1 // Copyright (c) 2017 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef SOURCE_OPT_IR_CONTEXT_H_
16 #define SOURCE_OPT_IR_CONTEXT_H_
17
18 #include <algorithm>
19 #include <iostream>
20 #include <limits>
21 #include <map>
22 #include <memory>
23 #include <queue>
24 #include <unordered_map>
25 #include <unordered_set>
26 #include <utility>
27 #include <vector>
28
29 #include "source/assembly_grammar.h"
30 #include "source/enum_string_mapping.h"
31 #include "source/opt/cfg.h"
32 #include "source/opt/constants.h"
33 #include "source/opt/debug_info_manager.h"
34 #include "source/opt/decoration_manager.h"
35 #include "source/opt/def_use_manager.h"
36 #include "source/opt/dominator_analysis.h"
37 #include "source/opt/feature_manager.h"
38 #include "source/opt/fold.h"
39 #include "source/opt/liveness.h"
40 #include "source/opt/loop_descriptor.h"
41 #include "source/opt/module.h"
42 #include "source/opt/register_pressure.h"
43 #include "source/opt/scalar_analysis.h"
44 #include "source/opt/struct_cfg_analysis.h"
45 #include "source/opt/type_manager.h"
46 #include "source/opt/value_number_table.h"
47 #include "source/util/make_unique.h"
48 #include "source/util/string_utils.h"
49
50 namespace spvtools {
51 namespace opt {
52
53 class IRContext {
54 public:
55 // Available analyses.
56 //
57 // When adding a new analysis:
58 //
59 // 1. Enum values should be powers of 2. These are cast into uint32_t
60 // bitmasks, so we can have at most 31 analyses represented.
61 //
62 // 2. Make sure it gets invalidated or preserved by IRContext methods that add
63 // or remove IR elements (e.g., KillDef, KillInst, ReplaceAllUsesWith).
64 //
65 // 3. Add handling code in BuildInvalidAnalyses and InvalidateAnalyses
66 enum Analysis {
67 kAnalysisNone = 0 << 0,
68 kAnalysisBegin = 1 << 0,
69 kAnalysisDefUse = kAnalysisBegin,
70 kAnalysisInstrToBlockMapping = 1 << 1,
71 kAnalysisDecorations = 1 << 2,
72 kAnalysisCombinators = 1 << 3,
73 kAnalysisCFG = 1 << 4,
74 kAnalysisDominatorAnalysis = 1 << 5,
75 kAnalysisLoopAnalysis = 1 << 6,
76 kAnalysisNameMap = 1 << 7,
77 kAnalysisScalarEvolution = 1 << 8,
78 kAnalysisRegisterPressure = 1 << 9,
79 kAnalysisValueNumberTable = 1 << 10,
80 kAnalysisStructuredCFG = 1 << 11,
81 kAnalysisBuiltinVarId = 1 << 12,
82 kAnalysisIdToFuncMapping = 1 << 13,
83 kAnalysisConstants = 1 << 14,
84 kAnalysisTypes = 1 << 15,
85 kAnalysisDebugInfo = 1 << 16,
86 kAnalysisLiveness = 1 << 17,
87 kAnalysisEnd = 1 << 18
88 };
89
90 using ProcessFunction = std::function<bool(Function*)>;
91
92 friend inline Analysis operator|(Analysis lhs, Analysis rhs);
93 friend inline Analysis& operator|=(Analysis& lhs, Analysis rhs);
94 friend inline Analysis operator<<(Analysis a, int shift);
95 friend inline Analysis& operator<<=(Analysis& a, int shift);
96
97 // Creates an |IRContext| that contains an owned |Module|
IRContext(spv_target_env env,MessageConsumer c)98 IRContext(spv_target_env env, MessageConsumer c)
99 : syntax_context_(spvContextCreate(env)),
100 grammar_(syntax_context_),
101 unique_id_(0),
102 module_(new Module()),
103 consumer_(std::move(c)),
104 def_use_mgr_(nullptr),
105 feature_mgr_(nullptr),
106 valid_analyses_(kAnalysisNone),
107 constant_mgr_(nullptr),
108 type_mgr_(nullptr),
109 id_to_name_(nullptr),
110 max_id_bound_(kDefaultMaxIdBound),
111 preserve_bindings_(false),
112 preserve_spec_constants_(false) {
113 SetContextMessageConsumer(syntax_context_, consumer_);
114 module_->SetContext(this);
115 }
116
IRContext(spv_target_env env,std::unique_ptr<Module> && m,MessageConsumer c)117 IRContext(spv_target_env env, std::unique_ptr<Module>&& m, MessageConsumer c)
118 : syntax_context_(spvContextCreate(env)),
119 grammar_(syntax_context_),
120 unique_id_(0),
121 module_(std::move(m)),
122 consumer_(std::move(c)),
123 def_use_mgr_(nullptr),
124 feature_mgr_(nullptr),
125 valid_analyses_(kAnalysisNone),
126 type_mgr_(nullptr),
127 id_to_name_(nullptr),
128 max_id_bound_(kDefaultMaxIdBound),
129 preserve_bindings_(false),
130 preserve_spec_constants_(false) {
131 SetContextMessageConsumer(syntax_context_, consumer_);
132 module_->SetContext(this);
133 InitializeCombinators();
134 }
135
~IRContext()136 ~IRContext() { spvContextDestroy(syntax_context_); }
137
module()138 Module* module() const { return module_.get(); }
139
140 // Returns a vector of pointers to constant-creation instructions in this
141 // context.
142 inline std::vector<Instruction*> GetConstants();
143 inline std::vector<const Instruction*> GetConstants() const;
144
145 // Iterators for annotation instructions contained in this context.
146 inline Module::inst_iterator annotation_begin();
147 inline Module::inst_iterator annotation_end();
148 inline IteratorRange<Module::inst_iterator> annotations();
149 inline IteratorRange<Module::const_inst_iterator> annotations() const;
150
151 // Iterators for capabilities instructions contained in this module.
152 inline Module::inst_iterator capability_begin();
153 inline Module::inst_iterator capability_end();
154 inline IteratorRange<Module::inst_iterator> capabilities();
155 inline IteratorRange<Module::const_inst_iterator> capabilities() const;
156
157 // Iterators for extensions instructions contained in this module.
158 inline Module::inst_iterator extension_begin();
159 inline Module::inst_iterator extension_end();
160 inline IteratorRange<Module::inst_iterator> extensions();
161 inline IteratorRange<Module::const_inst_iterator> extensions() const;
162
163 // Iterators for types, constants and global variables instructions.
164 inline Module::inst_iterator types_values_begin();
165 inline Module::inst_iterator types_values_end();
166 inline IteratorRange<Module::inst_iterator> types_values();
167 inline IteratorRange<Module::const_inst_iterator> types_values() const;
168
169 // Iterators for ext_inst import instructions contained in this module.
170 inline Module::inst_iterator ext_inst_import_begin();
171 inline Module::inst_iterator ext_inst_import_end();
172 inline IteratorRange<Module::inst_iterator> ext_inst_imports();
173 inline IteratorRange<Module::const_inst_iterator> ext_inst_imports() const;
174
175 // There are several kinds of debug instructions, according to where they can
176 // appear in the logical layout of a module:
177 // - Section 7a: OpString, OpSourceExtension, OpSource, OpSourceContinued
178 // - Section 7b: OpName, OpMemberName
179 // - Section 7c: OpModuleProcessed
180 // - Mostly anywhere: OpLine and OpNoLine
181 //
182
183 // Iterators for debug 1 instructions (excluding OpLine & OpNoLine) contained
184 // in this module. These are for layout section 7a.
