• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2022 The Abseil Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // Simultaneous memcopy and CRC-32C for x86-64 and ARM 64. Uses integer
16 // registers because XMM registers do not support the CRC instruction (yet).
17 // While copying, compute the running CRC of the data being copied.
18 //
19 // It is assumed that any CPU running this code has SSE4.2 instructions
20 // available (for CRC32C).  This file will do nothing if that is not true.
21 //
22 // The CRC instruction has a 3-byte latency, and we are stressing the ALU ports
23 // here (unlike a traditional memcopy, which has almost no ALU use), so we will
24 // need to copy in such a way that the CRC unit is used efficiently. We have two
25 // regimes in this code:
26 //  1. For operations of size < kCrcSmallSize, do the CRC then the memcpy
27 //  2. For operations of size > kCrcSmallSize:
28 //      a) compute an initial CRC + copy on a small amount of data to align the
29 //         destination pointer on a 16-byte boundary.
30 //      b) Split the data into 3 main regions and a tail (smaller than 48 bytes)
31 //      c) Do the copy and CRC of the 3 main regions, interleaving (start with
32 //         full cache line copies for each region, then move to single 16 byte
33 //         pieces per region).
34 //      d) Combine the CRCs with CRC32C::Concat.
35 //      e) Copy the tail and extend the CRC with the CRC of the tail.
36 // This method is not ideal for op sizes between ~1k and ~8k because CRC::Concat
37 // takes a significant amount of time.  A medium-sized approach could be added
38 // using 3 CRCs over fixed-size blocks where the zero-extensions required for
39 // CRC32C::Concat can be precomputed.
40 
41 #ifdef __SSE4_2__
42 #include <immintrin.h>
43 #endif
44 
45 #ifdef _MSC_VER
46 #include <intrin.h>
47 #endif
48 
49 #include <array>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <memory>
54 
55 #include "absl/base/config.h"
56 #include "absl/base/optimization.h"
57 #include "absl/base/prefetch.h"
58 #include "absl/crc/crc32c.h"
59 #include "absl/crc/internal/cpu_detect.h"
60 #include "absl/crc/internal/crc32_x86_arm_combined_simd.h"
61 #include "absl/crc/internal/crc_memcpy.h"
62 #include "absl/strings/string_view.h"
63 
64 #if defined(ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE) || \
65     defined(ABSL_INTERNAL_HAVE_ARM_ACCELERATED_CRC_MEMCPY_ENGINE)
66 
67 namespace absl {
68 ABSL_NAMESPACE_BEGIN
69 namespace crc_internal {
70 
71 namespace {
72 
ShortCrcCopy(char * dst,const char * src,std::size_t length,crc32c_t crc)73 inline crc32c_t ShortCrcCopy(char* dst, const char* src, std::size_t length,
74                              crc32c_t crc) {
75   // Small copy: just go 1 byte at a time: being nice to the branch predictor
76   // is more important here than anything else
77   uint32_t crc_uint32 = static_cast<uint32_t>(crc);
78   for (std::size_t i = 0; i < length; i++) {
79     uint8_t data = *reinterpret_cast<const uint8_t*>(src);
80     crc_uint32 = CRC32_u8(crc_uint32, data);
81     *reinterpret_cast<uint8_t*>(dst) = data;
82     ++src;
83     ++dst;
84   }
85   return crc32c_t{crc_uint32};
86 }
87 
88 constexpr size_t kIntLoadsPerVec = sizeof(V128) / sizeof(uint64_t);
89 
90 // Common function for copying the tails of multiple large regions.
