• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_set<T>` is an unordered associative container designed to
20 // be a more efficient replacement for `std::unordered_set`. Like
21 // `unordered_set`, search, insertion, and deletion of set elements can be done
22 // as an `O(1)` operation. However, `node_hash_set` (and other unordered
23 // associative containers known as the collection of Abseil "Swiss tables")
24 // contain other optimizations that result in both memory and computation
25 // advantages.
26 //
27 // In most cases, your default choice for a hash table should be a map of type
28 // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
29 // pointer stability, a `node_hash_set` should be your preferred choice. As
30 // well, if you are migrating your code from using `std::unordered_set`, a
31 // `node_hash_set` should be an easy migration. Consider migrating to
32 // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
33 // upon further review.
34 
35 #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
36 #define ABSL_CONTAINER_NODE_HASH_SET_H_
37 
38 #include <cstddef>
39 #include <memory>
40 #include <type_traits>
41 
42 #include "absl/algorithm/container.h"
43 #include "absl/container/hash_container_defaults.h"
44 #include "absl/container/internal/container_memory.h"
45 #include "absl/container/internal/node_slot_policy.h"
46 #include "absl/container/internal/raw_hash_set.h"  // IWYU pragma: export
47 #include "absl/memory/memory.h"
48 
49 namespace absl {
50 ABSL_NAMESPACE_BEGIN
51 namespace container_internal {
52 template <typename T>
53 struct NodeHashSetPolicy;
54 }  // namespace container_internal
55 
56 // -----------------------------------------------------------------------------
57 // absl::node_hash_set
58 // -----------------------------------------------------------------------------
59 //
60 // An `absl::node_hash_set<T>` is an unordered associative container which
61 // has been optimized for both speed and memory footprint in most common use
62 // cases. Its interface is similar to that of `std::unordered_set<T>` with the
63 // following notable differences:
64 //
65 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
66 //   `insert()`, provided that the set is provided a compatible heterogeneous
67 //   hashing function and equality operator. See below for details.
68 // * Contains a `capacity()` member function indicating the number of element
69 //   slots (open, deleted, and empty) within the hash set.
70 // * Returns `void` from the `erase(iterator)` overload.
71 //
72 // By default, `node_hash_set` uses the `absl::Hash` hashing framework.
73 // All fundamental and Abseil types that support the `absl::Hash` framework have
74 // a compatible equality operator for comparing insertions into `node_hash_set`.
75 // If your type is not yet supported by the `absl::Hash` framework, see
76 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
77 // types.
78 //
79 // Using `absl::node_hash_set` at interface boundaries in dynamically loaded
80 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
81 // be randomized across dynamically loaded libraries.
82 //
83 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
84 // parameters can be used or `T` should have public inner types
85 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
86 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
87 // well-formed. Both types are basically functors:
88 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
89 // for the given `val`.
90 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
91 // if `lhs` is equal to `rhs`.
92 //
93 // In most cases `T` needs only to provide the `absl_container_hash`. In this
94 // case `std::equal_to<void>` will be used instead of `eq` part.
95 //
96 // Example:
97 //
98 //   // Create a node hash set of three strings
99 //   absl::node_hash_set<std::string> ducks =
100 //     {"huey", "dewey", "louie"};
101 //
102 //  // Insert a new element into the node hash set
103 //  ducks.insert("donald");
104 //
105 //  // Force a rehash of the node hash set
106 //  ducks.rehash(0);
107 //
108 //  // See if "dewey" is present
109 //  if (ducks.contains("dewey")) {
110 //    std::cout << "We found dewey!" << std::endl;
111 //  }
112 template <class T, class Hash = DefaultHashContainerHash<T>,
113           class Eq = DefaultHashContainerEq<T>, class Alloc = std::allocator<T>>
114 class node_hash_set
115     : public absl::container_internal::raw_hash_set<
116           absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
117   using Base = typename node_hash_set::raw_hash_set;
118 
119  public:
120   // Constructors and Assignment Operators
121   //
122   // A node_hash_set supports the same overload set as `std::unordered_set`
123   // for construction and assignment:
124   //
125   // *  Default constructor
126   //
127   //    // No allocation for the table's elements is made.
