1 //
2 // Copyright (C) 2014 LunarG, Inc.
3 // Copyright (C) 2015-2018 Google, Inc.
4 //
5 // All rights reserved.
6 //
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions
9 // are met:
10 //
11 // Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 //
14 // Redistributions in binary form must reproduce the above
15 // copyright notice, this list of conditions and the following
16 // disclaimer in the documentation and/or other materials provided
17 // with the distribution.
18 //
19 // Neither the name of 3Dlabs Inc. Ltd. nor the names of its
20 // contributors may be used to endorse or promote products derived
21 // from this software without specific prior written permission.
22 //
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 // POSSIBILITY OF SUCH DAMAGE.
35
36 // SPIRV-IR
37 //
38 // Simple in-memory representation (IR) of SPIRV. Just for holding
39 // Each function's CFG of blocks. Has this hierarchy:
40 // - Module, which is a list of
41 // - Function, which is a list of
42 // - Block, which is a list of
43 // - Instruction
44 //
45
46 #pragma once
47 #ifndef spvIR_H
48 #define spvIR_H
49
50 #include "spirv.hpp"
51
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iostream>
56 #include <memory>
57 #include <vector>
58 #include <set>
59 #include <optional>
60
61 namespace spv {
62
63 class Block;
64 class Function;
65 class Module;
66
67 const Id NoResult = 0;
68 const Id NoType = 0;
69
70 const Decoration NoPrecision = DecorationMax;
71
72 #ifdef __GNUC__
73 # define POTENTIALLY_UNUSED __attribute__((unused))
74 #else
75 # define POTENTIALLY_UNUSED
76 #endif
77
78 POTENTIALLY_UNUSED
79 const MemorySemanticsMask MemorySemanticsAllMemory =
80 (MemorySemanticsMask)(MemorySemanticsUniformMemoryMask |
81 MemorySemanticsWorkgroupMemoryMask |
82 MemorySemanticsAtomicCounterMemoryMask |
83 MemorySemanticsImageMemoryMask);
84
85 struct IdImmediate {
86 bool isId; // true if word is an Id, false if word is an immediate
87 unsigned word;
IdImmediateIdImmediate88 IdImmediate(bool i, unsigned w) : isId(i), word(w) {}
89 };
90
91 //
92 // SPIR-V IR instruction.
93 //
94
95 class Instruction {
96 public:
Instruction(Id resultId,Id typeId,Op opCode)97 Instruction(Id resultId, Id typeId, Op opCode) : resultId(resultId), typeId(typeId), opCode(opCode), block(nullptr) { }
Instruction(Op opCode)98 explicit Instruction(Op opCode) : resultId(NoResult), typeId(NoType), opCode(opCode), block(nullptr) { }
~Instruction()99 virtual ~Instruction() {}
reserveOperands(size_t count)100 void reserveOperands(size_t count) {
101 operands.reserve(count);
102 idOperand.reserve(count);
103 }
addIdOperand(Id id)104 void addIdOperand(Id id) {
105 // ids can't be 0
106 assert(id);
107 operands.push_back(id);
108 idOperand.push_back(true);
109 }
110 // This method is potentially dangerous as it can break assumptions
111 // about SSA and lack of forward references.
setIdOperand(unsigned idx,Id id)112 void setIdOperand(unsigned idx, Id id) {
113 assert(id);
114 assert(idOperand[idx]);
115 operands[idx] = id;
116 }
117
addImmediateOperand(unsigned int immediate)118 void addImmediateOperand(unsigned int immediate) {
119 operands.push_back(immediate);
120 idOperand.push_back(false);
121 }
setImmediateOperand(unsigned idx,unsigned int immediate)122 void setImmediateOperand(unsigned idx, unsigned int immediate) {
123 assert(!idOperand[idx]);
124 operands[idx] = immediate;
125 }
126
addStringOperand(const char * str)127 void addStringOperand(const char* str)
128 {
129 unsigned int word = 0;
130 unsigned int shiftAmount = 0;
131 char c;
132
133 do {
134 c = *(str++);
135 word |= ((unsigned int)c) << shiftAmount;
136 shiftAmount += 8;
137 if (shiftAmount == 32) {
138 addImmediateOperand(word);
139 word = 0;
140 shiftAmount = 0;
141 }
142 } while (c != 0);
143
144 // deal with partial last word
145 if (shiftAmount > 0) {
146 addImmediateOperand(word);
147 }
148 }
isIdOperand(int op)149 bool isIdOperand(int op) const { return idOperand[op]; }
setBlock(Block * b)150 void setBlock(Block* b) { block = b; }
getBlock()151 Block* getBlock() const { return block; }
getOpCode()152 Op getOpCode() const { return opCode; }
getNumOperands()153 int getNumOperands() const
154 {
155 assert(operands.size() == idOperand.size());
156 return (int)operands.size();
157 }
getResultId()158 Id getResultId() const { return resultId; }
getTypeId()159 Id getTypeId() const { return typeId; }
getIdOperand(int op)160 Id getIdOperand(int op) const {
161 assert(idOperand[op]);
162 return operands[op];
163 }
getImmediateOperand(int op)164 unsigned int getImmediateOperand(int op) const {
165 assert(!idOperand[op]);
166 return operands[op];
167 }
168
169 // Write out the binary form.
