1#! /usr/bin/env perl 2# Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the OpenSSL license (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9 10# ==================================================================== 11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 12# project. The module is, however, dual licensed under OpenSSL and 13# CRYPTOGAMS licenses depending on where you obtain it. For further 14# details see http://www.openssl.org/~appro/cryptogams/. 15# ==================================================================== 16 17# August 2011. 18# 19# Companion to x86_64-mont.pl that optimizes cache-timing attack 20# countermeasures. The subroutines are produced by replacing bp[i] 21# references in their x86_64-mont.pl counterparts with cache-neutral 22# references to powers table computed in BN_mod_exp_mont_consttime. 23# In addition subroutine that scatters elements of the powers table 24# is implemented, so that scatter-/gathering can be tuned without 25# bn_exp.c modifications. 26 27# August 2013. 28# 29# Add MULX/AD*X code paths and additional interfaces to optimize for 30# branch prediction unit. For input lengths that are multiples of 8 31# the np argument is not just modulus value, but one interleaved 32# with 0. This is to optimize post-condition... 33 34$flavour = shift; 35$output = shift; 36if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 37 38$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); 39 40$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 41( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or 42( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or 43die "can't locate x86_64-xlate.pl"; 44 45open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; 46*STDOUT=*OUT; 47 48# In upstream, this is controlled by shelling out to the compiler to check 49# versions, but BoringSSL is intended to be used with pre-generated perlasm 50# output, so this isn't useful anyway. 51$addx = 1; 52 53# int bn_mul_mont_gather5_nohw( 54$rp="%rdi"; # BN_ULONG *rp, 55$ap="%rsi"; # const BN_ULONG *ap, 56$bp="%rdx"; # const BN_ULONG *bp, 57$np="%rcx"; # const BN_ULONG *np, 58$n0="%r8"; # const BN_ULONG *n0, 59$num="%r9"; # int num, 60 # int idx); # 0 to 2^5-1, "index" in $bp holding 61 # pre-computed powers of a', interlaced 62 # in such manner that b[0] is $bp[idx], 63 # b[1] is [2^5+idx], etc. 64$lo0="%r10"; 65$hi0="%r11"; 66$hi1="%r13"; 67$i="%r14"; 68$j="%r15"; 69$m0="%rbx"; 70$m1="%rbp"; 71 72$code=<<___; 73.text 74 75.globl bn_mul_mont_gather5_nohw 76.type bn_mul_mont_gather5_nohw,\@function,6 77.align 64 78bn_mul_mont_gather5_nohw: 79.cfi_startproc 80 _CET_ENDBR 81 # num is declared as an int, a 32-bit parameter, so the upper half is 82 # undefined. Zero the upper half to normalize it. 83 mov ${num}d,${num}d 84 mov %rsp,%rax 85.cfi_def_cfa_register %rax 86 movd `($win64?56:8)`(%rsp),%xmm5 # load 7th argument 87 push %rbx 88.cfi_push %rbx 89 push %rbp 90.cfi_push %rbp 91 push %r12 92.cfi_push %r12 93 push %r13 94.cfi_push %r13 95 push %r14 96.cfi_push %r14 97 push %r15 98.cfi_push %r15 99 100 neg $num 101 mov %rsp,%r11 102 lea -280(%rsp,$num,8),%r10 # future alloca(8*(num+2)+256+8) 103 neg $num # restore $num 104 and \$-1024,%r10 # minimize TLB usage 105 106 # An OS-agnostic version of __chkstk. 107 # 108 # Some OSes (Windows) insist on stack being "wired" to 109 # physical memory in strictly sequential manner, i.e. if stack 110 # allocation spans two pages, then reference to farmost one can 111 # be punishable by SEGV. But page walking can do good even on 112 # other OSes, because it guarantees that villain thread hits 113 # the guard page before it can make damage to innocent one... 114 sub %r10,%r11 115 and \$-4096,%r11 116 lea (%r10,%r11),%rsp 117 mov (%rsp),%r11 118 cmp %r10,%rsp 119 ja .Lmul_page_walk 120 jmp .Lmul_page_walk_done 121 122.Lmul_page_walk: 123 lea -4096(%rsp),%rsp 124 mov (%rsp),%r11 125 cmp %r10,%rsp 126 ja .Lmul_page_walk 127.Lmul_page_walk_done: 128 129 lea .Linc(%rip),%r10 130 mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp 131.cfi_cfa_expression %rsp+8,$num,8,mul,plus,deref,+8 132.Lmul_body: 133 134 lea 128($bp),%r12 # reassign $bp (+size optimization) 135___ 136 $bp="%r12"; 137 $STRIDE=2**5*8; # 5 is "window size" 138 $N=$STRIDE/4; # should match cache line size 139$code.