128   //    absl::node_hash_set<std::string> set1;
129   //
130   // * Initializer List constructor
131   //
132   //   absl::node_hash_set<std::string> set2 =
133   //       {{"huey"}, {"dewey"}, {"louie"}};
134   //
135   // * Copy constructor
136   //
137   //   absl::node_hash_set<std::string> set3(set2);
138   //
139   // * Copy assignment operator
140   //
141   //  // Hash functor and Comparator are copied as well
142   //  absl::node_hash_set<std::string> set4;
143   //  set4 = set3;
144   //
145   // * Move constructor
146   //
147   //   // Move is guaranteed efficient
148   //   absl::node_hash_set<std::string> set5(std::move(set4));
149   //
150   // * Move assignment operator
151   //
152   //   // May be efficient if allocators are compatible
153   //   absl::node_hash_set<std::string> set6;
154   //   set6 = std::move(set5);
155   //
156   // * Range constructor
157   //
158   //   std::vector<std::string> v = {"a", "b"};
159   //   absl::node_hash_set<std::string> set7(v.begin(), v.end());
node_hash_set()160   node_hash_set() {}
161   using Base::Base;
162 
163   // node_hash_set::begin()
164   //
165   // Returns an iterator to the beginning of the `node_hash_set`.
166   using Base::begin;
167 
168   // node_hash_set::cbegin()
169   //
170   // Returns a const iterator to the beginning of the `node_hash_set`.
171   using Base::cbegin;
172 
173   // node_hash_set::cend()
174   //
175   // Returns a const iterator to the end of the `node_hash_set`.
176   using Base::cend;
177 
178   // node_hash_set::end()
179   //
180   // Returns an iterator to the end of the `node_hash_set`.
181   using Base::end;
182 
183   // node_hash_set::capacity()
184   //
185   // Returns the number of element slots (assigned, deleted, and empty)
186   // available within the `node_hash_set`.
187   //
188   // NOTE: this member function is particular to `absl::node_hash_set` and is
189   // not provided in the `std::unordered_set` API.
190   using Base::capacity;
191 
192   // node_hash_set::empty()
193   //
194   // Returns whether or not the `node_hash_set` is empty.
195   using Base::empty;
196 
197   // node_hash_set::max_size()
198   //
199   // Returns the largest theoretical possible number of elements within a
200   // `node_hash_set` under current memory constraints. This value can be thought
201   // of the largest value of `std::distance(begin(), end())` for a
202   // `node_hash_set<T>`.
203   using Base::max_size;
204 
205   // node_hash_set::size()
206   //
207   // Returns the number of elements currently within the `node_hash_set`.
208   using Base::size;
209 
210   // node_hash_set::clear()
211   //
212   // Removes all elements from the `node_hash_set`. Invalidates any references,
213   // pointers, or iterators referring to contained elements.
214   //
215   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
216   // the underlying buffer call `erase(begin(), end())`.
217   using Base::clear;
218 
219   // node_hash_set::erase()
220   //
221   // Erases elements within the `node_hash_set`. Erasing does not trigger a
222   // rehash. Overloads are listed below.
223   //
224   // void erase(const_iterator pos):
225   //
226   //   Erases the element at `position` of the `node_hash_set`, returning
227   //   `void`.
228   //
229   //   NOTE: this return behavior is different than that of STL containers in
230   //   general and `std::unordered_set` in particular.
231   //
232   // iterator erase(const_iterator first, const_iterator last):
233   //
234   //   Erases the elements in the open interval [`first`, `last`), returning an
235   //   iterator pointing to `last`. The special case of calling
236   //   `erase(begin(), end())` resets the reserved growth such that if
237   //   `reserve(N)` has previously been called and there has been no intervening
238   //   call to `clear()`, then after calling `erase(begin(), end())`, it is safe
239   //   to assume that inserting N elements will not cause a rehash.
240   //
241   // size_type erase(const key_type& key):
242   //
243   //   Erases the element with the matching key, if it exists, returning the
244   //   number of elements erased (0 or 1).
245   using Base::erase;
246 
247   // node_hash_set::insert()
248   //
249   // Inserts an element of the specified value into the `node_hash_set`,
250   // returning an iterator pointing to the newly inserted element, provided that
251   // an element with the given key does not already exist. If rehashing occurs
252   // due to the insertion, all iterators are invalidated. Overloads are listed
253   // below.
254   //
255   // std::pair<iterator,bool> insert(const T& value):
256   //
257   //   Inserts a value into the `node_hash_set`. Returns a pair consisting of an
258   //   iterator to the inserted element (or to the element that prevented the
259   //   insertion) and a bool denoting whether the insertion took place.
260   //
261   // std::pair<iterator,bool> insert(T&& value):
262   //
263   //   Inserts a moveable value into the `node_hash_set`. Returns a pair
264   //   consisting of an iterator to the inserted element (or to the element that
265   //   prevented the insertion) and a bool denoting whether the insertion took
266   //   place.
267   //
268   // iterator insert(const_iterator hint, const T& value):
269   // iterator insert(const_iterator hint, T&& value):
270   //
271   //   Inserts a value, using the position of `hint` as a non-binding suggestion
272   //   for where to begin the insertion search. Returns an iterator to the
273   //   inserted element, or to the existing element that prevented the
274   //   insertion.
