1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 *
57 * The DSS routines are based on patches supplied by
58 * Steven Schoch <schoch@sheba.arc.nasa.gov>. */
59
60 #include <openssl/dsa.h>
61
62 #include <string.h>
63
64 #include <openssl/bn.h>
65 #include <openssl/dh.h>
66 #include <openssl/digest.h>
67 #include <openssl/engine.h>
68 #include <openssl/err.h>
69 #include <openssl/ex_data.h>
70 #include <openssl/mem.h>
71 #include <openssl/rand.h>
72 #include <openssl/sha.h>
73 #include <openssl/thread.h>
74
75 #include "internal.h"
76 #include "../fipsmodule/bn/internal.h"
77 #include "../fipsmodule/dh/internal.h"
78 #include "../internal.h"
79
80
81 // Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of
82 // Miller-Rabin.
83 #define DSS_prime_checks 50
84
85 static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv,
86 BIGNUM **out_r);
87
88 static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT;
89
DSA_new(void)90 DSA *DSA_new(void) {
91 DSA *dsa = OPENSSL_zalloc(sizeof(DSA));
92 if (dsa == NULL) {
93 return NULL;
94 }
95
96 dsa->references = 1;
97 CRYPTO_MUTEX_init(&dsa->method_mont_lock);
98 CRYPTO_new_ex_data(&dsa->ex_data);
99 return dsa;
100 }
101
DSA_free(DSA * dsa)102 void DSA_free(DSA *dsa) {
103 if (dsa == NULL) {
104 return;
105 }
106
107 if (!CRYPTO_refcount_dec_and_test_zero(&dsa->references)) {
108 return;
109 }
110
111 CRYPTO_free_ex_data(&g_ex_data_class, dsa, &dsa->ex_data);
112
113 BN_clear_free(dsa->p);
114 BN_clear_free(dsa->q);
115 BN_clear_free(dsa->g);
116 BN_clear_free(dsa->pub_key);
117 BN_clear_free(dsa->priv_key);
118 BN_MONT_CTX_free(dsa->method_mont_p);
119 BN_MONT_CTX_free(dsa->method_mont_q);
120 CRYPTO_MUTEX_cleanup(&dsa->method_mont_lock);
121 OPENSSL_free(dsa);
122 }
123
DSA_up_ref(DSA * dsa)124 int DSA_up_ref(DSA *dsa) {
125 CRYPTO_refcount_inc(&dsa->references);
126 return 1;
127 }
128
DSA_bits(const DSA * dsa)129 unsigned DSA_bits(const DSA *dsa) { return BN_num_bits(dsa->p); }
130
DSA_get0_pub_key(const DSA * dsa)131 const BIGNUM *DSA_get0_pub_key(const DSA *dsa) { return dsa->pub_key; }
132
DSA_get0_priv_key(const DSA * dsa)133 const BIGNUM *DSA_get0_priv_key(const DSA *dsa) { return dsa->priv_key; }
134
DSA_get0_p(const DSA * dsa)135 const BIGNUM *DSA_get0_p(const DSA *dsa) { return dsa->p; }
136
DSA_get0_q(const DSA * dsa)137 const BIGNUM *DSA_get0_q(const DSA *dsa) { return dsa->q; }
138
DSA_get0_g(const DSA * dsa)139 const BIGNUM *DSA_get0_g(const DSA *dsa) { return dsa->g; }
140
DSA_get0_key(const DSA * dsa,const BIGNUM ** out_pub_key,const BIGNUM ** out_priv_key)141 void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key,
142 const BIGNUM **out_priv_key) {
143 if (out_pub_key != NULL) {
144 *out_pub_key = dsa->pub_key;
145 }
146 if (out_priv_key != NULL) {
147 *out_priv_key = dsa->priv_key;
148 }
149 }
150