91 template <size_t vec_regions, size_t int_regions>
LargeTailCopy(crc32c_t * crcs,char ** dst,const char ** src,size_t region_size,size_t copy_rounds)92 inline void LargeTailCopy(crc32c_t* crcs, char** dst, const char** src,
93                           size_t region_size, size_t copy_rounds) {
94   std::array<V128, vec_regions> data;
95   std::array<uint64_t, kIntLoadsPerVec * int_regions> int_data;
96 
97   while (copy_rounds > 0) {
98     for (size_t i = 0; i < vec_regions; i++) {
99       size_t region = i;
100 
101       auto* vsrc = reinterpret_cast<const V128*>(*src + region_size * region);
102       auto* vdst = reinterpret_cast<V128*>(*dst + region_size * region);
103 
104       // Load the blocks, unaligned
105       data[i] = V128_LoadU(vsrc);
106 
107       // Store the blocks, aligned
108       V128_Store(vdst, data[i]);
109 
110       // Compute the running CRC
111       crcs[region] = crc32c_t{static_cast<uint32_t>(
112           CRC32_u64(static_cast<uint32_t>(crcs[region]),
113                     static_cast<uint64_t>(V128_Extract64<0>(data[i]))))};
114       crcs[region] = crc32c_t{static_cast<uint32_t>(
115           CRC32_u64(static_cast<uint32_t>(crcs[region]),
116                     static_cast<uint64_t>(V128_Extract64<1>(data[i]))))};
117     }
118 
119     for (size_t i = 0; i < int_regions; i++) {
120       size_t region = vec_regions + i;
121 
122       auto* usrc =
123           reinterpret_cast<const uint64_t*>(*src + region_size * region);
124       auto* udst = reinterpret_cast<uint64_t*>(*dst + region_size * region);
125 
126       for (size_t j = 0; j < kIntLoadsPerVec; j++) {
127         size_t data_index = i * kIntLoadsPerVec + j;
128 
129         int_data[data_index] = *(usrc + j);
130         crcs[region] = crc32c_t{static_cast<uint32_t>(CRC32_u64(
131             static_cast<uint32_t>(crcs[region]), int_data[data_index]))};
132 
133         *(udst + j) = int_data[data_index];
134       }
135     }
136 
137     // Increment pointers
138     *src += sizeof(V128);
139     *dst += sizeof(V128);
140     --copy_rounds;
141   }
142 }
143 
144 }  // namespace
145 
146 template <size_t vec_regions, size_t int_regions>
147 class AcceleratedCrcMemcpyEngine : public CrcMemcpyEngine {
148  public:
149   AcceleratedCrcMemcpyEngine() = default;
150   AcceleratedCrcMemcpyEngine(const AcceleratedCrcMemcpyEngine&) = delete;
151   AcceleratedCrcMemcpyEngine operator=(const AcceleratedCrcMemcpyEngine&) =
152       delete;
153 
154   crc32c_t Compute(void* __restrict dst, const void* __restrict src,
155                    std::size_t length, crc32c_t initial_crc) const override;
156 };
157 
158 template <size_t vec_regions, size_t int_regions>
Compute(void * __restrict dst,const void * __restrict src,std::size_t length,crc32c_t initial_crc) const159 crc32c_t AcceleratedCrcMemcpyEngine<vec_regions, int_regions>::Compute(
160     void* __restrict dst, const void* __restrict src, std::size_t length,
161     crc32c_t initial_crc) const {
162   constexpr std::size_t kRegions = vec_regions + int_regions;
163   static_assert(kRegions > 0, "Must specify at least one region.");
164   constexpr uint32_t kCrcDataXor = uint32_t{0xffffffff};
165   constexpr std::size_t kBlockSize = sizeof(V128);
166   constexpr std::size_t kCopyRoundSize = kRegions * kBlockSize;
167 
168   // Number of blocks per cacheline.
169   constexpr std::size_t kBlocksPerCacheLine = ABSL_CACHELINE_SIZE / kBlockSize;
170 
171   char* dst_bytes = static_cast<char*>(dst);
172   const char* src_bytes = static_cast<const char*>(src);
173 
174   // Make sure that one prefetch per big block is enough to cover the whole
175   // dataset, and we don't prefetch too much.
176   static_assert(ABSL_CACHELINE_SIZE % kBlockSize == 0,
177                 "Cache lines are not divided evenly into blocks, may have "
178                 "unintended behavior!");
179 
180   // Experimentally-determined boundary between a small and large copy.
181   // Below this number, spin-up and concatenation of CRCs takes enough time that
182   // it kills the throughput gains of using 3 regions and wide vectors.
183   constexpr size_t kCrcSmallSize = 256;
184 
185   // Experimentally-determined prefetch distance.  Main loop copies will
186   // prefeth data 2 cache lines ahead.