dump(std::vector<unsigned int> & out)170 void dump(std::vector<unsigned int>& out) const
171 {
172 // Compute the wordCount
173 unsigned int wordCount = 1;
174 if (typeId)
175 ++wordCount;
176 if (resultId)
177 ++wordCount;
178 wordCount += (unsigned int)operands.size();
179
180 // Write out the beginning of the instruction
181 out.push_back(((wordCount) << WordCountShift) | opCode);
182 if (typeId)
183 out.push_back(typeId);
184 if (resultId)
185 out.push_back(resultId);
186
187 // Write out the operands
188 for (int op = 0; op < (int)operands.size(); ++op)
189 out.push_back(operands[op]);
190 }
191
192 protected:
193 Instruction(const Instruction&);
194 Id resultId;
195 Id typeId;
196 Op opCode;
197 std::vector<Id> operands; // operands, both <id> and immediates (both are unsigned int)
198 std::vector<bool> idOperand; // true for operands that are <id>, false for immediates
199 Block* block;
200 };
201
202 //
203 // SPIR-V IR block.
204 //
205
206 struct DebugSourceLocation {
207 int line;
208 int column;
209 spv::Id fileId;
210 };
211
212 class Block {
213 public:
214 Block(Id id, Function& parent);
~Block()215 virtual ~Block()
216 {
217 }
218
getId()219 Id getId() { return instructions.front()->getResultId(); }
220
getParent()221 Function& getParent() const { return parent; }
222 // Returns true if the source location is actually updated.
223 // Note we still need the builder to insert the line marker instruction. This is just a tracker.
updateDebugSourceLocation(int line,int column,spv::Id fileId)224 bool updateDebugSourceLocation(int line, int column, spv::Id fileId) {
225 if (currentSourceLoc && currentSourceLoc->line == line && currentSourceLoc->column == column &&
226 currentSourceLoc->fileId == fileId) {
227 return false;
228 }
229
230 currentSourceLoc = DebugSourceLocation{line, column, fileId};
231 return true;
232 }
233 // Returns true if the scope is actually updated.
234 // Note we still need the builder to insert the debug scope instruction. This is just a tracker.
updateDebugScope(spv::Id scopeId)235 bool updateDebugScope(spv::Id scopeId) {
236 assert(scopeId);
237 if (currentDebugScope && *currentDebugScope == scopeId) {
238 return false;
239 }
240
241 currentDebugScope = scopeId;
242 return true;
243 }
244 void addInstruction(std::unique_ptr<Instruction> inst);
addPredecessor(Block * pred)245 void addPredecessor(Block* pred) { predecessors.push_back(pred); pred->successors.push_back(this);}
addLocalVariable(std::unique_ptr<Instruction> inst)246 void addLocalVariable(std::unique_ptr<Instruction> inst) { localVariables.push_back(std::move(inst)); }
getPredecessors()247 const std::vector<Block*>& getPredecessors() const { return predecessors; }
getSuccessors()248 const std::vector<Block*>& getSuccessors() const { return successors; }
getInstructions()249 std::vector<std::unique_ptr<Instruction> >& getInstructions() {
250 return instructions;
251 }
getLocalVariables()252 const std::vector<std::unique_ptr<Instruction> >& getLocalVariables() const { return localVariables; }
setUnreachable()253 void setUnreachable() { unreachable = true; }
isUnreachable()254 bool isUnreachable() const { return unreachable; }
255 // Returns the block's merge instruction, if one exists (otherwise null).
getMergeInstruction()256 const Instruction* getMergeInstruction() const {
257 if (instructions.size() < 2) return nullptr;
258 const Instruction* nextToLast = (instructions.cend() - 2)->get();
259 switch (nextToLast->getOpCode()) {
260 case OpSelectionMerge:
261 case OpLoopMerge:
262 return nextToLast;
263 default:
264 return nullptr;
265 }
266 return nullptr;
267 }
268
269 // Change this block into a canonical dead merge block. Delete instructions
270 // as necessary. A canonical dead merge block has only an OpLabel and an
271 // OpUnreachable.
rewriteAsCanonicalUnreachableMerge()272 void rewriteAsCanonicalUnreachableMerge() {
273 assert(localVariables.empty());
274 // Delete all instructions except for the label.
