• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: hash.h
17 // -----------------------------------------------------------------------------
18 //
19 #ifndef ABSL_HASH_INTERNAL_HASH_H_
20 #define ABSL_HASH_INTERNAL_HASH_H_
21 
22 #ifdef __APPLE__
23 #include <Availability.h>
24 #include <TargetConditionals.h>
25 #endif
26 
27 #include <algorithm>
28 #include <array>
29 #include <bitset>
30 #include <cmath>
31 #include <cstddef>
32 #include <cstring>
33 #include <deque>
34 #include <forward_list>
35 #include <functional>
36 #include <iterator>
37 #include <limits>
38 #include <list>
39 #include <map>
40 #include <memory>
41 #include <set>
42 #include <string>
43 #include <tuple>
44 #include <type_traits>
45 #include <unordered_map>
46 #include <unordered_set>
47 #include <utility>
48 #include <vector>
49 
50 #include "absl/base/config.h"
51 #include "absl/base/internal/unaligned_access.h"
52 #include "absl/base/port.h"
53 #include "absl/container/fixed_array.h"
54 #include "absl/hash/internal/city.h"
55 #include "absl/hash/internal/low_level_hash.h"
56 #include "absl/meta/type_traits.h"
57 #include "absl/numeric/bits.h"
58 #include "absl/numeric/int128.h"
59 #include "absl/strings/string_view.h"
60 #include "absl/types/optional.h"
61 #include "absl/types/variant.h"
62 #include "absl/utility/utility.h"
63 
64 #if ABSL_INTERNAL_CPLUSPLUS_LANG >= 201703L && \
65     !defined(_LIBCPP_HAS_NO_FILESYSTEM_LIBRARY)
66 #include <filesystem>  // NOLINT
67 #endif
68 
69 #ifdef ABSL_HAVE_STD_STRING_VIEW
70 #include <string_view>
71 #endif
72 
73 namespace absl {
74 ABSL_NAMESPACE_BEGIN
75 
76 class HashState;
77 
78 namespace hash_internal {
79 
80 // Internal detail: Large buffers are hashed in smaller chunks.  This function
81 // returns the size of these chunks.
PiecewiseChunkSize()82 constexpr size_t PiecewiseChunkSize() { return 1024; }
83 
84 // PiecewiseCombiner
85 //
86 // PiecewiseCombiner is an internal-only helper class for hashing a piecewise
87 // buffer of `char` or `unsigned char` as though it were contiguous.  This class
88 // provides two methods:
89 //
90 //   H add_buffer(state, data, size)
91 //   H finalize(state)
92 //
93 // `add_buffer` can be called zero or more times, followed by a single call to
94 // `finalize`.  This will produce the same hash expansion as concatenating each
95 // buffer piece into a single contiguous buffer, and passing this to
96 // `H::combine_contiguous`.
97 //
98 //  Example usage:
99 //    PiecewiseCombiner combiner;
100 //    for (const auto& piece : pieces) {
101 //      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
102 //    }
103 //    return combiner.finalize(std::move(state));
104 class PiecewiseCombiner {
105  public:
PiecewiseCombiner()106   PiecewiseCombiner() : position_(0) {}
107   PiecewiseCombiner(const PiecewiseCombiner&) = delete;
108   PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
109 
110   // PiecewiseCombiner::add_buffer()
111   //
112   // Appends the given range of bytes to the sequence to be hashed, which may
113   // modify the provided hash state.
114   template <typename H>
115   H add_buffer(H state, const unsigned char* data, size_t size);
116   template <typename H>
add_buffer(H state,const char * data,size_t size)117   H add_buffer(H state, const char* data, size_t size) {
118     return add_buffer(std::move(state),
119                       reinterpret_cast<const unsigned char*>(data), size);
120   }
121 
122   // PiecewiseCombiner::finalize()
123   //
124   // Finishes combining the hash sequence, which may may modify the provided
125   // hash state.
126   //
127   // Once finalize() is called, add_buffer() may no longer be called. The
128   // resulting hash state will be the same as if the pieces passed to
129   // add_buffer() were concatenated into a single flat buffer, and then provided
130   // to H::combine_contiguous().
131   template <typename H>
132   H finalize(H state);
133 
134  private:
135   unsigned char buf_[PiecewiseChunkSize()];
136   size_t position_;
137 };
138 
139 // is_hashable()
140 //
141 // Trait class which returns true if T is hashable by the absl::Hash framework.
142 // Used for the AbslHashValue implementations for composite types below.
143 template <typename T>
144 struct is_hashable;
145 
146 // HashStateBase
147 //
148 // An internal implementation detail that contains common implementation details
149 // for all of the "hash state objects" objects generated by Abseil.  This is not
150 // a public API; users should not create classes that inherit from this.
151 //
152 // A hash state object is the template argument `H` passed to `AbslHashValue`.
153 // It represents an intermediate state in the computation of an unspecified hash
154 // algorithm. `HashStateBase` provides a CRTP style base class for hash state
155 // implementations. Developers adding type support for `absl::Hash` should not
156 // rely on any parts of the state object other than the following member
157 // functions:
158 //
159 //   * HashStateBase::combine()
160 //   * HashStateBase::combine_contiguous()
161 //   * HashStateBase::combine_unordered()
162 //
163 // A derived hash state class of type `H` must provide a public member function
164 // with a signature similar to the following:
165 //
166 //    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
167 //
168 // It must also provide a private template method named RunCombineUnordered.
169 //
170 // A "consumer" is a 1-arg functor returning void.  Its argument is a reference
171 // to an inner hash state object, and it may be called multiple times.  When
172 // called, the functor consumes the entropy from the provided state object,
173 // and resets that object to its empty state.
174 //
175 // A "combiner" is a stateless 2-arg functor returning void.  Its arguments are
176 // an inner hash state object and an ElementStateConsumer functor.  A combiner
177 // uses the provided inner hash state object to hash each element of the
178 // container, passing the inner hash state object to the consumer after hashing
179 // each element.
