1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_set<T>` is an unordered associative container designed to
20 // be a more efficient replacement for `std::unordered_set`. Like
21 // `unordered_set`, search, insertion, and deletion of set elements can be done
22 // as an `O(1)` operation. However, `node_hash_set` (and other unordered
23 // associative containers known as the collection of Abseil "Swiss tables")
24 // contain other optimizations that result in both memory and computation
25 // advantages.
26 //
27 // In most cases, your default choice for a hash table should be a map of type
28 // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
29 // pointer stability, a `node_hash_set` should be your preferred choice. As
30 // well, if you are migrating your code from using `std::unordered_set`, a
31 // `node_hash_set` should be an easy migration. Consider migrating to
32 // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
33 // upon further review.
34
35 #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
36 #define ABSL_CONTAINER_NODE_HASH_SET_H_
37
38 #include <cstddef>
39 #include <memory>
40 #include <type_traits>
41
42 #include "absl/algorithm/container.h"
43 #include "absl/container/hash_container_defaults.h"
44 #include "absl/container/internal/container_memory.h"
45 #include "absl/container/internal/node_slot_policy.h"
46 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
47 #include "absl/memory/memory.h"
48
49 namespace absl {
50 ABSL_NAMESPACE_BEGIN
51 namespace container_internal {
52 template <typename T>
53 struct NodeHashSetPolicy;
54 } // namespace container_internal
55
56 // -----------------------------------------------------------------------------
57 // absl::node_hash_set
58 // -----------------------------------------------------------------------------
59 //
60 // An `absl::node_hash_set<T>` is an unordered associative container which
61 // has been optimized for both speed and memory footprint in most common use
62 // cases. Its interface is similar to that of `std::unordered_set<T>` with the
63 // following notable differences:
64 //
65 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
66 // `insert()`, provided that the set is provided a compatible heterogeneous
67 // hashing function and equality operator. See below for details.
68 // * Contains a `capacity()` member function indicating the number of element
69 // slots (open, deleted, and empty) within the hash set.
70 // * Returns `void` from the `erase(iterator)` overload.
71 //
72 // By default, `node_hash_set` uses the `absl::Hash` hashing framework.
73 // All fundamental and Abseil types that support the `absl::Hash` framework have
74 // a compatible equality operator for comparing insertions into `node_hash_set`.
75 // If your type is not yet supported by the `absl::Hash` framework, see
76 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
77 // types.
78 //
79 // Using `absl::node_hash_set` at interface boundaries in dynamically loaded
80 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
81 // be randomized across dynamically loaded libraries.
82 //
83 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
84 // parameters can be used or `T` should have public inner types
85 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
86 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
87 // well-formed. Both types are basically functors:
88 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
89 // for the given `val`.
90 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
91 // if `lhs` is equal to `rhs`.
92 //
93 // In most cases `T` needs only to provide the `absl_container_hash`. In this
94 // case `std::equal_to<void>` will be used instead of `eq` part.
95 //
96 // Example:
97 //
98 // // Create a node hash set of three strings
99 // absl::node_hash_set<std::string> ducks =
100 // {"huey", "dewey", "louie"};
101 //
102 // // Insert a new element into the node hash set
103 // ducks.insert("donald");
104 //
105 // // Force a rehash of the node hash set
106 // ducks.rehash(0);
107 //
108 // // See if "dewey" is present
109 // if (ducks.contains("dewey")) {
110 // std::cout << "We found dewey!" << std::endl;
111 // }
112 template <class T, class Hash = DefaultHashContainerHash<T>,
113 class Eq = DefaultHashContainerEq<T>, class Alloc = std::allocator<T>>
114 class node_hash_set
115 : public absl::container_internal::raw_hash_set<
116 absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
117 using Base = typename node_hash_set::raw_hash_set;
118
119 public:
120 // Constructors and Assignment Operators
121 //
122 // A node_hash_set supports the same overload set as `std::unordered_set`
123 // for construction and assignment:
124 //
125 // * Default constructor
126 //
127 // // No allocation for the table's elements is made.
