• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `node_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`. However, if you need pointer stability and cannot store
29 // a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
30 // valid alternative. As well, if you are migrating your code from using
31 // `std::unordered_map`, a `node_hash_map` provides a more straightforward
32 // migration, because it guarantees pointer stability. Consider migrating to
33 // `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
34 // upon further review.
35 
36 #ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_
37 #define ABSL_CONTAINER_NODE_HASH_MAP_H_
38 
39 #include <cstddef>
40 #include <memory>
41 #include <type_traits>
42 #include <utility>
43 
44 #include "absl/algorithm/container.h"
45 #include "absl/container/hash_container_defaults.h"
46 #include "absl/container/internal/container_memory.h"
47 #include "absl/container/internal/node_slot_policy.h"
48 #include "absl/container/internal/raw_hash_map.h"  // IWYU pragma: export
49 #include "absl/memory/memory.h"
50 
51 namespace absl {
52 ABSL_NAMESPACE_BEGIN
53 namespace container_internal {
54 template <class Key, class Value>
55 class NodeHashMapPolicy;
56 }  // namespace container_internal
57 
58 // -----------------------------------------------------------------------------
59 // absl::node_hash_map
60 // -----------------------------------------------------------------------------
61 //
62 // An `absl::node_hash_map<K, V>` is an unordered associative container which
63 // has been optimized for both speed and memory footprint in most common use
64 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
65 // the following notable differences:
66 //
67 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
68 //   `insert()`, provided that the map is provided a compatible heterogeneous
69 //   hashing function and equality operator. See below for details.
70 // * Contains a `capacity()` member function indicating the number of element
71 //   slots (open, deleted, and empty) within the hash map.
72 // * Returns `void` from the `erase(iterator)` overload.
73 //
74 // By default, `node_hash_map` uses the `absl::Hash` hashing framework.
75 // All fundamental and Abseil types that support the `absl::Hash` framework have
76 // a compatible equality operator for comparing insertions into `node_hash_map`.
77 // If your type is not yet supported by the `absl::Hash` framework, see
78 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
79 // types.
80 //
81 // Using `absl::node_hash_map` at interface boundaries in dynamically loaded
82 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
83 // be randomized across dynamically loaded libraries.
84 //
85 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
86 // parameters can be used or `T` should have public inner types
87 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
88 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
89 // well-formed. Both types are basically functors:
90 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
91 // for the given `val`.
92 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
93 // if `lhs` is equal to `rhs`.
94 //
95 // In most cases `T` needs only to provide the `absl_container_hash`. In this
96 // case `std::equal_to<void>` will be used instead of `eq` part.
97 //
98 // Example:
99 //
100 //   // Create a node hash map of three strings (that map to strings)
101 //   absl::node_hash_map<std::string, std::string> ducks =
102 //     {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
103 //
104 //  // Insert a new element into the node hash map
105 //  ducks.insert({"d", "donald"}};
106 //
107 //  // Force a rehash of the node hash map
108 //  ducks.rehash(0);
109 //
110 //  // Find the element with the key "b"
111 //  std::string search_key = "b";
112 //  auto result = ducks.find(search_key);
113 //  if (result != ducks.end()) {
114 //    std::cout << "Result: " << result->second << std::endl;
115 //  }
116 template <class Key, class Value, class Hash = DefaultHashContainerHash<Key>,
117           class Eq = DefaultHashContainerEq<Key>,
118           class Alloc = std::allocator<std::pair<const Key, Value>>>
119 class node_hash_map
120     : public absl::container_internal::raw_hash_map<
121           absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,
122           Alloc> {
123   using Base = typename node_hash_map::raw_hash_map;
124 
125  public:
126   // Constructors and Assignment Operators
127   //
128   // A node_hash_map supports the same overload set as `std::unordered_map`
129   // for construction and assignment:
130   //
131   // *  Default constructor
132   //
133   //    // No allocation for the table's elements is made.
