• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: flat_hash_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::flat_hash_set<T>` is an unordered associative container designed to
20 // be a more efficient replacement for `std::unordered_set`. Like
21 // `unordered_set`, search, insertion, and deletion of set elements can be done
22 // as an `O(1)` operation. However, `flat_hash_set` (and other unordered
23 // associative containers known as the collection of Abseil "Swiss tables")
24 // contain other optimizations that result in both memory and computation
25 // advantages.
26 //
27 // In most cases, your default choice for a hash set should be a set of type
28 // `flat_hash_set`.
29 #ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_
30 #define ABSL_CONTAINER_FLAT_HASH_SET_H_
31 
32 #include <cstddef>
33 #include <memory>
34 #include <type_traits>
35 #include <utility>
36 
37 #include "absl/algorithm/container.h"
38 #include "absl/base/macros.h"
39 #include "absl/container/hash_container_defaults.h"
40 #include "absl/container/internal/container_memory.h"
41 #include "absl/container/internal/raw_hash_set.h"  // IWYU pragma: export
42 #include "absl/memory/memory.h"
43 
44 namespace absl {
45 ABSL_NAMESPACE_BEGIN
46 namespace container_internal {
47 template <typename T>
48 struct FlatHashSetPolicy;
49 }  // namespace container_internal
50 
51 // -----------------------------------------------------------------------------
52 // absl::flat_hash_set
53 // -----------------------------------------------------------------------------
54 //
55 // An `absl::flat_hash_set<T>` is an unordered associative container which has
56 // been optimized for both speed and memory footprint in most common use cases.
57 // Its interface is similar to that of `std::unordered_set<T>` with the
58 // following notable differences:
59 //
60 // * Requires keys that are CopyConstructible
61 // * Supports heterogeneous lookup, through `find()` and `insert()`, provided
62 //   that the set is provided a compatible heterogeneous hashing function and
63 //   equality operator. See below for details.
64 // * Invalidates any references and pointers to elements within the table after
65 //   `rehash()` and when the table is moved.
66 // * Contains a `capacity()` member function indicating the number of element
67 //   slots (open, deleted, and empty) within the hash set.
68 // * Returns `void` from the `erase(iterator)` overload.
69 //
70 // By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
71 // fundamental and Abseil types that support the `absl::Hash` framework have a
72 // compatible equality operator for comparing insertions into `flat_hash_set`.
73 // If your type is not yet supported by the `absl::Hash` framework, see
74 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
75 // types.
76 //
77 // Using `absl::flat_hash_set` at interface boundaries in dynamically loaded
78 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
79 // be randomized across dynamically loaded libraries.
80 //
81 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
82 // parameters can be used or `T` should have public inner types
83 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
84 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
85 // well-formed. Both types are basically functors:
86 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
87 // for the given `val`.
88 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
89 // if `lhs` is equal to `rhs`.
90 //
91 // In most cases `T` needs only to provide the `absl_container_hash`. In this
92 // case `std::equal_to<void>` will be used instead of `eq` part.
93 //
94 // NOTE: A `flat_hash_set` stores its keys directly inside its implementation
95 // array to avoid memory indirection. Because a `flat_hash_set` is designed to
96 // move data when rehashed, set keys will not retain pointer stability. If you
97 // require pointer stability, consider using
98 // `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
99 // you require pointer stability, consider `absl::node_hash_set` instead.