128 // absl::node_hash_set<std::string> set1;
129 //
130 // * Initializer List constructor
131 //
132 // absl::node_hash_set<std::string> set2 =
133 // {{"huey"}, {"dewey"}, {"louie"}};
134 //
135 // * Copy constructor
136 //
137 // absl::node_hash_set<std::string> set3(set2);
138 //
139 // * Copy assignment operator
140 //
141 // // Hash functor and Comparator are copied as well
142 // absl::node_hash_set<std::string> set4;
143 // set4 = set3;
144 //
145 // * Move constructor
146 //
147 // // Move is guaranteed efficient
148 // absl::node_hash_set<std::string> set5(std::move(set4));
149 //
150 // * Move assignment operator
151 //
152 // // May be efficient if allocators are compatible
153 // absl::node_hash_set<std::string> set6;
154 // set6 = std::move(set5);
155 //
156 // * Range constructor
157 //
158 // std::vector<std::string> v = {"a", "b"};
159 // absl::node_hash_set<std::string> set7(v.begin(), v.end());
node_hash_set()160 node_hash_set() {}
161 using Base::Base;
162
163 // node_hash_set::begin()
164 //
165 // Returns an iterator to the beginning of the `node_hash_set`.
166 using Base::begin;
167
168 // node_hash_set::cbegin()
169 //
170 // Returns a const iterator to the beginning of the `node_hash_set`.
171 using Base::cbegin;
172
173 // node_hash_set::cend()
174 //
175 // Returns a const iterator to the end of the `node_hash_set`.
176 using Base::cend;
177
178 // node_hash_set::end()
179 //
180 // Returns an iterator to the end of the `node_hash_set`.
181 using Base::end;
182
183 // node_hash_set::capacity()
184 //
185 // Returns the number of element slots (assigned, deleted, and empty)
186 // available within the `node_hash_set`.
187 //
188 // NOTE: this member function is particular to `absl::node_hash_set` and is
189 // not provided in the `std::unordered_set` API.
190 using Base::capacity;
191
192 // node_hash_set::empty()
193 //
194 // Returns whether or not the `node_hash_set` is empty.
195 using Base::empty;
196
197 // node_hash_set::max_size()
198 //
199 // Returns the largest theoretical possible number of elements within a
200 // `node_hash_set` under current memory constraints. This value can be thought
201 // of the largest value of `std::distance(begin(), end())` for a
202 // `node_hash_set<T>`.
203 using Base::max_size;
204
205 // node_hash_set::size()
206 //
207 // Returns the number of elements currently within the `node_hash_set`.
208 using Base::size;
209
210 // node_hash_set::clear()
211 //
212 // Removes all elements from the `node_hash_set`. Invalidates any references,
213 // pointers, or iterators referring to contained elements.
214 //
215 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
216 // the underlying buffer call `erase(begin(), end())`.
217 using Base::clear;
218
219 // node_hash_set::erase()
220 //
221 // Erases elements within the `node_hash_set`. Erasing does not trigger a
222 // rehash. Overloads are listed below.
223 //
224 // void erase(const_iterator pos):
225 //
226 // Erases the element at `position` of the `node_hash_set`, returning
227 // `void`.
228 //
229 // NOTE: this return behavior is different than that of STL containers in
230 // general and `std::unordered_set` in particular.
231 //
232 // iterator erase(const_iterator first, const_iterator last):
233 //
234 // Erases the elements in the open interval [`first`, `last`), returning an
235 // iterator pointing to `last`. The special case of calling
236 // `erase(begin(), end())` resets the reserved growth such that if
237 // `reserve(N)` has previously been called and there has been no intervening
238 // call to `clear()`, then after calling `erase(begin(), end())`, it is safe
239 // to assume that inserting N elements will not cause a rehash.
240 //
241 // size_type erase(const key_type& key):
242 //
243 // Erases the element with the matching key, if it exists, returning the
244 // number of elements erased (0 or 1).
245 using Base::erase;
246
247 // node_hash_set::insert()
248 //
249 // Inserts an element of the specified value into the `node_hash_set`,
250 // returning an iterator pointing to the newly inserted element, provided that
251 // an element with the given key does not already exist. If rehashing occurs
252 // due to the insertion, all iterators are invalidated. Overloads are listed
253 // below.
254 //
255 // std::pair<iterator,bool> insert(const T& value):
256 //
257 // Inserts a value into the `node_hash_set`. Returns a pair consisting of an
258 // iterator to the inserted element (or to the element that prevented the
259 // insertion) and a bool denoting whether the insertion took place.
260 //
261 // std::pair<iterator,bool> insert(T&& value):
262 //
263 // Inserts a moveable value into the `node_hash_set`. Returns a pair
264 // consisting of an iterator to the inserted element (or to the element that
265 // prevented the insertion) and a bool denoting whether the insertion took
266 // place.
267 //
268 // iterator insert(const_iterator hint, const T& value):
269 // iterator insert(const_iterator hint, T&& value):
270 //
271 // Inserts a value, using the position of `hint` as a non-binding suggestion
272 // for where to begin the insertion search. Returns an iterator to the
273 // inserted element, or to the existing element that prevented the
274 // insertion.