180 //
181 // Given these definitions, a derived hash state class of type H
182 // must provide a private template method with a signature similar to the
183 // following:
184 //
185 //    `template <typename CombinerT>`
186 //    `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
187 //
188 // This function is responsible for constructing the inner state object and
189 // providing a consumer to the combiner.  It uses side effects of the consumer
190 // and combiner to mix the state of each element in an order-independent manner,
191 // and uses this to return an updated value of `outer_state`.
192 //
193 // This inside-out approach generates efficient object code in the normal case,
194 // but allows us to use stack storage to implement the absl::HashState type
195 // erasure mechanism (avoiding heap allocations while hashing).
196 //
197 // `HashStateBase` will provide a complete implementation for a hash state
198 // object in terms of these two methods.
199 //
200 // Example:
201 //
202 //   // Use CRTP to define your derived class.
203 //   struct MyHashState : HashStateBase<MyHashState> {
204 //       static H combine_contiguous(H state, const unsigned char*, size_t);
205 //       using MyHashState::HashStateBase::combine;
206 //       using MyHashState::HashStateBase::combine_contiguous;
207 //       using MyHashState::HashStateBase::combine_unordered;
208 //     private:
209 //       template <typename CombinerT>
210 //       static H RunCombineUnordered(H state, CombinerT combiner);
211 //   };
212 template <typename H>
213 class HashStateBase {
214  public:
215   // HashStateBase::combine()
216   //
217   // Combines an arbitrary number of values into a hash state, returning the
218   // updated state.
219   //
220   // Each of the value types `T` must be separately hashable by the Abseil
221   // hashing framework.
222   //
223   // NOTE:
224   //
225   //   state = H::combine(std::move(state), value1, value2, value3);
226   //
227   // is guaranteed to produce the same hash expansion as:
228   //
229   //   state = H::combine(std::move(state), value1);
230   //   state = H::combine(std::move(state), value2);
231   //   state = H::combine(std::move(state), value3);
232   template <typename T, typename... Ts>
233   static H combine(H state, const T& value, const Ts&... values);
combine(H state)234   static H combine(H state) { return state; }
235 
236   // HashStateBase::combine_contiguous()
237   //
238   // Combines a contiguous array of `size` elements into a hash state, returning
239   // the updated state.
240   //
241   // NOTE:
242   //
243   //   state = H::combine_contiguous(std::move(state), data, size);
244   //
245   // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
246   // perform internal optimizations).  If you need this guarantee, use the
247   // for-loop instead.
248   template <typename T>
249   static H combine_contiguous(H state, const T* data, size_t size);
250 
251   template <typename I>
252   static H combine_unordered(H state, I begin, I end);
253 
254   using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
255 
256   template <typename T>
257   using is_hashable = absl::hash_internal::is_hashable<T>;
258 
259  private:
260   // Common implementation of the iteration step of a "combiner", as described
261   // above.
262   template <typename I>
263   struct CombineUnorderedCallback {
264     I begin;
265     I end;
266 
267     template <typename InnerH, typename ElementStateConsumer>
operatorCombineUnorderedCallback268     void operator()(InnerH inner_state, ElementStateConsumer cb) {
269       for (; begin != end; ++begin) {
270         inner_state = H::combine(std::move(inner_state), *begin);
271         cb(inner_state);
272       }
273     }
274   };
275 };
276 
277 // is_uniquely_represented
278 //
279 // `is_uniquely_represented<T>` is a trait class that indicates whether `T`
280 // is uniquely represented.
281 //
282 // A type is "uniquely represented" if two equal values of that type are
283 // guaranteed to have the same bytes in their underlying storage. In other
284 // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
285 // zero. This property cannot be detected automatically, so this trait is false
286 // by default, but can be specialized by types that wish to assert that they are
287 // uniquely represented. This makes them eligible for certain optimizations.
288 //
289 // If you have any doubt whatsoever, do not specialize this template.
290 // The default is completely safe, and merely disables some optimizations
291 // that will not matter for most types. Specializing this template,
292 // on the other hand, can be very hazardous.
293 //
294 // To be uniquely represented, a type must not have multiple ways of
295 // representing the same value; for example, float and double are not
296 // uniquely represented, because they have distinct representations for
297 // +0 and -0. Furthermore, the type's byte representation must consist
298 // solely of user-controlled data, with no padding bits and no compiler-
299 // controlled data such as vptrs or sanitizer metadata. This is usually
300 // very difficult to guarantee, because in most cases the compiler can
301 // insert data and padding bits at its own discretion.
302 //
303 // If you specialize this template for a type `T`, you must do so in the file
304 // that defines that type (or in this file). If you define that specialization
305 // anywhere else, `is_uniquely_represented<T>` could have different meanings
306 // in different places.
307 //
308 // The Enable parameter is meaningless; it is provided as a convenience,
309 // to support certain SFINAE techniques when defining specializations.
310 template <typename T, typename Enable = void>
311 struct is_uniquely_represented : std::false_type {};
312 
313 // is_uniquely_represented<unsigned char>
314 //
315 // unsigned char is a synonym for "byte", so it is guaranteed to be
316 // uniquely represented.
317 template <>
318 struct is_uniquely_represented<unsigned char> : std::true_type {};
319 
320 // is_uniquely_represented for non-standard integral types
321 //
322 // Integral types other than bool should be uniquely represented on any
323 // platform that this will plausibly be ported to.
324 template <typename Integral>
325 struct is_uniquely_represented<
326     Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
327     : std::true_type {};
328 
329 // is_uniquely_represented<bool>
330 //
331 //
332 template <>
333 struct is_uniquely_represented<bool> : std::false_type {};
334 
335 // hash_bytes()
336 //
337 // Convenience function that combines `hash_state` with the byte representation
338 // of `value`.
339 template <typename H, typename T>
340 H hash_bytes(H hash_state, const T& value) {
341   const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
342   return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
343 }
344 
345 // -----------------------------------------------------------------------------
346 // AbslHashValue for Basic Types
347 // -----------------------------------------------------------------------------
348 
349 // Note: Default `AbslHashValue` implementations live in `hash_internal`. This
350 // allows us to block lexical scope lookup when doing an unqualified call to
351 // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
352 // only be found via ADL.