134   //    absl::node_hash_map<int, std::string> map1;
135   //
136   // * Initializer List constructor
137   //
138   //   absl::node_hash_map<int, std::string> map2 =
139   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
140   //
141   // * Copy constructor
142   //
143   //   absl::node_hash_map<int, std::string> map3(map2);
144   //
145   // * Copy assignment operator
146   //
147   //  // Hash functor and Comparator are copied as well
148   //  absl::node_hash_map<int, std::string> map4;
149   //  map4 = map3;
150   //
151   // * Move constructor
152   //
153   //   // Move is guaranteed efficient
154   //   absl::node_hash_map<int, std::string> map5(std::move(map4));
155   //
156   // * Move assignment operator
157   //
158   //   // May be efficient if allocators are compatible
159   //   absl::node_hash_map<int, std::string> map6;
160   //   map6 = std::move(map5);
161   //
162   // * Range constructor
163   //
164   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
165   //   absl::node_hash_map<int, std::string> map7(v.begin(), v.end());
node_hash_map()166   node_hash_map() {}
167   using Base::Base;
168 
169   // node_hash_map::begin()
170   //
171   // Returns an iterator to the beginning of the `node_hash_map`.
172   using Base::begin;
173 
174   // node_hash_map::cbegin()
175   //
176   // Returns a const iterator to the beginning of the `node_hash_map`.
177   using Base::cbegin;
178 
179   // node_hash_map::cend()
180   //
181   // Returns a const iterator to the end of the `node_hash_map`.
182   using Base::cend;
183 
184   // node_hash_map::end()
185   //
186   // Returns an iterator to the end of the `node_hash_map`.
187   using Base::end;
188 
189   // node_hash_map::capacity()
190   //
191   // Returns the number of element slots (assigned, deleted, and empty)
192   // available within the `node_hash_map`.
193   //
194   // NOTE: this member function is particular to `absl::node_hash_map` and is
195   // not provided in the `std::unordered_map` API.
196   using Base::capacity;
197 
198   // node_hash_map::empty()
199   //
200   // Returns whether or not the `node_hash_map` is empty.
201   using Base::empty;
202 
203   // node_hash_map::max_size()
204   //
205   // Returns the largest theoretical possible number of elements within a
206   // `node_hash_map` under current memory constraints. This value can be thought
207   // of as the largest value of `std::distance(begin(), end())` for a
208   // `node_hash_map<K, V>`.
209   using Base::max_size;
210 
211   // node_hash_map::size()
212   //
213   // Returns the number of elements currently within the `node_hash_map`.
214   using Base::size;
215 
216   // node_hash_map::clear()
217   //
218   // Removes all elements from the `node_hash_map`. Invalidates any references,
219   // pointers, or iterators referring to contained elements.
220   //
221   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
222   // the underlying buffer call `erase(begin(), end())`.
223   using Base::clear;
224 
225   // node_hash_map::erase()
226   //
227   // Erases elements within the `node_hash_map`. Erasing does not trigger a
228   // rehash. Overloads are listed below.
229   //
230   // void erase(const_iterator pos):
231   //
232   //   Erases the element at `position` of the `node_hash_map`, returning
233   //   `void`.
234   //
235   //   NOTE: this return behavior is different than that of STL containers in
236   //   general and `std::unordered_map` in particular.
237   //
238   // iterator erase(const_iterator first, const_iterator last):
239   //
240   //   Erases the elements in the open interval [`first`, `last`), returning an
241   //   iterator pointing to `last`. The special case of calling
242   //   `erase(begin(), end())` resets the reserved growth such that if
243   //   `reserve(N)` has previously been called and there has been no intervening
244   //   call to `clear()`, then after calling `erase(begin(), end())`, it is safe
245   //   to assume that inserting N elements will not cause a rehash.
246   //
247   // size_type erase(const key_type& key):
248   //
249   //   Erases the element with the matching key, if it exists, returning the
250   //   number of elements erased (0 or 1).
251   using Base::erase;
252 
253   // node_hash_map::insert()
254   //
255   // Inserts an element of the specified value into the `node_hash_map`,
256   // returning an iterator pointing to the newly inserted element, provided that
257   // an element with the given key does not already exist. If rehashing occurs
258   // due to the insertion, all iterators are invalidated. Overloads are listed
259   // below.
260   //
261   // std::pair<iterator,bool> insert(const init_type& value):
262   //
263   //   Inserts a value into the `node_hash_map`. Returns a pair consisting of an
264   //   iterator to the inserted element (or to the element that prevented the
265   //   insertion) and a `bool` denoting whether the insertion took place.
266   //
267   // std::pair<iterator,bool> insert(T&& value):
268   // std::pair<iterator,bool> insert(init_type&& value):
269   //
270   //   Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
271   //   consisting of an iterator to the inserted element (or to the element that
272   //   prevented the insertion) and a `bool` denoting whether the insertion took
273   //   place.
