• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  *
57  * The DSS routines are based on patches supplied by
58  * Steven Schoch <schoch@sheba.arc.nasa.gov>. */
59 
60 #include <openssl/dsa.h>
61 
62 #include <stdio.h>
63 #include <string.h>
64 
65 #include <vector>
66 
67 #include <gtest/gtest.h>
68 
69 #include <openssl/bn.h>
70 #include <openssl/crypto.h>
71 #include <openssl/err.h>
72 #include <openssl/pem.h>
73 #include <openssl/span.h>
74 
75 #include "../test/test_util.h"
76 
77 
78 // The following values are taken from the updated Appendix 5 to FIPS PUB 186
79 // and also appear in Appendix 5 to FIPS PUB 186-1.
80 
81 static const uint8_t seed[20] = {
82     0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b,
83     0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3,
84 };
85 
86 static const uint8_t fips_p[] = {
87     0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75,
88     0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d,
89     0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0,
90     0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac,
91     0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24,
92     0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91,
93 };
94 
95 static const uint8_t fips_q[] = {
96     0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f,
97     0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f,
98 };
99 
100 static const uint8_t fips_g[] = {
101     0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63,
102     0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c,
103     0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71,
104     0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95,
105     0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08,
106     0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02,
107 };
108 
109 static const uint8_t fips_x[] = {
110     0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f,
111     0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14,
112 };
113 
114 static const uint8_t fips_y[] = {
115     0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2,
116     0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6,
117     0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d,
118     0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25,
119     0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06,
120     0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33,
121 };
122 
123 static const uint8_t fips_digest[] = {
124     0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25,
125     0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d,
126 };
127 
128 // fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1.
129 static const uint8_t fips_sig[] = {
130     0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
131     0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
132     0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
133     0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
134     0xdc, 0xd8, 0xc8,
135 };
136 
137 // fips_sig_negative is fips_sig with r encoded as a negative number.
138 static const uint8_t fips_sig_negative[] = {
139     0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43,
140     0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3,
141     0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf,
142     0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc,
143     0xd8, 0xc8,
144 };
145 
146 // fip_sig_extra is fips_sig with trailing data.
147 static const uint8_t fips_sig_extra[] = {
148     0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
149     0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
150     0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
151     0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
152     0xdc, 0xd8, 0xc8, 0x00,
153 };
154 
155 // fips_sig_lengths is fips_sig with a non-minimally encoded length.
156 static const uint8_t fips_sig_bad_length[] = {
157     0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64,
158     0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c,
159     0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f,
160     0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d,
161     0xb6, 0xdc, 0xd8, 0xc8, 0x00,
162 };
163 
164 // fips_sig_bad_r is fips_sig with a bad r value.
165 static const uint8_t fips_sig_bad_r[] = {
166     0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10,
167     0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
168     0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
169     0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
170     0xdc, 0xd8, 0xc8,
171 };
172 
GetFIPSDSAGroup(void)173 static bssl::UniquePtr<DSA> GetFIPSDSAGroup(void) {
174   bssl::UniquePtr<DSA> dsa(DSA_new());
175   if (!dsa) {
176     return nullptr;
177   }
178   bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
179   bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
180   bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
181   if (!p || !q || !g || !DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())) {
182     return nullptr;
183   }
184   // |DSA_set0_pqg| takes ownership.
185   p.release();
186   q.release();
187   g.release();
188   return dsa;
189 }
190 
GetFIPSDSA(void)191 static bssl::UniquePtr<DSA> GetFIPSDSA(void) {
192   bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
193   if (!dsa) {
194     return nullptr;
195   }
196   bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
197   bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
198   if (!pub_key || !priv_key ||
199       !DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())) {
200     return nullptr;
201   }
202   // |DSA_set0_key| takes ownership.