275 assert(instructions.size() > 0);
276 instructions.resize(1);
277 successors.clear();
278 addInstruction(std::unique_ptr<Instruction>(new Instruction(OpUnreachable)));
279 }
280 // Change this block into a canonical dead continue target branching to the
281 // given header ID. Delete instructions as necessary. A canonical dead continue
282 // target has only an OpLabel and an unconditional branch back to the corresponding
283 // header.
rewriteAsCanonicalUnreachableContinue(Block * header)284 void rewriteAsCanonicalUnreachableContinue(Block* header) {
285 assert(localVariables.empty());
286 // Delete all instructions except for the label.
287 assert(instructions.size() > 0);
288 instructions.resize(1);
289 successors.clear();
290 // Add OpBranch back to the header.
291 assert(header != nullptr);
292 Instruction* branch = new Instruction(OpBranch);
293 branch->addIdOperand(header->getId());
294 addInstruction(std::unique_ptr<Instruction>(branch));
295 successors.push_back(header);
296 }
297
isTerminated()298 bool isTerminated() const
299 {
300 switch (instructions.back()->getOpCode()) {
301 case OpBranch:
302 case OpBranchConditional:
303 case OpSwitch:
304 case OpKill:
305 case OpTerminateInvocation:
306 case OpReturn:
307 case OpReturnValue:
308 case OpUnreachable:
309 return true;
310 default:
311 return false;
312 }
313 }
314
dump(std::vector<unsigned int> & out)315 void dump(std::vector<unsigned int>& out) const
316 {
317 instructions[0]->dump(out);
318 for (int i = 0; i < (int)localVariables.size(); ++i)
319 localVariables[i]->dump(out);
320 for (int i = 1; i < (int)instructions.size(); ++i)
321 instructions[i]->dump(out);
322 }
323
324 protected:
325 Block(const Block&);
326 Block& operator=(Block&);
327
328 // To enforce keeping parent and ownership in sync:
329 friend Function;
330
331 std::vector<std::unique_ptr<Instruction> > instructions;
332 std::vector<Block*> predecessors, successors;
333 std::vector<std::unique_ptr<Instruction> > localVariables;
334 Function& parent;
335
336 // Track source location of the last source location marker instruction.
337 std::optional<DebugSourceLocation> currentSourceLoc;
338
339 // Track scope of the last debug scope instruction.
340 std::optional<spv::Id> currentDebugScope;
341
342 // track whether this block is known to be uncreachable (not necessarily
343 // true for all unreachable blocks, but should be set at least
344 // for the extraneous ones introduced by the builder).
345 bool unreachable;
346 };
347
348 // The different reasons for reaching a block in the inReadableOrder traversal.
349 enum ReachReason {
350 // Reachable from the entry block via transfers of control, i.e. branches.
351 ReachViaControlFlow = 0,
352 // A continue target that is not reachable via control flow.
353 ReachDeadContinue,
354 // A merge block that is not reachable via control flow.
355 ReachDeadMerge
356 };
357
358 // Traverses the control-flow graph rooted at root in an order suited for
359 // readable code generation. Invokes callback at every node in the traversal
360 // order. The callback arguments are:
361 // - the block,
362 // - the reason we reached the block,
363 // - if the reason was that block is an unreachable continue or unreachable merge block
364 // then the last parameter is the corresponding header block.
365 void inReadableOrder(Block* root, std::function<void(Block*, ReachReason, Block* header)> callback);
366
367 //
368 // SPIR-V IR Function.