274   //
275   // iterator insert(const_iterator hint, const init_type& value):
276   // iterator insert(const_iterator hint, T&& value):
277   // iterator insert(const_iterator hint, init_type&& value);
278   //
279   //   Inserts a value, using the position of `hint` as a non-binding suggestion
280   //   for where to begin the insertion search. Returns an iterator to the
281   //   inserted element, or to the existing element that prevented the
282   //   insertion.
283   //
284   // void insert(InputIterator first, InputIterator last):
285   //
286   //   Inserts a range of values [`first`, `last`).
287   //
288   //   NOTE: Although the STL does not specify which element may be inserted if
289   //   multiple keys compare equivalently, for `node_hash_map` we guarantee the
290   //   first match is inserted.
291   //
292   // void insert(std::initializer_list<init_type> ilist):
293   //
294   //   Inserts the elements within the initializer list `ilist`.
295   //
296   //   NOTE: Although the STL does not specify which element may be inserted if
297   //   multiple keys compare equivalently within the initializer list, for
298   //   `node_hash_map` we guarantee the first match is inserted.
299   using Base::insert;
300 
301   // node_hash_map::insert_or_assign()
302   //
303   // Inserts an element of the specified value into the `node_hash_map` provided
304   // that a value with the given key does not already exist, or replaces it with
305   // the element value if a key for that value already exists, returning an
306   // iterator pointing to the newly inserted element. If rehashing occurs due to
307   // the insertion, all iterators are invalidated. Overloads are listed
308   // below.
309   //
310   // std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
311   // std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
312   //
313   //   Inserts/Assigns (or moves) the element of the specified key into the
314   //   `node_hash_map`.
315   //
316   // iterator insert_or_assign(const_iterator hint,
317   //                           const init_type& k, T&& obj):
318   // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
319   //
320   //   Inserts/Assigns (or moves) the element of the specified key into the
321   //   `node_hash_map` using the position of `hint` as a non-binding suggestion
322   //   for where to begin the insertion search.
323   using Base::insert_or_assign;
324 
325   // node_hash_map::emplace()
326   //
327   // Inserts an element of the specified value by constructing it in-place
328   // within the `node_hash_map`, provided that no element with the given key
329   // already exists.
330   //
331   // The element may be constructed even if there already is an element with the
332   // key in the container, in which case the newly constructed element will be
333   // destroyed immediately. Prefer `try_emplace()` unless your key is not
334   // copyable or moveable.
335   //
336   // If rehashing occurs due to the insertion, all iterators are invalidated.
337   using Base::emplace;
338 
339   // node_hash_map::emplace_hint()
340   //
341   // Inserts an element of the specified value by constructing it in-place
342   // within the `node_hash_map`, using the position of `hint` as a non-binding
343   // suggestion for where to begin the insertion search, and only inserts
344   // provided that no element with the given key already exists.
345   //
346   // The element may be constructed even if there already is an element with the
347   // key in the container, in which case the newly constructed element will be
348   // destroyed immediately. Prefer `try_emplace()` unless your key is not
349   // copyable or moveable.
350   //
351   // If rehashing occurs due to the insertion, all iterators are invalidated.
352   using Base::emplace_hint;
353 
354   // node_hash_map::try_emplace()
355   //
356   // Inserts an element of the specified value by constructing it in-place
357   // within the `node_hash_map`, provided that no element with the given key
358   // already exists. Unlike `emplace()`, if an element with the given key
359   // already exists, we guarantee that no element is constructed.
360   //
361   // If rehashing occurs due to the insertion, all iterators are invalidated.
362   // Overloads are listed below.
363   //
364   //   std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
365   //   std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
366   //
367   // Inserts (via copy or move) the element of the specified key into the
368   // `node_hash_map`.
369   //
370   //   iterator try_emplace(const_iterator hint,
371   //                        const key_type& k, Args&&... args):
372   //   iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
373   //
374   // Inserts (via copy or move) the element of the specified key into the
375   // `node_hash_map` using the position of `hint` as a non-binding suggestion
376   // for where to begin the insertion search.
377   //
378   // All `try_emplace()` overloads make the same guarantees regarding rvalue
379   // arguments as `std::unordered_map::try_emplace()`, namely that these
380   // functions will not move from rvalue arguments if insertions do not happen.
381   using Base::try_emplace;
382 
383   // node_hash_map::extract()
384   //
385   // Extracts the indicated element, erasing it in the process, and returns it
386   // as a C++17-compatible node handle. Overloads are listed below.
387   //
388   // node_type extract(const_iterator position):
389   //
390   //   Extracts the key,value pair of the element at the indicated position and
391   //   returns a node handle owning that extracted data.
