1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_set<T>` is an unordered associative container designed to
20 // be a more efficient replacement for `std::unordered_set`. Like
21 // `unordered_set`, search, insertion, and deletion of set elements can be done
22 // as an `O(1)` operation. However, `node_hash_set` (and other unordered
23 // associative containers known as the collection of Abseil "Swiss tables")
24 // contain other optimizations that result in both memory and computation
25 // advantages.
26 //
27 // In most cases, your default choice for a hash table should be a map of type
28 // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
29 // pointer stability, a `node_hash_set` should be your preferred choice. As
30 // well, if you are migrating your code from using `std::unordered_set`, a
31 // `node_hash_set` should be an easy migration. Consider migrating to
32 // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
33 // upon further review.
34
35 #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
36 #define ABSL_CONTAINER_NODE_HASH_SET_H_
37
38 #include <type_traits>
39
40 #include "absl/algorithm/container.h"
41 #include "absl/base/macros.h"
42 #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
43 #include "absl/container/internal/node_slot_policy.h"
44 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
45 #include "absl/memory/memory.h"
46
47 namespace absl {
48 ABSL_NAMESPACE_BEGIN
49 namespace container_internal {
50 template <typename T>
51 struct NodeHashSetPolicy;
52 } // namespace container_internal
53
54 // -----------------------------------------------------------------------------
55 // absl::node_hash_set
56 // -----------------------------------------------------------------------------
57 //
58 // An `absl::node_hash_set<T>` is an unordered associative container which
59 // has been optimized for both speed and memory footprint in most common use
60 // cases. Its interface is similar to that of `std::unordered_set<T>` with the
61 // following notable differences:
62 //
63 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
64 // `insert()`, provided that the set is provided a compatible heterogeneous
65 // hashing function and equality operator.
66 // * Contains a `capacity()` member function indicating the number of element
67 // slots (open, deleted, and empty) within the hash set.
68 // * Returns `void` from the `erase(iterator)` overload.
69 //
70 // By default, `node_hash_set` uses the `absl::Hash` hashing framework.
71 // All fundamental and Abseil types that support the `absl::Hash` framework have
72 // a compatible equality operator for comparing insertions into `node_hash_set`.
73 // If your type is not yet supported by the `absl::Hash` framework, see
74 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
75 // types.
76 //
77 // Using `absl::node_hash_set` at interface boundaries in dynamically loaded
78 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
79 // be randomized across dynamically loaded libraries.
80 //
81 // Example:
82 //
83 // // Create a node hash set of three strings
84 // absl::node_hash_set<std::string> ducks =
85 // {"huey", "dewey", "louie"};
86 //
87 // // Insert a new element into the node hash set
88 // ducks.insert("donald");
89 //
90 // // Force a rehash of the node hash set
91 // ducks.rehash(0);
92 //
93 // // See if "dewey" is present
94 // if (ducks.contains("dewey")) {
95 // std::cout << "We found dewey!" << std::endl;
96 // }
97 template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
98 class Eq = absl::container_internal::hash_default_eq<T>,
99 class Alloc = std::allocator<T>>
100 class node_hash_set
101 : public absl::container_internal::raw_hash_set<
102 absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
103 using Base = typename node_hash_set::raw_hash_set;
104
105 public:
106 // Constructors and Assignment Operators
107 //
108 // A node_hash_set supports the same overload set as `std::unordered_set`
109 // for construction and assignment:
110 //
111 // * Default constructor
112 //
113 // // No allocation for the table's elements is made.
114 // absl::node_hash_set<std::string> set1;
115 //
116 // * Initializer List constructor
117 //
118 // absl::node_hash_set<std::string> set2 =
119 // {{"huey"}, {"dewey"}, {"louie"}};
120 //
121 // * Copy constructor
122 //
123 // absl::node_hash_set<std::string> set3(set2);
124 //
125 // * Copy assignment operator
126 //
127 // // Hash functor and Comparator are copied as well
128 // absl::node_hash_set<std::string> set4;
129 // set4 = set3;
130 //
131 // * Move constructor
132 //
133 // // Move is guaranteed efficient
134 // absl::node_hash_set<std::string> set5(std::move(set4));
135 //
136 // * Move assignment operator
137 //
138 // // May be efficient if allocators are compatible
139 // absl::node_hash_set<std::string> set6;
140 // set6 = std::move(set5);
141 //
142 // * Range constructor
143 //
144 // std::vector<std::string> v = {"a", "b"};
145 // absl::node_hash_set<std::string> set7(v.begin(), v.end());
node_hash_set()146 node_hash_set() {}
147 using Base::Base;
148
149 // node_hash_set::begin()
150 //
151 // Returns an iterator to the beginning of the `node_hash_set`.
