the new capacity and move all elements to the new
2898 // positions accordingly.
2899 //
2900 // Note that for better performance instead of
2901 // find_first_non_full(common(), hash),
2902 // HashSetResizeHelper::FindFirstNonFullAfterResize(
2903 // common(), old_capacity, hash)
2904 // can be called right after `resize`.
2905 ABSL_ATTRIBUTE_NOINLINE void resize(size_t new_capacity) {
2906 assert(IsValidCapacity(new_capacity));
2907 HashSetResizeHelper resize_helper(common());
2908 auto* old_slots = slot_array();
2909 common().set_capacity(new_capacity);
2910 // Note that `InitializeSlots` does different number initialization steps
2911 // depending on the values of `transfer_uses_memcpy` and capacities.
2912 // Refer to the comment in `InitializeSlots` for more details.
2913 const bool grow_single_group =
2914 resize_helper.InitializeSlots<CharAlloc, sizeof(slot_type),
2915 PolicyTraits::transfer_uses_memcpy(),
2916 alignof(slot_type)>(
2917 common(), const_cast<std::remove_const_t<slot_type>*>(old_slots),
2918 CharAlloc(alloc_ref()));
2919
2920 if (resize_helper.old_capacity() == 0) {
2921 // InitializeSlots did all the work including infoz().RecordRehash().
2922 return;
2923 }
2924
2925 if (grow_single_group) {
2926 if (PolicyTraits::transfer_uses_memcpy()) {
2927 // InitializeSlots did all the work.
2928 return;
2929 }
2930 // We want GrowSizeIntoSingleGroup to be called here in order to make
2931 // InitializeSlots not depend on PolicyTraits.
2932 resize_helper.GrowSizeIntoSingleGroup<PolicyTraits>(common(), alloc_ref(),
2933 old_slots);
2934 } else {
2935 // InitializeSlots prepares control bytes to correspond to empty table.
2936 auto* new_slots = slot_array();
2937 size_t total_probe_length = 0;
2938 for (size_t i = 0; i != resize_helper.old_capacity(); ++i) {
2939 if (IsFull(resize_helper.old_ctrl()[i])) {
2940 size_t hash = PolicyTraits::apply(
2941 HashElement{hash_ref()}, PolicyTraits::element(old_slots + i));
2942 auto target = find_first_non_full(common(), hash);
2943 size_t new_i = target.offset;
2944 total_probe_length += target.probe_length;
2945 SetCtrl(common(), new_i, H2(hash), sizeof(slot_type));
2946 transfer(new_slots + new_i, old_slots + i);
2947 }
2948 }
2949 infoz().RecordRehash(total_probe_length);
2950 }
2951 resize_helper.DeallocateOld<alignof(slot_type)>(
2952 CharAlloc(alloc_ref()), sizeof(slot_type),
2953 const_cast<std::remove_const_t<slot_type>*>(old_slots));
2954 }
2955
2956 // Prunes control bytes to remove as many tombstones as possible.
2957 //
2958 // See the comment on `rehash_and_grow_if_necessary()`.
2959 inline void drop_deletes_without_resize() {
2960 // Stack-allocate space for swapping elements.
2961 alignas(slot_type) unsigned char tmp[sizeof(slot_type)];
2962 DropDeletesWithoutResize(common(), GetPolicyFunctions(), tmp);
2963 }
2964
2965 // Called whenever the table *might* need to conditionally grow.
2966 //
2967 // This function is an optimization opportunity to perform a rehash even when
2968 // growth is unnecessary, because vacating tombstones is beneficial for
2969 // performance in the long-run.
2970 void rehash_and_grow_if_necessary() {
2971 const size_t cap = capacity();
2972 if (cap > Group::kWidth &&
2973 // Do these calculations in 64-bit to avoid overflow.
2974 size() * uint64_t{32} <= cap * uint64_t{25}) {
2975 // Squash DELETED without growing if there is enough capacity.
2976 //
2977 // Rehash in place if the current size is <= 25/32 of capacity.