185 inline Module::inst_iterator debug1_begin();
186 inline Module::inst_iterator debug1_end();
187 inline IteratorRange<Module::inst_iterator> debugs1();
188 inline IteratorRange<Module::const_inst_iterator> debugs1() const;
189
190 // Iterators for debug 2 instructions (excluding OpLine & OpNoLine) contained
191 // in this module. These are for layout section 7b.
192 inline Module::inst_iterator debug2_begin();
193 inline Module::inst_iterator debug2_end();
194 inline IteratorRange<Module::inst_iterator> debugs2();
195 inline IteratorRange<Module::const_inst_iterator> debugs2() const;
196
197 // Iterators for debug 3 instructions (excluding OpLine & OpNoLine) contained
198 // in this module. These are for layout section 7c.
199 inline Module::inst_iterator debug3_begin();
200 inline Module::inst_iterator debug3_end();
201 inline IteratorRange<Module::inst_iterator> debugs3();
202 inline IteratorRange<Module::const_inst_iterator> debugs3() const;
203
204 // Iterators for debug info instructions (excluding OpLine & OpNoLine)
205 // contained in this module. These are OpExtInst &
206 // OpExtInstWithForwardRefsKHR for DebugInfo extension placed between section
207 // 9 and 10.
208 inline Module::inst_iterator ext_inst_debuginfo_begin();
209 inline Module::inst_iterator ext_inst_debuginfo_end();
210 inline IteratorRange<Module::inst_iterator> ext_inst_debuginfo();
211 inline IteratorRange<Module::const_inst_iterator> ext_inst_debuginfo() const;
212
213 // Add |capability| to the module, if it is not already enabled.
214 inline void AddCapability(spv::Capability capability);
215 // Appends a capability instruction to this module.
216 inline void AddCapability(std::unique_ptr<Instruction>&& c);
217 // Removes instruction declaring `capability` from this module.
218 // Returns true if the capability was removed, false otherwise.
219 bool RemoveCapability(spv::Capability capability);
220
221 // Appends an extension instruction to this module.
222 inline void AddExtension(const std::string& ext_name);
223 inline void AddExtension(std::unique_ptr<Instruction>&& e);
224 // Removes instruction declaring `extension` from this module.
225 // Returns true if the extension was removed, false otherwise.
226 bool RemoveExtension(Extension extension);
227
228 // Appends an extended instruction set instruction to this module.
229 inline void AddExtInstImport(const std::string& name);
230 inline void AddExtInstImport(std::unique_ptr<Instruction>&& e);
231 // Set the memory model for this module.
232 inline void SetMemoryModel(std::unique_ptr<Instruction>&& m);
233 // Get the memory model for this module.
234 inline const Instruction* GetMemoryModel() const;
235 // Appends an entry point instruction to this module.
236 inline void AddEntryPoint(std::unique_ptr<Instruction>&& e);
237 // Appends an execution mode instruction to this module.
238 inline void AddExecutionMode(std::unique_ptr<Instruction>&& e);
239 // Appends a debug 1 instruction (excluding OpLine & OpNoLine) to this module.
240 // "debug 1" instructions are the ones in layout section 7.a), see section
241 // 2.4 Logical Layout of a Module from the SPIR-V specification.
242 inline void AddDebug1Inst(std::unique_ptr<Instruction>&& d);
243 // Appends a debug 2 instruction (excluding OpLine & OpNoLine) to this module.
244 // "debug 2" instructions are the ones in layout section 7.b), see section
245 // 2.4 Logical Layout of a Module from the SPIR-V specification.
246 inline void AddDebug2Inst(std::unique_ptr<Instruction>&& d);
247 // Appends a debug 3 instruction (OpModuleProcessed) to this module.
248 // This is due to decision by the SPIR Working Group, pending publication.
249 inline void AddDebug3Inst(std::unique_ptr<Instruction>&& d);
250 // Appends a OpExtInst for DebugInfo to this module.
251 inline void AddExtInstDebugInfo(std::unique_ptr<Instruction>&& d);
252 // Appends an annotation instruction to this module.
253 inline void AddAnnotationInst(std::unique_ptr<Instruction>&& a);
254 // Appends a type-declaration instruction to this module.
255 inline void AddType(std::unique_ptr<Instruction>&& t);
256 // Appends a constant, global variable, or OpUndef instruction to this module.
257 inline void AddGlobalValue(std::unique_ptr<Instruction>&& v);
258 // Prepends a function declaration to this module.
259 inline void AddFunctionDeclaration(std::unique_ptr<Function>&& f);
260 // Appends a function to this module.
261 inline void AddFunction(std::unique_ptr<Function>&& f);
262
263 // Returns a pointer to a def-use manager. If the def-use manager is
264 // invalid, it is rebuilt first.
get_def_use_mgr()265 analysis::DefUseManager* get_def_use_mgr() {
266 if (!AreAnalysesValid(kAnalysisDefUse)) {
267 BuildDefUseManager();
268 }
269 return def_use_mgr_.get();
270 }
271
272 // Returns a pointer to a liveness manager. If the liveness manager is
273 // invalid, it is rebuilt first.
get_liveness_mgr()274 analysis::LivenessManager* get_liveness_mgr() {
275 if (!AreAnalysesValid(kAnalysisLiveness)) {
276 BuildLivenessManager();
277 }
278 return liveness_mgr_.get();
279 }
280
281 // Returns a pointer to a value number table. If the liveness analysis is
282 // invalid, it is rebuilt first.
GetValueNumberTable()283 ValueNumberTable* GetValueNumberTable() {
284 if (!AreAnalysesValid(kAnalysisValueNumberTable)) {
285 BuildValueNumberTable();
286 }
287 return vn_table_.get();
288 }
289
290 // Returns a pointer to a StructuredCFGAnalysis. If the analysis is invalid,
291 // it is rebuilt first.
GetStructuredCFGAnalysis()292 StructuredCFGAnalysis* GetStructuredCFGAnalysis() {
293 if (!AreAnalysesValid(kAnalysisStructuredCFG)) {
294 BuildStructuredCFGAnalysis();
295 }
296 return struct_cfg_analysis_.get();
297 }
298
299 // Returns a pointer to a liveness analysis. If the liveness analysis is
300 // invalid, it is rebuilt first.
GetLivenessAnalysis()301 LivenessAnalysis* GetLivenessAnalysis() {
302 if (!AreAnalysesValid(kAnalysisRegisterPressure)) {
303 BuildRegPressureAnalysis();
304 }
305 return reg_pressure_.get();
306 }
307
308 // Returns the basic block for instruction |instr|. Re-builds the instruction
309 // block map, if needed.
get_instr_block(Instruction * instr)310 BasicBlock* get_instr_block(Instruction* instr) {
311 if (!AreAnalysesValid(kAnalysisInstrToBlockMapping)) {
312 BuildInstrToBlockMapping();
313 }
314 auto entry = instr_to_block_.find(instr);
315 return (entry != instr_to_block_.end()) ? entry->second : nullptr;
316 }
317
318 // Returns the basic block for |id|. Re-builds the instruction block map, if
319 // needed.