DSA_get0_pqg(const DSA * dsa,const BIGNUM ** out_p,const BIGNUM ** out_q,const BIGNUM ** out_g)151 void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q,
152 const BIGNUM **out_g) {
153 if (out_p != NULL) {
154 *out_p = dsa->p;
155 }
156 if (out_q != NULL) {
157 *out_q = dsa->q;
158 }
159 if (out_g != NULL) {
160 *out_g = dsa->g;
161 }
162 }
163
DSA_set0_key(DSA * dsa,BIGNUM * pub_key,BIGNUM * priv_key)164 int DSA_set0_key(DSA *dsa, BIGNUM *pub_key, BIGNUM *priv_key) {
165 if (dsa->pub_key == NULL && pub_key == NULL) {
166 return 0;
167 }
168
169 if (pub_key != NULL) {
170 BN_free(dsa->pub_key);
171 dsa->pub_key = pub_key;
172 }
173 if (priv_key != NULL) {
174 BN_free(dsa->priv_key);
175 dsa->priv_key = priv_key;
176 }
177
178 return 1;
179 }
180
DSA_set0_pqg(DSA * dsa,BIGNUM * p,BIGNUM * q,BIGNUM * g)181 int DSA_set0_pqg(DSA *dsa, BIGNUM *p, BIGNUM *q, BIGNUM *g) {
182 if ((dsa->p == NULL && p == NULL) ||
183 (dsa->q == NULL && q == NULL) ||
184 (dsa->g == NULL && g == NULL)) {
185 return 0;
186 }
187
188 if (p != NULL) {
189 BN_free(dsa->p);
190 dsa->p = p;
191 }
192 if (q != NULL) {
193 BN_free(dsa->q);
194 dsa->q = q;
195 }
196 if (g != NULL) {
197 BN_free(dsa->g);
198 dsa->g = g;
199 }
200
201 BN_MONT_CTX_free(dsa->method_mont_p);
202 dsa->method_mont_p = NULL;
203 BN_MONT_CTX_free(dsa->method_mont_q);
204 dsa->method_mont_q = NULL;
205 return 1;
206 }
207
DSA_generate_parameters_ex(DSA * dsa,unsigned bits,const uint8_t * seed_in,size_t seed_len,int * out_counter,unsigned long * out_h,BN_GENCB * cb)208 int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed_in,
209 size_t seed_len, int *out_counter,
210 unsigned long *out_h, BN_GENCB *cb) {
211 int ok = 0;
212 unsigned char seed[SHA256_DIGEST_LENGTH];
213 unsigned char md[SHA256_DIGEST_LENGTH];
214 unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH];
215 BIGNUM *r0, *W, *X, *c, *test;
216 BIGNUM *g = NULL, *q = NULL, *p = NULL;
217 BN_MONT_CTX *mont = NULL;
218 int k, n = 0, m = 0;
219 int counter = 0;
220 int r = 0;
221 BN_CTX *ctx = NULL;
222 unsigned int h = 2;
223 const EVP_MD *evpmd;
224
225 evpmd = (bits >= 2048) ? EVP_sha256() : EVP_sha1();
226 size_t qsize = EVP_MD_size(evpmd);
227
228 if (bits < 512) {
229 bits = 512;
230 }
231
232 bits = (bits + 63) / 64 * 64;
233
234 if (seed_in != NULL) {
235 if (seed_len < qsize) {
236 return 0;
237 }
238 if (seed_len > qsize) {
239 // Only consume as much seed as is expected.
240 seed_len = qsize;
241 }
242 OPENSSL_memcpy(seed, seed_in, seed_len);
243 }
244
245 ctx = BN_CTX_new();
246 if (ctx == NULL) {
247 goto err;
248 }
249 BN_CTX_start(ctx);
250
251 r0 = BN_CTX_get(ctx);
252 g = BN_CTX_get(ctx);
253 W = BN_CTX_get(ctx);
254 q = BN_CTX_get(ctx);
255 X = BN_CTX_get(ctx);
256 c = BN_CTX_get(ctx);
257 p = BN_CTX_get(ctx);
258 test = BN_CTX_get(ctx);
259
260 if (test == NULL || !BN_lshift(test, BN_value_one(), bits - 1)) {
261 goto err;
262 }
263
264 for (;;) {
265 // Find q.
