1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 *
57 * The DSS routines are based on patches supplied by
58 * Steven Schoch <schoch@sheba.arc.nasa.gov>. */
59
60 #include <openssl/dsa.h>
61
62 #include <stdio.h>
63 #include <string.h>
64
65 #include <vector>
66
67 #include <gtest/gtest.h>
68
69 #include <openssl/bn.h>
70 #include <openssl/crypto.h>
71 #include <openssl/err.h>
72 #include <openssl/pem.h>
73 #include <openssl/span.h>
74
75 #include "../test/test_util.h"
76
77
78 // The following values are taken from the updated Appendix 5 to FIPS PUB 186
79 // and also appear in Appendix 5 to FIPS PUB 186-1.
80
81 static const uint8_t seed[20] = {
82 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b,
83 0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3,
84 };
85
86 static const uint8_t fips_p[] = {
87 0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75,
88 0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d,
89 0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0,
90 0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac,
91 0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24,
92 0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91,
93 };
94
95 static const uint8_t fips_q[] = {
96 0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f,
97 0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f,
98 };
99
100 static const uint8_t fips_g[] = {
101 0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63,
102 0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c,
103 0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71,
104 0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95,
105 0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08,
106 0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02,
107 };
108
109 static const uint8_t fips_x[] = {
110 0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f,
111 0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14,
112 };
113
114 static const uint8_t fips_y[] = {
115 0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2,
116 0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6,
117 0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d,
118 0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25,
119 0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06,
120 0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33,
121 };
122
123 static const uint8_t fips_digest[] = {
124 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25,
125 0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d,
126 };
127
128 // fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1.
129 static const uint8_t fips_sig[] = {
130 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
131 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
132 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
133 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
134 0xdc, 0xd8, 0xc8,
135 };
136
137 // fips_sig_negative is fips_sig with r encoded as a negative number.
138 static const uint8_t fips_sig_negative[] = {
139 0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43,
140 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3,
141 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf,
142 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc,
143 0xd8, 0xc8,
144 };
145
146 // fip_sig_extra is fips_sig with trailing data.
147 static const uint8_t fips_sig_extra[] = {
148 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
149 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
150 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
151 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
152 0xdc, 0xd8, 0xc8, 0x00,
153 };
154
155 // fips_sig_lengths is fips_sig with a non-minimally encoded length.
156 static const uint8_t fips_sig_bad_length[] = {
157 0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64,
158 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c,
159 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f,
160 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d,
161 0xb6, 0xdc, 0xd8, 0xc8, 0x00,
162 };
163
164 // fips_sig_bad_r is fips_sig with a bad r value.
165 static const uint8_t fips_sig_bad_r[] = {
166 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10,
167 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
168 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
169 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
170 0xdc, 0xd8, 0xc8,
171 };
172
GetFIPSDSAGroup(void)173 static bssl::UniquePtr<DSA> GetFIPSDSAGroup(void) {
174 bssl::UniquePtr<DSA> dsa(DSA_new());
175 if (!dsa) {
176 return nullptr;
177 }
178 bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
179 bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
180 bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
181 if (!p || !q || !g || !DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())) {
182 return nullptr;
183 }
184 // |DSA_set0_pqg| takes ownership.
185 p.release();
186 q.release();
187 g.release();
188 return dsa;
189 }
190
GetFIPSDSA(void)191 static bssl::UniquePtr<DSA> GetFIPSDSA(void) {
192 bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
193 if (!dsa) {
194 return nullptr;
195 }
196 bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
197 bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
198 if (!pub_key || !priv_key ||
199 !DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())) {
200 return nullptr;
201 }
202 // |DSA_set0_key| takes ownership.