320 //
321 // |id| must be a registered definition.
get_instr_block(uint32_t id)322 BasicBlock* get_instr_block(uint32_t id) {
323 Instruction* def = get_def_use_mgr()->GetDef(id);
324 return get_instr_block(def);
325 }
326
327 // Sets the basic block for |inst|. Re-builds the mapping if it has become
328 // invalid.
set_instr_block(Instruction * inst,BasicBlock * block)329 void set_instr_block(Instruction* inst, BasicBlock* block) {
330 if (AreAnalysesValid(kAnalysisInstrToBlockMapping)) {
331 instr_to_block_[inst] = block;
332 }
333 }
334
335 // Returns a pointer the decoration manager. If the decoration manager is
336 // invalid, it is rebuilt first.
get_decoration_mgr()337 analysis::DecorationManager* get_decoration_mgr() {
338 if (!AreAnalysesValid(kAnalysisDecorations)) {
339 BuildDecorationManager();
340 }
341 return decoration_mgr_.get();
342 }
343
344 // Returns a pointer to the constant manager. If no constant manager has been
345 // created yet, it creates one. NOTE: Once created, the constant manager
346 // remains active and it is never re-built.
get_constant_mgr()347 analysis::ConstantManager* get_constant_mgr() {
348 if (!AreAnalysesValid(kAnalysisConstants)) {
349 BuildConstantManager();
350 }
351 return constant_mgr_.get();
352 }
353
354 // Returns a pointer to the type manager. If no type manager has been created
355 // yet, it creates one. NOTE: Once created, the type manager remains active it
356 // is never re-built.
get_type_mgr()357 analysis::TypeManager* get_type_mgr() {
358 if (!AreAnalysesValid(kAnalysisTypes)) {
359 BuildTypeManager();
360 }
361 return type_mgr_.get();
362 }
363
364 // Returns a pointer to the debug information manager. If no debug
365 // information manager has been created yet, it creates one.
366 // NOTE: Once created, the debug information manager remains active
367 // it is never re-built.
get_debug_info_mgr()368 analysis::DebugInfoManager* get_debug_info_mgr() {
369 if (!AreAnalysesValid(kAnalysisDebugInfo)) {
370 BuildDebugInfoManager();
371 }
372 return debug_info_mgr_.get();
373 }
374
375 // Returns a pointer to the scalar evolution analysis. If it is invalid it
376 // will be rebuilt first.
GetScalarEvolutionAnalysis()377 ScalarEvolutionAnalysis* GetScalarEvolutionAnalysis() {
378 if (!AreAnalysesValid(kAnalysisScalarEvolution)) {
379 BuildScalarEvolutionAnalysis();
380 }
381 return scalar_evolution_analysis_.get();
382 }
383
384 // Build the map from the ids to the OpName and OpMemberName instruction
385 // associated with it.
386 inline void BuildIdToNameMap();
387
388 // Returns a range of instrucions that contain all of the OpName and
389 // OpMemberNames associated with the given id.
390 inline IteratorRange<std::multimap<uint32_t, Instruction*>::iterator>
391 GetNames(uint32_t id);
392
393 // Returns an OpMemberName instruction that targets |struct_type_id| at
394 // index |index|. Returns nullptr if no such instruction exists.
395 // While the SPIR-V spec does not prohibit having multiple OpMemberName
396 // instructions for the same structure member, it is hard to imagine a member
397 // having more than one name. This method returns the first one it finds.
398 inline Instruction* GetMemberName(uint32_t struct_type_id, uint32_t index);
399
400 // Copy names from |old_id| to |new_id|. Only copy member name if index is
401 // less than |max_member_index|.
402 inline void CloneNames(const uint32_t old_id, const uint32_t new_id,
403 const uint32_t max_member_index = UINT32_MAX);
404
405 // Sets the message consumer to the given |consumer|. |consumer| which will be
406 // invoked every time there is a message to be communicated to the outside.
SetMessageConsumer(MessageConsumer c)407 void SetMessageConsumer(MessageConsumer c) { consumer_ = std::move(c); }
408
409 // Returns the reference to the message consumer for this pass.
consumer()410 const MessageConsumer& consumer() const { return consumer_; }
411
412 // Rebuilds the analyses in |set| that are invalid.
413 void BuildInvalidAnalyses(Analysis set);
414
415 // Invalidates all of the analyses except for those in |preserved_analyses|.
416 void InvalidateAnalysesExceptFor(Analysis preserved_analyses);
417
418 // Invalidates the analyses marked in |analyses_to_invalidate|.
419 void InvalidateAnalyses(Analysis analyses_to_invalidate);
420
421 // Deletes the instruction defining the given |id|. Returns true on
422 // success, false if the given |id| is not defined at all. This method also
423 // erases the name, decorations, and definition of |id|.
424 //
425 // Pointers and iterators pointing to the deleted instructions become invalid.
426 // However other pointers and iterators are still valid.
427 bool KillDef(uint32_t id);
428
429 // Deletes the given instruction |inst|. This method erases the
430 // information of the given instruction's uses of its operands. If |inst|
431 // defines a result id, its name and decorations will also be deleted.
432 //
433 // Pointer and iterator pointing to the deleted instructions become invalid.
434 // However other pointers and iterators are still valid.
435 //
436 // Note that if an instruction is not in an instruction list, the memory may
437 // not be safe to delete, so the instruction is turned into a OpNop instead.
438 // This can happen with OpLabel.
439 //
440 // Returns a pointer to the instruction after |inst| or |nullptr| if no such
441 // instruction exists.
442 Instruction* KillInst(Instruction* inst);
443
444 // Deletes all the instruction in the range [`begin`; `end`[, for which the
445 // unary predicate `condition` returned true.
446 // Returns true if at least one instruction was removed, false otherwise.
447 //
448 // Pointer and iterator pointing to the deleted instructions become invalid.
449 // However other pointers and iterators are still valid.
450 bool KillInstructionIf(Module::inst_iterator begin, Module::inst_iterator end,
451 std::function<bool(Instruction*)> condition);
452
453 // Collects the non-semantic instruction tree that uses |inst|'s result id
454 // to be killed later.
455 void CollectNonSemanticTree(Instruction* inst,
456 std::unordered_set<Instruction*>* to_kill);
457
458 // Collect function reachable from |entryId|, returns |funcs|
459 void CollectCallTreeFromRoots(unsigned entryId,
460 std::unordered_set<uint32_t>* funcs);
461
462 // Returns true if all of the given analyses are valid.
AreAnalysesValid(Analysis set)463 bool AreAnalysesValid(Analysis set) { return (set & valid_analyses_) == set; }
464
465 // Replaces all uses of |before| id with |after| id. Returns true if any
466 // replacement happens. This method does not kill the definition of the
467 // |before| id. If |after| is the same as |before|, does nothing and returns
468 // false.
469 //
470 // |before| and |after| must be registered definitions in the DefUseManager.
471 bool ReplaceAllUsesWith(uint32_t before, uint32_t after);
472
473 // Replace all uses of |before| id with |after| id if those uses
474 // (instruction) return true for |predicate|. Returns true if
475 // any replacement happens. This method does not kill the definition of the
476 // |before| id. If |after| is the same as |before|, does nothing and return
477 // false.
478 bool ReplaceAllUsesWithPredicate(
479 uint32_t before, uint32_t after,
480 const std::function<bool(Instruction*)>& predicate);
481
482 // Returns true if all of the analyses that are suppose to be valid are
483 // actually valid.