266 for (;;) {
267 // step 1
268 if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, m++)) {
269 goto err;
270 }
271
272 int use_random_seed = (seed_in == NULL);
273 if (use_random_seed) {
274 if (!RAND_bytes(seed, qsize)) {
275 goto err;
276 }
277 // DSA parameters are public.
278 CONSTTIME_DECLASSIFY(seed, qsize);
279 } else {
280 // If we come back through, use random seed next time.
281 seed_in = NULL;
282 }
283 OPENSSL_memcpy(buf, seed, qsize);
284 OPENSSL_memcpy(buf2, seed, qsize);
285 // precompute "SEED + 1" for step 7:
286 for (size_t i = qsize - 1; i < qsize; i--) {
287 buf[i]++;
288 if (buf[i] != 0) {
289 break;
290 }
291 }
292
293 // step 2
294 if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL) ||
295 !EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL)) {
296 goto err;
297 }
298 for (size_t i = 0; i < qsize; i++) {
299 md[i] ^= buf2[i];
300 }
301
302 // step 3
303 md[0] |= 0x80;
304 md[qsize - 1] |= 0x01;
305 if (!BN_bin2bn(md, qsize, q)) {
306 goto err;
307 }
308
309 // step 4
310 r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx, use_random_seed, cb);
311 if (r > 0) {
312 break;
313 }
314 if (r != 0) {
315 goto err;
316 }
317
318 // do a callback call
319 // step 5
320 }
321
322 if (!BN_GENCB_call(cb, 2, 0) || !BN_GENCB_call(cb, 3, 0)) {
323 goto err;
324 }
325
326 // step 6
327 counter = 0;
328 // "offset = 2"
329
330 n = (bits - 1) / 160;
331
332 for (;;) {
333 if ((counter != 0) && !BN_GENCB_call(cb, BN_GENCB_GENERATED, counter)) {
334 goto err;
335 }
336
337 // step 7
338 BN_zero(W);
339 // now 'buf' contains "SEED + offset - 1"
340 for (k = 0; k <= n; k++) {
341 // obtain "SEED + offset + k" by incrementing:
342 for (size_t i = qsize - 1; i < qsize; i--) {
343 buf[i]++;
344 if (buf[i] != 0) {
345 break;
346 }
347 }
348
349 if (!EVP_Digest(buf, qsize, md, NULL, evpmd, NULL)) {
350 goto err;
351 }
352
353 // step 8
354 if (!BN_bin2bn(md, qsize, r0) ||
355 !BN_lshift(r0, r0, (qsize << 3) * k) ||
356 !BN_add(W, W, r0)) {
357 goto err;
358 }
359 }
360
361 // more of step 8
362 if (!BN_mask_bits(W, bits - 1) ||
363 !BN_copy(X, W) ||
364 !BN_add(X, X, test)) {
365 goto err;
366 }
367
368 // step 9
369 if (!BN_lshift1(r0, q) ||
370 !BN_mod(c, X, r0, ctx) ||
371 !BN_sub(r0, c, BN_value_one()) ||
372 !BN_sub(p, X, r0)) {
373 goto err;
374 }
375
376 // step 10
377 if (BN_cmp(p, test) >= 0) {
378 // step 11
379 r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb);
380 if (r > 0) {
381 goto end; // found it
382 }
383 if (r != 0) {
384 goto err;
385 }
386 }
387
388 // step 13
389 counter++;
390 // "offset = offset + n + 1"
391
392 // step 14
393 if (counter >= 4096) {
394 break;
395 }
396 }
397 }
398 end:
399 if (!BN_GENCB_call(cb, 2, 1)) {
400 goto err;
401 }
402
403 // We now need to generate g
404 // Set r0=(p-1)/q
405 if (!BN_sub(test, p, BN_value_one()) ||
406 !BN_div(r0, NULL, test, q, ctx)) {
407 goto err;
408 }
409
410 mont = BN_MONT_CTX_new_for_modulus(p, ctx);
411 if (mont == NULL ||
412 !BN_set_word(test, h)) {
413 goto err;
414 }
415
416 for (;;) {
417 // g=test^r0%p
418 if (!BN_mod_exp_mont(g, test, r0, p, ctx, mont)) {
419 goto err;
420 }
421 if (!BN_is_one(g)) {
422 break;
423 }