203 pub_key.release();
204 priv_key.release();
205 return dsa;
206 }
207
TEST(DSATest,Generate)208 TEST(DSATest, Generate) {
209 bssl::UniquePtr<DSA> dsa(DSA_new());
210 ASSERT_TRUE(dsa);
211 int counter;
212 unsigned long h;
213 ASSERT_TRUE(DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h,
214 nullptr));
215 EXPECT_EQ(counter, 105);
216 EXPECT_EQ(h, 2u);
217
218 auto expect_bn_bytes = [](const char *msg, const BIGNUM *bn,
219 bssl::Span<const uint8_t> bytes) {
220 std::vector<uint8_t> buf(BN_num_bytes(bn));
221 BN_bn2bin(bn, buf.data());
222 EXPECT_EQ(Bytes(buf), Bytes(bytes)) << msg;
223 };
224 expect_bn_bytes("q value is wrong", DSA_get0_q(dsa.get()), fips_q);
225 expect_bn_bytes("p value is wrong", DSA_get0_p(dsa.get()), fips_p);
226 expect_bn_bytes("g value is wrong", DSA_get0_g(dsa.get()), fips_g);
227
228 ASSERT_TRUE(DSA_generate_key(dsa.get()));
229
230 std::vector<uint8_t> sig(DSA_size(dsa.get()));
231 unsigned sig_len;
232 ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
233 &sig_len, dsa.get()));
234
235 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
236 sig_len, dsa.get()));
237 }
238
TEST(DSATest,Verify)239 TEST(DSATest, Verify) {
240 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
241 ASSERT_TRUE(dsa);
242
243 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
244 sizeof(fips_sig), dsa.get()));
245 EXPECT_EQ(-1,
246 DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_negative,
247 sizeof(fips_sig_negative), dsa.get()));
248 EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_extra,
249 sizeof(fips_sig_extra), dsa.get()));
250 EXPECT_EQ(-1,
251 DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_length,
252 sizeof(fips_sig_bad_length), dsa.get()));
253 EXPECT_EQ(0, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_r,
254 sizeof(fips_sig_bad_r), dsa.get()));
255 }
256
TEST(DSATest,InvalidGroup)257 TEST(DSATest, InvalidGroup) {
258 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
259 ASSERT_TRUE(dsa);
260 bssl::UniquePtr<BIGNUM> zero(BN_new());
261 ASSERT_TRUE(zero);
262 ASSERT_TRUE(DSA_set0_pqg(dsa.get(), /*p=*/nullptr, /*q=*/nullptr,
263 /*g=*/zero.release()));
264
265 std::vector<uint8_t> sig(DSA_size(dsa.get()));
266 unsigned sig_len;
267 static const uint8_t kDigest[32] = {0};
268 EXPECT_FALSE(
269 DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get()));
270 EXPECT_TRUE(
271 ErrorEquals(ERR_get_error(), ERR_LIB_DSA, DSA_R_INVALID_PARAMETERS));
272 }
273
274 // Signing and verifying should cleanly fail when the DSA object is empty.
TEST(DSATest,MissingParameters)275 TEST(DSATest, MissingParameters) {
276 bssl::UniquePtr<DSA> dsa(DSA_new());
277 ASSERT_TRUE(dsa);
278 EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
279 sizeof(fips_sig), dsa.get()));
280
281 std::vector<uint8_t> sig(DSA_size(dsa.get()));
282 unsigned sig_len;
283 EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
284 &sig_len, dsa.get()));
285 }
286
287 // Verifying should cleanly fail when the public key is missing.
TEST(DSATest,MissingPublic)288 TEST(DSATest, MissingPublic) {
289 bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
290 ASSERT_TRUE(dsa);
291 EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
292 sizeof(fips_sig), dsa.get()));
293 }
294
295 // Signing should cleanly fail when the private key is missing.
TEST(DSATest,MissingPrivate)296 TEST(DSATest, MissingPrivate) {
297 bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
298 ASSERT_TRUE(dsa);
299
300 std::vector<uint8_t> sig(DSA_size(dsa.get()));
301 unsigned sig_len;
302 EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
303 &sig_len, dsa.get()));
304 }
305
306 // A zero private key is invalid and can cause signing to loop forever.
TEST(DSATest,ZeroPrivateKey)307 TEST(DSATest, ZeroPrivateKey) {
308 bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
309 ASSERT_TRUE(dsa);
310 bssl::UniquePtr<BIGNUM> zero(BN_new());
311 ASSERT_TRUE(zero);
312 ASSERT_TRUE(DSA_set0_key(dsa.get(), /*pub_key=*/nullptr,
313 /*priv_key=*/zero.release()));
314
315 static const uint8_t kZeroDigest[32] = {0};
316 std::vector<uint8_t> sig(DSA_size(dsa.get()));
317 unsigned sig_len;
318 EXPECT_FALSE(DSA_sign(0, kZeroDigest, sizeof(kZeroDigest), sig.data(),
319 &sig_len, dsa.get()));
320 }
321
322 // If the "field" is actually a ring and the "generator" of the multiplicative
323 // subgroup is actually nilpotent with low degree, DSA signing never completes.
324 // Test that we give up in the infinite loop.
TEST(DSATest,NilpotentGenerator)325 TEST(DSATest, NilpotentGenerator) {
326 static const char kPEM[] = R"(
327 -----BEGIN DSA PRIVATE KEY-----
328 MGECAQACFQHH+MnFXh4NNlZiV/zUVb5a5ib3kwIVAOP8ZOKvDwabKzEr/moq3y1z
329 E3vJAhUAl/2Ylx9fWbzHdh1URsc/c6IM/TECAQECFCsjU4AZRcuks45g1NMOUeCB
330 Epvg
331 -----END DSA PRIVATE KEY-----
332 )";
333 bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
334 ASSERT_TRUE(bio);
335 bssl::UniquePtr<DSA> dsa(
336 PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
337 ASSERT_TRUE(dsa);
338
339 std::vector<uint8_t> sig(DSA_size(dsa.get()));
340 unsigned sig_len;
341 EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
342 &sig_len, dsa.get()));
343 }
344
TEST(DSATest,Overwrite)345 TEST(DSATest, Overwrite) {
346 // Load an arbitrary DSA private key and use it.