353 
354 // AbslHashValue() for hashing bool values
355 //
356 // We use SFINAE to ensure that this overload only accepts bool, not types that
357 // are convertible to bool.
358 template <typename H, typename B>
359 typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
360     H hash_state, B value) {
361   return H::combine(std::move(hash_state),
362                     static_cast<unsigned char>(value ? 1 : 0));
363 }
364 
365 // AbslHashValue() for hashing enum values
366 template <typename H, typename Enum>
367 typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
368     H hash_state, Enum e) {
369   // In practice, we could almost certainly just invoke hash_bytes directly,
370   // but it's possible that a sanitizer might one day want to
371   // store data in the unused bits of an enum. To avoid that risk, we
372   // convert to the underlying type before hashing. Hopefully this will get
373   // optimized away; if not, we can reopen discussion with c-toolchain-team.
374   return H::combine(std::move(hash_state),
375                     static_cast<typename std::underlying_type<Enum>::type>(e));
376 }
377 // AbslHashValue() for hashing floating-point values
378 template <typename H, typename Float>
379 typename std::enable_if<std::is_same<Float, float>::value ||
380                             std::is_same<Float, double>::value,
381                         H>::type
382 AbslHashValue(H hash_state, Float value) {
383   return hash_internal::hash_bytes(std::move(hash_state),
384                                    value == 0 ? 0 : value);
385 }
386 
387 // Long double has the property that it might have extra unused bytes in it.
388 // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
389 // of it. This means we can't use hash_bytes on a long double and have to
390 // convert it to something else first.
391 template <typename H, typename LongDouble>
392 typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
393 AbslHashValue(H hash_state, LongDouble value) {
394   const int category = std::fpclassify(value);
395   switch (category) {
396     case FP_INFINITE:
397       // Add the sign bit to differentiate between +Inf and -Inf
398       hash_state = H::combine(std::move(hash_state), std::signbit(value));
399       break;
400 
401     case FP_NAN:
402     case FP_ZERO:
403     default:
404       // Category is enough for these.
405       break;
406 
407     case FP_NORMAL:
408     case FP_SUBNORMAL:
409       // We can't convert `value` directly to double because this would have
410       // undefined behavior if the value is out of range.
411       // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
412       // guaranteed to be in range for `double`. The truncation is
413       // implementation defined, but that works as long as it is deterministic.
414       int exp;
415       auto mantissa = static_cast<double>(std::frexp(value, &exp));
416       hash_state = H::combine(std::move(hash_state), mantissa, exp);
417   }
418 
419   return H::combine(std::move(hash_state), category);
420 }
421 
422 // Without this overload, an array decays to a pointer and we hash that, which
423 // is not likely to be what the caller intended.
424 template <typename H, typename T, size_t N>
425 H AbslHashValue(H hash_state, T (&)[N]) {
426   static_assert(
427       sizeof(T) == -1,
428       "Hashing C arrays is not allowed. For string literals, wrap the literal "
429       "in absl::string_view(). To hash the array contents, use "
430       "absl::MakeSpan() or make the array an std::array. To hash the array "
431       "address, use &array[0].");
432   return hash_state;
433 }
434 
435 // AbslHashValue() for hashing pointers
436 template <typename H, typename T>
437 std::enable_if_t<std::is_pointer<T>::value, H> AbslHashValue(H hash_state,
438                                                              T ptr) {
439   auto v = reinterpret_cast<uintptr_t>(ptr);
440   // Due to alignment, pointers tend to have low bits as zero, and the next few
441   // bits follow a pattern since they are also multiples of some base value.
442   // Mixing the pointer twice helps prevent stuck low bits for certain alignment
443   // values.
444   return H::combine(std::move(hash_state), v, v);
445 }
446 
447 // AbslHashValue() for hashing nullptr_t
448 template <typename H>
449 H AbslHashValue(H hash_state, std::nullptr_t) {
450   return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
451 }
452 
453 // AbslHashValue() for hashing pointers-to-member
454 template <typename H, typename T, typename C>
455 H AbslHashValue(H hash_state, T C::*ptr) {
456   auto salient_ptm_size = [](std::size_t n) -> std::size_t {
457 #if defined(_MSC_VER)
458     // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
459     // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
460     // padding (namely when they have 1 or 3 ints). The value below is a lower
461     // bound on the number of salient, non-padding bytes that we use for
462     // hashing.
463     if (alignof(T C::*) == alignof(int)) {
464       // No padding when all subobjects have the same size as the total
465       // alignment. This happens in 32-bit mode.
466       return n;
467     } else {
468       // Padding for 1 int (size 16) or 3 ints (size 24).
469       // With 2 ints, the size is 16 with no padding, which we pessimize.
470       return n == 24 ? 20 : n == 16 ? 12 : n;
471     }
472 #else
473   // On other platforms, we assume that pointers-to-members do not have
474   // padding.
475 #ifdef __cpp_lib_has_unique_object_representations
476     static_assert(std::has_unique_object_representations<T C::*>::value);
477 #endif  // __cpp_lib_has_unique_object_representations
478     return n;
479 #endif
480   };
481   return H::combine_contiguous(std::move(hash_state),
482                                reinterpret_cast<unsigned char*>(&ptr),
483                                salient_ptm_size(sizeof ptr));
484 }
485 
486 // -----------------------------------------------------------------------------
487 // AbslHashValue for Composite Types
488 // -----------------------------------------------------------------------------
489 
490 // AbslHashValue() for hashing pairs
491 template <typename H, typename T1, typename T2>
492 typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
493                         H>::type
494 AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
495   return H::combine(std::move(hash_state), p.first, p.second);
496 }
497 
498 // hash_tuple()
499 //
500 // Helper function for hashing a tuple. The third argument should
501 // be an index_sequence running from 0 to tuple_size<Tuple> - 1.
502 template <typename H, typename Tuple, size_t... Is>
503 H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
504   return H::combine(std::move(hash_state), std::get<Is>(t)...);
505 }
506 
507 // AbslHashValue for hashing tuples
508 template <typename H, typename... Ts>
509 #if defined(_MSC_VER)
510 // This SFINAE gets MSVC confused under some conditions. Let's just disable it
511 // for now.