424 if (!BN_add(test, test, BN_value_one())) {
425 goto err;
426 }
427 h++;
428 }
429
430 if (!BN_GENCB_call(cb, 3, 1)) {
431 goto err;
432 }
433
434 ok = 1;
435
436 err:
437 if (ok) {
438 BN_free(dsa->p);
439 BN_free(dsa->q);
440 BN_free(dsa->g);
441 dsa->p = BN_dup(p);
442 dsa->q = BN_dup(q);
443 dsa->g = BN_dup(g);
444 if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
445 ok = 0;
446 goto err;
447 }
448 if (out_counter != NULL) {
449 *out_counter = counter;
450 }
451 if (out_h != NULL) {
452 *out_h = h;
453 }
454 }
455
456 if (ctx) {
457 BN_CTX_end(ctx);
458 BN_CTX_free(ctx);
459 }
460
461 BN_MONT_CTX_free(mont);
462
463 return ok;
464 }
465
DSAparams_dup(const DSA * dsa)466 DSA *DSAparams_dup(const DSA *dsa) {
467 DSA *ret = DSA_new();
468 if (ret == NULL) {
469 return NULL;
470 }
471 ret->p = BN_dup(dsa->p);
472 ret->q = BN_dup(dsa->q);
473 ret->g = BN_dup(dsa->g);
474 if (ret->p == NULL || ret->q == NULL || ret->g == NULL) {
475 DSA_free(ret);
476 return NULL;
477 }
478 return ret;
479 }
480
DSA_generate_key(DSA * dsa)481 int DSA_generate_key(DSA *dsa) {
482 int ok = 0;
483 BN_CTX *ctx = NULL;
484 BIGNUM *pub_key = NULL, *priv_key = NULL;
485
486 ctx = BN_CTX_new();
487 if (ctx == NULL) {
488 goto err;
489 }
490
491 priv_key = dsa->priv_key;
492 if (priv_key == NULL) {
493 priv_key = BN_new();
494 if (priv_key == NULL) {
495 goto err;
496 }
497 }
498
499 if (!BN_rand_range_ex(priv_key, 1, dsa->q)) {
500 goto err;
501 }
502
503 pub_key = dsa->pub_key;
504 if (pub_key == NULL) {
505 pub_key = BN_new();
506 if (pub_key == NULL) {
507 goto err;
508 }
509 }
510
511 if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, &dsa->method_mont_lock,
512 dsa->p, ctx) ||
513 !BN_mod_exp_mont_consttime(pub_key, dsa->g, priv_key, dsa->p, ctx,
514 dsa->method_mont_p)) {
515 goto err;
516 }
517
518 // The public key is computed from the private key, but is public.
519 bn_declassify(pub_key);
520
521 dsa->priv_key = priv_key;
522 dsa->pub_key = pub_key;
523 ok = 1;
524
525 err:
526 if (dsa->pub_key == NULL) {
527 BN_free(pub_key);
528 }
529 if (dsa->priv_key == NULL) {
530 BN_free(priv_key);
531 }
532 BN_CTX_free(ctx);
533
534 return ok;
535 }
536
DSA_SIG_new(void)537 DSA_SIG *DSA_SIG_new(void) { return OPENSSL_zalloc(sizeof(DSA_SIG)); }
538
DSA_SIG_free(DSA_SIG * sig)539 void DSA_SIG_free(DSA_SIG *sig) {
540 if (!sig) {
541 return;
542 }
543
544 BN_free(sig->r);
545 BN_free(sig->s);
546 OPENSSL_free(sig);
547 }
548
DSA_SIG_get0(const DSA_SIG * sig,const BIGNUM ** out_r,const BIGNUM ** out_s)549 void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **out_r,
550 const BIGNUM **out_s) {
551 if (out_r != NULL) {
552 *out_r = sig->r;
553 }
554 if (out_s != NULL) {
555 *out_s = sig->s;
556 }
557 }
558
DSA_SIG_set0(DSA_SIG * sig,BIGNUM * r,BIGNUM * s)559 int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
560 if (r == NULL || s == NULL) {
561 return 0;
562 }
563 BN_free(sig->r);
564 BN_free(sig->s);
565 sig->r = r;
566 sig->s = s;
567 return 1;
568 }
569
570 // mod_mul_consttime sets |r| to |a| * |b| modulo |mont->N|, treating |a| and
571 // |b| as secret. This function internally uses Montgomery reduction, but
572 // neither inputs nor outputs are in Montgomery form.