203   pub_key.release();
204   priv_key.release();
205   return dsa;
206 }
207 
TEST(DSATest,Generate)208 TEST(DSATest, Generate) {
209   bssl::UniquePtr<DSA> dsa(DSA_new());
210   ASSERT_TRUE(dsa);
211   int counter;
212   unsigned long h;
213   ASSERT_TRUE(DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h,
214                                          nullptr));
215   EXPECT_EQ(counter, 105);
216   EXPECT_EQ(h, 2u);
217 
218   auto expect_bn_bytes = [](const char *msg, const BIGNUM *bn,
219                             bssl::Span<const uint8_t> bytes) {
220     std::vector<uint8_t> buf(BN_num_bytes(bn));
221     BN_bn2bin(bn, buf.data());
222     EXPECT_EQ(Bytes(buf), Bytes(bytes)) << msg;
223   };
224   expect_bn_bytes("q value is wrong", DSA_get0_q(dsa.get()), fips_q);
225   expect_bn_bytes("p value is wrong", DSA_get0_p(dsa.get()), fips_p);
226   expect_bn_bytes("g value is wrong", DSA_get0_g(dsa.get()), fips_g);
227 
228   ASSERT_TRUE(DSA_generate_key(dsa.get()));
229 
230   std::vector<uint8_t> sig(DSA_size(dsa.get()));
231   unsigned sig_len;
232   ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
233                        &sig_len, dsa.get()));
234 
235   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
236                           sig_len, dsa.get()));
237 }
238 
TEST(DSATest,Verify)239 TEST(DSATest, Verify) {
240   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
241   ASSERT_TRUE(dsa);
242 
243   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
244                           sizeof(fips_sig), dsa.get()));
245   EXPECT_EQ(-1,
246             DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_negative,
247                        sizeof(fips_sig_negative), dsa.get()));
248   EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_extra,
249                            sizeof(fips_sig_extra), dsa.get()));
250   EXPECT_EQ(-1,
251             DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_length,
252                        sizeof(fips_sig_bad_length), dsa.get()));
253   EXPECT_EQ(0, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_r,
254                           sizeof(fips_sig_bad_r), dsa.get()));
255 }
256 
TEST(DSATest,InvalidGroup)257 TEST(DSATest, InvalidGroup) {
258   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
259   ASSERT_TRUE(dsa);
260   bssl::UniquePtr<BIGNUM> zero(BN_new());
261   ASSERT_TRUE(zero);
262   ASSERT_TRUE(DSA_set0_pqg(dsa.get(), /*p=*/nullptr, /*q=*/nullptr,
263                            /*g=*/zero.release()));
264 
265   std::vector<uint8_t> sig(DSA_size(dsa.get()));
266   unsigned sig_len;
267   static const uint8_t kDigest[32] = {0};
268   EXPECT_FALSE(
269       DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get()));
270   EXPECT_TRUE(
271       ErrorEquals(ERR_get_error(), ERR_LIB_DSA, DSA_R_INVALID_PARAMETERS));
272 }
273 
274 // Signing and verifying should cleanly fail when the DSA object is empty.
TEST(DSATest,MissingParameters)275 TEST(DSATest, MissingParameters) {
276   bssl::UniquePtr<DSA> dsa(DSA_new());
277   ASSERT_TRUE(dsa);
278   EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
279                            sizeof(fips_sig), dsa.get()));
280 
281   std::vector<uint8_t> sig(DSA_size(dsa.get()));
282   unsigned sig_len;
283   EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
284                         &sig_len, dsa.get()));
285 }
286 
287 // Verifying should cleanly fail when the public key is missing.
TEST(DSATest,MissingPublic)288 TEST(DSATest, MissingPublic) {
289   bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
290   ASSERT_TRUE(dsa);
291   EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
292                            sizeof(fips_sig), dsa.get()));
293 }
294 
295 // Signing should cleanly fail when the private key is missing.
TEST(DSATest,MissingPrivate)296 TEST(DSATest, MissingPrivate) {
297   bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
298   ASSERT_TRUE(dsa);
299 
300   std::vector<uint8_t> sig(DSA_size(dsa.get()));
301   unsigned sig_len;
302   EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
303                         &sig_len, dsa.get()));
304 }
305 
306 // A zero private key is invalid and can cause signing to loop forever.
TEST(DSATest,ZeroPrivateKey)307 TEST(DSATest, ZeroPrivateKey) {
308   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
309   ASSERT_TRUE(dsa);
310   bssl::UniquePtr<BIGNUM> zero(BN_new());
311   ASSERT_TRUE(zero);
312   ASSERT_TRUE(DSA_set0_key(dsa.get(), /*pub_key=*/nullptr,
313                            /*priv_key=*/zero.release()));
314 
315   static const uint8_t kZeroDigest[32] = {0};
316   std::vector<uint8_t> sig(DSA_size(dsa.get()));
317   unsigned sig_len;
318   EXPECT_FALSE(DSA_sign(0, kZeroDigest, sizeof(kZeroDigest), sig.data(),
319                         &sig_len, dsa.get()));
320 }
321 
322 // If the "field" is actually a ring and the "generator" of the multiplicative
323 // subgroup is actually nilpotent with low degree, DSA signing never completes.
324 // Test that we give up in the infinite loop.
TEST(DSATest,NilpotentGenerator)325 TEST(DSATest, NilpotentGenerator) {
326   static const char kPEM[] = R"(
327 -----BEGIN DSA PRIVATE KEY-----
328 MGECAQACFQHH+MnFXh4NNlZiV/zUVb5a5ib3kwIVAOP8ZOKvDwabKzEr/moq3y1z
329 E3vJAhUAl/2Ylx9fWbzHdh1URsc/c6IM/TECAQECFCsjU4AZRcuks45g1NMOUeCB
330 Epvg
331 -----END DSA PRIVATE KEY-----
332 )";
333   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
334   ASSERT_TRUE(bio);
335   bssl::UniquePtr<DSA> dsa(
336       PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
337   ASSERT_TRUE(dsa);
338 
339   std::vector<uint8_t> sig(DSA_size(dsa.get()));
340   unsigned sig_len;
341   EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
342                         &sig_len, dsa.get()));
343 }
344 
TEST(DSATest,Overwrite)345 TEST(DSATest, Overwrite) {
346   // Load an arbitrary DSA private key and use it.