=<<___; 140 movdqa 0(%r10),%xmm0 # 00000001000000010000000000000000 141 movdqa 16(%r10),%xmm1 # 00000002000000020000000200000002 142 lea 24-112(%rsp,$num,8),%r10# place the mask after tp[num+3] (+ICache optimization) 143 and \$-16,%r10 144 145 pshufd \$0,%xmm5,%xmm5 # broadcast index 146 movdqa %xmm1,%xmm4 147 movdqa %xmm1,%xmm2 148___ 149######################################################################## 150# Calculate masks by comparing 0..31 to $idx and save result to stack. 151# 152# We compute sixteen 16-byte masks and store them on the stack. Mask i is stored 153# in `16*i - 128`(%rax) and contains the comparisons for idx == 2*i and 154# idx == 2*i + 1 in its lower and upper halves, respectively. Mask calculations 155# are scheduled in groups of four. 156$code.=<<___; 157 paddd %xmm0,%xmm1 158 pcmpeqd %xmm5,%xmm0 # compare to 1,0 159 .byte 0x67 160 movdqa %xmm4,%xmm3 161___ 162for($k=0;$k<$STRIDE/16-4;$k+=4) { 163$code.=<<___; 164 paddd %xmm1,%xmm2 165 pcmpeqd %xmm5,%xmm1 # compare to 3,2 166 movdqa %xmm0,`16*($k+0)+112`(%r10) 167 movdqa %xmm4,%xmm0 168 169 paddd %xmm2,%xmm3 170 pcmpeqd %xmm5,%xmm2 # compare to 5,4 171 movdqa %xmm1,`16*($k+1)+112`(%r10) 172 movdqa %xmm4,%xmm1 173 174 paddd %xmm3,%xmm0 175 pcmpeqd %xmm5,%xmm3 # compare to 7,6 176 movdqa %xmm2,`16*($k+2)+112`(%r10) 177 movdqa %xmm4,%xmm2 178 179 paddd %xmm0,%xmm1 180 pcmpeqd %xmm5,%xmm0 181 movdqa %xmm3,`16*($k+3)+112`(%r10) 182 movdqa %xmm4,%xmm3 183___ 184} 185$code.=<<___; # last iteration can be optimized 186 paddd %xmm1,%xmm2 187 pcmpeqd %xmm5,%xmm1 188 movdqa %xmm0,`16*($k+0)+112`(%r10) 189 190 paddd %xmm2,%xmm3 191 .byte 0x67 192 pcmpeqd %xmm5,%xmm2 193 movdqa %xmm1,`16*($k+1)+112`(%r10) 194 195 pcmpeqd %xmm5,%xmm3 196 movdqa %xmm2,`16*($k+2)+112`(%r10) 197 pand `16*($k+0)-128`($bp),%xmm0 # while it's still in register 198 199 pand `16*($k+1)-128`($bp),%xmm1 200 pand `16*($k+2)-128`($bp),%xmm2 201 movdqa %xmm3,`16*($k+3)+112`(%r10) 202 pand `16*($k+3)-128`($bp),%xmm3 203 por %xmm2,%xmm0 204 por %xmm3,%xmm1 205___ 206for($k=0;$k<$STRIDE/16-4;$k+=4) { 207$code.=<<___; 208 movdqa `16*($k+0)-128`($bp),%xmm4 209 movdqa `16*($k+1)-128`($bp),%xmm5 210 movdqa `16*($k+2)-128`($bp),%xmm2 211 pand `16*($k+0)+112`(%r10),%xmm4 212 movdqa `16*($k+3)-128`($bp),%xmm3 213 pand `16*($k+1)+112`(%r10),%xmm5 214 por %xmm4,%xmm0 215 pand `16*($k+2)+112`(%r10),%xmm2 216 por %xmm5,%xmm1 217 pand `16*($k+3)+112`(%r10),%xmm3 218 por %xmm2,%xmm0 219 por %xmm3,%xmm1 220___ 221} 222$code.=<<___; 223 por %xmm1,%xmm0 224 # Combine the upper and lower halves of %xmm0. 225 pshufd \$0x4e,%xmm0,%xmm1 # Swap upper and lower halves. 226 por %xmm1,%xmm0 227 lea $STRIDE($bp),$bp 228 movq %xmm0,$m0 # m0=bp[0] 229 230 mov ($n0),$n0 # pull n0[0] value 231 mov ($ap),%rax 232 233 xor $i,$i # i=0 234 xor $j,$j # j=0 235 236 mov $n0,$m1 237 mulq $m0 # ap[0]*bp[0] 238 mov %rax,$lo0 239 mov ($np),%rax 240 241 imulq $lo0,$m1 # "tp[0]"*n0 242 mov %rdx,$hi0 243 244 mulq $m1 # np[0]*m1 245 add %rax,$lo0 # discarded 246 mov 8($ap),%rax 247 adc \$0,%rdx 248 mov %rdx,$hi1 249 250 lea 1($j),$j # j++ 251 jmp .L1st_enter 252 253.align 16 254.L1st: 255 add %rax,$hi1 256 mov ($ap,$j,8),%rax 257 adc \$0,%rdx 258 add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] 259 mov $lo0,$hi0 260 adc \$0,%rdx 261 mov $hi1,-16(%rsp,$j,8) # tp[j-1] 262 mov %rdx,$hi1 263 264.L1st_enter: 265 mulq $m0 # ap[j]*bp[0] 266 add %rax,$hi0 267 mov ($np,$j,8),%rax 268 adc \$0,%rdx 269 lea 1($j),$j # j++ 270 mov %rdx,$lo0 271 272 mulq $m1 # np[j]*m1 273 cmp $num,$j 274 jne .L1st # note that upon exit $j==$num, so 275 # they can be used interchangeably 276 277 add %rax,$hi1 278 adc \$0,%rdx 279 add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] 280 adc \$0,%rdx 281 mov $hi1,-16(%rsp,$num,8) # tp[num-1] 282 mov %rdx,$hi1 283 mov $lo0,$hi0 284 285 xor %rdx,%rdx 286 add $hi0,$hi1 287 adc \$0,%rdx 288 mov $hi1,-8(%rsp,$num,8) 289 mov %rdx,(%rsp,$num,8) # store upmost overflow bit 290 291 lea 1($i),$i # i++ 292 jmp .Louter 293.align 16 294.Louter: 295 lea 24+128(%rsp,$num,8),%rdx # where 256-byte mask is (+size optimization) 296 and \$-16,%rdx 297 pxor %xmm4,%xmm4 298 pxor %xmm5,%xmm5 299___ 300for($k=0;$k<$STRIDE/16;$k+=4) { 301$code.