1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: flat_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::flat_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `flat_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`.
29
30 #ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_
31 #define ABSL_CONTAINER_FLAT_HASH_MAP_H_
32
33 #include <cstddef>
34 #include <memory>
35 #include <type_traits>
36 #include <utility>
37
38 #include "absl/algorithm/container.h"
39 #include "absl/base/macros.h"
40 #include "absl/container/hash_container_defaults.h"
41 #include "absl/container/internal/container_memory.h"
42 #include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
43
44 namespace absl {
45 ABSL_NAMESPACE_BEGIN
46 namespace container_internal {
47 template <class K, class V>
48 struct FlatHashMapPolicy;
49 } // namespace container_internal
50
51 // -----------------------------------------------------------------------------
52 // absl::flat_hash_map
53 // -----------------------------------------------------------------------------
54 //
55 // An `absl::flat_hash_map<K, V>` is an unordered associative container which
56 // has been optimized for both speed and memory footprint in most common use
57 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
58 // the following notable differences:
59 //
60 // * Requires keys that are CopyConstructible
61 // * Requires values that are MoveConstructible
62 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
63 // `insert()`, provided that the map is provided a compatible heterogeneous
64 // hashing function and equality operator. See below for details.
65 // * Invalidates any references and pointers to elements within the table after
66 // `rehash()` and when the table is moved.
67 // * Contains a `capacity()` member function indicating the number of element
68 // slots (open, deleted, and empty) within the hash map.
69 // * Returns `void` from the `erase(iterator)` overload.
70 //
71 // By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
72 // All fundamental and Abseil types that support the `absl::Hash` framework have
73 // a compatible equality operator for comparing insertions into `flat_hash_map`.
74 // If your type is not yet supported by the `absl::Hash` framework, see
75 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
76 // types.
77 //
78 // Using `absl::flat_hash_map` at interface boundaries in dynamically loaded
79 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
80 // be randomized across dynamically loaded libraries.
81 //
82 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
83 // parameters can be used or `T` should have public inner types
84 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
85 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
86 // well-formed. Both types are basically functors:
87 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
88 // for the given `val`.
89 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
90 // if `lhs` is equal to `rhs`.
91 //
92 // In most cases `T` needs only to provide the `absl_container_hash`. In this
93 // case `std::equal_to<void>` will be used instead of `eq` part.
94 //
95 // NOTE: A `flat_hash_map` stores its value types directly inside its
96 // implementation array to avoid memory indirection. Because a `flat_hash_map`
97 // is designed to move data when rehashed, map values will not retain pointer
98 // stability. If you require pointer stability, or if your values are large,
99 // consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
100 // If your types are not moveable or you require pointer stability for keys,
101 // consider `absl::node_hash_map`.
102 //
103 // Example:
104 //
105 // // Create a flat hash map of three strings (that map to strings)
106 // absl::flat_hash_map<std::string, std::string> ducks =
107 // {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
108 //
109 // // Insert a new element into the flat hash map
110 // ducks.insert({"d", "donald"});
111 //
112 // // Force a rehash of the flat hash map
113 // ducks.rehash(0);
114 //
115 // // Find the element with the key "b"
116 // std::string search_key = "b";
117 // auto result = ducks.find(search_key);
118 // if (result != ducks.end()) {
119 // std::cout << "Result: " << result->second << std::endl;
120 // }
121 template <class K, class V, class Hash = DefaultHashContainerHash<K>,
122 class Eq = DefaultHashContainerEq<K>,
123 class Allocator = std::allocator<std::pair<const K, V>>>
124 class flat_hash_map : public absl::container_internal::raw_hash_map<
125 absl::container_internal::FlatHashMapPolicy<K, V>,
126 Hash, Eq, Allocator> {
127 using Base = typename flat_hash_map::raw_hash_map;
128
129 public:
130 // Constructors and Assignment Operators
131 //
132 // A flat_hash_map supports the same overload set as `std::unordered_map`
133 // for construction and assignment:
134 //
135 // * Default constructor
136 //
137 // // No allocation for the table's elements is made.