392   //
393   // node_type extract(const key_type& x):
394   //
395   //   Extracts the key,value pair of the element with a key matching the passed
396   //   key value and returns a node handle owning that extracted data. If the
397   //   `node_hash_map` does not contain an element with a matching key, this
398   //   function returns an empty node handle.
399   //
400   // NOTE: when compiled in an earlier version of C++ than C++17,
401   // `node_type::key()` returns a const reference to the key instead of a
402   // mutable reference. We cannot safely return a mutable reference without
403   // std::launder (which is not available before C++17).
404   using Base::extract;
405 
406   // node_hash_map::merge()
407   //
408   // Extracts elements from a given `source` node hash map into this
409   // `node_hash_map`. If the destination `node_hash_map` already contains an
410   // element with an equivalent key, that element is not extracted.
411   using Base::merge;
412 
413   // node_hash_map::swap(node_hash_map& other)
414   //
415   // Exchanges the contents of this `node_hash_map` with those of the `other`
416   // node hash map, avoiding invocation of any move, copy, or swap operations on
417   // individual elements.
418   //
419   // All iterators and references on the `node_hash_map` remain valid, excepting
420   // for the past-the-end iterator, which is invalidated.
421   //
422   // `swap()` requires that the node hash map's hashing and key equivalence
423   // functions be Swappable, and are exchanged using unqualified calls to
424   // non-member `swap()`. If the map's allocator has
425   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
426   // set to `true`, the allocators are also exchanged using an unqualified call
427   // to non-member `swap()`; otherwise, the allocators are not swapped.
428   using Base::swap;
429 
430   // node_hash_map::rehash(count)
431   //
432   // Rehashes the `node_hash_map`, setting the number of slots to be at least
433   // the passed value. If the new number of slots increases the load factor more
434   // than the current maximum load factor
435   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
436   // will be at least `size()` / `max_load_factor()`.
437   //
438   // To force a rehash, pass rehash(0).
439   using Base::rehash;
440 
441   // node_hash_map::reserve(count)
442   //
443   // Sets the number of slots in the `node_hash_map` to the number needed to
444   // accommodate at least `count` total elements without exceeding the current
445   // maximum load factor, and may rehash the container if needed.
446   using Base::reserve;
447 
448   // node_hash_map::at()
449   //
450   // Returns a reference to the mapped value of the element with key equivalent
451   // to the passed key.
452   using Base::at;
453 
454   // node_hash_map::contains()
455   //
456   // Determines whether an element with a key comparing equal to the given `key`
457   // exists within the `node_hash_map`, returning `true` if so or `false`
458   // otherwise.
459   using Base::contains;
460 
461   // node_hash_map::count(const Key& key) const
462   //
463   // Returns the number of elements with a key comparing equal to the given
464   // `key` within the `node_hash_map`. note that this function will return
465   // either `1` or `0` since duplicate keys are not allowed within a
466   // `node_hash_map`.
467   using Base::count;
468 
469   // node_hash_map::equal_range()
470   //
471   // Returns a closed range [first, last], defined by a `std::pair` of two
472   // iterators, containing all elements with the passed key in the
473   // `node_hash_map`.
474   using Base::equal_range;
475 
476   // node_hash_map::find()
477   //
478   // Finds an element with the passed `key` within the `node_hash_map`.
479   using Base::find;
480 
481   // node_hash_map::operator[]()
482   //
483   // Returns a reference to the value mapped to the passed key within the
484   // `node_hash_map`, performing an `insert()` if the key does not already
485   // exist. If an insertion occurs and results in a rehashing of the container,
486   // all iterators are invalidated. Otherwise iterators are not affected and
487   // references are not invalidated. Overloads are listed below.
488   //
489   // T& operator[](const Key& key):
490   //
491   //   Inserts an init_type object constructed in-place if the element with the
492   //   given key does not exist.
493   //
494   // T& operator[](Key&& key):
495   //
496   //   Inserts an init_type object constructed in-place provided that an element
497   //   with the given key does not exist.
498   using Base::operator[];
499 
500   // node_hash_map::bucket_count()
501   //
502   // Returns the number of "buckets" within the `node_hash_map`.
503   using Base::bucket_count;
504 
505   // node_hash_map::load_factor()
506   //
507   // Returns the current load factor of the `node_hash_map` (the average number
508   // of slots occupied with a value within the hash map).