=<<___; 302 movdqa `16*($k+0)-128`($bp),%xmm0 303 movdqa `16*($k+1)-128`($bp),%xmm1 304 movdqa `16*($k+2)-128`($bp),%xmm2 305 movdqa `16*($k+3)-128`($bp),%xmm3 306 pand `16*($k+0)-128`(%rdx),%xmm0 307 pand `16*($k+1)-128`(%rdx),%xmm1 308 por %xmm0,%xmm4 309 pand `16*($k+2)-128`(%rdx),%xmm2 310 por %xmm1,%xmm5 311 pand `16*($k+3)-128`(%rdx),%xmm3 312 por %xmm2,%xmm4 313 por %xmm3,%xmm5 314___ 315} 316$code.=<<___; 317 por %xmm5,%xmm4 318 # Combine the upper and lower halves of %xmm4 as %xmm0. 319 pshufd \$0x4e,%xmm4,%xmm0 # Swap upper and lower halves. 320 por %xmm4,%xmm0 321 lea $STRIDE($bp),$bp 322 323 mov ($ap),%rax # ap[0] 324 movq %xmm0,$m0 # m0=bp[i] 325 326 xor $j,$j # j=0 327 mov $n0,$m1 328 mov (%rsp),$lo0 329 330 mulq $m0 # ap[0]*bp[i] 331 add %rax,$lo0 # ap[0]*bp[i]+tp[0] 332 mov ($np),%rax 333 adc \$0,%rdx 334 335 imulq $lo0,$m1 # tp[0]*n0 336 mov %rdx,$hi0 337 338 mulq $m1 # np[0]*m1 339 add %rax,$lo0 # discarded 340 mov 8($ap),%rax 341 adc \$0,%rdx 342 mov 8(%rsp),$lo0 # tp[1] 343 mov %rdx,$hi1 344 345 lea 1($j),$j # j++ 346 jmp .Linner_enter 347 348.align 16 349.Linner: 350 add %rax,$hi1 351 mov ($ap,$j,8),%rax 352 adc \$0,%rdx 353 add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] 354 mov (%rsp,$j,8),$lo0 355 adc \$0,%rdx 356 mov $hi1,-16(%rsp,$j,8) # tp[j-1] 357 mov %rdx,$hi1 358 359.Linner_enter: 360 mulq $m0 # ap[j]*bp[i] 361 add %rax,$hi0 362 mov ($np,$j,8),%rax 363 adc \$0,%rdx 364 add $hi0,$lo0 # ap[j]*bp[i]+tp[j] 365 mov %rdx,$hi0 366 adc \$0,$hi0 367 lea 1($j),$j # j++ 368 369 mulq $m1 # np[j]*m1 370 cmp $num,$j 371 jne .Linner # note that upon exit $j==$num, so 372 # they can be used interchangeably 373 add %rax,$hi1 374 adc \$0,%rdx 375 add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] 376 mov (%rsp,$num,8),$lo0 377 adc \$0,%rdx 378 mov $hi1,-16(%rsp,$num,8) # tp[num-1] 379 mov %rdx,$hi1 380 381 xor %rdx,%rdx 382 add $hi0,$hi1 383 adc \$0,%rdx 384 add $lo0,$hi1 # pull upmost overflow bit 385 adc \$0,%rdx 386 mov $hi1,-8(%rsp,$num,8) 387 mov %rdx,(%rsp,$num,8) # store upmost overflow bit 388 389 lea 1($i),$i # i++ 390 cmp $num,$i 391 jb .Louter 392 393 xor $i,$i # i=0 and clear CF! 394 mov (%rsp),%rax # tp[0] 395 lea (%rsp),$ap # borrow ap for tp 396 mov $num,$j # j=num 397 jmp .Lsub 398.align 16 399.Lsub: sbb ($np,$i,8),%rax 400 mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] 401 mov 8($ap,$i,8),%rax # tp[i+1] 402 lea 1($i),$i # i++ 403 dec $j # doesn't affect CF! 404 jnz .Lsub 405 406 sbb \$0,%rax # handle upmost overflow bit 407 mov \$-1,%rbx 408 xor %rax,%rbx 409 xor $i,$i 410 mov $num,$j # j=num 411 412.Lcopy: # conditional copy 413 mov ($rp,$i,8),%rcx 414 mov (%rsp,$i,8),%rdx 415 and %rbx,%rcx 416 and %rax,%rdx 417 mov $i,(%rsp,$i,8) # zap temporary vector 418 or %rcx,%rdx 419 mov %rdx,($rp,$i,8) # rp[i]=tp[i] 420 lea 1($i),$i 421 sub \$1,$j 422 jnz .Lcopy 423 424 mov 8(%rsp,$num,8),%rsi # restore %rsp 425.cfi_def_cfa %rsi,8 426 mov \$1,%rax 427 428 mov -48(%rsi),%r15 429.cfi_restore %r15 430 mov -40(%rsi),%r14 431.cfi_restore %r14 432 mov -32(%rsi),%r13 433.cfi_restore %r13 434 mov -24(%rsi),%r12 435.cfi_restore %r12 436 mov -16(%rsi),%rbp 437.cfi_restore %rbp 438 mov -8(%rsi),%rbx 439.cfi_restore %rbx 440 lea (%rsi),%rsp 441.cfi_def_cfa_register %rsp 442.Lmul_epilogue: 443 ret 444.cfi_endproc 445.size bn_mul_mont_gather5_nohw,.-bn_mul_mont_gather5_nohw 446___ 447{{{ 448my @A=("%r10","%r11"); 449my @N=("%r13","%rdi"); 450$code.=<<___; 451.globl bn_mul4x_mont_gather5 452.type bn_mul4x_mont_gather5,\@function,6 453.align 32 454bn_mul4x_mont_gather5: 455.cfi_startproc 456 _CET_ENDBR 457 .byte 0x67 458 mov %rsp,%rax 459.cfi_def_cfa_register %rax 460 push %rbx 461.cfi_push %rbx 462 push %rbp 463.cfi_push %rbp 464 push %r12 465.cfi_push %r12 466 push %r13 467.cfi_push %r13 468 push %r14 469.cfi_push %r14 470 push %r15 471.cfi_push %r15 472.Lmul4x_prologue: 473 474 .byte 0x67 475 # num is declared as an int, a 32-bit parameter, so the upper half is 476 # undefined. It is important that this write to ${num}, which zeros the 477 # upper half, predates the first access. 