2978 // Rationale for such a high factor: 1) drop_deletes_without_resize() is
2979 // faster than resize, and 2) it takes quite a bit of work to add
2980 // tombstones. In the worst case, seems to take approximately 4
2981 // insert/erase pairs to create a single tombstone and so if we are
2982 // rehashing because of tombstones, we can afford to rehash-in-place as
2983 // long as we are reclaiming at least 1/8 the capacity without doing more
2984 // than 2X the work. (Where "work" is defined to be size() for rehashing
2985 // or rehashing in place, and 1 for an insert or erase.) But rehashing in
2986 // place is faster per operation than inserting or even doubling the size
2987 // of the table, so we actually afford to reclaim even less space from a
2988 // resize-in-place. The decision is to rehash in place if we can reclaim
2989 // at about 1/8th of the usable capacity (specifically 3/28 of the
2990 // capacity) which means that the total cost of rehashing will be a small
2991 // fraction of the total work.
2992 //
2993 // Here is output of an experiment using the BM_CacheInSteadyState
2994 // benchmark running the old case (where we rehash-in-place only if we can
2995 // reclaim at least 7/16*capacity) vs. this code (which rehashes in place
2996 // if we can recover 3/32*capacity).
2997 //
2998 // Note that although in the worst-case number of rehashes jumped up from
2999 // 15 to 190, but the number of operations per second is almost the same.
3000 //
3001 // Abridged output of running BM_CacheInSteadyState benchmark from
3002 // raw_hash_set_benchmark. N is the number of insert/erase operations.
3003 //
3004 // | OLD (recover >= 7/16 | NEW (recover >= 3/32)
3005 // size | N/s LoadFactor NRehashes | N/s LoadFactor NRehashes
3006 // 448 | 145284 0.44 18 | 140118 0.44 19
3007 // 493 | 152546 0.24 11 | 151417 0.48 28
3008 // 538 | 151439 0.26 11 | 151152 0.53 38
3009 // 583 | 151765 0.28 11 | 150572 0.57 50
3010 // 628 | 150241 0.31 11 | 150853 0.61 66
3011 // 672 | 149602 0.33 12 | 150110 0.66 90
3012 // 717 | 149998 0.35 12 | 149531 0.70 129
3013 // 762 | 149836 0.37 13 | 148559 0.74 190
3014 // 807 | 149736 0.39 14 | 151107 0.39 14
3015 // 852 | 150204 0.42 15 | 151019 0.42 15
3016 drop_deletes_without_resize();
3017 } else {
3018 // Otherwise grow the container.
3019 resize(NextCapacity(cap));
3020 }
3021 }
3022
3023 void maybe_increment_generation_or_rehash_on_move() {
3024 common().maybe_increment_generation_on_move();
3025 if (!empty() && common().should_rehash_for_bug_detection_on_move()) {
3026 resize(capacity());
3027 }
3028 }
3029
3030 template<bool propagate_alloc>
3031 raw_hash_set& assign_impl(raw_hash_set&& that) {
3032 // We don't bother checking for this/that aliasing. We just need to avoid
3033 // breaking the invariants in that case.
3034 destructor_impl();
3035 common() = std::move(that.common());
3036 // TODO(b/296061262): move instead of copying hash/eq/alloc.
3037 hash_ref() = that.hash_ref();
3038 eq_ref() = that.eq_ref();
3039 CopyAlloc(alloc_ref(), that.alloc_ref(),
3040 std::integral_constant<bool, propagate_alloc>());
3041 that.common() = CommonFields{};
3042 maybe_increment_generation_or_rehash_on_move();
3043 return *this;
3044 }
3045
3046 raw_hash_set& move_elements_allocs_unequal(raw_hash_set&& that) {
3047 const size_t size = that.size();
3048 if (size == 0) return *this;
3049 reserve(size);
3050 for (iterator it = that.begin(); it != that.end(); ++it) {
3051 insert(std::move(PolicyTraits::element(it.slot())));
3052 that.destroy(it.slot());
3053 }
3054 that.dealloc();
3055 that.common() = CommonFields{};
3056 maybe_increment_generation_or_rehash_on_move();
3057 return *this;
3058 }
3059
3060 raw_hash_set& move_assign(raw_hash_set&& that,
3061 std::true_type /*propagate_alloc*/) {
3062 return assign_impl<true>(std::move(that));
3063 }
3064 raw_hash_set& move_assign(raw_hash_set&& that,
3065 std::false_type /*propagate_alloc*/) {
3066 if (alloc_ref() == that.alloc_ref()) {
3067 return assign_impl<false>(std::move(that));
3068 }
3069 // Aliasing can't happen here because allocs would compare equal above.