509   using Base::load_factor;
510 
511   // node_hash_map::max_load_factor()
512   //
513   // Manages the maximum load factor of the `node_hash_map`. Overloads are
514   // listed below.
515   //
516   // float node_hash_map::max_load_factor()
517   //
518   //   Returns the current maximum load factor of the `node_hash_map`.
519   //
520   // void node_hash_map::max_load_factor(float ml)
521   //
522   //   Sets the maximum load factor of the `node_hash_map` to the passed value.
523   //
524   //   NOTE: This overload is provided only for API compatibility with the STL;
525   //   `node_hash_map` will ignore any set load factor and manage its rehashing
526   //   internally as an implementation detail.
527   using Base::max_load_factor;
528 
529   // node_hash_map::get_allocator()
530   //
531   // Returns the allocator function associated with this `node_hash_map`.
532   using Base::get_allocator;
533 
534   // node_hash_map::hash_function()
535   //
536   // Returns the hashing function used to hash the keys within this
537   // `node_hash_map`.
538   using Base::hash_function;
539 
540   // node_hash_map::key_eq()
541   //
542   // Returns the function used for comparing keys equality.
543   using Base::key_eq;
544 };
545 
546 // erase_if(node_hash_map<>, Pred)
547 //
548 // Erases all elements that satisfy the predicate `pred` from the container `c`.
549 // Returns the number of erased elements.
550 template <typename K, typename V, typename H, typename E, typename A,
551           typename Predicate>
erase_if(node_hash_map<K,V,H,E,A> & c,Predicate pred)552 typename node_hash_map<K, V, H, E, A>::size_type erase_if(
553     node_hash_map<K, V, H, E, A>& c, Predicate pred) {
554   return container_internal::EraseIf(pred, &c);
555 }
556 
557 namespace container_internal {
558 
559 template <class Key, class Value>
560 class NodeHashMapPolicy
561     : public absl::container_internal::node_slot_policy<
562           std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {
563   using value_type = std::pair<const Key, Value>;
564 
565  public:
566   using key_type = Key;
567   using mapped_type = Value;
568   using init_type = std::pair</*non const*/ key_type, mapped_type>;
569 
570   template <class Allocator, class... Args>
new_element(Allocator * alloc,Args &&...args)571   static value_type* new_element(Allocator* alloc, Args&&... args) {
572     using PairAlloc = typename absl::allocator_traits<
573         Allocator>::template rebind_alloc<value_type>;
574     PairAlloc pair_alloc(*alloc);
575     value_type* res =
576         absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
577     absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,
578                                                  std::forward<Args>(args)...);
579     return res;
580   }
581 
582   template <class Allocator>
delete_element(Allocator * alloc,value_type * pair)583   static void delete_element(Allocator* alloc, value_type* pair) {
584     using PairAlloc = typename absl::allocator_traits<
585         Allocator>::template rebind_alloc<value_type>;
586     PairAlloc pair_alloc(*alloc);
587     absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
588     absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
589   }
590 
591   template <class F, class... Args>
decltype(absl::container_internal::DecomposePair (std::declval<F> (),std::declval<Args> ()...))592   static decltype(absl::container_internal::DecomposePair(
593       std::declval<F>(), std::declval<Args>()...))
594   apply(F&& f, Args&&... args) {
595     return absl::container_internal::DecomposePair(std::forward<F>(f),
596                                                    std::forward<Args>(args)...);
597   }
598 
element_space_used(const value_type *)599   static size_t element_space_used(const value_type*) {
600     return sizeof(value_type);
601   }
602 
value(value_type * elem)603   static Value& value(value_type* elem) { return elem->second; }
value(const value_type * elem)604   static const Value& value(const value_type* elem) { return elem->second; }
605 
606   template <class Hash>
get_hash_slot_fn()607   static constexpr HashSlotFn get_hash_slot_fn() {
608     return memory_internal::IsLayoutCompatible<Key, Value>::value
609                ? &TypeErasedDerefAndApplyToSlotFn<Hash, Key>
610                : nullptr;
611   }
612 };
613 }  // namespace container_internal
614 
615 namespace container_algorithm_internal {
616 
617 // Specialization of trait in absl/algorithm/container.h
618 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
619 struct IsUnorderedContainer<
620     absl::node_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
621 
622 }  // namespace container_algorithm_internal
623 
624 ABSL_NAMESPACE_END
625 }  // namespace absl
626 
627 #endif  // ABSL_CONTAINER_NODE_HASH_MAP_H_
628