478 shl \$3,${num}d # convert $num to bytes 479 lea ($num,$num,2),%r10 # 3*$num in bytes 480 neg $num # -$num 481 482 ############################################################## 483 # Ensure that stack frame doesn't alias with $rptr+3*$num 484 # modulo 4096, which covers ret[num], am[num] and n[num] 485 # (see bn_exp.c). This is done to allow memory disambiguation 486 # logic do its magic. [Extra [num] is allocated in order 487 # to align with bn_power5's frame, which is cleansed after 488 # completing exponentiation. Extra 256 bytes is for power mask 489 # calculated from 7th argument, the index.] 490 # 491 lea -320(%rsp,$num,2),%r11 492 mov %rsp,%rbp 493 sub $rp,%r11 494 and \$4095,%r11 495 cmp %r11,%r10 496 jb .Lmul4xsp_alt 497 sub %r11,%rbp # align with $rp 498 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) 499 jmp .Lmul4xsp_done 500 501.align 32 502.Lmul4xsp_alt: 503 lea 4096-320(,$num,2),%r10 504 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) 505 sub %r10,%r11 506 mov \$0,%r10 507 cmovc %r10,%r11 508 sub %r11,%rbp 509.Lmul4xsp_done: 510 and \$-64,%rbp 511 mov %rsp,%r11 512 sub %rbp,%r11 513 and \$-4096,%r11 514 lea (%rbp,%r11),%rsp 515 mov (%rsp),%r10 516 cmp %rbp,%rsp 517 ja .Lmul4x_page_walk 518 jmp .Lmul4x_page_walk_done 519 520.Lmul4x_page_walk: 521 lea -4096(%rsp),%rsp 522 mov (%rsp),%r10 523 cmp %rbp,%rsp 524 ja .Lmul4x_page_walk 525.Lmul4x_page_walk_done: 526 527 neg $num 528 529 mov %rax,40(%rsp) 530.cfi_cfa_expression %rsp+40,deref,+8 531.Lmul4x_body: 532 533 call mul4x_internal 534 535 mov 40(%rsp),%rsi # restore %rsp 536.cfi_def_cfa %rsi,8 537 mov \$1,%rax 538 539 mov -48(%rsi),%r15 540.cfi_restore %r15 541 mov -40(%rsi),%r14 542.cfi_restore %r14 543 mov -32(%rsi),%r13 544.cfi_restore %r13 545 mov -24(%rsi),%r12 546.cfi_restore %r12 547 mov -16(%rsi),%rbp 548.cfi_restore %rbp 549 mov -8(%rsi),%rbx 550.cfi_restore %rbx 551 lea (%rsi),%rsp 552.cfi_def_cfa_register %rsp 553.Lmul4x_epilogue: 554 ret 555.cfi_endproc 556.size bn_mul4x_mont_gather5,.-bn_mul4x_mont_gather5 557 558.type mul4x_internal,\@abi-omnipotent 559.align 32 560mul4x_internal: 561.cfi_startproc 562 shl \$5,$num # $num was in bytes 563 movd `($win64?56:8)`(%rax),%xmm5 # load 7th argument, index 564 lea .Linc(%rip),%rax 565 lea 128(%rdx,$num),%r13 # end of powers table (+size optimization) 566 shr \$5,$num # restore $num 567___ 568 $bp="%r12"; 569 $STRIDE=2**5*8; # 5 is "window size" 570 $tp=$i; 571$code.=<<___; 572 movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 573 movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 574 lea 88-112(%rsp,$num),%r10 # place the mask after tp[num+1] (+ICache optimization) 575 lea 128(%rdx),$bp # size optimization 576 577 pshufd \$0,%xmm5,%xmm5 # broadcast index 578 movdqa %xmm1,%xmm4 579 .byte 0x67,0x67 580 movdqa %xmm1,%xmm2 581___ 582######################################################################## 583# Calculate masks by comparing 0..31 to $idx and save result to stack. 584# 585# We compute sixteen 16-byte masks and store them on the stack. Mask i is stored 586# in `16*i - 128`(%rax) and contains the comparisons for idx == 2*i and 587# idx == 2*i + 1 in its lower and upper halves, respectively. Mask calculations 588# are scheduled in groups of four. 589$code.=<<___; 590 paddd %xmm0,%xmm1 591 pcmpeqd %xmm5,%xmm0 # compare to 1,0 592 .byte 0x67 593 movdqa %xmm4,%xmm3 594___ 595for($i=0;$i<$STRIDE/16-4;$i+=4) { 596$code.=<<___; 597 paddd %xmm1,%xmm2 598 pcmpeqd %xmm5,%xmm1 # compare to 3,2 599 movdqa %xmm0,`16*($i+0)+112`(%r10) 600 movdqa %xmm4,%xmm0 601 602 paddd %xmm2,%xmm3 603 pcmpeqd %xmm5,%xmm2 # compare to 5,4 604 movdqa %xmm1,`16*($i+1)+112`(%r10) 605 movdqa %xmm4,%xmm1 606 607 paddd %xmm3,%xmm0 608 pcmpeqd %xmm5,%xmm3 # compare to 7,6 609 movdqa %xmm2,`16*($i+2)+112`(%r10) 610 movdqa %xmm4,%xmm2 611 612 paddd %xmm0,%xmm1 613 pcmpeqd %xmm5,%xmm0 614 movdqa %xmm3,`16*($i+3)+112`(%r10) 615 movdqa %xmm4,%xmm3 616___ 617} 618$code.