3070 assert(this != &that);
3071 destructor_impl();
3072 // We can't take over that's memory so we need to move each element.
3073 // While moving elements, this should have that's hash/eq so copy hash/eq
3074 // before moving elements.
3075 // TODO(b/296061262): move instead of copying hash/eq.
3076 hash_ref() = that.hash_ref();
3077 eq_ref() = that.eq_ref();
3078 return move_elements_allocs_unequal(std::move(that));
3079 }
3080
3081 protected:
3082 // Attempts to find `key` in the table; if it isn't found, returns a slot that
3083 // the value can be inserted into, with the control byte already set to
3084 // `key`'s H2.
3085 template <class K>
3086 std::pair<size_t, bool> find_or_prepare_insert(const K& key) {
3087 prefetch_heap_block();
3088 auto hash = hash_ref()(key);
3089 auto seq = probe(common(), hash);
3090 const ctrl_t* ctrl = control();
3091 while (true) {
3092 Group g{ctrl + seq.offset()};
3093 for (uint32_t i : g.Match(H2(hash))) {
3094 if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
3095 EqualElement<K>{key, eq_ref()},
3096 PolicyTraits::element(slot_array() + seq.offset(i)))))
3097 return {seq.offset(i), false};
3098 }
3099 if (ABSL_PREDICT_TRUE(g.MaskEmpty())) break;
3100 seq.next();
3101 assert(seq.index() <= capacity() && "full table!");
3102 }
3103 return {prepare_insert(hash), true};
3104 }
3105
3106 // Given the hash of a value not currently in the table, finds the next
3107 // viable slot index to insert it at.
3108 //
3109 // REQUIRES: At least one non-full slot available.
3110 size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
3111 const bool rehash_for_bug_detection =
3112 common().should_rehash_for_bug_detection_on_insert();
3113 if (rehash_for_bug_detection) {
3114 // Move to a different heap allocation in order to detect bugs.
3115 const size_t cap = capacity();
3116 resize(growth_left() > 0 ? cap : NextCapacity(cap));
3117 }
3118 auto target = find_first_non_full(common(), hash);
3119 if (!rehash_for_bug_detection &&
3120 ABSL_PREDICT_FALSE(growth_left() == 0 &&
3121 !IsDeleted(control()[target.offset]))) {
3122 size_t old_capacity = capacity();
3123 rehash_and_grow_if_necessary();
3124 // NOTE: It is safe to use `FindFirstNonFullAfterResize`.
3125 // `FindFirstNonFullAfterResize` must be called right after resize.
3126 // `rehash_and_grow_if_necessary` may *not* call `resize`
3127 // and perform `drop_deletes_without_resize` instead. But this
3128 // could happen only on big tables.
3129 // For big tables `FindFirstNonFullAfterResize` will always
3130 // fallback to normal `find_first_non_full`, so it is safe to use it.
3131 target = HashSetResizeHelper::FindFirstNonFullAfterResize(
3132 common(), old_capacity, hash);
3133 }
3134 common().increment_size();
3135 set_growth_left(growth_left() - IsEmpty(control()[target.offset]));
3136 SetCtrl(common(), target.offset, H2(hash), sizeof(slot_type));
3137 common().maybe_increment_generation_on_insert();
3138 infoz().RecordInsert(hash, target.probe_length);
3139 return target.offset;
3140 }
3141
3142 // Constructs the value in the space pointed by the iterator. This only works
3143 // after an unsuccessful find_or_prepare_insert() and before any other
3144 // modifications happen in the raw_hash_set.