512 H
513 #else   // _MSC_VER
514 typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
515 #endif  // _MSC_VER
516 AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
517   return hash_internal::hash_tuple(std::move(hash_state), t,
518                                    absl::make_index_sequence<sizeof...(Ts)>());
519 }
520 
521 // -----------------------------------------------------------------------------
522 // AbslHashValue for Pointers
523 // -----------------------------------------------------------------------------
524 
525 // AbslHashValue for hashing unique_ptr
526 template <typename H, typename T, typename D>
527 H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
528   return H::combine(std::move(hash_state), ptr.get());
529 }
530 
531 // AbslHashValue for hashing shared_ptr
532 template <typename H, typename T>
533 H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
534   return H::combine(std::move(hash_state), ptr.get());
535 }
536 
537 // -----------------------------------------------------------------------------
538 // AbslHashValue for String-Like Types
539 // -----------------------------------------------------------------------------
540 
541 // AbslHashValue for hashing strings
542 //
543 // All the string-like types supported here provide the same hash expansion for
544 // the same character sequence. These types are:
545 //
546 //  - `absl::Cord`
547 //  - `std::string` (and std::basic_string<T, std::char_traits<T>, A> for
548 //      any allocator A and any T in {char, wchar_t, char16_t, char32_t})
549 //  - `absl::string_view`, `std::string_view`, `std::wstring_view`,
550 //    `std::u16string_view`, and `std::u32_string_view`.
551 //
552 // For simplicity, we currently support only strings built on `char`, `wchar_t`,
553 // `char16_t`, or `char32_t`. This support may be broadened, if necessary, but
554 // with some caution - this overload would misbehave in cases where the traits'
555 // `eq()` member isn't equivalent to `==` on the underlying character type.
556 template <typename H>
557 H AbslHashValue(H hash_state, absl::string_view str) {
558   return H::combine(
559       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
560       str.size());
561 }
562 
563 // Support std::wstring, std::u16string and std::u32string.
564 template <typename Char, typename Alloc, typename H,
565           typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
566                                        std::is_same<Char, char16_t>::value ||
567                                        std::is_same<Char, char32_t>::value>>
568 H AbslHashValue(
569     H hash_state,
570     const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
571   return H::combine(
572       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
573       str.size());
574 }
575 
576 #ifdef ABSL_HAVE_STD_STRING_VIEW
577 
578 // Support std::wstring_view, std::u16string_view and std::u32string_view.
579 template <typename Char, typename H,
580           typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
581                                        std::is_same<Char, char16_t>::value ||
582                                        std::is_same<Char, char32_t>::value>>
583 H AbslHashValue(H hash_state, std::basic_string_view<Char> str) {
584   return H::combine(
585       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
586       str.size());
587 }
588 
589 #endif  // ABSL_HAVE_STD_STRING_VIEW
590 
591 #if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
592     !defined(_LIBCPP_HAS_NO_FILESYSTEM_LIBRARY) && \
593     (!defined(__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__) ||        \
594      __ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__ >= 130000)
595 
596 #define ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE 1
597 
598 // Support std::filesystem::path. The SFINAE is required because some string
599 // types are implicitly convertible to std::filesystem::path.
600 template <typename Path, typename H,
601           typename = absl::enable_if_t<
602               std::is_same_v<Path, std::filesystem::path>>>
603 H AbslHashValue(H hash_state, const Path& path) {
604   // This is implemented by deferring to the standard library to compute the
605   // hash.  The standard library requires that for two paths, `p1 == p2`, then
606   // `hash_value(p1) == hash_value(p2)`. `AbslHashValue` has the same
607   // requirement. Since `operator==` does platform specific matching, deferring
608   // to the standard library is the simplest approach.
609   return H::combine(std::move(hash_state), std::filesystem::hash_value(path));
610 }
611 
612 #endif  // ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE
613 
614 // -----------------------------------------------------------------------------
615 // AbslHashValue for Sequence Containers
616 // -----------------------------------------------------------------------------
617 
618 // AbslHashValue for hashing std::array
619 template <typename H, typename T, size_t N>
620 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
621     H hash_state, const std::array<T, N>& array) {
622   return H::combine_contiguous(std::move(hash_state), array.data(),
623                                array.size());
624 }
625 
626 // AbslHashValue for hashing std::deque
627 template <typename H, typename T, typename Allocator>
628 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
629     H hash_state, const std::deque<T, Allocator>& deque) {
630   // TODO(gromer): investigate a more efficient implementation taking
631   // advantage of the chunk structure.
632   for (const auto& t : deque) {
633     hash_state = H::combine(std::move(hash_state), t);
634   }
635   return H::combine(std::move(hash_state), deque.size());
636 }
637 
638 // AbslHashValue for hashing std::forward_list
639 template <typename H, typename T, typename Allocator>
640 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
641     H hash_state, const std::forward_list<T, Allocator>& list) {
642   size_t size = 0;
643   for (const T& t : list) {
644     hash_state = H::combine(std::move(hash_state), t);
645     ++size;
646   }
647   return H::combine(std::move(hash_state), size);
648 }
649 
650 // AbslHashValue for hashing std::list
651 template <typename H, typename T, typename Allocator>
652 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
653     H hash_state, const std::list<T, Allocator>& list) {
654   for (const auto& t : list) {
655     hash_state = H::combine(std::move(hash_state), t);
656   }
657   return H::combine(std::move(hash_state), list.size());
658 }
659 
660 // AbslHashValue for hashing std::vector
661 //
662 // Do not use this for vector<bool> on platforms that have a working
663 // implementation of std::hash. It does not have a .data(), and a fallback for
664 // std::hash<> is most likely faster.