mod_mul_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BN_MONT_CTX * mont,BN_CTX * ctx)573 static int mod_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
574 const BN_MONT_CTX *mont, BN_CTX *ctx) {
575 BN_CTX_start(ctx);
576 BIGNUM *tmp = BN_CTX_get(ctx);
577 // |BN_mod_mul_montgomery| removes a factor of R, so we cancel it with a
578 // single |BN_to_montgomery| which adds one factor of R.
579 int ok = tmp != NULL &&
580 BN_to_montgomery(tmp, a, mont, ctx) &&
581 BN_mod_mul_montgomery(r, tmp, b, mont, ctx);
582 BN_CTX_end(ctx);
583 return ok;
584 }
585
DSA_do_sign(const uint8_t * digest,size_t digest_len,const DSA * dsa)586 DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, const DSA *dsa) {
587 if (!dsa_check_key(dsa)) {
588 return NULL;
589 }
590
591 if (dsa->priv_key == NULL) {
592 OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
593 return NULL;
594 }
595
596 BIGNUM *kinv = NULL, *r = NULL, *s = NULL;
597 BIGNUM m;
598 BIGNUM xr;
599 BN_CTX *ctx = NULL;
600 DSA_SIG *ret = NULL;
601
602 BN_init(&m);
603 BN_init(&xr);
604 s = BN_new();
605 if (s == NULL) {
606 goto err;
607 }
608 ctx = BN_CTX_new();
609 if (ctx == NULL) {
610 goto err;
611 }
612
613 // Cap iterations so that invalid parameters do not infinite loop. This does
614 // not impact valid parameters because the probability of requiring even one
615 // retry is negligible, let alone 32. Unfortunately, DSA was mis-specified, so
616 // invalid parameters are reachable from most callers handling untrusted
617 // private keys. (The |dsa_check_key| call above is not sufficient. Checking
618 // whether arbitrary paremeters form a valid DSA group is expensive.)
619 static const int kMaxIterations = 32;
620 int iters = 0;
621 redo:
622 if (!dsa_sign_setup(dsa, ctx, &kinv, &r)) {
623 goto err;
624 }
625
626 if (digest_len > BN_num_bytes(dsa->q)) {
627 // If the digest length is greater than the size of |dsa->q| use the
628 // BN_num_bits(dsa->q) leftmost bits of the digest, see FIPS 186-3, 4.2.
629 // Note the above check that |dsa->q| is a multiple of 8 bits.
630 digest_len = BN_num_bytes(dsa->q);
631 }
632
633 if (BN_bin2bn(digest, digest_len, &m) == NULL) {
634 goto err;
635 }
636
637 // |m| is bounded by 2^(num_bits(q)), which is slightly looser than q. This
638 // violates |bn_mod_add_consttime| and |mod_mul_consttime|'s preconditions.
639 // (The underlying algorithms could accept looser bounds, but we reduce for
640 // simplicity.)
641 size_t q_width = bn_minimal_width(dsa->q);
642 if (!bn_resize_words(&m, q_width) ||
643 !bn_resize_words(&xr, q_width)) {
644 goto err;
645 }
646 bn_reduce_once_in_place(m.d, 0 /* no carry word */, dsa->q->d,
647 xr.d /* scratch space */, q_width);
648
649 // Compute s = inv(k) (m + xr) mod q. Note |dsa->method_mont_q| is
650 // initialized by |dsa_sign_setup|.