347   static const char kPEM[] = R"(
348 -----BEGIN DSA PRIVATE KEY-----
349 MIIDTgIBAAKCAQEAyH68EuravtF+7PTFBtWJkwjmp0YJmh8e2Cdpu8ci3dZf87rk
350 GwXzfqYkAEkW5H4Hp0cxdICKFiqfxjSaiEauOrNV+nXWZS634hZ9H47I8HnAVS0p
351 5MmSmPJ7NNUowymMpyB6M6hfqHl/1pZd7avbTmnzb2SZ0kw0WLWJo6vMekepYWv9
352 3o1Xove4ci00hnkr7Qo9Bh/+z84jgeT2/MTdsCVtbuMv/mbcYLhCKVWPBozDZr/D
353 qwhGTlomsTRvP3WIbem3b5eYhQaPuMsKiAzntcinoxQXWrIoZB+xJyF/sI013uBI
354 i9ePSxY3704U4QGxVM0aR/6fzORz5kh8ZjhhywIdAI9YBUR6eoGevUaLq++qXiYW
355 TgXBXlyqE32ESbkCggEBAL/c5GerO5g25D0QsfgVIJtlZHQOwYauuWoUudaQiyf6
356 VhWLBNNTAGldkFGdtxsA42uqqZSXCki25LvN6PscGGvFy8oPWaa9TGt+l9Z5ZZiV
357 ShNpg71V9YuImsPB3BrQ4L6nZLfhBt6InzJ6KqjDNdg7u6lgnFKue7l6khzqNxbM
358 RgxHWMq7PkhMcl+RzpqbiGcxSHqraxldutqCWsnZzhKh4d4GdunuRY8GiFo0Axkb
359 Kn0Il3zm81ewv08F/ocu+IZQEzxTyR8YRQ99MLVbnwhVxndEdLjjetCX82l+/uEY
360 5fdUy0thR8odcDsvUc/tT57I+yhnno80HbpUUNw2+/sCggEAdh1wp/9CifYIp6T8
361 P/rIus6KberZ2Pv/n0bl+Gv8AoToA0zhZXIfY2l0TtanKmdLqPIvjqkN0v6zGSs+
362 +ahR1QzMQnK718mcsQmB4X6iP5LKgJ/t0g8LrDOxc/cNycmHq76MmF9RN5NEBz4+
363 PAnRIftm/b0UQflP6uy3gRQP2X7P8ZebCytOPKTZC4oLyCtvPevSkCiiauq/RGjL
364 k6xqRgLxMtmuyhT+dcVbtllV1p1xd9Bppnk17/kR5VCefo/e/7DHu163izRDW8tx
365 SrEmiVyVkRijY3bVZii7LPfMz5eEAWEDJRuFwyNv3i6j7CKeZw2d/hzu370Ua28F
366 s2lmkAIcLIFUDFrbC2nViaB5ATM9ARKk6F2QwnCfGCyZ6A==
367 -----END DSA PRIVATE KEY-----
368 )";
369   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
370   ASSERT_TRUE(bio);
371   bssl::UniquePtr<DSA> dsa(
372       PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
373   ASSERT_TRUE(dsa);
374 
375   std::vector<uint8_t> sig(DSA_size(dsa.get()));
376   unsigned sig_len;
377   ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
378                        &sig_len, dsa.get()));
379   sig.resize(sig_len);
380   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
381                           sig.size(), dsa.get()));
382 
383   // Overwrite it with the sample key.
384   bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
385   ASSERT_TRUE(p);
386   bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
387   ASSERT_TRUE(q);
388   bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
389   ASSERT_TRUE(g);
390   ASSERT_TRUE(DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get()));
391   // |DSA_set0_pqg| takes ownership on success.
392   p.release();
393   q.release();
394   g.release();
395   bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
396   ASSERT_TRUE(pub_key);
397   bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
398   ASSERT_TRUE(priv_key);
399   ASSERT_TRUE(DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get()));
400   // |DSA_set0_key| takes ownership on success.
401   pub_key.release();
402   priv_key.release();
403 
404   // The key should now work correctly for the new parameters.
405   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
406                           sizeof(fips_sig), dsa.get()));
407 
408   // Test signing by verifying it round-trips through the real key.
409   sig.resize(DSA_size(dsa.get()));
410   ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
411                        &sig_len, dsa.get()));
412   sig.resize(sig_len);
413   dsa = GetFIPSDSA();
414   ASSERT_TRUE(dsa);
415   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
416                           sig.size(), dsa.get()));
417 }
418