100 //
101 // Example:
102 //
103 //   // Create a flat hash set of three strings
104 //   absl::flat_hash_set<std::string> ducks =
105 //     {"huey", "dewey", "louie"};
106 //
107 //  // Insert a new element into the flat hash set
108 //  ducks.insert("donald");
109 //
110 //  // Force a rehash of the flat hash set
111 //  ducks.rehash(0);
112 //
113 //  // See if "dewey" is present
114 //  if (ducks.contains("dewey")) {
115 //    std::cout << "We found dewey!" << std::endl;
116 //  }
117 template <class T, class Hash = DefaultHashContainerHash<T>,
118           class Eq = DefaultHashContainerEq<T>,
119           class Allocator = std::allocator<T>>
120 class flat_hash_set
121     : public absl::container_internal::raw_hash_set<
122           absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> {
123   using Base = typename flat_hash_set::raw_hash_set;
124 
125  public:
126   // Constructors and Assignment Operators
127   //
128   // A flat_hash_set supports the same overload set as `std::unordered_set`
129   // for construction and assignment:
130   //
131   // *  Default constructor
132   //
133   //    // No allocation for the table's elements is made.
134   //    absl::flat_hash_set<std::string> set1;
135   //
136   // * Initializer List constructor
137   //
138   //   absl::flat_hash_set<std::string> set2 =
139   //       {{"huey"}, {"dewey"}, {"louie"},};
140   //
141   // * Copy constructor
142   //
143   //   absl::flat_hash_set<std::string> set3(set2);
144   //
145   // * Copy assignment operator
146   //
147   //  // Hash functor and Comparator are copied as well
148   //  absl::flat_hash_set<std::string> set4;
149   //  set4 = set3;
150   //
151   // * Move constructor
152   //
153   //   // Move is guaranteed efficient
154   //   absl::flat_hash_set<std::string> set5(std::move(set4));
155   //
156   // * Move assignment operator
157   //
158   //   // May be efficient if allocators are compatible
159   //   absl::flat_hash_set<std::string> set6;
160   //   set6 = std::move(set5);
161   //
162   // * Range constructor
163   //
164   //   std::vector<std::string> v = {"a", "b"};
165   //   absl::flat_hash_set<std::string> set7(v.begin(), v.end());
flat_hash_set()166   flat_hash_set() {}
167   using Base::Base;
168 
169   // flat_hash_set::begin()
170   //
171   // Returns an iterator to the beginning of the `flat_hash_set`.
172   using Base::begin;
173 
174   // flat_hash_set::cbegin()
175   //
176   // Returns a const iterator to the beginning of the `flat_hash_set`.
177   using Base::cbegin;
178 
179   // flat_hash_set::cend()
180   //
181   // Returns a const iterator to the end of the `flat_hash_set`.
182   using Base::cend;
183 
184   // flat_hash_set::end()
185   //
186   // Returns an iterator to the end of the `flat_hash_set`.
187   using Base::end;
188 
189   // flat_hash_set::capacity()
190   //
191   // Returns the number of element slots (assigned, deleted, and empty)
192   // available within the `flat_hash_set`.
193   //
194   // NOTE: this member function is particular to `absl::flat_hash_set` and is
195   // not provided in the `std::unordered_set` API.
196   using Base::capacity;
197 
198   // flat_hash_set::empty()
199   //
200   // Returns whether or not the `flat_hash_set` is empty.
201   using Base::empty;
202 
203   // flat_hash_set::max_size()
204   //
205   // Returns the largest theoretical possible number of elements within a
206   // `flat_hash_set` under current memory constraints. This value can be thought
207   // of the largest value of `std::distance(begin(), end())` for a
208   // `flat_hash_set<T>`.
209   using Base::max_size;
210 
211   // flat_hash_set::size()
212   //
213   // Returns the number of elements currently within the `flat_hash_set`.
214   using Base::size;
215 
216   // flat_hash_set::clear()
217   //
218   // Removes all elements from the `flat_hash_set`. Invalidates any references,
219   // pointers, or iterators referring to contained elements.
220   //
221   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
222   // the underlying buffer call `erase(begin(), end())`.
223   using Base::clear;
224 
225   // flat_hash_set::erase()
226   //
227   // Erases elements within the `flat_hash_set`. Erasing does not trigger a
228   // rehash. Overloads are listed below.
229   //
230   // void erase(const_iterator pos):
231   //
232   //   Erases the element at `position` of the `flat_hash_set`, returning
233   //   `void`.