=<<___; # last iteration can be optimized 619 paddd %xmm1,%xmm2 620 pcmpeqd %xmm5,%xmm1 621 movdqa %xmm0,`16*($i+0)+112`(%r10) 622 623 paddd %xmm2,%xmm3 624 .byte 0x67 625 pcmpeqd %xmm5,%xmm2 626 movdqa %xmm1,`16*($i+1)+112`(%r10) 627 628 pcmpeqd %xmm5,%xmm3 629 movdqa %xmm2,`16*($i+2)+112`(%r10) 630 pand `16*($i+0)-128`($bp),%xmm0 # while it's still in register 631 632 pand `16*($i+1)-128`($bp),%xmm1 633 pand `16*($i+2)-128`($bp),%xmm2 634 movdqa %xmm3,`16*($i+3)+112`(%r10) 635 pand `16*($i+3)-128`($bp),%xmm3 636 por %xmm2,%xmm0 637 por %xmm3,%xmm1 638___ 639for($i=0;$i<$STRIDE/16-4;$i+=4) { 640$code.=<<___; 641 movdqa `16*($i+0)-128`($bp),%xmm4 642 movdqa `16*($i+1)-128`($bp),%xmm5 643 movdqa `16*($i+2)-128`($bp),%xmm2 644 pand `16*($i+0)+112`(%r10),%xmm4 645 movdqa `16*($i+3)-128`($bp),%xmm3 646 pand `16*($i+1)+112`(%r10),%xmm5 647 por %xmm4,%xmm0 648 pand `16*($i+2)+112`(%r10),%xmm2 649 por %xmm5,%xmm1 650 pand `16*($i+3)+112`(%r10),%xmm3 651 por %xmm2,%xmm0 652 por %xmm3,%xmm1 653___ 654} 655$code.=<<___; 656 por %xmm1,%xmm0 657 # Combine the upper and lower halves of %xmm0. 658 pshufd \$0x4e,%xmm0,%xmm1 # Swap upper and lower halves. 659 por %xmm1,%xmm0 660 lea $STRIDE($bp),$bp 661 movq %xmm0,$m0 # m0=bp[0] 662 663 mov %r13,16+8(%rsp) # save end of b[num] 664 mov $rp, 56+8(%rsp) # save $rp 665 666 mov ($n0),$n0 # pull n0[0] value 667 mov ($ap),%rax 668 lea ($ap,$num),$ap # end of a[num] 669 neg $num 670 671 mov $n0,$m1 672 mulq $m0 # ap[0]*bp[0] 673 mov %rax,$A[0] 674 mov ($np),%rax 675 676 imulq $A[0],$m1 # "tp[0]"*n0 677 lea 64+8(%rsp),$tp 678 mov %rdx,$A[1] 679 680 mulq $m1 # np[0]*m1 681 add %rax,$A[0] # discarded 682 mov 8($ap,$num),%rax 683 adc \$0,%rdx 684 mov %rdx,$N[1] 685 686 mulq $m0 687 add %rax,$A[1] 688 mov 8*1($np),%rax 689 adc \$0,%rdx 690 mov %rdx,$A[0] 691 692 mulq $m1 693 add %rax,$N[1] 694 mov 16($ap,$num),%rax 695 adc \$0,%rdx 696 add $A[1],$N[1] 697 lea 4*8($num),$j # j=4 698 lea 8*4($np),$np 699 adc \$0,%rdx 700 mov $N[1],($tp) 701 mov %rdx,$N[0] 702 jmp .L1st4x 703 704.align 32 705.L1st4x: 706 mulq $m0 # ap[j]*bp[0] 707 add %rax,$A[0] 708 mov -8*2($np),%rax 709 lea 32($tp),$tp 710 adc \$0,%rdx 711 mov %rdx,$A[1] 712 713 mulq $m1 # np[j]*m1 714 add %rax,$N[0] 715 mov -8($ap,$j),%rax 716 adc \$0,%rdx 717 add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] 718 adc \$0,%rdx 719 mov $N[0],-24($tp) # tp[j-1] 720 mov %rdx,$N[1] 721 722 mulq $m0 # ap[j]*bp[0] 723 add %rax,$A[1] 724 mov -8*1($np),%rax 725 adc \$0,%rdx 726 mov %rdx,$A[0] 727 728 mulq $m1 # np[j]*m1 729 add %rax,$N[1] 730 mov ($ap,$j),%rax 731 adc \$0,%rdx 732 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] 733 adc \$0,%rdx 734 mov $N[1],-16($tp) # tp[j-1] 735 mov %rdx,$N[0] 736 737 mulq $m0 # ap[j]*bp[0] 738 add %rax,$A[0] 739 mov 8*0($np),%rax 740 adc \$0,%rdx 741 mov %rdx,$A[1] 742 743 mulq $m1 # np[j]*m1 744 add %rax,$N[0] 745 mov 8($ap,$j),%rax 746 adc \$0,%rdx 747 add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] 748 adc \$0,%rdx 749 mov $N[0],-8($tp) # tp[j-1] 750 mov %rdx,$N[1] 751 752 mulq $m0 # ap[j]*bp[0] 753 add %rax,$A[1] 754 mov 8*1($np),%rax 755 adc \$0,%rdx 756 mov %rdx,$A[0] 757 758 mulq $m1 # np[j]*m1 759 add %rax,$N[1] 760 mov 16($ap,$j),%rax 761 adc \$0,%rdx 762 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] 763 lea 8*4($np),$np 764 adc \$0,%rdx 765 mov $N[1],($tp) # tp[j-1] 766 mov %rdx,$N[0] 767 768 add \$32,$j # j+=4 769 jnz .L1st4x 770 771 mulq $m0 # ap[j]*bp[0] 772 add %rax,$A[0] 773 mov -8*2($np),%rax 774 lea 32($tp),$tp 775 adc \$0,%rdx 776 mov %rdx,$A[1] 777 778 mulq $m1 # np[j]*m1 779 add %rax,$N[0] 780 mov -8($ap),%rax 781 adc \$0,%rdx 782 add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] 783 adc \$0,%rdx 784 mov $N[0],-24($tp) # tp[j-1] 785 mov %rdx,$N[1] 786 787 mulq $m0 # ap[j]*bp[0] 788 add %rax,$A[1] 789 mov -8*1($np),%rax 790 adc \$0,%rdx 791 mov %rdx,$A[0] 792 793 mulq $m1 # np[j]*m1 794 add %rax,$N[1] 795 mov ($ap,$num),%rax # ap[0] 796 adc \$0,%rdx 797 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] 798 adc \$0,%rdx 799 mov $N[1],-16($tp) # tp[j-1] 800 mov %rdx,$N[0] 801 802 lea ($np,$num),$np # rewind $np 803 804 xor $N[1],$N[1] 805 add $A[0],$N[0] 806 adc \$0,$N[1] 807 mov $N[0],-8($tp) 808 809 jmp .Louter4x 810 811.align 32 812.Louter4x: 813 lea 16+128($tp),%rdx # where 256-byte mask is (+size optimization) 814 pxor %xmm4,%xmm4 815 pxor %xmm5,%xmm5 816___ 817for($i=0;$i<$STRIDE/16;$i+=4) { 818$code.