651 if (!mod_mul_consttime(&xr, dsa->priv_key, r, dsa->method_mont_q, ctx) ||
652 !bn_mod_add_consttime(s, &xr, &m, dsa->q, ctx) ||
653 !mod_mul_consttime(s, s, kinv, dsa->method_mont_q, ctx)) {
654 goto err;
655 }
656
657 // The signature is computed from the private key, but is public.
658 bn_declassify(r);
659 bn_declassify(s);
660
661 // Redo if r or s is zero as required by FIPS 186-3: this is
662 // very unlikely.
663 if (BN_is_zero(r) || BN_is_zero(s)) {
664 iters++;
665 if (iters > kMaxIterations) {
666 OPENSSL_PUT_ERROR(DSA, DSA_R_TOO_MANY_ITERATIONS);
667 goto err;
668 }
669 goto redo;
670 }
671
672 ret = DSA_SIG_new();
673 if (ret == NULL) {
674 goto err;
675 }
676 ret->r = r;
677 ret->s = s;
678
679 err:
680 if (ret == NULL) {
681 OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
682 BN_free(r);
683 BN_free(s);
684 }
685 BN_CTX_free(ctx);
686 BN_clear_free(&m);
687 BN_clear_free(&xr);
688 BN_clear_free(kinv);
689
690 return ret;
691 }
692
DSA_do_verify(const uint8_t * digest,size_t digest_len,const DSA_SIG * sig,const DSA * dsa)693 int DSA_do_verify(const uint8_t *digest, size_t digest_len, const DSA_SIG *sig,
694 const DSA *dsa) {
695 int valid;
696 if (!DSA_do_check_signature(&valid, digest, digest_len, sig, dsa)) {
697 return -1;
698 }
699 return valid;
700 }
701
DSA_do_check_signature(int * out_valid,const uint8_t * digest,size_t digest_len,const DSA_SIG * sig,const DSA * dsa)702 int DSA_do_check_signature(int *out_valid, const uint8_t *digest,
703 size_t digest_len, const DSA_SIG *sig,
704 const DSA *dsa) {
705 *out_valid = 0;
706 if (!dsa_check_key(dsa)) {
707 return 0;
708 }
709
710 if (dsa->pub_key == NULL) {
711 OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
712 return 0;
713 }
714
715 int ret = 0;
716 BIGNUM u1, u2, t1;
717 BN_init(&u1);
718 BN_init(&u2);
719 BN_init(&t1);
720 BN_CTX *ctx = BN_CTX_new();
721 if (ctx == NULL) {
722 goto err;
723 }
724
725 if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
726 BN_ucmp(sig->r, dsa->q) >= 0) {
727 ret = 1;
728 goto err;
729 }
730 if (BN_is_zero(sig->s) || BN_is_negative(sig->s) ||
731 BN_ucmp(sig->s, dsa->q) >= 0) {
732 ret = 1;
733 goto err;
734 }
735
736 // Calculate W = inv(S) mod Q
737 // save W in u2
738 if (BN_mod_inverse(&u2, sig->s, dsa->q, ctx) == NULL) {
739 goto err;
740 }
741
742 // save M in u1
743 unsigned q_bits = BN_num_bits(dsa->q);
744 if (digest_len > (q_bits >> 3)) {
745 // if the digest length is greater than the size of q use the
746 // BN_num_bits(dsa->q) leftmost bits of the digest, see
747 // fips 186-3, 4.2
748 digest_len = (q_bits >> 3);
749 }
750
751 if (BN_bin2bn(digest, digest_len, &u1) == NULL) {
752 goto err;
753 }
754
755 // u1 = M * w mod q
756 if (!BN_mod_mul(&u1, &u1, &u2, dsa->q, ctx)) {
757 goto err;
758 }
759
760 // u2 = r * w mod q
761 if (!BN_mod_mul(&u2, sig->r, &u2, dsa->q, ctx)) {
762 goto err;
763 }
764
765 if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
766 (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
767 ctx)) {
768 goto err;
769 }
770
771 if (!BN_mod_exp2_mont(&t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p, ctx,
772 dsa->method_mont_p)) {
773 goto err;
774 }
775
776 // BN_copy(&u1,&t1);
777 // let u1 = u1 mod q
778 if (!BN_mod(&u1, &t1, dsa->q, ctx)) {
779 goto err;
780 }
781
782 // V is now in u1. If the signature is correct, it will be
783 // equal to R.