234   //
235   //   NOTE: returning `void` in this case is different than that of STL
236   //   containers in general and `std::unordered_set` in particular (which
237   //   return an iterator to the element following the erased element). If that
238   //   iterator is needed, simply post increment the iterator:
239   //
240   //     set.erase(it++);
241   //
242   // iterator erase(const_iterator first, const_iterator last):
243   //
244   //   Erases the elements in the open interval [`first`, `last`), returning an
245   //   iterator pointing to `last`. The special case of calling
246   //   `erase(begin(), end())` resets the reserved growth such that if
247   //   `reserve(N)` has previously been called and there has been no intervening
248   //   call to `clear()`, then after calling `erase(begin(), end())`, it is safe
249   //   to assume that inserting N elements will not cause a rehash.
250   //
251   // size_type erase(const key_type& key):
252   //
253   //   Erases the element with the matching key, if it exists, returning the
254   //   number of elements erased (0 or 1).
255   using Base::erase;
256 
257   // flat_hash_set::insert()
258   //
259   // Inserts an element of the specified value into the `flat_hash_set`,
260   // returning an iterator pointing to the newly inserted element, provided that
261   // an element with the given key does not already exist. If rehashing occurs
262   // due to the insertion, all iterators are invalidated. Overloads are listed
263   // below.
264   //
265   // std::pair<iterator,bool> insert(const T& value):
266   //
267   //   Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
268   //   iterator to the inserted element (or to the element that prevented the
269   //   insertion) and a bool denoting whether the insertion took place.
270   //
271   // std::pair<iterator,bool> insert(T&& value):
272   //
273   //   Inserts a moveable value into the `flat_hash_set`. Returns a pair
274   //   consisting of an iterator to the inserted element (or to the element that
275   //   prevented the insertion) and a bool denoting whether the insertion took
276   //   place.
277   //
278   // iterator insert(const_iterator hint, const T& value):
279   // iterator insert(const_iterator hint, T&& value):
280   //
281   //   Inserts a value, using the position of `hint` as a non-binding suggestion
282   //   for where to begin the insertion search. Returns an iterator to the
283   //   inserted element, or to the existing element that prevented the
284   //   insertion.
285   //
286   // void insert(InputIterator first, InputIterator last):
287   //
288   //   Inserts a range of values [`first`, `last`).
289   //
290   //   NOTE: Although the STL does not specify which element may be inserted if
291   //   multiple keys compare equivalently, for `flat_hash_set` we guarantee the
292   //   first match is inserted.
293   //
294   // void insert(std::initializer_list<T> ilist):
295   //
296   //   Inserts the elements within the initializer list `ilist`.
297   //
298   //   NOTE: Although the STL does not specify which element may be inserted if
299   //   multiple keys compare equivalently within the initializer list, for
300   //   `flat_hash_set` we guarantee the first match is inserted.
301   using Base::insert;
302 
303   // flat_hash_set::emplace()
304   //
305   // Inserts an element of the specified value by constructing it in-place
306   // within the `flat_hash_set`, provided that no element with the given key
307   // already exists.
308   //
309   // The element may be constructed even if there already is an element with the
310   // key in the container, in which case the newly constructed element will be
311   // destroyed immediately.
312   //
313   // If rehashing occurs due to the insertion, all iterators are invalidated.
314   using Base::emplace;
315 
316   // flat_hash_set::emplace_hint()
317   //
318   // Inserts an element of the specified value by constructing it in-place
319   // within the `flat_hash_set`, using the position of `hint` as a non-binding
320   // suggestion for where to begin the insertion search, and only inserts
321   // provided that no element with the given key already exists.
322   //
323   // The element may be constructed even if there already is an element with the
324   // key in the container, in which case the newly constructed element will be
325   // destroyed immediately.
326   //
327   // If rehashing occurs due to the insertion, all iterators are invalidated.