138 // absl::flat_hash_map<int, std::string> map1;
139 //
140 // * Initializer List constructor
141 //
142 // absl::flat_hash_map<int, std::string> map2 =
143 // {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
144 //
145 // * Copy constructor
146 //
147 // absl::flat_hash_map<int, std::string> map3(map2);
148 //
149 // * Copy assignment operator
150 //
151 // // Hash functor and Comparator are copied as well
152 // absl::flat_hash_map<int, std::string> map4;
153 // map4 = map3;
154 //
155 // * Move constructor
156 //
157 // // Move is guaranteed efficient
158 // absl::flat_hash_map<int, std::string> map5(std::move(map4));
159 //
160 // * Move assignment operator
161 //
162 // // May be efficient if allocators are compatible
163 // absl::flat_hash_map<int, std::string> map6;
164 // map6 = std::move(map5);
165 //
166 // * Range constructor
167 //
168 // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
169 // absl::flat_hash_map<int, std::string> map7(v.begin(), v.end());
flat_hash_map()170 flat_hash_map() {}
171 using Base::Base;
172
173 // flat_hash_map::begin()
174 //
175 // Returns an iterator to the beginning of the `flat_hash_map`.
176 using Base::begin;
177
178 // flat_hash_map::cbegin()
179 //
180 // Returns a const iterator to the beginning of the `flat_hash_map`.
181 using Base::cbegin;
182
183 // flat_hash_map::cend()
184 //
185 // Returns a const iterator to the end of the `flat_hash_map`.
186 using Base::cend;
187
188 // flat_hash_map::end()
189 //
190 // Returns an iterator to the end of the `flat_hash_map`.
191 using Base::end;
192
193 // flat_hash_map::capacity()
194 //
195 // Returns the number of element slots (assigned, deleted, and empty)
196 // available within the `flat_hash_map`.
197 //
198 // NOTE: this member function is particular to `absl::flat_hash_map` and is
199 // not provided in the `std::unordered_map` API.
200 using Base::capacity;
201
202 // flat_hash_map::empty()
203 //
204 // Returns whether or not the `flat_hash_map` is empty.
205 using Base::empty;
206
207 // flat_hash_map::max_size()
208 //
209 // Returns the largest theoretical possible number of elements within a
210 // `flat_hash_map` under current memory constraints. This value can be thought
211 // of the largest value of `std::distance(begin(), end())` for a
212 // `flat_hash_map<K, V>`.
213 using Base::max_size;
214
215 // flat_hash_map::size()
216 //
217 // Returns the number of elements currently within the `flat_hash_map`.
218 using Base::size;
219
220 // flat_hash_map::clear()
221 //
222 // Removes all elements from the `flat_hash_map`. Invalidates any references,
223 // pointers, or iterators referring to contained elements.
224 //
225 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
226 // the underlying buffer call `erase(begin(), end())`.
227 using Base::clear;
228
229 // flat_hash_map::erase()
230 //
231 // Erases elements within the `flat_hash_map`. Erasing does not trigger a
232 // rehash. Overloads are listed below.
233 //
234 // void erase(const_iterator pos):
235 //
236 // Erases the element at `position` of the `flat_hash_map`, returning
237 // `void`.
238 //
239 // NOTE: returning `void` in this case is different than that of STL
240 // containers in general and `std::unordered_map` in particular (which
241 // return an iterator to the element following the erased element). If that
242 // iterator is needed, simply post increment the iterator:
243 //
244 // map.erase(it++);
245 //
246 // iterator erase(const_iterator first, const_iterator last):
247 //
248 // Erases the elements in the open interval [`first`, `last`), returning an
249 // iterator pointing to `last`. The special case of calling
250 // `erase(begin(), end())` resets the reserved growth such that if
251 // `reserve(N)` has previously been called and there has been no intervening
252 // call to `clear()`, then after calling `erase(begin(), end())`, it is safe
253 // to assume that inserting N elements will not cause a rehash.
254 //
255 // size_type erase(const key_type& key):
256 //
257 // Erases the element with the matching key, if it exists, returning the
258 // number of elements erased (0 or 1).
259 using Base::erase;
260
261 // flat_hash_map::insert()
262 //
263 // Inserts an element of the specified value into the `flat_hash_map`,
264 // returning an iterator pointing to the newly inserted element, provided that
265 // an element with the given key does not already exist. If rehashing occurs
266 // due to the insertion, all iterators are invalidated. Overloads are listed
267 // below.
268 //
269 // std::pair<iterator,bool> insert(const init_type& value):
270 //
271 // Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
272 // iterator to the inserted element (or to the element that prevented the
273 // insertion) and a bool denoting whether the insertion took place.
274 //
275 // std::pair<iterator,bool> insert(T&& value):
276 // std::pair<iterator,bool> insert(init_type&& value):
277 //
278 // Inserts a moveable value into the `flat_hash_map`. Returns a pair
279 // consisting of an iterator to the inserted element (or to the element that
280 // prevented the insertion) and a bool denoting whether the insertion took
281 // place.