275   //
276   // void insert(InputIterator first, InputIterator last):
277   //
278   //   Inserts a range of values [`first`, `last`).
279   //
280   //   NOTE: Although the STL does not specify which element may be inserted if
281   //   multiple keys compare equivalently, for `node_hash_set` we guarantee the
282   //   first match is inserted.
283   //
284   // void insert(std::initializer_list<T> ilist):
285   //
286   //   Inserts the elements within the initializer list `ilist`.
287   //
288   //   NOTE: Although the STL does not specify which element may be inserted if
289   //   multiple keys compare equivalently within the initializer list, for
290   //   `node_hash_set` we guarantee the first match is inserted.
291   using Base::insert;
292 
293   // node_hash_set::emplace()
294   //
295   // Inserts an element of the specified value by constructing it in-place
296   // within the `node_hash_set`, provided that no element with the given key
297   // already exists.
298   //
299   // The element may be constructed even if there already is an element with the
300   // key in the container, in which case the newly constructed element will be
301   // destroyed immediately.
302   //
303   // If rehashing occurs due to the insertion, all iterators are invalidated.
304   using Base::emplace;
305 
306   // node_hash_set::emplace_hint()
307   //
308   // Inserts an element of the specified value by constructing it in-place
309   // within the `node_hash_set`, using the position of `hint` as a non-binding
310   // suggestion for where to begin the insertion search, and only inserts
311   // provided that no element with the given key already exists.
312   //
313   // The element may be constructed even if there already is an element with the
314   // key in the container, in which case the newly constructed element will be
315   // destroyed immediately.
316   //
317   // If rehashing occurs due to the insertion, all iterators are invalidated.
318   using Base::emplace_hint;
319 
320   // node_hash_set::extract()
321   //
322   // Extracts the indicated element, erasing it in the process, and returns it
323   // as a C++17-compatible node handle. Overloads are listed below.
324   //
325   // node_type extract(const_iterator position):
326   //
327   //   Extracts the element at the indicated position and returns a node handle
328   //   owning that extracted data.
329   //
330   // node_type extract(const key_type& x):
331   //
332   //   Extracts the element with the key matching the passed key value and
333   //   returns a node handle owning that extracted data. If the `node_hash_set`
334   //   does not contain an element with a matching key, this function returns an
335   // empty node handle.
336   using Base::extract;
337 
338   // node_hash_set::merge()
339   //
340   // Extracts elements from a given `source` node hash set into this
341   // `node_hash_set`. If the destination `node_hash_set` already contains an
342   // element with an equivalent key, that element is not extracted.
343   using Base::merge;
344 
345   // node_hash_set::swap(node_hash_set& other)
346   //
347   // Exchanges the contents of this `node_hash_set` with those of the `other`
348   // node hash set, avoiding invocation of any move, copy, or swap operations on
349   // individual elements.
350   //
351   // All iterators and references on the `node_hash_set` remain valid, excepting
352   // for the past-the-end iterator, which is invalidated.
353   //
354   // `swap()` requires that the node hash set's hashing and key equivalence
355   // functions be Swappable, and are exchanged using unqualified calls to
356   // non-member `swap()`. If the set's allocator has
357   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
358   // set to `true`, the allocators are also exchanged using an unqualified call
359   // to non-member `swap()`; otherwise, the allocators are not swapped.
360   using Base::swap;
361 
362   // node_hash_set::rehash(count)
363   //
364   // Rehashes the `node_hash_set`, setting the number of slots to be at least
365   // the passed value. If the new number of slots increases the load factor more
366   // than the current maximum load factor
367   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
368   // will be at least `size()` / `max_load_factor()`.
369   //
370   // To force a rehash, pass rehash(0).
371   //
372   // NOTE: unlike behavior in `std::unordered_set`, references are also
373   // invalidated upon a `rehash()`.
374   using Base::rehash;
375 
376   // node_hash_set::reserve(count)
377   //
378   // Sets the number of slots in the `node_hash_set` to the number needed to
379   // accommodate at least `count` total elements without exceeding the current
380   // maximum load factor, and may rehash the container if needed.
381   using Base::reserve;
382 
383   // node_hash_set::contains()
384   //
385   // Determines whether an element comparing equal to the given `key` exists
386   // within the `node_hash_set`, returning `true` if so or `false` otherwise.
387   using Base::contains;
388 
389   // node_hash_set::count(const Key& key) const
390   //
391   // Returns the number of elements comparing equal to the given `key` within
392   // the `node_hash_set`. note that this function will return either `1` or `0`
393   // since duplicate elements are not allowed within a `node_hash_set`.