784 *out_valid = BN_ucmp(&u1, sig->r) == 0;
785 ret = 1;
786
787 err:
788 if (ret != 1) {
789 OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
790 }
791 BN_CTX_free(ctx);
792 BN_free(&u1);
793 BN_free(&u2);
794 BN_free(&t1);
795
796 return ret;
797 }
798
DSA_sign(int type,const uint8_t * digest,size_t digest_len,uint8_t * out_sig,unsigned int * out_siglen,const DSA * dsa)799 int DSA_sign(int type, const uint8_t *digest, size_t digest_len,
800 uint8_t *out_sig, unsigned int *out_siglen, const DSA *dsa) {
801 DSA_SIG *s;
802
803 s = DSA_do_sign(digest, digest_len, dsa);
804 if (s == NULL) {
805 *out_siglen = 0;
806 return 0;
807 }
808
809 *out_siglen = i2d_DSA_SIG(s, &out_sig);
810 DSA_SIG_free(s);
811 return 1;
812 }
813
DSA_verify(int type,const uint8_t * digest,size_t digest_len,const uint8_t * sig,size_t sig_len,const DSA * dsa)814 int DSA_verify(int type, const uint8_t *digest, size_t digest_len,
815 const uint8_t *sig, size_t sig_len, const DSA *dsa) {
816 int valid;
817 if (!DSA_check_signature(&valid, digest, digest_len, sig, sig_len, dsa)) {
818 return -1;
819 }
820 return valid;
821 }
822
DSA_check_signature(int * out_valid,const uint8_t * digest,size_t digest_len,const uint8_t * sig,size_t sig_len,const DSA * dsa)823 int DSA_check_signature(int *out_valid, const uint8_t *digest,
824 size_t digest_len, const uint8_t *sig, size_t sig_len,
825 const DSA *dsa) {
826 DSA_SIG *s = NULL;
827 int ret = 0;
828 uint8_t *der = NULL;
829
830 s = DSA_SIG_new();
831 if (s == NULL) {
832 goto err;
833 }
834
835 const uint8_t *sigp = sig;
836 if (d2i_DSA_SIG(&s, &sigp, sig_len) == NULL || sigp != sig + sig_len) {
837 goto err;
838 }
839
840 // Ensure that the signature uses DER and doesn't have trailing garbage.
841 int der_len = i2d_DSA_SIG(s, &der);
842 if (der_len < 0 || (size_t)der_len != sig_len ||
843 OPENSSL_memcmp(sig, der, sig_len)) {
844 goto err;
845 }
846
847 ret = DSA_do_check_signature(out_valid, digest, digest_len, s, dsa);
848
849 err:
850 OPENSSL_free(der);
851 DSA_SIG_free(s);
852 return ret;
853 }
854
855 // der_len_len returns the number of bytes needed to represent a length of |len|
856 // in DER.
der_len_len(size_t len)857 static size_t der_len_len(size_t len) {
858 if (len < 0x80) {
859 return 1;
860 }
861 size_t ret = 1;
862 while (len > 0) {
863 ret++;
864 len >>= 8;
865 }
866 return ret;
867 }
868
DSA_size(const DSA * dsa)869 int DSA_size(const DSA *dsa) {
870 if (dsa->q == NULL) {
871 return 0;
872 }
873
874 size_t order_len = BN_num_bytes(dsa->q);
875 // Compute the maximum length of an |order_len| byte integer. Defensively
876 // assume that the leading 0x00 is included.
877 size_t integer_len = 1 /* tag */ + der_len_len(order_len + 1) + 1 + order_len;
878 if (integer_len < order_len) {
879 return 0;
880 }
881 // A DSA signature is two INTEGERs.
882 size_t value_len = 2 * integer_len;
883 if (value_len < integer_len) {
884 return 0;
885 }
886 // Add the header.