=<<___; 819 movdqa `16*($i+0)-128`($bp),%xmm0 820 movdqa `16*($i+1)-128`($bp),%xmm1 821 movdqa `16*($i+2)-128`($bp),%xmm2 822 movdqa `16*($i+3)-128`($bp),%xmm3 823 pand `16*($i+0)-128`(%rdx),%xmm0 824 pand `16*($i+1)-128`(%rdx),%xmm1 825 por %xmm0,%xmm4 826 pand `16*($i+2)-128`(%rdx),%xmm2 827 por %xmm1,%xmm5 828 pand `16*($i+3)-128`(%rdx),%xmm3 829 por %xmm2,%xmm4 830 por %xmm3,%xmm5 831___ 832} 833$code.=<<___; 834 por %xmm5,%xmm4 835 # Combine the upper and lower halves of %xmm4 as %xmm0. 836 pshufd \$0x4e,%xmm4,%xmm0 # Swap upper and lower halves. 837 por %xmm4,%xmm0 838 lea $STRIDE($bp),$bp 839 movq %xmm0,$m0 # m0=bp[i] 840 841 mov ($tp,$num),$A[0] 842 mov $n0,$m1 843 mulq $m0 # ap[0]*bp[i] 844 add %rax,$A[0] # ap[0]*bp[i]+tp[0] 845 mov ($np),%rax 846 adc \$0,%rdx 847 848 imulq $A[0],$m1 # tp[0]*n0 849 mov %rdx,$A[1] 850 mov $N[1],($tp) # store upmost overflow bit 851 852 lea ($tp,$num),$tp # rewind $tp 853 854 mulq $m1 # np[0]*m1 855 add %rax,$A[0] # "$N[0]", discarded 856 mov 8($ap,$num),%rax 857 adc \$0,%rdx 858 mov %rdx,$N[1] 859 860 mulq $m0 # ap[j]*bp[i] 861 add %rax,$A[1] 862 mov 8*1($np),%rax 863 adc \$0,%rdx 864 add 8($tp),$A[1] # +tp[1] 865 adc \$0,%rdx 866 mov %rdx,$A[0] 867 868 mulq $m1 # np[j]*m1 869 add %rax,$N[1] 870 mov 16($ap,$num),%rax 871 adc \$0,%rdx 872 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] 873 lea 4*8($num),$j # j=4 874 lea 8*4($np),$np 875 adc \$0,%rdx 876 mov %rdx,$N[0] 877 jmp .Linner4x 878 879.align 32 880.Linner4x: 881 mulq $m0 # ap[j]*bp[i] 882 add %rax,$A[0] 883 mov -8*2($np),%rax 884 adc \$0,%rdx 885 add 16($tp),$A[0] # ap[j]*bp[i]+tp[j] 886 lea 32($tp),$tp 887 adc \$0,%rdx 888 mov %rdx,$A[1] 889 890 mulq $m1 # np[j]*m1 891 add %rax,$N[0] 892 mov -8($ap,$j),%rax 893 adc \$0,%rdx 894 add $A[0],$N[0] 895 adc \$0,%rdx 896 mov $N[1],-32($tp) # tp[j-1] 897 mov %rdx,$N[1] 898 899 mulq $m0 # ap[j]*bp[i] 900 add %rax,$A[1] 901 mov -8*1($np),%rax 902 adc \$0,%rdx 903 add -8($tp),$A[1] 904 adc \$0,%rdx 905 mov %rdx,$A[0] 906 907 mulq $m1 # np[j]*m1 908 add %rax,$N[1] 909 mov ($ap,$j),%rax 910 adc \$0,%rdx 911 add $A[1],$N[1] 912 adc \$0,%rdx 913 mov $N[0],-24($tp) # tp[j-1] 914 mov %rdx,$N[0] 915 916 mulq $m0 # ap[j]*bp[i] 917 add %rax,$A[0] 918 mov 8*0($np),%rax 919 adc \$0,%rdx 920 add ($tp),$A[0] # ap[j]*bp[i]+tp[j] 921 adc \$0,%rdx 922 mov %rdx,$A[1] 923 924 mulq $m1 # np[j]*m1 925 add %rax,$N[0] 926 mov 8($ap,$j),%rax 927 adc \$0,%rdx 928 add $A[0],$N[0] 929 adc \$0,%rdx 930 mov $N[1],-16($tp) # tp[j-1] 931 mov %rdx,$N[1] 932 933 mulq $m0 # ap[j]*bp[i] 934 add %rax,$A[1] 935 mov 8*1($np),%rax 936 adc \$0,%rdx 937 add 8($tp),$A[1] 938 adc \$0,%rdx 939 mov %rdx,$A[0] 940 941 mulq $m1 # np[j]*m1 942 add %rax,$N[1] 943 mov 16($ap,$j),%rax 944 adc \$0,%rdx 945 add $A[1],$N[1] 946 lea 8*4($np),$np 947 adc \$0,%rdx 948 mov $N[0],-8($tp) # tp[j-1] 949 mov %rdx,$N[0] 950 951 add \$32,$j # j+=4 952 jnz .Linner4x 953 954 mulq $m0 # ap[j]*bp[i] 955 add %rax,$A[0] 956 mov -8*2($np),%rax 957 adc \$0,%rdx 958 add 16($tp),$A[0] # ap[j]*bp[i]+tp[j] 959 lea 32($tp),$tp 960 adc \$0,%rdx 961 mov %rdx,$A[1] 962 963 mulq $m1 # np[j]*m1 964 add %rax,$N[0] 965 mov -8($ap),%rax 966 adc \$0,%rdx 967 add $A[0],$N[0] 968 adc \$0,%rdx 969 mov $N[1],-32($tp) # tp[j-1] 970 mov %rdx,$N[1] 971 972 mulq $m0 # ap[j]*bp[i] 973 add %rax,$A[1] 974 mov $m1,%rax 975 mov -8*1($np),$m1 976 adc \$0,%rdx 977 add -8($tp),$A[1] 978 adc \$0,%rdx 979 mov %rdx,$A[0] 980 981 mulq $m1 # np[j]*m1 982 add %rax,$N[1] 983 mov ($ap,$num),%rax # ap[0] 984 adc \$0,%rdx 985 add $A[1],$N[1] 986 adc \$0,%rdx 987 mov $N[0],-24($tp) # tp[j-1] 988 mov %rdx,$N[0] 989 990 mov $N[1],-16($tp) # tp[j-1] 991 lea ($np,$num),$np # rewind $np 992 993 xor $N[1],$N[1] 994 add $A[0],$N[0] 995 adc \$0,$N[1] 996 add ($tp),$N[0] # pull upmost overflow bit 997 adc \$0,$N[1] # upmost overflow bit 998 mov $N[0],-8($tp) 999 1000 cmp 16+8(%rsp),$bp 1001 jb .Louter4x 1002___ 1003if (1) { 1004$code.