394   using Base::count;
395 
396   // node_hash_set::equal_range()
397   //
398   // Returns a closed range [first, last], defined by a `std::pair` of two
399   // iterators, containing all elements with the passed key in the
400   // `node_hash_set`.
401   using Base::equal_range;
402 
403   // node_hash_set::find()
404   //
405   // Finds an element with the passed `key` within the `node_hash_set`.
406   using Base::find;
407 
408   // node_hash_set::bucket_count()
409   //
410   // Returns the number of "buckets" within the `node_hash_set`. Note that
411   // because a node hash set contains all elements within its internal storage,
412   // this value simply equals the current capacity of the `node_hash_set`.
413   using Base::bucket_count;
414 
415   // node_hash_set::load_factor()
416   //
417   // Returns the current load factor of the `node_hash_set` (the average number
418   // of slots occupied with a value within the hash set).
419   using Base::load_factor;
420 
421   // node_hash_set::max_load_factor()
422   //
423   // Manages the maximum load factor of the `node_hash_set`. Overloads are
424   // listed below.
425   //
426   // float node_hash_set::max_load_factor()
427   //
428   //   Returns the current maximum load factor of the `node_hash_set`.
429   //
430   // void node_hash_set::max_load_factor(float ml)
431   //
432   //   Sets the maximum load factor of the `node_hash_set` to the passed value.
433   //
434   //   NOTE: This overload is provided only for API compatibility with the STL;
435   //   `node_hash_set` will ignore any set load factor and manage its rehashing
436   //   internally as an implementation detail.
437   using Base::max_load_factor;
438 
439   // node_hash_set::get_allocator()
440   //
441   // Returns the allocator function associated with this `node_hash_set`.
442   using Base::get_allocator;
443 
444   // node_hash_set::hash_function()
445   //
446   // Returns the hashing function used to hash the keys within this
447   // `node_hash_set`.
448   using Base::hash_function;
449 
450   // node_hash_set::key_eq()
451   //
452   // Returns the function used for comparing keys equality.
453   using Base::key_eq;
454 };
455 
456 // erase_if(node_hash_set<>, Pred)
457 //
458 // Erases all elements that satisfy the predicate `pred` from the container `c`.
459 // Returns the number of erased elements.
460 template <typename T, typename H, typename E, typename A, typename Predicate>
erase_if(node_hash_set<T,H,E,A> & c,Predicate pred)461 typename node_hash_set<T, H, E, A>::size_type erase_if(
462     node_hash_set<T, H, E, A>& c, Predicate pred) {
463   return container_internal::EraseIf(pred, &c);
464 }
465 
466 namespace container_internal {
467 
468 template <class T>
469 struct NodeHashSetPolicy
470     : absl::container_internal::node_slot_policy<T&, NodeHashSetPolicy<T>> {
471   using key_type = T;
472   using init_type = T;
473   using constant_iterators = std::true_type;
474 
475   template <class Allocator, class... Args>
new_elementNodeHashSetPolicy476   static T* new_element(Allocator* alloc, Args&&... args) {
477     using ValueAlloc =
478         typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
479     ValueAlloc value_alloc(*alloc);
480     T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
481     absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
482                                                   std::forward<Args>(args)...);
483     return res;
484   }
485 
486   template <class Allocator>
delete_elementNodeHashSetPolicy487   static void delete_element(Allocator* alloc, T* elem) {
488     using ValueAlloc =
489         typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
490     ValueAlloc value_alloc(*alloc);
491     absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
492     absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
493   }
494 
495   template <class F, class... Args>
decltypeNodeHashSetPolicy496   static decltype(absl::container_internal::DecomposeValue(
497       std::declval<F>(), std::declval<Args>()...))
498   apply(F&& f, Args&&... args) {
499     return absl::container_internal::DecomposeValue(
500         std::forward<F>(f), std::forward<Args>(args)...);
501   }
502 
element_space_usedNodeHashSetPolicy503   static size_t element_space_used(const T*) { return sizeof(T); }
504 
505   template <class Hash>
get_hash_slot_fnNodeHashSetPolicy506   static constexpr HashSlotFn get_hash_slot_fn() {
507     return &TypeErasedDerefAndApplyToSlotFn<Hash, T>;
508   }
509 };
510 }  // namespace container_internal
511 
512 namespace container_algorithm_internal {
513 
514 // Specialization of trait in absl/algorithm/container.h
515 template <class Key, class Hash, class KeyEqual, class Allocator>
516 struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
517     : std::true_type {};
518 
519 }  // namespace container_algorithm_internal
520 ABSL_NAMESPACE_END
521 }  // namespace absl
522 
523 #endif  // ABSL_CONTAINER_NODE_HASH_SET_H_
524