484 bool IsConsistent();
485
486 // The IRContext will look at the def and uses of |inst| and update any valid
487 // analyses will be updated accordingly.
488 inline void AnalyzeDefUse(Instruction* inst);
489
490 // Informs the IRContext that the uses of |inst| are going to change, and that
491 // is should forget everything it know about the current uses. Any valid
492 // analyses will be updated accordingly.
493 void ForgetUses(Instruction* inst);
494
495 // The IRContext will look at the uses of |inst| and update any valid analyses
496 // will be updated accordingly.
497 void AnalyzeUses(Instruction* inst);
498
499 // Kill all name and decorate ops targeting |id|.
500 void KillNamesAndDecorates(uint32_t id);
501
502 // Kill all name and decorate ops targeting the result id of |inst|.
503 void KillNamesAndDecorates(Instruction* inst);
504
505 // Change operands of debug instruction to DebugInfoNone.
506 void KillOperandFromDebugInstructions(Instruction* inst);
507
508 // Returns the next unique id for use by an instruction.
TakeNextUniqueId()509 inline uint32_t TakeNextUniqueId() {
510 assert(unique_id_ != std::numeric_limits<uint32_t>::max());
511
512 // Skip zero.
513 return ++unique_id_;
514 }
515
516 // Returns true if |inst| is a combinator in the current context.
517 // |combinator_ops_| is built if it has not been already.
IsCombinatorInstruction(const Instruction * inst)518 inline bool IsCombinatorInstruction(const Instruction* inst) {
519 if (!AreAnalysesValid(kAnalysisCombinators)) {
520 InitializeCombinators();
521 }
522 constexpr uint32_t kExtInstSetIdInIndx = 0;
523 constexpr uint32_t kExtInstInstructionInIndx = 1;
524
525 if (inst->opcode() != spv::Op::OpExtInst) {
526 return combinator_ops_[0].count(uint32_t(inst->opcode())) != 0;
527 } else {
528 uint32_t set = inst->GetSingleWordInOperand(kExtInstSetIdInIndx);
529 auto op = inst->GetSingleWordInOperand(kExtInstInstructionInIndx);
530 return combinator_ops_[set].count(op) != 0;
531 }
532 }
533
534 // Returns a pointer to the CFG for all the functions in |module_|.
cfg()535 CFG* cfg() {
536 if (!AreAnalysesValid(kAnalysisCFG)) {
537 BuildCFG();
538 }
539 return cfg_.get();
540 }
541
542 // Gets the loop descriptor for function |f|.
543 LoopDescriptor* GetLoopDescriptor(const Function* f);
544
545 // Gets the dominator analysis for function |f|.
546 DominatorAnalysis* GetDominatorAnalysis(const Function* f);
547
548 // Gets the postdominator analysis for function |f|.
549 PostDominatorAnalysis* GetPostDominatorAnalysis(const Function* f);
550
551 // Remove the dominator tree of |f| from the cache.
RemoveDominatorAnalysis(const Function * f)552 inline void RemoveDominatorAnalysis(const Function* f) {
553 dominator_trees_.erase(f);
554 }
555
556 // Remove the postdominator tree of |f| from the cache.
RemovePostDominatorAnalysis(const Function * f)557 inline void RemovePostDominatorAnalysis(const Function* f) {
558 post_dominator_trees_.erase(f);
559 }
560
561 // Return the next available SSA id and increment it. Returns 0 if the
562 // maximum SSA id has been reached.
TakeNextId()563 inline uint32_t TakeNextId() {
564 uint32_t next_id = module()->TakeNextIdBound();
565 if (next_id == 0) {
566 if (consumer()) {
567 std::string message = "ID overflow. Try running compact-ids.";
568 consumer()(SPV_MSG_ERROR, "", {0, 0, 0}, message.c_str());
569 }
570 #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
571 // If TakeNextId returns 0, it is very likely that execution will
572 // subsequently fail. Such failures are false alarms from a fuzzing point
573 // of view: they are due to the fact that too many ids were used, rather
574 // than being due to an actual bug. Thus, during a fuzzing build, it is
575 // preferable to bail out when ID overflow occurs.
576 //
577 // A zero exit code is returned here because a non-zero code would cause
578 // ClusterFuzz/OSS-Fuzz to regard the termination as a crash, and spurious
579 // crash reports is what this guard aims to avoid.
580 exit(0);
581 #endif
582 }
583 return next_id;
584 }
585
get_feature_mgr()586 FeatureManager* get_feature_mgr() {
587 if (!feature_mgr_.get()) {
588 AnalyzeFeatures();
589 }
590 return feature_mgr_.get();
591 }
592
ResetFeatureManager()593 void ResetFeatureManager() { feature_mgr_.reset(nullptr); }
594
595 // Returns the grammar for this context.
grammar()596 const AssemblyGrammar& grammar() const { return grammar_; }
597
598 // If |inst| has not yet been analysed by the def-use manager, then analyse
599 // its definitions and uses.
600 inline void UpdateDefUse(Instruction* inst);
601
get_instruction_folder()602 const InstructionFolder& get_instruction_folder() {
603 if (!inst_folder_) {
604 inst_folder_ = MakeUnique<InstructionFolder>(this);
605 }
606 return *inst_folder_;
607 }
608
max_id_bound()609 uint32_t max_id_bound() const { return max_id_bound_; }
set_max_id_bound(uint32_t new_bound)610 void set_max_id_bound(uint32_t new_bound) { max_id_bound_ = new_bound; }
611
preserve_bindings()612 bool preserve_bindings() const { return preserve_bindings_; }
set_preserve_bindings(bool should_preserve_bindings)613 void set_preserve_bindings(bool should_preserve_bindings) {
614 preserve_bindings_ = should_preserve_bindings;
615 }
616
preserve_spec_constants()617 bool preserve_spec_constants() const { return preserve_spec_constants_; }
set_preserve_spec_constants(bool should_preserve_spec_constants)618 void set_preserve_spec_constants(bool should_preserve_spec_constants) {
619 preserve_spec_constants_ = should_preserve_spec_constants;
620 }
621
622 // Return id of input variable only decorated with |builtin|, if in module.
623 // Create variable and return its id otherwise. If builtin not currently
624 // supported, return 0.
625 uint32_t GetBuiltinInputVarId(uint32_t builtin);
626
627 // Returns the function whose id is |id|, if one exists. Returns |nullptr|
628 // otherwise.
GetFunction(uint32_t id)629 Function* GetFunction(uint32_t id) {
630 if (!AreAnalysesValid(kAnalysisIdToFuncMapping)) {
631 BuildIdToFuncMapping();
632 }
633 auto entry = id_to_func_.find(id);
634 return (entry != id_to_func_.end()) ? entry->second : nullptr;
635 }
636
GetFunction(Instruction * inst)637 Function* GetFunction(Instruction* inst) {
638 if (inst->opcode() != spv::Op::OpFunction) {
639 return nullptr;
640 }
641 return GetFunction(inst->result_id());
642 }
643
644 // Add to |todo| all ids of functions called directly from |func|.
645 void AddCalls(const Function* func, std::queue<uint32_t>* todo);
646
647 // Applies |pfn| to every function in the call trees that are rooted at the
648 // entry points. Returns true if any call |pfn| returns true. By convention
649 // |pfn| should return true if it modified the module.