347 static const char kPEM[] = R"(
348 -----BEGIN DSA PRIVATE KEY-----
349 MIIDTgIBAAKCAQEAyH68EuravtF+7PTFBtWJkwjmp0YJmh8e2Cdpu8ci3dZf87rk
350 GwXzfqYkAEkW5H4Hp0cxdICKFiqfxjSaiEauOrNV+nXWZS634hZ9H47I8HnAVS0p
351 5MmSmPJ7NNUowymMpyB6M6hfqHl/1pZd7avbTmnzb2SZ0kw0WLWJo6vMekepYWv9
352 3o1Xove4ci00hnkr7Qo9Bh/+z84jgeT2/MTdsCVtbuMv/mbcYLhCKVWPBozDZr/D
353 qwhGTlomsTRvP3WIbem3b5eYhQaPuMsKiAzntcinoxQXWrIoZB+xJyF/sI013uBI
354 i9ePSxY3704U4QGxVM0aR/6fzORz5kh8ZjhhywIdAI9YBUR6eoGevUaLq++qXiYW
355 TgXBXlyqE32ESbkCggEBAL/c5GerO5g25D0QsfgVIJtlZHQOwYauuWoUudaQiyf6
356 VhWLBNNTAGldkFGdtxsA42uqqZSXCki25LvN6PscGGvFy8oPWaa9TGt+l9Z5ZZiV
357 ShNpg71V9YuImsPB3BrQ4L6nZLfhBt6InzJ6KqjDNdg7u6lgnFKue7l6khzqNxbM
358 RgxHWMq7PkhMcl+RzpqbiGcxSHqraxldutqCWsnZzhKh4d4GdunuRY8GiFo0Axkb
359 Kn0Il3zm81ewv08F/ocu+IZQEzxTyR8YRQ99MLVbnwhVxndEdLjjetCX82l+/uEY
360 5fdUy0thR8odcDsvUc/tT57I+yhnno80HbpUUNw2+/sCggEAdh1wp/9CifYIp6T8
361 P/rIus6KberZ2Pv/n0bl+Gv8AoToA0zhZXIfY2l0TtanKmdLqPIvjqkN0v6zGSs+
362 +ahR1QzMQnK718mcsQmB4X6iP5LKgJ/t0g8LrDOxc/cNycmHq76MmF9RN5NEBz4+
363 PAnRIftm/b0UQflP6uy3gRQP2X7P8ZebCytOPKTZC4oLyCtvPevSkCiiauq/RGjL
364 k6xqRgLxMtmuyhT+dcVbtllV1p1xd9Bppnk17/kR5VCefo/e/7DHu163izRDW8tx
365 SrEmiVyVkRijY3bVZii7LPfMz5eEAWEDJRuFwyNv3i6j7CKeZw2d/hzu370Ua28F
366 s2lmkAIcLIFUDFrbC2nViaB5ATM9ARKk6F2QwnCfGCyZ6A==
367 -----END DSA PRIVATE KEY-----
368 )";
369 bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
370 ASSERT_TRUE(bio);
371 bssl::UniquePtr<DSA> dsa(
372 PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
373 ASSERT_TRUE(dsa);
374
375 std::vector<uint8_t> sig(DSA_size(dsa.get()));
376 unsigned sig_len;
377 ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
378 &sig_len, dsa.get()));
379 sig.resize(sig_len);
380 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
381 sig.size(), dsa.get()));
382
383 // Overwrite it with the sample key.
384 bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
385 ASSERT_TRUE(p);
386 bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
387 ASSERT_TRUE(q);
388 bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
389 ASSERT_TRUE(g);
390 ASSERT_TRUE(DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get()));
391 // |DSA_set0_pqg| takes ownership on success.
392 p.release();
393 q.release();
394 g.release();
395 bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
396 ASSERT_TRUE(pub_key);
397 bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
398 ASSERT_TRUE(priv_key);
399 ASSERT_TRUE(DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get()));
400 // |DSA_set0_key| takes ownership on success.
401 pub_key.release();
402 priv_key.release();
403
404 // The key should now work correctly for the new parameters.
405 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
406 sizeof(fips_sig), dsa.get()));
407
408 // Test signing by verifying it round-trips through the real key.
409 sig.resize(DSA_size(dsa.get()));
410 ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
411 &sig_len, dsa.get()));
412 sig.resize(sig_len);
413 dsa = GetFIPSDSA();
414 ASSERT_TRUE(dsa);
415 EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
416 sig.size(), dsa.get()));
417 }
418