275 //
276 // void insert(InputIterator first, InputIterator last):
277 //
278 // Inserts a range of values [`first`, `last`).
279 //
280 // NOTE: Although the STL does not specify which element may be inserted if
281 // multiple keys compare equivalently, for `node_hash_set` we guarantee the
282 // first match is inserted.
283 //
284 // void insert(std::initializer_list<T> ilist):
285 //
286 // Inserts the elements within the initializer list `ilist`.
287 //
288 // NOTE: Although the STL does not specify which element may be inserted if
289 // multiple keys compare equivalently within the initializer list, for
290 // `node_hash_set` we guarantee the first match is inserted.
291 using Base::insert;
292
293 // node_hash_set::emplace()
294 //
295 // Inserts an element of the specified value by constructing it in-place
296 // within the `node_hash_set`, provided that no element with the given key
297 // already exists.
298 //
299 // The element may be constructed even if there already is an element with the
300 // key in the container, in which case the newly constructed element will be
301 // destroyed immediately.
302 //
303 // If rehashing occurs due to the insertion, all iterators are invalidated.
304 using Base::emplace;
305
306 // node_hash_set::emplace_hint()
307 //
308 // Inserts an element of the specified value by constructing it in-place
309 // within the `node_hash_set`, using the position of `hint` as a non-binding
310 // suggestion for where to begin the insertion search, and only inserts
311 // provided that no element with the given key already exists.
312 //
313 // The element may be constructed even if there already is an element with the
314 // key in the container, in which case the newly constructed element will be
315 // destroyed immediately.
316 //
317 // If rehashing occurs due to the insertion, all iterators are invalidated.
318 using Base::emplace_hint;
319
320 // node_hash_set::extract()
321 //
322 // Extracts the indicated element, erasing it in the process, and returns it
323 // as a C++17-compatible node handle. Overloads are listed below.
324 //
325 // node_type extract(const_iterator position):
326 //
327 // Extracts the element at the indicated position and returns a node handle
328 // owning that extracted data.
329 //
330 // node_type extract(const key_type& x):
331 //
332 // Extracts the element with the key matching the passed key value and
333 // returns a node handle owning that extracted data. If the `node_hash_set`
334 // does not contain an element with a matching key, this function returns an
335 // empty node handle.
336 using Base::extract;
337
338 // node_hash_set::merge()
339 //
340 // Extracts elements from a given `source` node hash set into this
341 // `node_hash_set`. If the destination `node_hash_set` already contains an
342 // element with an equivalent key, that element is not extracted.
343 using Base::merge;
344
345 // node_hash_set::swap(node_hash_set& other)
346 //
347 // Exchanges the contents of this `node_hash_set` with those of the `other`
348 // node hash set, avoiding invocation of any move, copy, or swap operations on
349 // individual elements.
350 //
351 // All iterators and references on the `node_hash_set` remain valid, excepting
352 // for the past-the-end iterator, which is invalidated.
353 //
354 // `swap()` requires that the node hash set's hashing and key equivalence
355 // functions be Swappable, and are exchanged using unqualified calls to
356 // non-member `swap()`. If the set's allocator has
357 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
358 // set to `true`, the allocators are also exchanged using an unqualified call
359 // to non-member `swap()`; otherwise, the allocators are not swapped.
360 using Base::swap;
361
362 // node_hash_set::rehash(count)
363 //
364 // Rehashes the `node_hash_set`, setting the number of slots to be at least
365 // the passed value. If the new number of slots increases the load factor more
366 // than the current maximum load factor
367 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
368 // will be at least `size()` / `max_load_factor()`.
369 //
370 // To force a rehash, pass rehash(0).
371 //
372 // NOTE: unlike behavior in `std::unordered_set`, references are also
373 // invalidated upon a `rehash()`.
374 using Base::rehash;
375
376 // node_hash_set::reserve(count)
377 //
378 // Sets the number of slots in the `node_hash_set` to the number needed to
379 // accommodate at least `count` total elements without exceeding the current
380 // maximum load factor, and may rehash the container if needed.
381 using Base::reserve;
382
383 // node_hash_set::contains()
384 //
385 // Determines whether an element comparing equal to the given `key` exists
386 // within the `node_hash_set`, returning `true` if so or `false` otherwise.
387 using Base::contains;
388
389 // node_hash_set::count(const Key& key) const
390 //
391 // Returns the number of elements comparing equal to the given `key` within
392 // the `node_hash_set`. note that this function will return either `1` or `0`
393 // since duplicate elements are not allowed within a `node_hash_set`.