369 //
370
371 class Function {
372 public:
373 Function(Id id, Id resultType, Id functionType, Id firstParam, LinkageType linkage, const std::string& name, Module& parent);
~Function()374 virtual ~Function()
375 {
376 for (int i = 0; i < (int)parameterInstructions.size(); ++i)
377 delete parameterInstructions[i];
378
379 for (int i = 0; i < (int)blocks.size(); ++i)
380 delete blocks[i];
381 }
getId()382 Id getId() const { return functionInstruction.getResultId(); }
getParamId(int p)383 Id getParamId(int p) const { return parameterInstructions[p]->getResultId(); }
getParamType(int p)384 Id getParamType(int p) const { return parameterInstructions[p]->getTypeId(); }
385
addBlock(Block * block)386 void addBlock(Block* block) { blocks.push_back(block); }
removeBlock(Block * block)387 void removeBlock(Block* block)
388 {
389 auto found = find(blocks.begin(), blocks.end(), block);
390 assert(found != blocks.end());
391 blocks.erase(found);
392 delete block;
393 }
394
getParent()395 Module& getParent() const { return parent; }
getEntryBlock()396 Block* getEntryBlock() const { return blocks.front(); }
getLastBlock()397 Block* getLastBlock() const { return blocks.back(); }
getBlocks()398 const std::vector<Block*>& getBlocks() const { return blocks; }
399 void addLocalVariable(std::unique_ptr<Instruction> inst);
getReturnType()400 Id getReturnType() const { return functionInstruction.getTypeId(); }
getFuncId()401 Id getFuncId() const { return functionInstruction.getResultId(); }
getFuncTypeId()402 Id getFuncTypeId() const { return functionInstruction.getIdOperand(1); }
setReturnPrecision(Decoration precision)403 void setReturnPrecision(Decoration precision)
404 {
405 if (precision == DecorationRelaxedPrecision)
406 reducedPrecisionReturn = true;
407 }
getReturnPrecision()408 Decoration getReturnPrecision() const
409 { return reducedPrecisionReturn ? DecorationRelaxedPrecision : NoPrecision; }
410
setDebugLineInfo(Id fileName,int line,int column)411 void setDebugLineInfo(Id fileName, int line, int column) {
412 lineInstruction = std::unique_ptr<Instruction>{new Instruction(OpLine)};
413 lineInstruction->reserveOperands(3);
414 lineInstruction->addIdOperand(fileName);
415 lineInstruction->addImmediateOperand(line);
416 lineInstruction->addImmediateOperand(column);
417 }
hasDebugLineInfo()418 bool hasDebugLineInfo() const { return lineInstruction != nullptr; }
419
setImplicitThis()420 void setImplicitThis() { implicitThis = true; }
hasImplicitThis()421 bool hasImplicitThis() const { return implicitThis; }
422
addParamPrecision(unsigned param,Decoration precision)423 void addParamPrecision(unsigned param, Decoration precision)
424 {
425 if (precision == DecorationRelaxedPrecision)
426 reducedPrecisionParams.insert(param);
427 }
getParamPrecision(unsigned param)428 Decoration getParamPrecision(unsigned param) const
429 {
430 return reducedPrecisionParams.find(param) != reducedPrecisionParams.end() ?
431 DecorationRelaxedPrecision : NoPrecision;
432 }
433
dump(std::vector<unsigned int> & out)434 void dump(std::vector<unsigned int>& out) const
435 {
436 // OpLine
437 if (lineInstruction != nullptr) {
438 lineInstruction->dump(out);
439 }
440
441 // OpFunction
442 functionInstruction.dump(out);
443
444 // OpFunctionParameter
445 for (int p = 0; p < (int)parameterInstructions.size(); ++p)
446 parameterInstructions[p]->dump(out);
447
448 // Blocks
449 inReadableOrder(blocks[0], [&out](const Block* b, ReachReason, Block*) { b->dump(out); });
450 Instruction end(0, 0, OpFunctionEnd);
451 end.dump(out);
452 }
453
getLinkType()454 LinkageType getLinkType() const { return linkType; }
getExportName()455 const char* getExportName() const { return exportName.c_str(); }
456
457 protected:
458 Function(const Function&);
459 Function& operator=(Function&);
460
461 Module& parent;
462 std::unique_ptr<Instruction> lineInstruction;
463 Instruction functionInstruction;
464 std::vector<Instruction*> parameterInstructions;
465 std::vector<Block*> blocks;
466 bool implicitThis; // true if this is a member function expecting to be passed a 'this' as the first argument
467 bool reducedPrecisionReturn;
468 std::set<int> reducedPrecisionParams; // list of parameter indexes that need a relaxed precision arg
469 LinkageType linkType;
470 std::string exportName;
471 };
472
473 //
474 // SPIR-V IR Module.