282 //
283 // iterator insert(const_iterator hint, const init_type& value):
284 // iterator insert(const_iterator hint, T&& value):
285 // iterator insert(const_iterator hint, init_type&& value);
286 //
287 // Inserts a value, using the position of `hint` as a non-binding suggestion
288 // for where to begin the insertion search. Returns an iterator to the
289 // inserted element, or to the existing element that prevented the
290 // insertion.
291 //
292 // void insert(InputIterator first, InputIterator last):
293 //
294 // Inserts a range of values [`first`, `last`).
295 //
296 // NOTE: Although the STL does not specify which element may be inserted if
297 // multiple keys compare equivalently, for `flat_hash_map` we guarantee the
298 // first match is inserted.
299 //
300 // void insert(std::initializer_list<init_type> ilist):
301 //
302 // Inserts the elements within the initializer list `ilist`.
303 //
304 // NOTE: Although the STL does not specify which element may be inserted if
305 // multiple keys compare equivalently within the initializer list, for
306 // `flat_hash_map` we guarantee the first match is inserted.
307 using Base::insert;
308
309 // flat_hash_map::insert_or_assign()
310 //
311 // Inserts an element of the specified value into the `flat_hash_map` provided
312 // that a value with the given key does not already exist, or replaces it with
313 // the element value if a key for that value already exists, returning an
314 // iterator pointing to the newly inserted element. If rehashing occurs due
315 // to the insertion, all existing iterators are invalidated. Overloads are
316 // listed below.
317 //
318 // pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
319 // pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
320 //
321 // Inserts/Assigns (or moves) the element of the specified key into the
322 // `flat_hash_map`.
323 //
324 // iterator insert_or_assign(const_iterator hint,
325 // const init_type& k, T&& obj):
326 // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
327 //
328 // Inserts/Assigns (or moves) the element of the specified key into the
329 // `flat_hash_map` using the position of `hint` as a non-binding suggestion
330 // for where to begin the insertion search.
331 using Base::insert_or_assign;
332
333 // flat_hash_map::emplace()
334 //
335 // Inserts an element of the specified value by constructing it in-place
336 // within the `flat_hash_map`, provided that no element with the given key
337 // already exists.
338 //
339 // The element may be constructed even if there already is an element with the
340 // key in the container, in which case the newly constructed element will be
341 // destroyed immediately. Prefer `try_emplace()` unless your key is not
342 // copyable or moveable.
343 //
344 // If rehashing occurs due to the insertion, all iterators are invalidated.
345 using Base::emplace;
346
347 // flat_hash_map::emplace_hint()
348 //
349 // Inserts an element of the specified value by constructing it in-place
350 // within the `flat_hash_map`, using the position of `hint` as a non-binding
351 // suggestion for where to begin the insertion search, and only inserts
352 // provided that no element with the given key already exists.
353 //
354 // The element may be constructed even if there already is an element with the
355 // key in the container, in which case the newly constructed element will be
356 // destroyed immediately. Prefer `try_emplace()` unless your key is not
357 // copyable or moveable.
358 //
359 // If rehashing occurs due to the insertion, all iterators are invalidated.
360 using Base::emplace_hint;
361
362 // flat_hash_map::try_emplace()
363 //
364 // Inserts an element of the specified value by constructing it in-place
365 // within the `flat_hash_map`, provided that no element with the given key
366 // already exists. Unlike `emplace()`, if an element with the given key
367 // already exists, we guarantee that no element is constructed.
368 //
369 // If rehashing occurs due to the insertion, all iterators are invalidated.
370 // Overloads are listed below.
371 //
372 // pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
373 // pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
374 //
375 // Inserts (via copy or move) the element of the specified key into the
376 // `flat_hash_map`.
377 //
378 // iterator try_emplace(const_iterator hint,
379 // const key_type& k, Args&&... args):
380 // iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
381 //
382 // Inserts (via copy or move) the element of the specified key into the
383 // `flat_hash_map` using the position of `hint` as a non-binding suggestion
384 // for where to begin the insertion search.
385 //
386 // All `try_emplace()` overloads make the same guarantees regarding rvalue
387 // arguments as `std::unordered_map::try_emplace()`, namely that these
388 // functions will not move from rvalue arguments if insertions do not happen.
389 using Base::try_emplace;
390
391 // flat_hash_map::extract()
392 //
393 // Extracts the indicated element, erasing it in the process, and returns it
394 // as a C++17-compatible node handle. Overloads are listed below.