3145 //
3146 // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where
3147 // k is the key decomposed from `forward<Args>(args)...`, and the bool
3148 // returned by find_or_prepare_insert(k) was true.
3149 // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
3150 template <class... Args>
3151 void emplace_at(size_t i, Args&&... args) {
3152 construct(slot_array() + i, std::forward<Args>(args)...);
3153
3154 assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) ==
3155 iterator_at(i) &&
3156 "constructed value does not match the lookup key");
3157 }
3158
3159 iterator iterator_at(size_t i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
3160 return {control() + i, slot_array() + i, common().generation_ptr()};
3161 }
3162 const_iterator iterator_at(size_t i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
3163 return {control() + i, slot_array() + i, common().generation_ptr()};
3164 }
3165
3166 reference unchecked_deref(iterator it) { return it.unchecked_deref(); }
3167
3168 private:
3169 friend struct RawHashSetTestOnlyAccess;
3170
3171 // The number of slots we can still fill without needing to rehash.
3172 //
3173 // This is stored separately due to tombstones: we do not include tombstones
3174 // in the growth capacity, because we'd like to rehash when the table is
3175 // otherwise filled with tombstones: otherwise, probe sequences might get
3176 // unacceptably long without triggering a rehash. Callers can also force a
3177 // rehash via the standard `rehash(0)`, which will recompute this value as a
3178 // side-effect.
3179 //
3180 // See `CapacityToGrowth()`.
3181 size_t growth_left() const { return common().growth_left(); }
3182 void set_growth_left(size_t gl) { return common().set_growth_left(gl); }
3183
3184 // Prefetch the heap-allocated memory region to resolve potential TLB and
3185 // cache misses. This is intended to overlap with execution of calculating the
3186 // hash for a key.
3187 void prefetch_heap_block() const {
3188 #if ABSL_HAVE_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
3189 __builtin_prefetch(control(), 0, 1);
3190 #endif
3191 }
3192
3193 CommonFields& common() { return settings_.template get<0>(); }
3194 const CommonFields& common() const { return settings_.template get<0>(); }
3195
3196 ctrl_t* control() const { return common().control(); }
3197 slot_type* slot_array() const {
3198 return static_cast<slot_type*>(common().slot_array());
3199 }
3200 HashtablezInfoHandle infoz() { return common().infoz(); }
3201
3202 hasher& hash_ref() { return settings_.template get<1>(); }
3203 const hasher& hash_ref() const { return settings_.template get<1>(); }
3204 key_equal& eq_ref() { return settings_.template get<2>(); }
3205 const key_equal& eq_ref() const { return settings_.template get<2>(); }
3206 allocator_type& alloc_ref() { return settings_.template get<3>(); }
3207 const allocator_type& alloc_ref() const {
3208 return settings_.template get<3>();
3209 }
3210
3211 // Make type-specific functions for this type's PolicyFunctions struct.
3212 static size_t hash_slot_fn(void* set, void* slot) {
3213 auto* h = static_cast<raw_hash_set*>(set);
3214 return PolicyTraits::apply(
3215 HashElement{h->hash_ref()},
3216 PolicyTraits::element(static_cast<slot_type*>(slot)));
3217 }
3218 static void transfer_slot_fn(void* set, void* dst, void* src) {
3219 auto* h = static_cast<raw_hash_set*>(set);
3220 h->transfer(static_cast<slot_type*>(dst), static_cast<slot_type*>(src));
3221 }
3222 // Note: dealloc_fn will only be used if we have a non-standard allocator.
3223 static void dealloc_fn(CommonFields& common, const PolicyFunctions&) {
3224 auto* set = reinterpret_cast<raw_hash_set*>(&common);
3225
3226 // Unpoison before returning the memory to the allocator.