665 template <typename H, typename T, typename Allocator>
666 typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
667                         H>::type
668 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
669   return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
670                                           vector.size()),
671                     vector.size());
672 }
673 
674 // AbslHashValue special cases for hashing std::vector<bool>
675 
676 #if defined(ABSL_IS_BIG_ENDIAN) && \
677     (defined(__GLIBCXX__) || defined(__GLIBCPP__))
678 
679 // std::hash in libstdc++ does not work correctly with vector<bool> on Big
680 // Endian platforms therefore we need to implement a custom AbslHashValue for
681 // it. More details on the bug:
682 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
683 template <typename H, typename T, typename Allocator>
684 typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
685                         H>::type
686 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
687   typename H::AbslInternalPiecewiseCombiner combiner;
688   for (const auto& i : vector) {
689     unsigned char c = static_cast<unsigned char>(i);
690     hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
691   }
692   return H::combine(combiner.finalize(std::move(hash_state)), vector.size());
693 }
694 #else
695 // When not working around the libstdc++ bug above, we still have to contend
696 // with the fact that std::hash<vector<bool>> is often poor quality, hashing
697 // directly on the internal words and on no other state.  On these platforms,
698 // vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
699 //
700 // Mixing in the size (as we do in our other vector<> implementations) on top
701 // of the library-provided hash implementation avoids this QOI issue.
702 template <typename H, typename T, typename Allocator>
703 typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
704                         H>::type
705 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
706   return H::combine(std::move(hash_state),
707                     std::hash<std::vector<T, Allocator>>{}(vector),
708                     vector.size());
709 }
710 #endif
711 
712 // -----------------------------------------------------------------------------
713 // AbslHashValue for Ordered Associative Containers
714 // -----------------------------------------------------------------------------
715 
716 // AbslHashValue for hashing std::map
717 template <typename H, typename Key, typename T, typename Compare,
718           typename Allocator>
719 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
720                         H>::type
721 AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
722   for (const auto& t : map) {
723     hash_state = H::combine(std::move(hash_state), t);
724   }
725   return H::combine(std::move(hash_state), map.size());
726 }
727 
728 // AbslHashValue for hashing std::multimap
729 template <typename H, typename Key, typename T, typename Compare,
730           typename Allocator>
731 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
732                         H>::type
733 AbslHashValue(H hash_state,
734               const std::multimap<Key, T, Compare, Allocator>& map) {
735   for (const auto& t : map) {
736     hash_state = H::combine(std::move(hash_state), t);
737   }
738   return H::combine(std::move(hash_state), map.size());
739 }
740 
741 // AbslHashValue for hashing std::set
742 template <typename H, typename Key, typename Compare, typename Allocator>
743 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
744     H hash_state, const std::set<Key, Compare, Allocator>& set) {
745   for (const auto& t : set) {
746     hash_state = H::combine(std::move(hash_state), t);
747   }
748   return H::combine(std::move(hash_state), set.size());
749 }
750 
751 // AbslHashValue for hashing std::multiset
752 template <typename H, typename Key, typename Compare, typename Allocator>
753 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
754     H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
755   for (const auto& t : set) {
756     hash_state = H::combine(std::move(hash_state), t);
757   }
758   return H::combine(std::move(hash_state), set.size());
759 }
760 
761 // -----------------------------------------------------------------------------
762 // AbslHashValue for Unordered Associative Containers
763 // -----------------------------------------------------------------------------
764 
765 // AbslHashValue for hashing std::unordered_set
766 template <typename H, typename Key, typename Hash, typename KeyEqual,
767           typename Alloc>
768 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
769     H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
770   return H::combine(
771       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
772       s.size());
773 }
774 
775 // AbslHashValue for hashing std::unordered_multiset
776 template <typename H, typename Key, typename Hash, typename KeyEqual,
777           typename Alloc>
778 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
779     H hash_state,
780     const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
781   return H::combine(
782       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
783       s.size());
784 }
785 
786 // AbslHashValue for hashing std::unordered_set
787 template <typename H, typename Key, typename T, typename Hash,
788           typename KeyEqual, typename Alloc>
789 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
790                         H>::type
791 AbslHashValue(H hash_state,
792               const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
793   return H::combine(
794       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
795       s.size());
796 }
797 
798 // AbslHashValue for hashing std::unordered_multiset
799 template <typename H, typename Key, typename T, typename Hash,
800           typename KeyEqual, typename Alloc>
801 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
802                         H>::type
803 AbslHashValue(H hash_state,
804               const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
805   return H::combine(
806       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
807       s.size());
808 }
809 
810 // -----------------------------------------------------------------------------
811 // AbslHashValue for Wrapper Types
812 // -----------------------------------------------------------------------------
813 
814 // AbslHashValue for hashing std::reference_wrapper
815 template <typename H, typename T>
816 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
817     H hash_state, std::reference_wrapper<T> opt) {
818   return H::combine(std::move(hash_state), opt.get());
819 }
820 
821 // AbslHashValue for hashing absl::optional
822 template <typename H, typename T>
823 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
824     H hash_state, const absl::optional<T>& opt) {
825   if (opt) hash_state = H::combine(std::move(hash_state), *opt);
826   return H::combine(std::move(hash_state), opt.has_value());
827 }
828 
829 // VariantVisitor
830 template <typename H>
831 struct VariantVisitor {
832   H&& hash_state;
833   template <typename T>
834   H operator()(const T& t) const {
835     return H::combine(std::move(hash_state), t);
836   }
837 };
838 
839 // AbslHashValue for hashing absl::variant
840 template <typename H, typename... T>
841 typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
842 AbslHashValue(H hash_state, const absl::variant<T...>& v) {
843   if (!v.valueless_by_exception()) {
844     hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
845   }
846   return H::combine(std::move(hash_state), v.index());
847 }
848 
849 // -----------------------------------------------------------------------------
850 // AbslHashValue for Other Types
851 // -----------------------------------------------------------------------------
852 
853 // AbslHashValue for hashing std::bitset is not defined on Little Endian
854 // platforms, for the same reason as for vector<bool> (see std::vector above):
855 // It does not expose the raw bytes, and a fallback to std::hash<> is most
856 // likely faster.