395 //
396 // node_type extract(const_iterator position):
397 //
398 // Extracts the key,value pair of the element at the indicated position and
399 // returns a node handle owning that extracted data.
400 //
401 // node_type extract(const key_type& x):
402 //
403 // Extracts the key,value pair of the element with a key matching the passed
404 // key value and returns a node handle owning that extracted data. If the
405 // `flat_hash_map` does not contain an element with a matching key, this
406 // function returns an empty node handle.
407 //
408 // NOTE: when compiled in an earlier version of C++ than C++17,
409 // `node_type::key()` returns a const reference to the key instead of a
410 // mutable reference. We cannot safely return a mutable reference without
411 // std::launder (which is not available before C++17).
412 using Base::extract;
413
414 // flat_hash_map::merge()
415 //
416 // Extracts elements from a given `source` flat hash map into this
417 // `flat_hash_map`. If the destination `flat_hash_map` already contains an
418 // element with an equivalent key, that element is not extracted.
419 using Base::merge;
420
421 // flat_hash_map::swap(flat_hash_map& other)
422 //
423 // Exchanges the contents of this `flat_hash_map` with those of the `other`
424 // flat hash map, avoiding invocation of any move, copy, or swap operations on
425 // individual elements.
426 //
427 // All iterators and references on the `flat_hash_map` remain valid, excepting
428 // for the past-the-end iterator, which is invalidated.
429 //
430 // `swap()` requires that the flat hash map's hashing and key equivalence
431 // functions be Swappable, and are exchanged using unqualified calls to
432 // non-member `swap()`. If the map's allocator has
433 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
434 // set to `true`, the allocators are also exchanged using an unqualified call
435 // to non-member `swap()`; otherwise, the allocators are not swapped.
436 using Base::swap;
437
438 // flat_hash_map::rehash(count)
439 //
440 // Rehashes the `flat_hash_map`, setting the number of slots to be at least
441 // the passed value. If the new number of slots increases the load factor more
442 // than the current maximum load factor
443 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
444 // will be at least `size()` / `max_load_factor()`.
445 //
446 // To force a rehash, pass rehash(0).
447 //
448 // NOTE: unlike behavior in `std::unordered_map`, references are also
449 // invalidated upon a `rehash()`.
450 using Base::rehash;
451
452 // flat_hash_map::reserve(count)
453 //
454 // Sets the number of slots in the `flat_hash_map` to the number needed to
455 // accommodate at least `count` total elements without exceeding the current
456 // maximum load factor, and may rehash the container if needed.
457 using Base::reserve;
458
459 // flat_hash_map::at()
460 //
461 // Returns a reference to the mapped value of the element with key equivalent
462 // to the passed key.
463 using Base::at;
464
465 // flat_hash_map::contains()
466 //
467 // Determines whether an element with a key comparing equal to the given `key`
468 // exists within the `flat_hash_map`, returning `true` if so or `false`
469 // otherwise.
470 using Base::contains;
471
472 // flat_hash_map::count(const Key& key) const
473 //
474 // Returns the number of elements with a key comparing equal to the given
475 // `key` within the `flat_hash_map`. note that this function will return
476 // either `1` or `0` since duplicate keys are not allowed within a
477 // `flat_hash_map`.
478 using Base::count;
479
480 // flat_hash_map::equal_range()
481 //
482 // Returns a closed range [first, last], defined by a `std::pair` of two
483 // iterators, containing all elements with the passed key in the
484 // `flat_hash_map`.
485 using Base::equal_range;
486
487 // flat_hash_map::find()
488 //
489 // Finds an element with the passed `key` within the `flat_hash_map`.
490 using Base::find;
491
492 // flat_hash_map::operator[]()
493 //
494 // Returns a reference to the value mapped to the passed key within the
495 // `flat_hash_map`, performing an `insert()` if the key does not already
496 // exist.
497 //
498 // If an insertion occurs and results in a rehashing of the container, all
499 // iterators are invalidated. Otherwise iterators are not affected and
500 // references are not invalidated. Overloads are listed below.
501 //
502 // T& operator[](const Key& key):
503 //
504 // Inserts an init_type object constructed in-place if the element with the
505 // given key does not exist.
506 //
507 // T& operator[](Key&& key):
508 //
509 // Inserts an init_type object constructed in-place provided that an element
510 // with the given key does not exist.
511 using Base::operator[];
512
513 // flat_hash_map::bucket_count()
514 //
515 // Returns the number of "buckets" within the `flat_hash_map`. Note that
516 // because a flat hash map contains all elements within its internal storage,
517 // this value simply equals the current capacity of the `flat_hash_map`.