187   constexpr std::size_t kPrefetchAhead = 2 * ABSL_CACHELINE_SIZE;
188 
189   // Small-size CRC-memcpy : just do CRC + memcpy
190   if (length < kCrcSmallSize) {
191     crc32c_t crc =
192         ExtendCrc32c(initial_crc, absl::string_view(src_bytes, length));
193     memcpy(dst, src, length);
194     return crc;
195   }
196 
197   // Start work on the CRC: undo the XOR from the previous calculation or set up
198   // the initial value of the CRC.
199   // initial_crc ^= kCrcDataXor;
200   initial_crc = crc32c_t{static_cast<uint32_t>(initial_crc) ^ kCrcDataXor};
201 
202   // Do an initial alignment copy, so we can use aligned store instructions to
203   // the destination pointer.  We align the destination pointer because the
204   // penalty for an unaligned load is small compared to the penalty of an
205   // unaligned store on modern CPUs.
206   std::size_t bytes_from_last_aligned =
207       reinterpret_cast<uintptr_t>(dst) & (kBlockSize - 1);
208   if (bytes_from_last_aligned != 0) {
209     std::size_t bytes_for_alignment = kBlockSize - bytes_from_last_aligned;
210 
211     // Do the short-sized copy and CRC.
212     initial_crc =
213         ShortCrcCopy(dst_bytes, src_bytes, bytes_for_alignment, initial_crc);
214     src_bytes += bytes_for_alignment;
215     dst_bytes += bytes_for_alignment;
216     length -= bytes_for_alignment;
217   }
218 
219   // We are going to do the copy and CRC in kRegions regions to make sure that
220   // we can saturate the CRC unit.  The CRCs will be combined at the end of the
221   // run.  Copying will use the SSE registers, and we will extract words from
222   // the SSE registers to add to the CRC.  Initially, we run the loop one full
223   // cache line per region at a time, in order to insert prefetches.
224 
225   // Initialize CRCs for kRegions regions.
226   crc32c_t crcs[kRegions];
227   crcs[0] = initial_crc;
228   for (size_t i = 1; i < kRegions; i++) {
229     crcs[i] = crc32c_t{kCrcDataXor};
230   }
231 
232   // Find the number of rounds to copy and the region size.  Also compute the
233   // tail size here.
234   size_t copy_rounds = length / kCopyRoundSize;
235 
236   // Find the size of each region and the size of the tail.
237   const std::size_t region_size = copy_rounds * kBlockSize;
238   const std::size_t tail_size = length - (kRegions * region_size);
239 
240   // Holding registers for data in each region.
241   std::array<V128, vec_regions> vec_data;
242   std::array<uint64_t, int_regions * kIntLoadsPerVec> int_data;
243 
244   // Main loop.
245   while (copy_rounds > kBlocksPerCacheLine) {
246     // Prefetch kPrefetchAhead bytes ahead of each pointer.
247     for (size_t i = 0; i < kRegions; i++) {
248       absl::PrefetchToLocalCache(src_bytes + kPrefetchAhead + region_size * i);
249 #ifdef ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE
250       // TODO(b/297082454): investigate dropping prefetch on x86.
251       absl::PrefetchToLocalCache(dst_bytes + kPrefetchAhead + region_size * i);
252 #endif
253     }
254 
255     // Load and store data, computing CRC on the way.
256     for (size_t i = 0; i < kBlocksPerCacheLine; i++) {
257       // Copy and CRC the data for the CRC regions.
258       for (size_t j = 0; j < vec_regions; j++) {
259         // Cycle which regions get vector load/store and integer load/store, to
260         // engage prefetching logic around vector load/stores and save issue
261         // slots by using the integer registers.
262         size_t region = (j + i) % kRegions;
263 
264         auto* vsrc =
265             reinterpret_cast<const V128*>(src_bytes + region_size * region);
266         auto* vdst = reinterpret_cast<V128*>(dst_bytes + region_size * region);
267 
268         // Load and CRC data.
269         vec_data[j] = V128_LoadU(vsrc + i);
270         crcs[region] = crc32c_t{static_cast<uint32_t>(
271             CRC32_u64(static_cast<uint32_t>(crcs[region]),
272                       static_cast<uint64_t>(V128_Extract64<0>(vec_data[j]))))};
273         crcs[region] = crc32c_t{static_cast<uint32_t>(
274             CRC32_u64(static_cast<uint32_t>(crcs[region]),
275                       static_cast<uint64_t>(V128_Extract64<1>(vec_data[j]))))};
276 
277         // Store the data.