=<<___; 1005 xor %rax,%rax 1006 sub $N[0],$m1 # compare top-most words 1007 adc $j,$j # $j is zero 1008 or $j,$N[1] 1009 sub $N[1],%rax # %rax=-$N[1] 1010 lea ($tp,$num),%rbx # tptr in .sqr4x_sub 1011 mov ($np),%r12 1012 lea ($np),%rbp # nptr in .sqr4x_sub 1013 mov %r9,%rcx 1014 sar \$3+2,%rcx 1015 mov 56+8(%rsp),%rdi # rptr in .sqr4x_sub 1016 dec %r12 # so that after 'not' we get -n[0] 1017 xor %r10,%r10 1018 mov 8*1(%rbp),%r13 1019 mov 8*2(%rbp),%r14 1020 mov 8*3(%rbp),%r15 1021 jmp .Lsqr4x_sub_entry 1022___ 1023} else { 1024my @ri=("%rax",$bp,$m0,$m1); 1025my $rp="%rdx"; 1026$code.=<<___ 1027 xor \$1,$N[1] 1028 lea ($tp,$num),$tp # rewind $tp 1029 sar \$5,$num # cf=0 1030 lea ($np,$N[1],8),$np 1031 mov 56+8(%rsp),$rp # restore $rp 1032 jmp .Lsub4x 1033 1034.align 32 1035.Lsub4x: 1036 .byte 0x66 1037 mov 8*0($tp),@ri[0] 1038 mov 8*1($tp),@ri[1] 1039 .byte 0x66 1040 sbb 16*0($np),@ri[0] 1041 mov 8*2($tp),@ri[2] 1042 sbb 16*1($np),@ri[1] 1043 mov 3*8($tp),@ri[3] 1044 lea 4*8($tp),$tp 1045 sbb 16*2($np),@ri[2] 1046 mov @ri[0],8*0($rp) 1047 sbb 16*3($np),@ri[3] 1048 lea 16*4($np),$np 1049 mov @ri[1],8*1($rp) 1050 mov @ri[2],8*2($rp) 1051 mov @ri[3],8*3($rp) 1052 lea 8*4($rp),$rp 1053 1054 inc $num 1055 jnz .Lsub4x 1056 1057 ret 1058___ 1059} 1060$code.=<<___; 1061.cfi_endproc 1062.size mul4x_internal,.-mul4x_internal 1063___ 1064}}} 1065{{{ 1066###################################################################### 1067# void bn_power5_nohw( 1068my $rptr="%rdi"; # BN_ULONG *rptr, 1069my $aptr="%rsi"; # const BN_ULONG *aptr, 1070my $bptr="%rdx"; # const BN_ULONG *table, 1071my $nptr="%rcx"; # const BN_ULONG *nptr, 1072my $n0 ="%r8"; # const BN_ULONG *n0); 1073my $num ="%r9"; # int num, has to be divisible by 8 1074 # int pwr 1075 1076my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); 1077my @A0=("%r10","%r11"); 1078my @A1=("%r12","%r13"); 1079my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); 1080 1081$code.=<<___; 1082.globl bn_power5_nohw 1083.type bn_power5_nohw,\@function,6 1084.align 32 1085bn_power5_nohw: 1086.cfi_startproc 1087 _CET_ENDBR 1088 mov %rsp,%rax 1089.cfi_def_cfa_register %rax 1090 push %rbx 1091.cfi_push %rbx 1092 push %rbp 1093.cfi_push %rbp 1094 push %r12 1095.cfi_push %r12 1096 push %r13 1097.cfi_push %r13 1098 push %r14 1099.cfi_push %r14 1100 push %r15 1101.cfi_push %r15 1102.Lpower5_prologue: 1103 1104 # num is declared as an int, a 32-bit parameter, so the upper half is 1105 # undefined. It is important that this write to ${num}, which zeros the 1106 # upper half, come before the first access. 1107 shl \$3,${num}d # convert $num to bytes 1108 lea ($num,$num,2),%r10d # 3*$num 1109 neg $num 1110 mov ($n0),$n0 # *n0 1111 1112 ############################################################## 1113 # Ensure that stack frame doesn't alias with $rptr+3*$num 1114 # modulo 4096, which covers ret[num], am[num] and n[num] 1115 # (see bn_exp.c). This is done to allow memory disambiguation 1116 # logic do its magic. [Extra 256 bytes is for power mask 1117 # calculated from 7th argument, the index.] 1118 # 1119 lea -320(%rsp,$num,2),%r11 1120 mov %rsp,%rbp 1121 sub $rptr,%r11 1122 and \$4095,%r11 1123 cmp %r11,%r10 1124 jb .Lpwr_sp_alt 1125 sub %r11,%rbp # align with $aptr 1126 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) 1127 jmp .Lpwr_sp_done 1128 1129.align 32 1130.Lpwr_sp_alt: 1131 lea 4096-320(,$num,2),%r10 1132 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*num*8+256) 1133 sub %r10,%r11 1134 mov \$0,%r10 1135 cmovc %r10,%r11 1136 sub %r11,%rbp 1137.Lpwr_sp_done: 1138 and \$-64,%rbp 1139 mov %rsp,%r11 1140 sub %rbp,%r11 1141 and \$-4096,%r11 1142 lea (%rbp,%r11),%rsp 1143 mov (%rsp),%r10 1144 cmp %rbp,%rsp 1145 ja .Lpwr_page_walk 1146 jmp .Lpwr_page_walk_done 1147 1148.Lpwr_page_walk: 1149 lea -4096(%rsp),%rsp 1150 mov (%rsp),%r10 1151 cmp %rbp,%rsp 1152 ja .Lpwr_page_walk 1153.Lpwr_page_walk_done: 1154 1155 mov $num,%r10 1156 neg $num 1157 1158 ############################################################## 1159 # Stack layout 1160 # 1161 # +0 saved $num, used in reduction section 1162 # +8 &t[2*$num], used in reduction section 