650 bool ProcessEntryPointCallTree(ProcessFunction& pfn);
651
652 // Applies |pfn| to every function in the call trees rooted at the entry
653 // points and exported functions. Returns true if any call |pfn| returns
654 // true. By convention |pfn| should return true if it modified the module.
655 bool ProcessReachableCallTree(ProcessFunction& pfn);
656
657 // Applies |pfn| to every function in the call trees rooted at the elements of
658 // |roots|. Returns true if any call to |pfn| returns true. By convention
659 // |pfn| should return true if it modified the module. After returning
660 // |roots| will be empty.
661 bool ProcessCallTreeFromRoots(ProcessFunction& pfn,
662 std::queue<uint32_t>* roots);
663
664 // Emits a error message to the message consumer indicating the error
665 // described by |message| occurred in |inst|.
666 void EmitErrorMessage(std::string message, Instruction* inst);
667
668 // Returns true if and only if there is a path to |bb| from the entry block of
669 // the function that contains |bb|.
670 bool IsReachable(const opt::BasicBlock& bb);
671
672 // Return the stage of the module. Will generate error if entry points don't
673 // all have the same stage.
674 spv::ExecutionModel GetStage();
675
676 // Returns true of the current target environment is at least that of the
677 // given environment.
IsTargetEnvAtLeast(spv_target_env env)678 bool IsTargetEnvAtLeast(spv_target_env env) {
679 // A bit of a hack. We assume that the target environments are appended to
680 // the enum, so that there is an appropriate order.
681 return syntax_context_->target_env >= env;
682 }
683
684 // Return the target environment for the current context.
GetTargetEnv()685 spv_target_env GetTargetEnv() const { return syntax_context_->target_env; }
686
687 private:
688 // Builds the def-use manager from scratch, even if it was already valid.
BuildDefUseManager()689 void BuildDefUseManager() {
690 def_use_mgr_ = MakeUnique<analysis::DefUseManager>(module());
691 valid_analyses_ = valid_analyses_ | kAnalysisDefUse;
692 }
693
694 // Builds the liveness manager from scratch, even if it was already valid.
BuildLivenessManager()695 void BuildLivenessManager() {
696 liveness_mgr_ = MakeUnique<analysis::LivenessManager>(this);
697 valid_analyses_ = valid_analyses_ | kAnalysisLiveness;
698 }
699
700 // Builds the instruction-block map for the whole module.
BuildInstrToBlockMapping()701 void BuildInstrToBlockMapping() {
702 instr_to_block_.clear();
703 for (auto& fn : *module_) {
704 for (auto& block : fn) {
705 block.ForEachInst([this, &block](Instruction* inst) {
706 instr_to_block_[inst] = █
707 });
708 }
709 }
710 valid_analyses_ = valid_analyses_ | kAnalysisInstrToBlockMapping;
711 }
712
713 // Builds the instruction-function map for the whole module.
BuildIdToFuncMapping()714 void BuildIdToFuncMapping() {
715 id_to_func_.clear();
716 for (auto& fn : *module_) {
717 id_to_func_[fn.result_id()] = &fn;
718 }
719 valid_analyses_ = valid_analyses_ | kAnalysisIdToFuncMapping;
720 }
721
BuildDecorationManager()722 void BuildDecorationManager() {
723 decoration_mgr_ = MakeUnique<analysis::DecorationManager>(module());
724 valid_analyses_ = valid_analyses_ | kAnalysisDecorations;
725 }
726
BuildCFG()727 void BuildCFG() {
728 cfg_ = MakeUnique<CFG>(module());
729 valid_analyses_ = valid_analyses_ | kAnalysisCFG;
730 }
731
BuildScalarEvolutionAnalysis()732 void BuildScalarEvolutionAnalysis() {
733 scalar_evolution_analysis_ = MakeUnique<ScalarEvolutionAnalysis>(this);
734 valid_analyses_ = valid_analyses_ | kAnalysisScalarEvolution;
735 }
736
737 // Builds the liveness analysis from scratch, even if it was already valid.
BuildRegPressureAnalysis()738 void BuildRegPressureAnalysis() {
739 reg_pressure_ = MakeUnique<LivenessAnalysis>(this);
740 valid_analyses_ = valid_analyses_ | kAnalysisRegisterPressure;
741 }
742
743 // Builds the value number table analysis from scratch, even if it was already
744 // valid.
BuildValueNumberTable()745 void BuildValueNumberTable() {
746 vn_table_ = MakeUnique<ValueNumberTable>(this);
747 valid_analyses_ = valid_analyses_ | kAnalysisValueNumberTable;
748 }
749
750 // Builds the structured CFG analysis from scratch, even if it was already
751 // valid.
BuildStructuredCFGAnalysis()752 void BuildStructuredCFGAnalysis() {
753 struct_cfg_analysis_ = MakeUnique<StructuredCFGAnalysis>(this);
754 valid_analyses_ = valid_analyses_ | kAnalysisStructuredCFG;
755 }
756
757 // Builds the constant manager from scratch, even if it was already
758 // valid.
BuildConstantManager()759 void BuildConstantManager() {
760 constant_mgr_ = MakeUnique<analysis::ConstantManager>(this);
761 valid_analyses_ = valid_analyses_ | kAnalysisConstants;
762 }
763
764 // Builds the type manager from scratch, even if it was already
765 // valid.
BuildTypeManager()766 void BuildTypeManager() {
767 type_mgr_ = MakeUnique<analysis::TypeManager>(consumer(), this);
768 valid_analyses_ = valid_analyses_ | kAnalysisTypes;
769 }
770
771 // Builds the debug information manager from scratch, even if it was
772 // already valid.
BuildDebugInfoManager()773 void BuildDebugInfoManager() {
774 debug_info_mgr_ = MakeUnique<analysis::DebugInfoManager>(this);
775 valid_analyses_ = valid_analyses_ | kAnalysisDebugInfo;
776 }
777
778 // Removes all computed dominator and post-dominator trees. This will force
779 // the context to rebuild the trees on demand.
ResetDominatorAnalysis()780 void ResetDominatorAnalysis() {
781 // Clear the cache.
782 dominator_trees_.clear();
783 post_dominator_trees_.clear();
784 valid_analyses_ = valid_analyses_ | kAnalysisDominatorAnalysis;
785 }
786
787 // Removes all computed loop descriptors.
ResetLoopAnalysis()788 void ResetLoopAnalysis() {
789 // Clear the cache.
790 loop_descriptors_.clear();
791 valid_analyses_ = valid_analyses_ | kAnalysisLoopAnalysis;
792 }
793
794 // Removes all computed loop descriptors.
ResetBuiltinAnalysis()795 void ResetBuiltinAnalysis() {
796 // Clear the cache.
797 builtin_var_id_map_.clear();
798 valid_analyses_ = valid_analyses_ | kAnalysisBuiltinVarId;
799 }
800
801 // Analyzes the features in the owned module. Builds the manager if required.
AnalyzeFeatures()802 void AnalyzeFeatures() {
803 feature_mgr_ =
804 std::unique_ptr<FeatureManager>(new FeatureManager(grammar_));
805 feature_mgr_->Analyze(module());
806 }
807
808 // Scans a module looking for it capabilities, and initializes combinator_ops_
809 // accordingly.
810 void InitializeCombinators();
811
812 // Add the combinator opcode for the given capability to combinator_ops_.
813 void AddCombinatorsForCapability(uint32_t capability);
814
815 // Add the combinator opcode for the given extension to combinator_ops_.