278         V128_Store(vdst + i, vec_data[j]);
279       }
280 
281       // Preload the partial CRCs for the CLMUL subregions.
282       for (size_t j = 0; j < int_regions; j++) {
283         // Cycle which regions get vector load/store and integer load/store, to
284         // engage prefetching logic around vector load/stores and save issue
285         // slots by using the integer registers.
286         size_t region = (j + vec_regions + i) % kRegions;
287 
288         auto* usrc =
289             reinterpret_cast<const uint64_t*>(src_bytes + region_size * region);
290         auto* udst =
291             reinterpret_cast<uint64_t*>(dst_bytes + region_size * region);
292 
293         for (size_t k = 0; k < kIntLoadsPerVec; k++) {
294           size_t data_index = j * kIntLoadsPerVec + k;
295 
296           // Load and CRC the data.
297           int_data[data_index] = *(usrc + i * kIntLoadsPerVec + k);
298           crcs[region] = crc32c_t{static_cast<uint32_t>(CRC32_u64(
299               static_cast<uint32_t>(crcs[region]), int_data[data_index]))};
300 
301           // Store the data.
302           *(udst + i * kIntLoadsPerVec + k) = int_data[data_index];
303         }
304       }
305     }
306 
307     // Increment pointers
308     src_bytes += kBlockSize * kBlocksPerCacheLine;
309     dst_bytes += kBlockSize * kBlocksPerCacheLine;
310     copy_rounds -= kBlocksPerCacheLine;
311   }
312 
313   // Copy and CRC the tails of each region.
314   LargeTailCopy<vec_regions, int_regions>(crcs, &dst_bytes, &src_bytes,
315                                           region_size, copy_rounds);
316 
317   // Move the source and destination pointers to the end of the region
318   src_bytes += region_size * (kRegions - 1);
319   dst_bytes += region_size * (kRegions - 1);
320 
321   // Copy and CRC the tail through the XMM registers.
322   std::size_t tail_blocks = tail_size / kBlockSize;
323   LargeTailCopy<0, 1>(&crcs[kRegions - 1], &dst_bytes, &src_bytes, 0,
324                       tail_blocks);
325 
326   // Final tail copy for under 16 bytes.
327   crcs[kRegions - 1] =
328       ShortCrcCopy(dst_bytes, src_bytes, tail_size - tail_blocks * kBlockSize,
329                    crcs[kRegions - 1]);
330 
331   if (kRegions == 1) {
332     // If there is only one region, finalize and return its CRC.
333     return crc32c_t{static_cast<uint32_t>(crcs[0]) ^ kCrcDataXor};
334   }
335 
336   // Finalize the first CRCs: XOR the internal CRCs by the XOR mask to undo the
337   // XOR done before doing block copy + CRCs.
338   for (size_t i = 0; i + 1 < kRegions; i++) {
339     crcs[i] = crc32c_t{static_cast<uint32_t>(crcs[i]) ^ kCrcDataXor};
340   }
341 
342   // Build a CRC of the first kRegions - 1 regions.
343   crc32c_t full_crc = crcs[0];
344   for (size_t i = 1; i + 1 < kRegions; i++) {
345     full_crc = ConcatCrc32c(full_crc, crcs[i], region_size);
346   }
347 
348   // Finalize and concatenate the final CRC, then return.
349   crcs[kRegions - 1] =
350       crc32c_t{static_cast<uint32_t>(crcs[kRegions - 1]) ^ kCrcDataXor};
351   return ConcatCrc32c(full_crc, crcs[kRegions - 1], region_size + tail_size);
352 }
353 
GetArchSpecificEngines()354 CrcMemcpy::ArchSpecificEngines CrcMemcpy::GetArchSpecificEngines() {
355 #ifdef UNDEFINED_BEHAVIOR_SANITIZER
356   // UBSAN does not play nicely with unaligned loads (which we use a lot).
357   // Get the underlying architecture.