887 size_t ret = 1 /* tag */ + der_len_len(value_len) + value_len;
888 if (ret < value_len) {
889 return 0;
890 }
891 return ret;
892 }
893
dsa_sign_setup(const DSA * dsa,BN_CTX * ctx,BIGNUM ** out_kinv,BIGNUM ** out_r)894 static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx, BIGNUM **out_kinv,
895 BIGNUM **out_r) {
896 int ret = 0;
897 BIGNUM k;
898 BN_init(&k);
899 BIGNUM *r = BN_new();
900 BIGNUM *kinv = BN_new();
901 if (r == NULL || kinv == NULL ||
902 // Get random k
903 !BN_rand_range_ex(&k, 1, dsa->q) ||
904 !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
905 (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
906 ctx) ||
907 !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q,
908 (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q,
909 ctx) ||
910 // Compute r = (g^k mod p) mod q
911 !BN_mod_exp_mont_consttime(r, dsa->g, &k, dsa->p, ctx,
912 dsa->method_mont_p)) {
913 OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
914 goto err;
915 }
916 // Note |BN_mod| below is not constant-time and may leak information about
917 // |r|. |dsa->p| may be significantly larger than |dsa->q|, so this is not
918 // easily performed in constant-time with Montgomery reduction.
919 //
920 // However, |r| at this point is g^k (mod p). It is almost the value of |r|
921 // revealed in the signature anyway (g^k (mod p) (mod q)), going from it to
922 // |k| would require computing a discrete log.
923 bn_declassify(r);
924 if (!BN_mod(r, r, dsa->q, ctx) ||
925 // Compute part of 's = inv(k) (m + xr) mod q' using Fermat's Little
926 // Theorem.
927 !bn_mod_inverse_prime(kinv, &k, dsa->q, ctx, dsa->method_mont_q)) {
928 OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
929 goto err;
930 }
931
932 BN_clear_free(*out_kinv);
933 *out_kinv = kinv;
934 kinv = NULL;
935
936 BN_clear_free(*out_r);
937 *out_r = r;
938 r = NULL;
939
940 ret = 1;
941
942 err:
943 BN_clear_free(&k);
944 BN_clear_free(r);
945 BN_clear_free(kinv);
946 return ret;
947 }
948
DSA_get_ex_new_index(long argl,void * argp,CRYPTO_EX_unused * unused,CRYPTO_EX_dup * dup_unused,CRYPTO_EX_free * free_func)949 int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
950 CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) {
951 return CRYPTO_get_ex_new_index_ex(&g_ex_data_class, argl, argp, free_func);
952 }
953
DSA_set_ex_data(DSA * dsa,int idx,void * arg)954 int DSA_set_ex_data(DSA *dsa, int idx, void *arg) {
955 return CRYPTO_set_ex_data(&dsa->ex_data, idx, arg);
956 }
957
DSA_get_ex_data(const DSA * dsa,int idx)958 void *DSA_get_ex_data(const DSA *dsa, int idx) {
959 return CRYPTO_get_ex_data(&dsa->ex_data, idx);
960 }
961
DSA_dup_DH(const DSA * dsa)962 DH *DSA_dup_DH(const DSA *dsa) {
963 if (dsa == NULL) {
964 return NULL;
965 }
966
967 DH *ret = DH_new();
968 if (ret == NULL) {
969 goto err;
970 }
971 if (dsa->q != NULL) {
972 ret->priv_length = BN_num_bits(dsa->q);
973 if ((ret->q = BN_dup(dsa->q)) == NULL) {
974 goto err;
975 }
976 }
977 if ((dsa->p != NULL && (ret->p = BN_dup(dsa->p)) == NULL) ||
978 (dsa->g != NULL && (ret->g = BN_dup(dsa->g)) == NULL) ||
979 (dsa->pub_key != NULL && (ret->pub_key = BN_dup(dsa->pub_key)) == NULL) ||
980 (dsa->priv_key != NULL &&
981 (ret->priv_key = BN_dup(dsa->priv_key)) == NULL)) {
982 goto err;
983 }
984
985 return ret;
986
987 err:
988 DH_free(ret);
989 return NULL;
990 }
991