475 //
476
477 class Module {
478 public:
Module()479 Module() {}
~Module()480 virtual ~Module()
481 {
482 // TODO delete things
483 }
484
addFunction(Function * fun)485 void addFunction(Function *fun) { functions.push_back(fun); }
486
mapInstruction(Instruction * instruction)487 void mapInstruction(Instruction *instruction)
488 {
489 spv::Id resultId = instruction->getResultId();
490 // map the instruction's result id
491 if (resultId >= idToInstruction.size())
492 idToInstruction.resize(resultId + 16);
493 idToInstruction[resultId] = instruction;
494 }
495
getInstruction(Id id)496 Instruction* getInstruction(Id id) const { return idToInstruction[id]; }
getFunctions()497 const std::vector<Function*>& getFunctions() const { return functions; }
getTypeId(Id resultId)498 spv::Id getTypeId(Id resultId) const {
499 return idToInstruction[resultId] == nullptr ? NoType : idToInstruction[resultId]->getTypeId();
500 }
getStorageClass(Id typeId)501 StorageClass getStorageClass(Id typeId) const
502 {
503 assert(idToInstruction[typeId]->getOpCode() == spv::OpTypePointer);
504 return (StorageClass)idToInstruction[typeId]->getImmediateOperand(0);
505 }
506
dump(std::vector<unsigned int> & out)507 void dump(std::vector<unsigned int>& out) const
508 {
509 for (int f = 0; f < (int)functions.size(); ++f)
510 functions[f]->dump(out);
511 }
512
513 protected:
514 Module(const Module&);
515 std::vector<Function*> functions;
516
517 // map from result id to instruction having that result id
518 std::vector<Instruction*> idToInstruction;
519
520 // map from a result id to its type id
521 };
522
523 //
524 // Implementation (it's here due to circular type definitions).
525 //
526
527 // Add both
528 // - the OpFunction instruction
529 // - all the OpFunctionParameter instructions
Function(Id id,Id resultType,Id functionType,Id firstParamId,LinkageType linkage,const std::string & name,Module & parent)530 __inline Function::Function(Id id, Id resultType, Id functionType, Id firstParamId, LinkageType linkage, const std::string& name, Module& parent)
531 : parent(parent), lineInstruction(nullptr),
532 functionInstruction(id, resultType, OpFunction), implicitThis(false),
533 reducedPrecisionReturn(false),
534 linkType(linkage)
535 {
536 // OpFunction
537 functionInstruction.reserveOperands(2);
538 functionInstruction.addImmediateOperand(FunctionControlMaskNone);
539 functionInstruction.addIdOperand(functionType);
540 parent.mapInstruction(&functionInstruction);
541 parent.addFunction(this);
542
543 // OpFunctionParameter
544 Instruction* typeInst = parent.getInstruction(functionType);
545 int numParams = typeInst->getNumOperands() - 1;
546 for (int p = 0; p < numParams; ++p) {
547 Instruction* param = new Instruction(firstParamId + p, typeInst->getIdOperand(p + 1), OpFunctionParameter);
548 parent.mapInstruction(param);
549 parameterInstructions.push_back(param);
550 }
551
552 // If importing/exporting, save the function name (without the mangled parameters) for the linkage decoration
553 if (linkType != LinkageTypeMax) {
554 exportName = name.substr(0, name.find_first_of('('));
555 }
556 }
557
addLocalVariable(std::unique_ptr<Instruction> inst)558 __inline void Function::addLocalVariable(std::unique_ptr<Instruction> inst)
559 {
560 Instruction* raw_instruction = inst.get();
561 blocks[0]->addLocalVariable(std::move(inst));
562 parent.mapInstruction(raw_instruction);
563 }
564
Block(Id id,Function & parent)565 __inline Block::Block(Id id, Function& parent) : parent(parent), unreachable(false)
566 {
567 instructions.push_back(std::unique_ptr<Instruction>(new Instruction(id, NoType, OpLabel)));
568 instructions.back()->setBlock(this);
569 parent.getParent().mapInstruction(instructions.back().get());
570 }
571
addInstruction(std::unique_ptr<Instruction> inst)572 __inline void Block::addInstruction(std::unique_ptr<Instruction> inst)
573 {
574 Instruction* raw_instruction = inst.get();
575 instructions.push_back(std::move(inst));
576 raw_instruction->setBlock(this);
577 if (raw_instruction->getResultId())
578 parent.getParent().mapInstruction(raw_instruction);
579 }
580
581 } // end spv namespace
582
583 #endif // spvIR_H
584