328   using Base::emplace_hint;
329 
330   // flat_hash_set::extract()
331   //
332   // Extracts the indicated element, erasing it in the process, and returns it
333   // as a C++17-compatible node handle. Overloads are listed below.
334   //
335   // node_type extract(const_iterator position):
336   //
337   //   Extracts the element at the indicated position and returns a node handle
338   //   owning that extracted data.
339   //
340   // node_type extract(const key_type& x):
341   //
342   //   Extracts the element with the key matching the passed key value and
343   //   returns a node handle owning that extracted data. If the `flat_hash_set`
344   //   does not contain an element with a matching key, this function returns an
345   //   empty node handle.
346   using Base::extract;
347 
348   // flat_hash_set::merge()
349   //
350   // Extracts elements from a given `source` flat hash set into this
351   // `flat_hash_set`. If the destination `flat_hash_set` already contains an
352   // element with an equivalent key, that element is not extracted.
353   using Base::merge;
354 
355   // flat_hash_set::swap(flat_hash_set& other)
356   //
357   // Exchanges the contents of this `flat_hash_set` with those of the `other`
358   // flat hash set, avoiding invocation of any move, copy, or swap operations on
359   // individual elements.
360   //
361   // All iterators and references on the `flat_hash_set` remain valid, excepting
362   // for the past-the-end iterator, which is invalidated.
363   //
364   // `swap()` requires that the flat hash set's hashing and key equivalence
365   // functions be Swappable, and are exchanged using unqualified calls to
366   // non-member `swap()`. If the set's allocator has
367   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
368   // set to `true`, the allocators are also exchanged using an unqualified call
369   // to non-member `swap()`; otherwise, the allocators are not swapped.
370   using Base::swap;
371 
372   // flat_hash_set::rehash(count)
373   //
374   // Rehashes the `flat_hash_set`, setting the number of slots to be at least
375   // the passed value. If the new number of slots increases the load factor more
376   // than the current maximum load factor
377   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
378   // will be at least `size()` / `max_load_factor()`.
379   //
380   // To force a rehash, pass rehash(0).
381   //
382   // NOTE: unlike behavior in `std::unordered_set`, references are also
383   // invalidated upon a `rehash()`.
384   using Base::rehash;
385 
386   // flat_hash_set::reserve(count)
387   //
388   // Sets the number of slots in the `flat_hash_set` to the number needed to
389   // accommodate at least `count` total elements without exceeding the current
390   // maximum load factor, and may rehash the container if needed.
391   using Base::reserve;
392 
393   // flat_hash_set::contains()
394   //
395   // Determines whether an element comparing equal to the given `key` exists
396   // within the `flat_hash_set`, returning `true` if so or `false` otherwise.
397   using Base::contains;
398 
399   // flat_hash_set::count(const Key& key) const
400   //
401   // Returns the number of elements comparing equal to the given `key` within
402   // the `flat_hash_set`. note that this function will return either `1` or `0`
403   // since duplicate elements are not allowed within a `flat_hash_set`.
404   using Base::count;
405 
406   // flat_hash_set::equal_range()
407   //
408   // Returns a closed range [first, last], defined by a `std::pair` of two
409   // iterators, containing all elements with the passed key in the
410   // `flat_hash_set`.
411   using Base::equal_range;
412 
413   // flat_hash_set::find()
414   //
415   // Finds an element with the passed `key` within the `flat_hash_set`.
416   using Base::find;
417 
418   // flat_hash_set::bucket_count()
419   //
420   // Returns the number of "buckets" within the `flat_hash_set`. Note that
421   // because a flat hash set contains all elements within its internal storage,
422   // this value simply equals the current capacity of the `flat_hash_set`.
423   using Base::bucket_count;
424 
425   // flat_hash_set::load_factor()
426   //
427   // Returns the current load factor of the `flat_hash_set` (the average number
428   // of slots occupied with a value within the hash set).