518 using Base::bucket_count;
519
520 // flat_hash_map::load_factor()
521 //
522 // Returns the current load factor of the `flat_hash_map` (the average number
523 // of slots occupied with a value within the hash map).
524 using Base::load_factor;
525
526 // flat_hash_map::max_load_factor()
527 //
528 // Manages the maximum load factor of the `flat_hash_map`. Overloads are
529 // listed below.
530 //
531 // float flat_hash_map::max_load_factor()
532 //
533 // Returns the current maximum load factor of the `flat_hash_map`.
534 //
535 // void flat_hash_map::max_load_factor(float ml)
536 //
537 // Sets the maximum load factor of the `flat_hash_map` to the passed value.
538 //
539 // NOTE: This overload is provided only for API compatibility with the STL;
540 // `flat_hash_map` will ignore any set load factor and manage its rehashing
541 // internally as an implementation detail.
542 using Base::max_load_factor;
543
544 // flat_hash_map::get_allocator()
545 //
546 // Returns the allocator function associated with this `flat_hash_map`.
547 using Base::get_allocator;
548
549 // flat_hash_map::hash_function()
550 //
551 // Returns the hashing function used to hash the keys within this
552 // `flat_hash_map`.
553 using Base::hash_function;
554
555 // flat_hash_map::key_eq()
556 //
557 // Returns the function used for comparing keys equality.
558 using Base::key_eq;
559 };
560
561 // erase_if(flat_hash_map<>, Pred)
562 //
563 // Erases all elements that satisfy the predicate `pred` from the container `c`.
564 // Returns the number of erased elements.
565 template <typename K, typename V, typename H, typename E, typename A,
566 typename Predicate>
erase_if(flat_hash_map<K,V,H,E,A> & c,Predicate pred)567 typename flat_hash_map<K, V, H, E, A>::size_type erase_if(
568 flat_hash_map<K, V, H, E, A>& c, Predicate pred) {
569 return container_internal::EraseIf(pred, &c);
570 }
571
572 namespace container_internal {
573
574 template <class K, class V>
575 struct FlatHashMapPolicy {
576 using slot_policy = container_internal::map_slot_policy<K, V>;
577 using slot_type = typename slot_policy::slot_type;
578 using key_type = K;
579 using mapped_type = V;
580 using init_type = std::pair</*non const*/ key_type, mapped_type>;
581
582 template <class Allocator, class... Args>
constructFlatHashMapPolicy583 static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
584 slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
585 }
586
587 // Returns std::true_type in case destroy is trivial.
588 template <class Allocator>
destroyFlatHashMapPolicy589 static auto destroy(Allocator* alloc, slot_type* slot) {
590 return slot_policy::destroy(alloc, slot);
591 }
592
593 template <class Allocator>
transferFlatHashMapPolicy594 static auto transfer(Allocator* alloc, slot_type* new_slot,
595 slot_type* old_slot) {
596 return slot_policy::transfer(alloc, new_slot, old_slot);
597 }
598
599 template <class F, class... Args>
decltypeFlatHashMapPolicy600 static decltype(absl::container_internal::DecomposePair(
601 std::declval<F>(), std::declval<Args>()...))
602 apply(F&& f, Args&&... args) {
603 return absl::container_internal::DecomposePair(std::forward<F>(f),
604 std::forward<Args>(args)...);
605 }
606
607 template <class Hash>
get_hash_slot_fnFlatHashMapPolicy608 static constexpr HashSlotFn get_hash_slot_fn() {
609 return memory_internal::IsLayoutCompatible<K, V>::value
610 ? &TypeErasedApplyToSlotFn<Hash, K>
611 : nullptr;
612 }
613
space_usedFlatHashMapPolicy614 static size_t space_used(const slot_type*) { return 0; }
615
elementFlatHashMapPolicy616 static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
617
valueFlatHashMapPolicy618 static V& value(std::pair<const K, V>* kv) { return kv->second; }
valueFlatHashMapPolicy619 static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
620 };
621
622 } // namespace container_internal
623
624 namespace container_algorithm_internal {
625
626 // Specialization of trait in absl/algorithm/container.h
627 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
628 struct IsUnorderedContainer<
629 absl::flat_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
630
631 } // namespace container_algorithm_internal
632
633 ABSL_NAMESPACE_END
634 } // namespace absl
635
636 #endif // ABSL_CONTAINER_FLAT_HASH_MAP_H_
637