3227 SanitizerUnpoisonMemoryRegion(common.slot_array(),
3228 sizeof(slot_type) * common.capacity());
3229
3230 common.infoz().Unregister();
3231 Deallocate<BackingArrayAlignment(alignof(slot_type))>(
3232 &set->alloc_ref(), common.backing_array_start(),
3233 common.alloc_size(sizeof(slot_type), alignof(slot_type)));
3234 }
3235
3236 static const PolicyFunctions& GetPolicyFunctions() {
3237 static constexpr PolicyFunctions value = {
3238 sizeof(slot_type),
3239 &raw_hash_set::hash_slot_fn,
3240 PolicyTraits::transfer_uses_memcpy()
3241 ? TransferRelocatable<sizeof(slot_type)>
3242 : &raw_hash_set::transfer_slot_fn,
3243 (std::is_same<SlotAlloc, std::allocator<slot_type>>::value
3244 ? &DeallocateStandard<alignof(slot_type)>
3245 : &raw_hash_set::dealloc_fn),
3246 };
3247 return value;
3248 }
3249
3250 // Bundle together CommonFields plus other objects which might be empty.
3251 // CompressedTuple will ensure that sizeof is not affected by any of the empty
3252 // fields that occur after CommonFields.
3253 absl::container_internal::CompressedTuple<CommonFields, hasher, key_equal,
3254 allocator_type>
3255 settings_{CommonFields{}, hasher{}, key_equal{}, allocator_type{}};
3256 };
3257
3258 // Erases all elements that satisfy the predicate `pred` from the container `c`.
3259 template <typename P, typename H, typename E, typename A, typename Predicate>
3260 typename raw_hash_set<P, H, E, A>::size_type EraseIf(
3261 Predicate& pred, raw_hash_set<P, H, E, A>* c) {
3262 const auto initial_size = c->size();
3263 for (auto it = c->begin(), last = c->end(); it != last;) {
3264 if (pred(*it)) {
3265 c->erase(it++);
3266 } else {
3267 ++it;
3268 }
3269 }
3270 return initial_size - c->size();
3271 }
3272
3273 namespace hashtable_debug_internal {
3274 template <typename Set>
3275 struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
3276 using Traits = typename Set::PolicyTraits;
3277 using Slot = typename Traits::slot_type;
3278
3279 static size_t GetNumProbes(const Set& set,
3280 const typename Set::key_type& key) {
3281 size_t num_probes = 0;
3282 size_t hash = set.hash_ref()(key);
3283 auto seq = probe(set.common(), hash);
3284 const ctrl_t* ctrl = set.control();
3285 while (true) {
3286 container_internal::Group g{ctrl + seq.offset()};
3287 for (uint32_t i : g.Match(container_internal::H2(hash))) {
3288 if (Traits::apply(
3289 typename Set::template EqualElement<typename Set::key_type>{
3290 key, set.eq_ref()},
3291 Traits::element(set.slot_array() + seq.offset(i))))
3292 return num_probes;
3293 ++num_probes;
3294 }
3295 if (g.MaskEmpty()) return num_probes;
3296 seq.next();
3297 ++num_probes;
3298 }
3299 }
3300
3301 static size_t AllocatedByteSize(const Set& c) {
3302 size_t capacity = c.capacity();
3303 if (capacity == 0) return 0;
3304 size_t m = c.common().alloc_size(sizeof(Slot), alignof(Slot));
3305
3306 size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
3307 if (per_slot != ~size_t{}) {
3308 m += per_slot * c.size();
3309 } else {
3310 for (auto it = c.begin(); it != c.end(); ++it) {
3311 m += Traits::space_used(it.slot());
3312 }
3313 }
3314 return m;
3315 }
3316 };
3317
3318 } // namespace hashtable_debug_internal
3319 } // namespace container_internal
3320 ABSL_NAMESPACE_END
3321 } // namespace absl
3322
3323 #undef ABSL_SWISSTABLE_ENABLE_GENERATIONS
3324
3325 #endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
3326