857 
858 #if defined(ABSL_IS_BIG_ENDIAN) && \
859     (defined(__GLIBCXX__) || defined(__GLIBCPP__))
860 // AbslHashValue for hashing std::bitset
861 //
862 // std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
863 // platforms therefore we need to implement a custom AbslHashValue for it. More
864 // details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
865 template <typename H, size_t N>
866 H AbslHashValue(H hash_state, const std::bitset<N>& set) {
867   typename H::AbslInternalPiecewiseCombiner combiner;
868   for (size_t i = 0; i < N; i++) {
869     unsigned char c = static_cast<unsigned char>(set[i]);
870     hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
871   }
872   return H::combine(combiner.finalize(std::move(hash_state)), N);
873 }
874 #endif
875 
876 // -----------------------------------------------------------------------------
877 
878 // hash_range_or_bytes()
879 //
880 // Mixes all values in the range [data, data+size) into the hash state.
881 // This overload accepts only uniquely-represented types, and hashes them by
882 // hashing the entire range of bytes.
883 template <typename H, typename T>
884 typename std::enable_if<is_uniquely_represented<T>::value, H>::type
885 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
886   const auto* bytes = reinterpret_cast<const unsigned char*>(data);
887   return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
888 }
889 
890 // hash_range_or_bytes()
891 template <typename H, typename T>
892 typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
893 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
894   for (const auto end = data + size; data < end; ++data) {
895     hash_state = H::combine(std::move(hash_state), *data);
896   }
897   return hash_state;
898 }
899 
900 #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
901     ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
902 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
903 #else
904 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
905 #endif
906 
907 // HashSelect
908 //
909 // Type trait to select the appropriate hash implementation to use.
910 // HashSelect::type<T> will give the proper hash implementation, to be invoked
911 // as:
912 //   HashSelect::type<T>::Invoke(state, value)
913 // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
914 // valid `Invoke` function. Types that are not hashable will have a ::value of
915 // `false`.
916 struct HashSelect {
917  private:
918   struct State : HashStateBase<State> {
919     static State combine_contiguous(State hash_state, const unsigned char*,
920                                     size_t);
921     using State::HashStateBase::combine_contiguous;
922   };
923 
924   struct UniquelyRepresentedProbe {
925     template <typename H, typename T>
926     static auto Invoke(H state, const T& value)
927         -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
928       return hash_internal::hash_bytes(std::move(state), value);
929     }
930   };
931 
932   struct HashValueProbe {
933     template <typename H, typename T>
934     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
935         std::is_same<H,
936                      decltype(AbslHashValue(std::move(state), value))>::value,
937         H> {
938       return AbslHashValue(std::move(state), value);
939     }
940   };
941 
942   struct LegacyHashProbe {
943 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
944     template <typename H, typename T>
945     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
946         std::is_convertible<
947             decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
948             size_t>::value,
949         H> {
950       return hash_internal::hash_bytes(
951           std::move(state),
952           ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
953     }
954 #endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
955   };
956 
957   struct StdHashProbe {
958     template <typename H, typename T>
959     static auto Invoke(H state, const T& value)
960         -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
961       return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
962     }
963   };
964 
965   template <typename Hash, typename T>
966   struct Probe : Hash {
967    private:
968     template <typename H, typename = decltype(H::Invoke(
969                               std::declval<State>(), std::declval<const T&>()))>
970     static std::true_type Test(int);
971     template <typename U>
972     static std::false_type Test(char);
973 
974    public:
975     static constexpr bool value = decltype(Test<Hash>(0))::value;
976   };
977 
978  public:
979   // Probe each implementation in order.
980   // disjunction provides short circuiting wrt instantiation.
981   template <typename T>
982   using Apply = absl::disjunction<         //
983       Probe<UniquelyRepresentedProbe, T>,  //
984       Probe<HashValueProbe, T>,            //
985       Probe<LegacyHashProbe, T>,           //
986       Probe<StdHashProbe, T>,              //
987       std::false_type>;
988 };
989 
990 template <typename T>
991 struct is_hashable
992     : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
993 
994 // MixingHashState
995 class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
996   // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
997   // We use the intrinsic when available to improve performance.
998 #ifdef ABSL_HAVE_INTRINSIC_INT128
999   using uint128 = __uint128_t;
1000 #else   // ABSL_HAVE_INTRINSIC_INT128
1001   using uint128 = absl::uint128;
1002 #endif  // ABSL_HAVE_INTRINSIC_INT128
1003 
1004   static constexpr uint64_t kMul =
1005   sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
1006                       : uint64_t{0x9ddfea08eb382d69};
1007 
1008   template <typename T>
1009   using IntegralFastPath =
1010       conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
1011 
1012  public:
1013   // Move only
1014   MixingHashState(MixingHashState&&) = default;
1015   MixingHashState& operator=(MixingHashState&&) = default;
1016 
1017   // MixingHashState::combine_contiguous()
1018   //
1019   // Fundamental base case for hash recursion: mixes the given range of bytes
1020   // into the hash state.
1021   static MixingHashState combine_contiguous(MixingHashState hash_state,
1022                                             const unsigned char* first,
1023                                             size_t size) {
1024     return MixingHashState(
1025         CombineContiguousImpl(hash_state.state_, first, size,
1026                               std::integral_constant<int, sizeof(size_t)>{}));
1027   }
1028   using MixingHashState::HashStateBase::combine_contiguous;
1029 
1030   // MixingHashState::hash()
1031   //
1032   // For performance reasons in non-opt mode, we specialize this for
1033   // integral types.
1034   // Otherwise we would be instantiating and calling dozens of functions for
1035   // something that is just one multiplication and a couple xor's.
1036   // The result should be the same as running the whole algorithm, but faster.
1037   template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
1038   static size_t hash(T value) {
1039     return static_cast<size_t>(
1040         Mix(Seed(), static_cast<std::make_unsigned_t<T>>(value)));
1041   }
1042 
1043   // Overload of MixingHashState::hash()
1044   template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
1045   static size_t hash(const T& value) {
1046     return static_cast<size_t>(combine(MixingHashState{}, value).state_);
1047   }
1048 
1049  private:
1050   // Invoked only once for a given argument; that plus the fact that this is
1051   // move-only ensures that there is only one non-moved-from object.