152 using Base::begin;
153
154 // node_hash_set::cbegin()
155 //
156 // Returns a const iterator to the beginning of the `node_hash_set`.
157 using Base::cbegin;
158
159 // node_hash_set::cend()
160 //
161 // Returns a const iterator to the end of the `node_hash_set`.
162 using Base::cend;
163
164 // node_hash_set::end()
165 //
166 // Returns an iterator to the end of the `node_hash_set`.
167 using Base::end;
168
169 // node_hash_set::capacity()
170 //
171 // Returns the number of element slots (assigned, deleted, and empty)
172 // available within the `node_hash_set`.
173 //
174 // NOTE: this member function is particular to `absl::node_hash_set` and is
175 // not provided in the `std::unordered_set` API.
176 using Base::capacity;
177
178 // node_hash_set::empty()
179 //
180 // Returns whether or not the `node_hash_set` is empty.
181 using Base::empty;
182
183 // node_hash_set::max_size()
184 //
185 // Returns the largest theoretical possible number of elements within a
186 // `node_hash_set` under current memory constraints. This value can be thought
187 // of the largest value of `std::distance(begin(), end())` for a
188 // `node_hash_set<T>`.
189 using Base::max_size;
190
191 // node_hash_set::size()
192 //
193 // Returns the number of elements currently within the `node_hash_set`.
194 using Base::size;
195
196 // node_hash_set::clear()
197 //
198 // Removes all elements from the `node_hash_set`. Invalidates any references,
199 // pointers, or iterators referring to contained elements.
200 //
201 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
202 // the underlying buffer call `erase(begin(), end())`.
203 using Base::clear;
204
205 // node_hash_set::erase()
206 //
207 // Erases elements within the `node_hash_set`. Erasing does not trigger a
208 // rehash. Overloads are listed below.
209 //
210 // void erase(const_iterator pos):
211 //
212 // Erases the element at `position` of the `node_hash_set`, returning
213 // `void`.
214 //
215 // NOTE: this return behavior is different than that of STL containers in
216 // general and `std::unordered_set` in particular.
217 //
218 // iterator erase(const_iterator first, const_iterator last):
219 //
220 // Erases the elements in the open interval [`first`, `last`), returning an
221 // iterator pointing to `last`. The special case of calling
222 // `erase(begin(), end())` resets the reserved growth such that if
223 // `reserve(N)` has previously been called and there has been no intervening
224 // call to `clear()`, then after calling `erase(begin(), end())`, it is safe
225 // to assume that inserting N elements will not cause a rehash.
226 //
227 // size_type erase(const key_type& key):
228 //
229 // Erases the element with the matching key, if it exists, returning the
230 // number of elements erased (0 or 1).
231 using Base::erase;
232
233 // node_hash_set::insert()
234 //
235 // Inserts an element of the specified value into the `node_hash_set`,
236 // returning an iterator pointing to the newly inserted element, provided that
237 // an element with the given key does not already exist. If rehashing occurs
238 // due to the insertion, all iterators are invalidated. Overloads are listed
239 // below.
240 //
241 // std::pair<iterator,bool> insert(const T& value):
242 //
243 // Inserts a value into the `node_hash_set`. Returns a pair consisting of an
244 // iterator to the inserted element (or to the element that prevented the
245 // insertion) and a bool denoting whether the insertion took place.
246 //
247 // std::pair<iterator,bool> insert(T&& value):
248 //
249 // Inserts a moveable value into the `node_hash_set`. Returns a pair
250 // consisting of an iterator to the inserted element (or to the element that
251 // prevented the insertion) and a bool denoting whether the insertion took
252 // place.
253 //
254 // iterator insert(const_iterator hint, const T& value):
255 // iterator insert(const_iterator hint, T&& value):
256 //
257 // Inserts a value, using the position of `hint` as a non-binding suggestion
258 // for where to begin the insertion search. Returns an iterator to the
259 // inserted element, or to the existing element that prevented the
260 // insertion.
261 //
262 // void insert(InputIterator first, InputIterator last):
263 //
264 // Inserts a range of values [`first`, `last`).