394 using Base::count;
395
396 // node_hash_set::equal_range()
397 //
398 // Returns a closed range [first, last], defined by a `std::pair` of two
399 // iterators, containing all elements with the passed key in the
400 // `node_hash_set`.
401 using Base::equal_range;
402
403 // node_hash_set::find()
404 //
405 // Finds an element with the passed `key` within the `node_hash_set`.
406 using Base::find;
407
408 // node_hash_set::bucket_count()
409 //
410 // Returns the number of "buckets" within the `node_hash_set`. Note that
411 // because a node hash set contains all elements within its internal storage,
412 // this value simply equals the current capacity of the `node_hash_set`.
413 using Base::bucket_count;
414
415 // node_hash_set::load_factor()
416 //
417 // Returns the current load factor of the `node_hash_set` (the average number
418 // of slots occupied with a value within the hash set).
419 using Base::load_factor;
420
421 // node_hash_set::max_load_factor()
422 //
423 // Manages the maximum load factor of the `node_hash_set`. Overloads are
424 // listed below.
425 //
426 // float node_hash_set::max_load_factor()
427 //
428 // Returns the current maximum load factor of the `node_hash_set`.
429 //
430 // void node_hash_set::max_load_factor(float ml)
431 //
432 // Sets the maximum load factor of the `node_hash_set` to the passed value.
433 //
434 // NOTE: This overload is provided only for API compatibility with the STL;
435 // `node_hash_set` will ignore any set load factor and manage its rehashing
436 // internally as an implementation detail.
437 using Base::max_load_factor;
438
439 // node_hash_set::get_allocator()
440 //
441 // Returns the allocator function associated with this `node_hash_set`.
442 using Base::get_allocator;
443
444 // node_hash_set::hash_function()
445 //
446 // Returns the hashing function used to hash the keys within this
447 // `node_hash_set`.
448 using Base::hash_function;
449
450 // node_hash_set::key_eq()
451 //
452 // Returns the function used for comparing keys equality.
453 using Base::key_eq;
454 };
455
456 // erase_if(node_hash_set<>, Pred)
457 //
458 // Erases all elements that satisfy the predicate `pred` from the container `c`.
459 // Returns the number of erased elements.
460 template <typename T, typename H, typename E, typename A, typename Predicate>
erase_if(node_hash_set<T,H,E,A> & c,Predicate pred)461 typename node_hash_set<T, H, E, A>::size_type erase_if(
462 node_hash_set<T, H, E, A>& c, Predicate pred) {
463 return container_internal::EraseIf(pred, &c);
464 }
465
466 namespace container_internal {
467
468 template <class T>
469 struct NodeHashSetPolicy
470 : absl::container_internal::node_slot_policy<T&, NodeHashSetPolicy<T>> {
471 using key_type = T;
472 using init_type = T;
473 using constant_iterators = std::true_type;
474
475 template <class Allocator, class... Args>
new_elementNodeHashSetPolicy476 static T* new_element(Allocator* alloc, Args&&... args) {
477 using ValueAlloc =
478 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
479 ValueAlloc value_alloc(*alloc);
480 T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
481 absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
482 std::forward<Args>(args)...);
483 return res;
484 }
485
486 template <class Allocator>
delete_elementNodeHashSetPolicy487 static void delete_element(Allocator* alloc, T* elem) {
488 using ValueAlloc =
489 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
490 ValueAlloc value_alloc(*alloc);
491 absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
492 absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
493 }
494
495 template <class F, class... Args>
decltypeNodeHashSetPolicy496 static decltype(absl::container_internal::DecomposeValue(
497 std::declval<F>(), std::declval<Args>()...))
498 apply(F&& f, Args&&... args) {
499 return absl::container_internal::DecomposeValue(
500 std::forward<F>(f), std::forward<Args>(args)...);
501 }
502
element_space_usedNodeHashSetPolicy503 static size_t element_space_used(const T*) { return sizeof(T); }
504
505 template <class Hash>
get_hash_slot_fnNodeHashSetPolicy506 static constexpr HashSlotFn get_hash_slot_fn() {
507 return &TypeErasedDerefAndApplyToSlotFn<Hash, T>;
508 }
509 };
510 } // namespace container_internal
511
512 namespace container_algorithm_internal {
513
514 // Specialization of trait in absl/algorithm/container.h
515 template <class Key, class Hash, class KeyEqual, class Allocator>
516 struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
517 : std::true_type {};
518
519 } // namespace container_algorithm_internal
520 ABSL_NAMESPACE_END
521 } // namespace absl
522
523 #endif // ABSL_CONTAINER_NODE_HASH_SET_H_
524