816 void AddCombinatorsForExtension(Instruction* extension);
817
818 // Remove |inst| from |id_to_name_| if it is in map.
819 void RemoveFromIdToName(const Instruction* inst);
820
821 // Returns true if it is suppose to be valid but it is incorrect. Returns
822 // true if the cfg is invalidated.
823 bool CheckCFG();
824
825 // Return id of input variable only decorated with |builtin|, if in module.
826 // Return 0 otherwise.
827 uint32_t FindBuiltinInputVar(uint32_t builtin);
828
829 // Add |var_id| to all entry points in module.
830 void AddVarToEntryPoints(uint32_t var_id);
831
832 // The SPIR-V syntax context containing grammar tables for opcodes and
833 // operands.
834 spv_context syntax_context_;
835
836 // Auxiliary object for querying SPIR-V grammar facts.
837 AssemblyGrammar grammar_;
838
839 // An unique identifier for instructions in |module_|. Can be used to order
840 // instructions in a container.
841 //
842 // This member is initialized to 0, but always issues this value plus one.
843 // Therefore, 0 is not a valid unique id for an instruction.
844 uint32_t unique_id_;
845
846 // The module being processed within this IR context.
847 std::unique_ptr<Module> module_;
848
849 // A message consumer for diagnostics.
850 MessageConsumer consumer_;
851
852 // The def-use manager for |module_|.
853 std::unique_ptr<analysis::DefUseManager> def_use_mgr_;
854
855 // The instruction decoration manager for |module_|.
856 std::unique_ptr<analysis::DecorationManager> decoration_mgr_;
857
858 // The feature manager for |module_|.
859 std::unique_ptr<FeatureManager> feature_mgr_;
860
861 // A map from instructions to the basic block they belong to. This mapping is
862 // built on-demand when get_instr_block() is called.
863 //
864 // NOTE: Do not traverse this map. Ever. Use the function and basic block
865 // iterators to traverse instructions.
866 std::unordered_map<Instruction*, BasicBlock*> instr_to_block_;
867
868 // A map from ids to the function they define. This mapping is
869 // built on-demand when GetFunction() is called.
870 //
871 // NOTE: Do not traverse this map. Ever. Use the function and basic block
872 // iterators to traverse instructions.
873 std::unordered_map<uint32_t, Function*> id_to_func_;
874
875 // A bitset indicating which analyzes are currently valid.
876 Analysis valid_analyses_;
877
878 // Opcodes of shader capability core executable instructions
879 // without side-effect.
880 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> combinator_ops_;
881
882 // Opcodes of shader capability core executable instructions
883 // without side-effect.
884 std::unordered_map<uint32_t, uint32_t> builtin_var_id_map_;
885
886 // The CFG for all the functions in |module_|.
887 std::unique_ptr<CFG> cfg_;
888
889 // Each function in the module will create its own dominator tree. We cache
890 // the result so it doesn't need to be rebuilt each time.
891 std::map<const Function*, DominatorAnalysis> dominator_trees_;
892 std::map<const Function*, PostDominatorAnalysis> post_dominator_trees_;
893
894 // Cache of loop descriptors for each function.
895 std::unordered_map<const Function*, LoopDescriptor> loop_descriptors_;
896
897 // Constant manager for |module_|.
898 std::unique_ptr<analysis::ConstantManager> constant_mgr_;
899
900 // Type manager for |module_|.
901 std::unique_ptr<analysis::TypeManager> type_mgr_;
902
903 // Debug information manager for |module_|.
904 std::unique_ptr<analysis::DebugInfoManager> debug_info_mgr_;
905
906 // A map from an id to its corresponding OpName and OpMemberName instructions.
907 std::unique_ptr<std::multimap<uint32_t, Instruction*>> id_to_name_;
908
909 // The cache scalar evolution analysis node.
910 std::unique_ptr<ScalarEvolutionAnalysis> scalar_evolution_analysis_;
911
912 // The liveness analysis |module_|.
913 std::unique_ptr<LivenessAnalysis> reg_pressure_;
914
915 std::unique_ptr<ValueNumberTable> vn_table_;
916
917 std::unique_ptr<InstructionFolder> inst_folder_;
918
919 std::unique_ptr<StructuredCFGAnalysis> struct_cfg_analysis_;
920
921 // The liveness manager for |module_|.
922 std::unique_ptr<analysis::LivenessManager> liveness_mgr_;
923
924 // The maximum legal value for the id bound.
925 uint32_t max_id_bound_;
926
927 // Whether all bindings within |module_| should be preserved.
928 bool preserve_bindings_;
929
930 // Whether all specialization constants within |module_|
931 // should be preserved.
932 bool preserve_spec_constants_;
933 };
934
935 inline IRContext::Analysis operator|(IRContext::Analysis lhs,
936 IRContext::Analysis rhs) {
937 return static_cast<IRContext::Analysis>(static_cast<int>(lhs) |
938 static_cast<int>(rhs));
939 }
940
941 inline IRContext::Analysis& operator|=(IRContext::Analysis& lhs,
942 IRContext::Analysis rhs) {
943 lhs = lhs | rhs;
944 return lhs;
945 }
946
947 inline IRContext::Analysis operator<<(IRContext::Analysis a, int shift) {
948 return static_cast<IRContext::Analysis>(static_cast<int>(a) << shift);
949 }
950
951 inline IRContext::Analysis& operator<<=(IRContext::Analysis& a, int shift) {
952 a = static_cast<IRContext::Analysis>(static_cast<int>(a) << shift);
953 return a;
954 }
955
GetConstants()956 std::vector<Instruction*> IRContext::GetConstants() {
957 return module()->GetConstants();
958 }
959
GetConstants()960 std::vector<const Instruction*> IRContext::GetConstants() const {
961 return ((const Module*)module())->GetConstants();
962 }
963
annotation_begin()964 Module::inst_iterator IRContext::annotation_begin() {
965 return module()->annotation_begin();
966 }
967
annotation_end()968 Module::inst_iterator IRContext::annotation_end() {
969 return module()->annotation_end();
970 }
971
annotations()972 IteratorRange<Module::inst_iterator> IRContext::annotations() {
973 return module_->annotations();
974 }
975
annotations()976 IteratorRange<Module::const_inst_iterator> IRContext::annotations() const {
977 return ((const Module*)module_.get())->annotations();
978 }
979
capability_begin()980 Module::inst_iterator IRContext::capability_begin() {
981 return module()->capability_begin();
982 }
983
capability_end()984 Module::inst_iterator IRContext::capability_end() {
985 return module()->capability_end();
986 }
987
capabilities()988 IteratorRange<Module::inst_iterator> IRContext::capabilities() {
989 return module()->capabilities();
990 }
991
capabilities()992 IteratorRange<Module::const_inst_iterator> IRContext::capabilities() const {
993 return ((const Module*)module())->capabilities();
994 }
995
extension_begin()996 Module::inst_iterator IRContext::extension_begin() {
997 return module()->extension_begin();
998 }
999
extension_end()1000 Module::inst_iterator IRContext::extension_end() {
1001 return module()->extension_end();
1002 }
1003
extensions()1004 IteratorRange<Module::inst_iterator> IRContext::extensions() {
1005 return module()->extensions();
1006 }
1007
extensions()1008 IteratorRange<Module::const_inst_iterator> IRContext::extensions() const {