429   using Base::load_factor;
430 
431   // flat_hash_set::max_load_factor()
432   //
433   // Manages the maximum load factor of the `flat_hash_set`. Overloads are
434   // listed below.
435   //
436   // float flat_hash_set::max_load_factor()
437   //
438   //   Returns the current maximum load factor of the `flat_hash_set`.
439   //
440   // void flat_hash_set::max_load_factor(float ml)
441   //
442   //   Sets the maximum load factor of the `flat_hash_set` to the passed value.
443   //
444   //   NOTE: This overload is provided only for API compatibility with the STL;
445   //   `flat_hash_set` will ignore any set load factor and manage its rehashing
446   //   internally as an implementation detail.
447   using Base::max_load_factor;
448 
449   // flat_hash_set::get_allocator()
450   //
451   // Returns the allocator function associated with this `flat_hash_set`.
452   using Base::get_allocator;
453 
454   // flat_hash_set::hash_function()
455   //
456   // Returns the hashing function used to hash the keys within this
457   // `flat_hash_set`.
458   using Base::hash_function;
459 
460   // flat_hash_set::key_eq()
461   //
462   // Returns the function used for comparing keys equality.
463   using Base::key_eq;
464 };
465 
466 // erase_if(flat_hash_set<>, Pred)
467 //
468 // Erases all elements that satisfy the predicate `pred` from the container `c`.
469 // Returns the number of erased elements.
470 template <typename T, typename H, typename E, typename A, typename Predicate>
erase_if(flat_hash_set<T,H,E,A> & c,Predicate pred)471 typename flat_hash_set<T, H, E, A>::size_type erase_if(
472     flat_hash_set<T, H, E, A>& c, Predicate pred) {
473   return container_internal::EraseIf(pred, &c);
474 }
475 
476 namespace container_internal {
477 
478 template <class T>
479 struct FlatHashSetPolicy {
480   using slot_type = T;
481   using key_type = T;
482   using init_type = T;
483   using constant_iterators = std::true_type;
484 
485   template <class Allocator, class... Args>
constructFlatHashSetPolicy486   static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
487     absl::allocator_traits<Allocator>::construct(*alloc, slot,
488                                                  std::forward<Args>(args)...);
489   }
490 
491   // Return std::true_type in case destroy is trivial.
492   template <class Allocator>
destroyFlatHashSetPolicy493   static auto destroy(Allocator* alloc, slot_type* slot) {
494     absl::allocator_traits<Allocator>::destroy(*alloc, slot);
495     return IsDestructionTrivial<Allocator, slot_type>();
496   }
497 
elementFlatHashSetPolicy498   static T& element(slot_type* slot) { return *slot; }
499 
500   template <class F, class... Args>
decltypeFlatHashSetPolicy501   static decltype(absl::container_internal::DecomposeValue(
502       std::declval<F>(), std::declval<Args>()...))
503   apply(F&& f, Args&&... args) {
504     return absl::container_internal::DecomposeValue(
505         std::forward<F>(f), std::forward<Args>(args)...);
506   }
507 
space_usedFlatHashSetPolicy508   static size_t space_used(const T*) { return 0; }
509 
510   template <class Hash>
get_hash_slot_fnFlatHashSetPolicy511   static constexpr HashSlotFn get_hash_slot_fn() {
512     return &TypeErasedApplyToSlotFn<Hash, T>;
513   }
514 };
515 }  // namespace container_internal
516 
517 namespace container_algorithm_internal {
518 
519 // Specialization of trait in absl/algorithm/container.h
520 template <class Key, class Hash, class KeyEqual, class Allocator>
521 struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>>
522     : std::true_type {};
523 
524 }  // namespace container_algorithm_internal
525 
526 ABSL_NAMESPACE_END
527 }  // namespace absl
528 
529 #endif  // ABSL_CONTAINER_FLAT_HASH_SET_H_
530