1052   MixingHashState() : state_(Seed()) {}
1053 
1054   friend class MixingHashState::HashStateBase;
1055 
1056   template <typename CombinerT>
1057   static MixingHashState RunCombineUnordered(MixingHashState state,
1058                                              CombinerT combiner) {
1059     uint64_t unordered_state = 0;
1060     combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
1061       // Add the hash state of the element to the running total, but mix the
1062       // carry bit back into the low bit.  This in intended to avoid losing
1063       // entropy to overflow, especially when unordered_multisets contain
1064       // multiple copies of the same value.
1065       auto element_state = inner_state.state_;
1066       unordered_state += element_state;
1067       if (unordered_state < element_state) {
1068         ++unordered_state;
1069       }
1070       inner_state = MixingHashState{};
1071     });
1072     return MixingHashState::combine(std::move(state), unordered_state);
1073   }
1074 
1075   // Allow the HashState type-erasure implementation to invoke
1076   // RunCombinedUnordered() directly.
1077   friend class absl::HashState;
1078 
1079   // Workaround for MSVC bug.
1080   // We make the type copyable to fix the calling convention, even though we
1081   // never actually copy it. Keep it private to not affect the public API of the
1082   // type.
1083   MixingHashState(const MixingHashState&) = default;
1084 
1085   explicit MixingHashState(uint64_t state) : state_(state) {}
1086 
1087   // Implementation of the base case for combine_contiguous where we actually
1088   // mix the bytes into the state.
1089   // Dispatch to different implementations of the combine_contiguous depending
1090   // on the value of `sizeof(size_t)`.
1091   static uint64_t CombineContiguousImpl(uint64_t state,
1092                                         const unsigned char* first, size_t len,
1093                                         std::integral_constant<int, 4>
1094                                         /* sizeof_size_t */);
1095   static uint64_t CombineContiguousImpl(uint64_t state,
1096                                         const unsigned char* first, size_t len,
1097                                         std::integral_constant<int, 8>
1098                                         /* sizeof_size_t */);
1099 
1100   // Slow dispatch path for calls to CombineContiguousImpl with a size argument
1101   // larger than PiecewiseChunkSize().  Has the same effect as calling
1102   // CombineContiguousImpl() repeatedly with the chunk stride size.
1103   static uint64_t CombineLargeContiguousImpl32(uint64_t state,
1104                                                const unsigned char* first,
1105                                                size_t len);
1106   static uint64_t CombineLargeContiguousImpl64(uint64_t state,
1107                                                const unsigned char* first,
1108                                                size_t len);
1109 
1110   // Reads 9 to 16 bytes from p.
1111   // The least significant 8 bytes are in .first, the rest (zero padded) bytes
1112   // are in .second.
1113   static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
1114                                                  size_t len) {
1115     uint64_t low_mem = absl::base_internal::UnalignedLoad64(p);
1116     uint64_t high_mem = absl::base_internal::UnalignedLoad64(p + len - 8);
1117 #ifdef ABSL_IS_LITTLE_ENDIAN
1118     uint64_t most_significant = high_mem;
1119     uint64_t least_significant = low_mem;
1120 #else
1121     uint64_t most_significant = low_mem;
1122     uint64_t least_significant = high_mem;
1123 #endif
1124     return {least_significant, most_significant};
1125   }
1126 
1127   // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
1128   static uint64_t Read4To8(const unsigned char* p, size_t len) {
1129     uint32_t low_mem = absl::base_internal::UnalignedLoad32(p);
1130     uint32_t high_mem = absl::base_internal::UnalignedLoad32(p + len - 4);
1131 #ifdef ABSL_IS_LITTLE_ENDIAN
1132     uint32_t most_significant = high_mem;
1133     uint32_t least_significant = low_mem;
1134 #else
1135     uint32_t most_significant = low_mem;
1136     uint32_t least_significant = high_mem;
1137 #endif
1138     return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) |
1139            least_significant;
1140   }
1141 
1142   // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
1143   static uint32_t Read1To3(const unsigned char* p, size_t len) {
1144     // The trick used by this implementation is to avoid branches if possible.
1145     unsigned char mem0 = p[0];
1146     unsigned char mem1 = p[len / 2];
1147     unsigned char mem2 = p[len - 1];
1148 #ifdef ABSL_IS_LITTLE_ENDIAN
1149     unsigned char significant2 = mem2;
1150     unsigned char significant1 = mem1;
1151     unsigned char significant0 = mem0;
1152 #else
1153     unsigned char significant2 = mem0;
1154     unsigned char significant1 = len == 2 ? mem0 : mem1;
1155     unsigned char significant0 = mem2;
1156 #endif
1157     return static_cast<uint32_t>(significant0 |                     //
1158                                  (significant1 << (len / 2 * 8)) |  //
1159                                  (significant2 << ((len - 1) * 8)));
1160   }
1161 
1162   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
1163     // Though the 128-bit product on AArch64 needs two instructions, it is
1164     // still a good balance between speed and hash quality.
1165     using MultType =
1166         absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
1167     // We do the addition in 64-bit space to make sure the 128-bit
1168     // multiplication is fast. If we were to do it as MultType the compiler has
1169     // to assume that the high word is non-zero and needs to perform 2
1170     // multiplications instead of one.
1171     MultType m = state + v;
1172     m *= kMul;
1173     return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
1174   }
1175 
1176   // An extern to avoid bloat on a direct call to LowLevelHash() with fixed
1177   // values for both the seed and salt parameters.
1178   static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len);
1179 
1180   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data,
1181                                                       size_t len) {
1182 #ifdef ABSL_HAVE_INTRINSIC_INT128
1183     return LowLevelHashImpl(data, len);
1184 #else
1185     return hash_internal::CityHash64(reinterpret_cast<const char*>(data), len);
1186 #endif
1187   }
1188 
1189   // Seed()
1190   //
1191   // A non-deterministic seed.
1192   //
1193   // The current purpose of this seed is to generate non-deterministic results
1194   // and prevent having users depend on the particular hash values.
1195   // It is not meant as a security feature right now, but it leaves the door
1196   // open to upgrade it to a true per-process random seed. A true random seed
1197   // costs more and we don't need to pay for that right now.
1198   //
1199   // On platforms with ASLR, we take advantage of it to make a per-process
1200   // random value.