265 //
266 // NOTE: Although the STL does not specify which element may be inserted if
267 // multiple keys compare equivalently, for `node_hash_set` we guarantee the
268 // first match is inserted.
269 //
270 // void insert(std::initializer_list<T> ilist):
271 //
272 // Inserts the elements within the initializer list `ilist`.
273 //
274 // NOTE: Although the STL does not specify which element may be inserted if
275 // multiple keys compare equivalently within the initializer list, for
276 // `node_hash_set` we guarantee the first match is inserted.
277 using Base::insert;
278
279 // node_hash_set::emplace()
280 //
281 // Inserts an element of the specified value by constructing it in-place
282 // within the `node_hash_set`, provided that no element with the given key
283 // already exists.
284 //
285 // The element may be constructed even if there already is an element with the
286 // key in the container, in which case the newly constructed element will be
287 // destroyed immediately.
288 //
289 // If rehashing occurs due to the insertion, all iterators are invalidated.
290 using Base::emplace;
291
292 // node_hash_set::emplace_hint()
293 //
294 // Inserts an element of the specified value by constructing it in-place
295 // within the `node_hash_set`, using the position of `hint` as a non-binding
296 // suggestion for where to begin the insertion search, and only inserts
297 // provided that no element with the given key already exists.
298 //
299 // The element may be constructed even if there already is an element with the
300 // key in the container, in which case the newly constructed element will be
301 // destroyed immediately.
302 //
303 // If rehashing occurs due to the insertion, all iterators are invalidated.
304 using Base::emplace_hint;
305
306 // node_hash_set::extract()
307 //
308 // Extracts the indicated element, erasing it in the process, and returns it
309 // as a C++17-compatible node handle. Overloads are listed below.
310 //
311 // node_type extract(const_iterator position):
312 //
313 // Extracts the element at the indicated position and returns a node handle
314 // owning that extracted data.
315 //
316 // node_type extract(const key_type& x):
317 //
318 // Extracts the element with the key matching the passed key value and
319 // returns a node handle owning that extracted data. If the `node_hash_set`
320 // does not contain an element with a matching key, this function returns an
321 // empty node handle.
322 using Base::extract;
323
324 // node_hash_set::merge()
325 //
326 // Extracts elements from a given `source` node hash set into this
327 // `node_hash_set`. If the destination `node_hash_set` already contains an
328 // element with an equivalent key, that element is not extracted.
329 using Base::merge;
330
331 // node_hash_set::swap(node_hash_set& other)
332 //
333 // Exchanges the contents of this `node_hash_set` with those of the `other`
334 // node hash set, avoiding invocation of any move, copy, or swap operations on
335 // individual elements.
336 //
337 // All iterators and references on the `node_hash_set` remain valid, excepting
338 // for the past-the-end iterator, which is invalidated.
339 //
340 // `swap()` requires that the node hash set's hashing and key equivalence
341 // functions be Swappable, and are exchanged using unqualified calls to
342 // non-member `swap()`. If the set's allocator has
343 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
344 // set to `true`, the allocators are also exchanged using an unqualified call
345 // to non-member `swap()`; otherwise, the allocators are not swapped.
346 using Base::swap;
347
348 // node_hash_set::rehash(count)
349 //
350 // Rehashes the `node_hash_set`, setting the number of slots to be at least
351 // the passed value. If the new number of slots increases the load factor more
352 // than the current maximum load factor
353 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
354 // will be at least `size()` / `max_load_factor()`.
355 //
356 // To force a rehash, pass rehash(0).
357 //
358 // NOTE: unlike behavior in `std::unordered_set`, references are also
359 // invalidated upon a `rehash()`.
360 using Base::rehash;
361
362 // node_hash_set::reserve(count)
363 //
364 // Sets the number of slots in the `node_hash_set` to the number needed to
365 // accommodate at least `count` total elements without exceeding the current
366 // maximum load factor, and may rehash the container if needed.
367 using Base::reserve;
368
369 // node_hash_set::contains()
370 //
371 // Determines whether an element comparing equal to the given `key` exists
372 // within the `node_hash_set`, returning `true` if so or `false` otherwise.
373 using Base::contains;
374
375 // node_hash_set::count(const Key& key) const
376 //
377 // Returns the number of elements comparing equal to the given `key` within
378 // the `node_hash_set`. note that this function will return either `1` or `0`
379 // since duplicate elements are not allowed within a `node_hash_set`.