358   CpuType cpu_type = GetCpuType();
359   switch (cpu_type) {
360     case CpuType::kAmdRome:
361     case CpuType::kAmdNaples:
362     case CpuType::kAmdMilan:
363     case CpuType::kAmdGenoa:
364     case CpuType::kAmdRyzenV3000:
365     case CpuType::kIntelCascadelakeXeon:
366     case CpuType::kIntelSkylakeXeon:
367     case CpuType::kIntelSkylake:
368     case CpuType::kIntelBroadwell:
369     case CpuType::kIntelHaswell:
370     case CpuType::kIntelIvybridge:
371       return {
372           /*.temporal=*/new FallbackCrcMemcpyEngine(),
373           /*.non_temporal=*/new CrcNonTemporalMemcpyAVXEngine(),
374       };
375     // INTEL_SANDYBRIDGE performs better with SSE than AVX.
376     case CpuType::kIntelSandybridge:
377       return {
378           /*.temporal=*/new FallbackCrcMemcpyEngine(),
379           /*.non_temporal=*/new CrcNonTemporalMemcpyEngine(),
380       };
381     default:
382       return {/*.temporal=*/new FallbackCrcMemcpyEngine(),
383               /*.non_temporal=*/new FallbackCrcMemcpyEngine()};
384   }
385 #else
386   // Get the underlying architecture.
387   CpuType cpu_type = GetCpuType();
388   switch (cpu_type) {
389     // On Zen 2, PEXTRQ uses 2 micro-ops, including one on the vector store port
390     // which data movement from the vector registers to the integer registers
391     // (where CRC32C happens) to crowd the same units as vector stores.  As a
392     // result, using that path exclusively causes bottlenecking on this port.
393     // We can avoid this bottleneck by using the integer side of the CPU for
394     // most operations rather than the vector side.  We keep a vector region to
395     // engage some of the prefetching logic in the cache hierarchy which seems
396     // to give vector instructions special treatment.  These prefetch units see
397     // strided access to each region, and do the right thing.
398     case CpuType::kAmdRome:
399     case CpuType::kAmdNaples:
400     case CpuType::kAmdMilan:
401     case CpuType::kAmdGenoa:
402     case CpuType::kAmdRyzenV3000:
403       return {
404           /*.temporal=*/new AcceleratedCrcMemcpyEngine<1, 2>(),
405           /*.non_temporal=*/new CrcNonTemporalMemcpyAVXEngine(),
406       };
407     // PCLMULQDQ is slow and we don't have wide enough issue width to take
408     // advantage of it.  For an unknown architecture, don't risk using CLMULs.
409     case CpuType::kIntelCascadelakeXeon:
410     case CpuType::kIntelSkylakeXeon:
411     case CpuType::kIntelSkylake:
412     case CpuType::kIntelBroadwell:
413     case CpuType::kIntelHaswell:
414     case CpuType::kIntelIvybridge:
415       return {
416           /*.temporal=*/new AcceleratedCrcMemcpyEngine<3, 0>(),
417           /*.non_temporal=*/new CrcNonTemporalMemcpyAVXEngine(),
418       };
419     // INTEL_SANDYBRIDGE performs better with SSE than AVX.
420     case CpuType::kIntelSandybridge:
421       return {
422           /*.temporal=*/new AcceleratedCrcMemcpyEngine<3, 0>(),
423           /*.non_temporal=*/new CrcNonTemporalMemcpyEngine(),
424       };
425     default:
426       return {/*.temporal=*/new FallbackCrcMemcpyEngine(),
427               /*.non_temporal=*/new FallbackCrcMemcpyEngine()};
428   }
429 #endif  // UNDEFINED_BEHAVIOR_SANITIZER
430 }
431 
432 // For testing, allow the user to specify which engine they want.
GetTestEngine(int vector,int integer)433 std::unique_ptr<CrcMemcpyEngine> CrcMemcpy::GetTestEngine(int vector,
434                                                           int integer) {
435   if (vector == 3 && integer == 0) {
436     return std::make_unique<AcceleratedCrcMemcpyEngine<3, 0>>();
437   } else if (vector == 1 && integer == 2) {
438     return std::make_unique<AcceleratedCrcMemcpyEngine<1, 2>>();
439   } else if (vector == 1 && integer == 0) {
440     return std::make_unique<AcceleratedCrcMemcpyEngine<1, 0>>();
441   }
442   return nullptr;
443 }
444 
445 }  // namespace crc_internal
446 ABSL_NAMESPACE_END
447 }  // namespace absl
448 
449 #endif  // ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE ||
450         // ABSL_INTERNAL_HAVE_ARM_ACCELERATED_CRC_MEMCPY_ENGINE
451