1201   // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
1202   //
1203   // On other platforms this is still going to be non-deterministic but most
1204   // probably per-build and not per-process.
1205   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
1206 #if (!defined(__clang__) || __clang_major__ > 11) && \
1207     (!defined(__apple_build_version__) ||            \
1208      __apple_build_version__ >= 19558921)  // Xcode 12
1209     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
1210 #else
1211     // Workaround the absence of
1212     // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
1213     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
1214 #endif
1215   }
1216   static const void* const kSeed;
1217 
1218   uint64_t state_;
1219 };
1220 
1221 // MixingHashState::CombineContiguousImpl()
1222 inline uint64_t MixingHashState::CombineContiguousImpl(
1223     uint64_t state, const unsigned char* first, size_t len,
1224     std::integral_constant<int, 4> /* sizeof_size_t */) {
1225   // For large values we use CityHash, for small ones we just use a
1226   // multiplicative hash.
1227   uint64_t v;
1228   if (len > 8) {
1229     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1230       return CombineLargeContiguousImpl32(state, first, len);
1231     }
1232     v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
1233   } else if (len >= 4) {
1234     v = Read4To8(first, len);
1235   } else if (len > 0) {
1236     v = Read1To3(first, len);
1237   } else {
1238     // Empty ranges have no effect.
1239     return state;
1240   }
1241   return Mix(state, v);
1242 }
1243 
1244 // Overload of MixingHashState::CombineContiguousImpl()
1245 inline uint64_t MixingHashState::CombineContiguousImpl(
1246     uint64_t state, const unsigned char* first, size_t len,
1247     std::integral_constant<int, 8> /* sizeof_size_t */) {
1248   // For large values we use LowLevelHash or CityHash depending on the platform,
1249   // for small ones we just use a multiplicative hash.
1250   uint64_t v;
1251   if (len > 16) {
1252     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1253       return CombineLargeContiguousImpl64(state, first, len);
1254     }
1255     v = Hash64(first, len);
1256   } else if (len > 8) {
1257     // This hash function was constructed by the ML-driven algorithm discovery
1258     // using reinforcement learning. We fed the agent lots of inputs from
1259     // microbenchmarks, SMHasher, low hamming distance from generated inputs and
1260     // picked up the one that was good on micro and macrobenchmarks.
1261     auto p = Read9To16(first, len);
1262     uint64_t lo = p.first;
1263     uint64_t hi = p.second;
1264     // Rotation by 53 was found to be most often useful when discovering these
1265     // hashing algorithms with ML techniques.
1266     lo = absl::rotr(lo, 53);
1267     state += kMul;
1268     lo += state;
1269     state ^= hi;
1270     uint128 m = state;
1271     m *= lo;
1272     return static_cast<uint64_t>(m ^ (m >> 64));
1273   } else if (len >= 4) {
1274     v = Read4To8(first, len);
1275   } else if (len > 0) {
1276     v = Read1To3(first, len);
1277   } else {
1278     // Empty ranges have no effect.
1279     return state;
1280   }
1281   return Mix(state, v);
1282 }
1283 
1284 struct AggregateBarrier {};
1285 
1286 // HashImpl
1287 
1288 // Add a private base class to make sure this type is not an aggregate.
1289 // Aggregates can be aggregate initialized even if the default constructor is
1290 // deleted.
1291 struct PoisonedHash : private AggregateBarrier {
1292   PoisonedHash() = delete;
1293   PoisonedHash(const PoisonedHash&) = delete;
1294   PoisonedHash& operator=(const PoisonedHash&) = delete;
1295 };
1296 
1297 template <typename T>
1298 struct HashImpl {
1299   size_t operator()(const T& value) const {
1300     return MixingHashState::hash(value);
1301   }
1302 };
1303 
1304 template <typename T>
1305 struct Hash
1306     : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
1307 
1308 template <typename H>
1309 template <typename T, typename... Ts>
1310 H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1311   return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1312                         std::move(state), value),
1313                     values...);
1314 }
1315 
1316 // HashStateBase::combine_contiguous()
1317 template <typename H>
1318 template <typename T>
1319 H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
1320   return hash_internal::hash_range_or_bytes(std::move(state), data, size);
1321 }
1322 
1323 // HashStateBase::combine_unordered()
1324 template <typename H>
1325 template <typename I>
1326 H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
1327   return H::RunCombineUnordered(std::move(state),
1328                                 CombineUnorderedCallback<I>{begin, end});
1329 }
1330 
1331 // HashStateBase::PiecewiseCombiner::add_buffer()
1332 template <typename H>
1333 H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1334                                 size_t size) {
1335   if (position_ + size < PiecewiseChunkSize()) {
1336     // This partial chunk does not fill our existing buffer
1337     memcpy(buf_ + position_, data, size);
1338     position_ += size;
1339     return state;
1340   }
1341 
1342   // If the buffer is partially filled we need to complete the buffer
1343   // and hash it.
1344   if (position_ != 0) {
1345     const size_t bytes_needed = PiecewiseChunkSize() - position_;
1346     memcpy(buf_ + position_, data, bytes_needed);
1347     state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1348     data += bytes_needed;
1349     size -= bytes_needed;
1350   }
1351 
1352   // Hash whatever chunks we can without copying
1353   while (size >= PiecewiseChunkSize()) {
1354     state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1355     data += PiecewiseChunkSize();
1356     size -= PiecewiseChunkSize();
1357   }
1358   // Fill the buffer with the remainder
1359   memcpy(buf_, data, size);
1360   position_ = size;
1361   return state;
1362 }
1363 
1364 // HashStateBase::PiecewiseCombiner::finalize()
1365 template <typename H>
1366 H PiecewiseCombiner::finalize(H state) {
1367   // Hash the remainder left in the buffer, which may be empty
1368   return H::combine_contiguous(std::move(state), buf_, position_);
1369 }
1370 
1371 }  // namespace hash_internal
1372 ABSL_NAMESPACE_END
1373 }  // namespace absl
1374 
1375 #endif  // ABSL_HASH_INTERNAL_HASH_H_
1376