380 using Base::count;
381
382 // node_hash_set::equal_range()
383 //
384 // Returns a closed range [first, last], defined by a `std::pair` of two
385 // iterators, containing all elements with the passed key in the
386 // `node_hash_set`.
387 using Base::equal_range;
388
389 // node_hash_set::find()
390 //
391 // Finds an element with the passed `key` within the `node_hash_set`.
392 using Base::find;
393
394 // node_hash_set::bucket_count()
395 //
396 // Returns the number of "buckets" within the `node_hash_set`. Note that
397 // because a node hash set contains all elements within its internal storage,
398 // this value simply equals the current capacity of the `node_hash_set`.
399 using Base::bucket_count;
400
401 // node_hash_set::load_factor()
402 //
403 // Returns the current load factor of the `node_hash_set` (the average number
404 // of slots occupied with a value within the hash set).
405 using Base::load_factor;
406
407 // node_hash_set::max_load_factor()
408 //
409 // Manages the maximum load factor of the `node_hash_set`. Overloads are
410 // listed below.
411 //
412 // float node_hash_set::max_load_factor()
413 //
414 // Returns the current maximum load factor of the `node_hash_set`.
415 //
416 // void node_hash_set::max_load_factor(float ml)
417 //
418 // Sets the maximum load factor of the `node_hash_set` to the passed value.
419 //
420 // NOTE: This overload is provided only for API compatibility with the STL;
421 // `node_hash_set` will ignore any set load factor and manage its rehashing
422 // internally as an implementation detail.
423 using Base::max_load_factor;
424
425 // node_hash_set::get_allocator()
426 //
427 // Returns the allocator function associated with this `node_hash_set`.
428 using Base::get_allocator;
429
430 // node_hash_set::hash_function()
431 //
432 // Returns the hashing function used to hash the keys within this
433 // `node_hash_set`.
434 using Base::hash_function;
435
436 // node_hash_set::key_eq()
437 //
438 // Returns the function used for comparing keys equality.
439 using Base::key_eq;
440 };
441
442 // erase_if(node_hash_set<>, Pred)
443 //
444 // Erases all elements that satisfy the predicate `pred` from the container `c`.
445 // Returns the number of erased elements.
446 template <typename T, typename H, typename E, typename A, typename Predicate>
erase_if(node_hash_set<T,H,E,A> & c,Predicate pred)447 typename node_hash_set<T, H, E, A>::size_type erase_if(
448 node_hash_set<T, H, E, A>& c, Predicate pred) {
449 return container_internal::EraseIf(pred, &c);
450 }
451
452 namespace container_internal {
453
454 template <class T>
455 struct NodeHashSetPolicy
456 : absl::container_internal::node_slot_policy<T&, NodeHashSetPolicy<T>> {
457 using key_type = T;
458 using init_type = T;
459 using constant_iterators = std::true_type;
460
461 template <class Allocator, class... Args>
new_elementNodeHashSetPolicy462 static T* new_element(Allocator* alloc, Args&&... args) {
463 using ValueAlloc =
464 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
465 ValueAlloc value_alloc(*alloc);
466 T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
467 absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
468 std::forward<Args>(args)...);
469 return res;
470 }
471
472 template <class Allocator>
delete_elementNodeHashSetPolicy473 static void delete_element(Allocator* alloc, T* elem) {
474 using ValueAlloc =
475 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
476 ValueAlloc value_alloc(*alloc);
477 absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
478 absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
479 }
480
481 template <class F, class... Args>
decltypeNodeHashSetPolicy482 static decltype(absl::container_internal::DecomposeValue(
483 std::declval<F>(), std::declval<Args>()...))
484 apply(F&& f, Args&&... args) {
485 return absl::container_internal::DecomposeValue(
486 std::forward<F>(f), std::forward<Args>(args)...);
487 }
488
element_space_usedNodeHashSetPolicy489 static size_t element_space_used(const T*) { return sizeof(T); }
490 };
491 } // namespace container_internal
492
493 namespace container_algorithm_internal {
494
495 // Specialization of trait in absl/algorithm/container.h
496 template <class Key, class Hash, class KeyEqual, class Allocator>
497 struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
498 : std::true_type {};
499
500 } // namespace container_algorithm_internal
501 ABSL_NAMESPACE_END
502 } // namespace absl
503
504 #endif // ABSL_CONTAINER_NODE_HASH_SET_H_
505