1009 return ((const Module*)module())->extensions();
1010 }
1011
types_values_begin()1012 Module::inst_iterator IRContext::types_values_begin() {
1013 return module()->types_values_begin();
1014 }
1015
types_values_end()1016 Module::inst_iterator IRContext::types_values_end() {
1017 return module()->types_values_end();
1018 }
1019
types_values()1020 IteratorRange<Module::inst_iterator> IRContext::types_values() {
1021 return module()->types_values();
1022 }
1023
types_values()1024 IteratorRange<Module::const_inst_iterator> IRContext::types_values() const {
1025 return ((const Module*)module_.get())->types_values();
1026 }
1027
ext_inst_import_begin()1028 Module::inst_iterator IRContext::ext_inst_import_begin() {
1029 return module()->ext_inst_import_begin();
1030 }
1031
ext_inst_import_end()1032 Module::inst_iterator IRContext::ext_inst_import_end() {
1033 return module()->ext_inst_import_end();
1034 }
1035
ext_inst_imports()1036 IteratorRange<Module::inst_iterator> IRContext::ext_inst_imports() {
1037 return module()->ext_inst_imports();
1038 }
1039
ext_inst_imports()1040 IteratorRange<Module::const_inst_iterator> IRContext::ext_inst_imports() const {
1041 return ((const Module*)module_.get())->ext_inst_imports();
1042 }
1043
debug1_begin()1044 Module::inst_iterator IRContext::debug1_begin() {
1045 return module()->debug1_begin();
1046 }
1047
debug1_end()1048 Module::inst_iterator IRContext::debug1_end() { return module()->debug1_end(); }
1049
debugs1()1050 IteratorRange<Module::inst_iterator> IRContext::debugs1() {
1051 return module()->debugs1();
1052 }
1053
debugs1()1054 IteratorRange<Module::const_inst_iterator> IRContext::debugs1() const {
1055 return ((const Module*)module_.get())->debugs1();
1056 }
1057
debug2_begin()1058 Module::inst_iterator IRContext::debug2_begin() {
1059 return module()->debug2_begin();
1060 }
debug2_end()1061 Module::inst_iterator IRContext::debug2_end() { return module()->debug2_end(); }
1062
debugs2()1063 IteratorRange<Module::inst_iterator> IRContext::debugs2() {
1064 return module()->debugs2();
1065 }
1066
debugs2()1067 IteratorRange<Module::const_inst_iterator> IRContext::debugs2() const {
1068 return ((const Module*)module_.get())->debugs2();
1069 }
1070
debug3_begin()1071 Module::inst_iterator IRContext::debug3_begin() {
1072 return module()->debug3_begin();
1073 }
1074
debug3_end()1075 Module::inst_iterator IRContext::debug3_end() { return module()->debug3_end(); }
1076
debugs3()1077 IteratorRange<Module::inst_iterator> IRContext::debugs3() {
1078 return module()->debugs3();
1079 }
1080
debugs3()1081 IteratorRange<Module::const_inst_iterator> IRContext::debugs3() const {
1082 return ((const Module*)module_.get())->debugs3();
1083 }
1084
ext_inst_debuginfo_begin()1085 Module::inst_iterator IRContext::ext_inst_debuginfo_begin() {
1086 return module()->ext_inst_debuginfo_begin();
1087 }
1088
ext_inst_debuginfo_end()1089 Module::inst_iterator IRContext::ext_inst_debuginfo_end() {
1090 return module()->ext_inst_debuginfo_end();
1091 }
1092
ext_inst_debuginfo()1093 IteratorRange<Module::inst_iterator> IRContext::ext_inst_debuginfo() {
1094 return module()->ext_inst_debuginfo();
1095 }
1096
ext_inst_debuginfo()1097 IteratorRange<Module::const_inst_iterator> IRContext::ext_inst_debuginfo()
1098 const {
1099 return ((const Module*)module_.get())->ext_inst_debuginfo();
1100 }
1101
AddCapability(spv::Capability capability)1102 void IRContext::AddCapability(spv::Capability capability) {
1103 if (!get_feature_mgr()->HasCapability(capability)) {
1104 std::unique_ptr<Instruction> capability_inst(new Instruction(
1105 this, spv::Op::OpCapability, 0, 0,
1106 {{SPV_OPERAND_TYPE_CAPABILITY, {static_cast<uint32_t>(capability)}}}));
1107 AddCapability(std::move(capability_inst));
1108 }
1109 }
1110
AddCapability(std::unique_ptr<Instruction> && c)1111 void IRContext::AddCapability(std::unique_ptr<Instruction>&& c) {
1112 AddCombinatorsForCapability(c->GetSingleWordInOperand(0));
1113 if (feature_mgr_ != nullptr) {
1114 feature_mgr_->AddCapability(
1115 static_cast<spv::Capability>(c->GetSingleWordInOperand(0)));
1116 }
1117 if (AreAnalysesValid(kAnalysisDefUse)) {
1118 get_def_use_mgr()->AnalyzeInstDefUse(c.get());
1119 }
1120 module()->AddCapability(std::move(c));
1121 }
1122
AddExtension(const std::string & ext_name)1123 void IRContext::AddExtension(const std::string& ext_name) {
1124 std::vector<uint32_t> ext_words = spvtools::utils::MakeVector(ext_name);
1125 AddExtension(std::unique_ptr<Instruction>(
1126 new Instruction(this, spv::Op::OpExtension, 0u, 0u,
1127 {{SPV_OPERAND_TYPE_LITERAL_STRING, ext_words}})));
1128 }
1129
AddExtension(std::unique_ptr<Instruction> && e)1130 void IRContext::AddExtension(std::unique_ptr<Instruction>&& e) {
1131 if (AreAnalysesValid(kAnalysisDefUse)) {
1132 get_def_use_mgr()->AnalyzeInstDefUse(e.get());
1133 }
1134 if (feature_mgr_ != nullptr) {
1135 feature_mgr_->AddExtension(&*e);
1136 }
1137 module()->AddExtension(std::move(e));
1138 }
1139
AddExtInstImport(const std::string & name)1140 void IRContext::AddExtInstImport(const std::string& name) {
1141 std::vector<uint32_t> ext_words = spvtools::utils::MakeVector(name);
1142 AddExtInstImport(std::unique_ptr<Instruction>(
1143 new Instruction(this, spv::Op::OpExtInstImport, 0u, TakeNextId(),
1144 {{SPV_OPERAND_TYPE_LITERAL_STRING, ext_words}})));
1145 }
1146
AddExtInstImport(std::unique_ptr<Instruction> && e)1147 void IRContext::AddExtInstImport(std::unique_ptr<Instruction>&& e) {
1148 AddCombinatorsForExtension(e.get());
1149 if (AreAnalysesValid(kAnalysisDefUse)) {
1150 get_def_use_mgr()->AnalyzeInstDefUse(e.get());
1151 }
1152 module()->AddExtInstImport(std::move(e));
1153 if (feature_mgr_ != nullptr) {
1154 feature_mgr_->AddExtInstImportIds(module());
1155 }
1156 }
1157
SetMemoryModel(std::unique_ptr<Instruction> && m)1158 void IRContext::SetMemoryModel(std::unique_ptr<Instruction>&& m) {
1159 module()->SetMemoryModel(std::move(m));
1160 }
1161
GetMemoryModel()1162 const Instruction* IRContext::GetMemoryModel() const {
1163 return module()->GetMemoryModel();
1164 }
1165
AddEntryPoint(std::unique_ptr<Instruction> && e)1166 void IRContext::AddEntryPoint(std::unique_ptr<Instruction>&& e) {
1167 module()->AddEntryPoint(std::move(e));
1168 }
1169
AddExecutionMode(std::unique_ptr<Instruction> && e)1170 void IRContext::AddExecutionMode(std::unique_ptr<Instruction>&& e) {
1171 module()->AddExecutionMode(std::move(e));
1172 }
1173
AddDebug1Inst(std::unique_ptr<Instruction> && d)1174 void IRContext::AddDebug1Inst(std::unique_ptr<Instruction>&& d) {
1175 module()->AddDebug1Inst(std::move(d));
1176 }
1177
AddDebug2Inst(std::unique_ptr<Instruction> && d)1178 void IRContext::AddDebug2Inst(std::unique_ptr<Instruction>&& d) {
1179 if (AreAnalysesValid(kAnalysisNameMap)) {
1180 if (d->opcode() == spv::Op::OpName ||
1181 d->opcode() == spv::Op::OpMemberName) {
1182 // OpName and OpMemberName do not have result-ids. The target of the
1183 // instruction is at InOperand index 0.
1184 id_to_name_->insert({d->GetSingleWordInOperand(0), d.get()});
1185 }
1186 }
1187 if (AreAnalysesValid(kAnalysisDefUse)) {
1188 get_def_use_mgr()->AnalyzeInstDefUse(d.get());
1189 }
1190 module()->AddDebug2Inst(std::move(d));
1191 }
1192
AddDebug3Inst(std::unique_ptr<Instruction> && d)1193 void IRContext::AddDebug3Inst(std::unique_ptr<Instruction>&& d) {
1194 module()->AddDebug3Inst(std::move(d));
1195 }
1196
AddExtInstDebugInfo(std::unique_ptr<Instruction> && d)1197 void IRContext::AddExtInstDebugInfo(std::unique_ptr<Instruction>&& d) {
1198 module()->AddExtInstDebugInfo(std::move(d));
1199 }
1200
AddAnnotationInst(std::unique_ptr<Instruction> && a)1201 void IRContext::AddAnnotationInst(std::unique_ptr<Instruction>&& a) {
1202 if (AreAnalysesValid(kAnalysisDecorations)) {
1203 get_decoration_mgr()->AddDecoration(a.get());
1204 }
1205 if (AreAnalysesValid(kAnalysisDefUse)) {
1206 get_def_use_mgr()->AnalyzeInstDefUse(a.get());
1207 }
1208 module()->AddAnnotationInst(std::move(a));
1209 }
1210
AddType(std::unique_ptr<Instruction> && t)1211 void IRContext::AddType(std::unique_ptr<Instruction>&& t) {
1212 module()->AddType(std::move(t));
1213 if (AreAnalysesValid(kAnalysisDefUse)) {
1214 get_def_use_mgr()->AnalyzeInstDefUse(&*(--types_values_end()));
1215 }
1216 }
1217
AddGlobalValue(std::unique_ptr<Instruction> && v)1218 void IRContext::AddGlobalValue(std::unique_ptr<Instruction>&& v) {
1219 if (AreAnalysesValid(kAnalysisDefUse)) {
1220 get_def_use_mgr()->AnalyzeInstDefUse(&*v);
1221 }
1222 module()->AddGlobalValue(std::move(v));
1223 }
1224
AddFunctionDeclaration(std::unique_ptr<Function> && f)1225 void IRContext::AddFunctionDeclaration(std::unique_ptr<Function>&& f) {
1226 module()->AddFunctionDeclaration(std::move(f));
1227 }
1228
AddFunction(std::unique_ptr<Function> && f)1229 void IRContext::AddFunction(std::unique_ptr<Function>&& f) {
1230 module()->AddFunction(std::move(f));
1231 }
1232
AnalyzeDefUse(Instruction * inst)1233 void IRContext::AnalyzeDefUse(Instruction* inst) {
1234 if (AreAnalysesValid(kAnalysisDefUse)) {
1235 get_def_use_mgr()->AnalyzeInstDefUse(inst);
1236 }
1237 }
1238
UpdateDefUse(Instruction * inst)1239 void IRContext::UpdateDefUse(Instruction* inst) {
1240 if (AreAnalysesValid(kAnalysisDefUse)) {
1241 get_def_use_mgr()->UpdateDefUse(inst);
1242 }
1243 }
1244
BuildIdToNameMap()1245 void IRContext::BuildIdToNameMap() {
1246 id_to_name_ = MakeUnique<std::multimap<uint32_t, Instruction*>>();
1247 for (Instruction& debug_inst : debugs2()) {
1248 if (debug_inst.opcode() == spv::Op::OpMemberName ||
1249 debug_inst.opcode() == spv::Op::OpName) {
1250 id_to_name_->insert({debug_inst.GetSingleWordInOperand(0), &debug_inst});
1251 }
1252 }
1253 valid_analyses_ = valid_analyses_ | kAnalysisNameMap;
1254 }
1255
1256 IteratorRange<std::multimap<uint32_t, Instruction*>::iterator>
GetNames(uint32_t id)1257 IRContext::GetNames(uint32_t id) {
1258 if (!AreAnalysesValid(kAnalysisNameMap)) {
1259 BuildIdToNameMap();
1260 }
1261 auto result = id_to_name_->equal_range(id);
1262 return make_range(std::move(result.first), std::move(result.second));
1263 }
1264
GetMemberName(uint32_t struct_type_id,uint32_t index)1265 Instruction* IRContext::GetMemberName(uint32_t struct_type_id, uint32_t index) {
1266 if (!AreAnalysesValid(kAnalysisNameMap)) {
1267 BuildIdToNameMap();
1268 }
1269 auto result = id_to_name_->equal_range(struct_type_id);
1270 for (auto i = result.first; i != result.second; ++i) {
1271 auto* name_instr = i->second;
1272 if (name_instr->opcode() == spv::Op::OpMemberName &&
1273 name_instr->GetSingleWordInOperand(1) == index) {
1274 return name_instr;
1275 }
1276 }
1277 return nullptr;
1278 }
1279
CloneNames(const uint32_t old_id,const uint32_t new_id,const uint32_t max_member_index)1280 void IRContext::CloneNames(const uint32_t old_id, const uint32_t new_id,
1281 const uint32_t max_member_index) {
1282 std::vector<std::unique_ptr<Instruction>> names_to_add;
1283 auto names = GetNames(old_id);
1284 for (auto n : names) {
1285 Instruction* old_name_inst = n.second;
1286 if (old_name_inst->opcode() == spv::Op::OpMemberName) {
1287 auto midx = old_name_inst->GetSingleWordInOperand(1);
1288 if (midx >= max_member_index) continue;
1289 }
1290 std::unique_ptr<Instruction> new_name_inst(old_name_inst->Clone(this));
1291 new_name_inst->SetInOperand(0, {new_id});
1292 names_to_add.push_back(std::move(new_name_inst));
1293 }
1294 // We can't add the new names when we are iterating over name range above.
1295 // We can add all the new names now.
1296 for (auto& new_name : names_to_add) AddDebug2Inst(std::move(new_name));
1297 }
1298
1299 } // namespace opt
1300 } // namespace spvtools
1301
1302 #endif // SOURCE_OPT_IR_CONTEXT_H_
1303