1163 # +32 saved *n0 1164 # +40 saved %rsp 1165 # +48 t[2*$num] 1166 # 1167 mov $n0, 32(%rsp) 1168 mov %rax, 40(%rsp) # save original %rsp 1169.cfi_cfa_expression %rsp+40,deref,+8 1170.Lpower5_body: 1171 movq $rptr,%xmm1 # save $rptr, used in sqr8x 1172 movq $nptr,%xmm2 # save $nptr 1173 movq %r10, %xmm3 # -$num, used in sqr8x 1174 movq $bptr,%xmm4 1175 1176 call __bn_sqr8x_internal 1177 call __bn_post4x_internal 1178 call __bn_sqr8x_internal 1179 call __bn_post4x_internal 1180 call __bn_sqr8x_internal 1181 call __bn_post4x_internal 1182 call __bn_sqr8x_internal 1183 call __bn_post4x_internal 1184 call __bn_sqr8x_internal 1185 call __bn_post4x_internal 1186 1187 movq %xmm2,$nptr 1188 movq %xmm4,$bptr 1189 mov $aptr,$rptr 1190 mov 40(%rsp),%rax 1191 lea 32(%rsp),$n0 1192 1193 call mul4x_internal 1194 1195 mov 40(%rsp),%rsi # restore %rsp 1196.cfi_def_cfa %rsi,8 1197 mov \$1,%rax 1198 mov -48(%rsi),%r15 1199.cfi_restore %r15 1200 mov -40(%rsi),%r14 1201.cfi_restore %r14 1202 mov -32(%rsi),%r13 1203.cfi_restore %r13 1204 mov -24(%rsi),%r12 1205.cfi_restore %r12 1206 mov -16(%rsi),%rbp 1207.cfi_restore %rbp 1208 mov -8(%rsi),%rbx 1209.cfi_restore %rbx 1210 lea (%rsi),%rsp 1211.cfi_def_cfa_register %rsp 1212.Lpower5_epilogue: 1213 ret 1214.cfi_endproc 1215.size bn_power5_nohw,.-bn_power5_nohw 1216 1217.globl bn_sqr8x_internal 1218.hidden bn_sqr8x_internal 1219.type bn_sqr8x_internal,\@abi-omnipotent 1220.align 32 1221bn_sqr8x_internal: 1222__bn_sqr8x_internal: 1223.cfi_startproc 1224 _CET_ENDBR 1225 ############################################################## 1226 # Squaring part: 1227 # 1228 # a) multiply-n-add everything but a[i]*a[i]; 1229 # b) shift result of a) by 1 to the left and accumulate 1230 # a[i]*a[i] products; 1231 # 1232 ############################################################## 1233 # a[1]a[0] 1234 # a[2]a[0] 1235 # a[3]a[0] 1236 # a[2]a[1] 1237 # a[4]a[0] 1238 # a[3]a[1] 1239 # a[5]a[0] 1240 # a[4]a[1] 1241 # a[3]a[2] 1242 # a[6]a[0] 1243 # a[5]a[1] 1244 # a[4]a[2] 1245 # a[7]a[0] 1246 # a[6]a[1] 1247 # a[5]a[2] 1248 # a[4]a[3] 1249 # a[7]a[1] 1250 # a[6]a[2] 1251 # a[5]a[3] 1252 # a[7]a[2] 1253 # a[6]a[3] 1254 # a[5]a[4] 1255 # a[7]a[3] 1256 # a[6]a[4] 1257 # a[7]a[4] 1258 # a[6]a[5] 1259 # a[7]a[5] 1260 # a[7]a[6] 1261 # a[1]a[0] 1262 # a[2]a[0] 1263 # a[3]a[0] 1264 # a[4]a[0] 1265 # a[5]a[0] 1266 # a[6]a[0] 1267 # a[7]a[0] 1268 # a[2]a[1] 1269 # a[3]a[1] 1270 # a[4]a[1] 1271 # a[5]a[1] 1272 # a[6]a[1] 1273 # a[7]a[1] 1274 # a[3]a[2] 1275 # a[4]a[2] 1276 # a[5]a[2] 1277 # a[6]a[2] 1278 # a[7]a[2] 1279 # a[4]a[3] 1280 # a[5]a[3] 1281 # a[6]a[3] 1282 # a[7]a[3] 1283 # a[5]a[4] 1284 # a[6]a[4] 1285 # a[7]a[4] 1286 # a[6]a[5] 1287 # a[7]a[5] 1288 # a[7]a[6] 1289 # a[0]a[0] 1290 # a[1]a[1] 1291 # a[2]a[2] 1292 # a[3]a[3] 1293 # a[4]a[4] 1294 # a[5]a[5] 1295 # a[6]a[6] 1296 # a[7]a[7] 1297 1298 lea 32(%r10),$i # $i=-($num-32) 1299 lea ($aptr,$num),$aptr # end of a[] buffer, ($aptr,$i)=&ap[2] 1300 1301 mov $num,$j # $j=$num 1302 1303 # comments apply to $num==8 case 1304 mov -32($aptr,$i),$a0 # a[0] 1305 lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] 1306 mov -24($aptr,$i),%rax # a[1] 1307 lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] 1308 mov -16($aptr,$i),$ai # a[2] 1309 mov %rax,$a1 1310 1311 mul $a0 # a[1]*a[0] 1312 mov %rax,$A0[0] # a[1]*a[0] 1313 mov $ai,%rax # a[2] 1314 mov %rdx,$A0[1] 1315 mov $A0[0],-24($tptr,$i) # t[1] 1316 1317 mul $a0 # a[2]*a[0] 1318 add %rax,$A0[1] 1319 mov $ai,%rax 1320 adc \$0,%rdx 1321 mov $A0[1],-16($tptr,$i) # t[2] 1322 mov %rdx,$A0[0] 1323 1324 1325 mov -8($aptr,$i),$ai # a[3] 1326 mul $a1 # a[2]*a[1] 1327 mov %rax,$A1[0] # a[2]*a[1]+t[3] 1328 mov $ai,%rax 1329 mov %rdx,$A1[1] 1330 1331 lea ($i),$j 1332 mul $a0 # a[3]*a[0] 1333 add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] 1334 mov $ai,%rax 1335 mov %rdx,$A0[1] 1336 adc \$0,$A0[1] 1337 add $A1[0],$A0[0] 1338 adc \$0,$A0[1] 1339 mov $A0[0],-8($tptr,$j) # t[3] 1340 jmp .Lsqr4x_1st 1341 1342.align 32 1343.Lsqr4x_1st: 1344 mov ($aptr,$j),$ai # a[4] 1345 mul $a1 # a[3]*a[1] 1346 add %rax,$A1[1] # a[3]*a[1]+t[4] 1347 mov $ai,%rax 1348 mov %rdx,$A1[0] 1349 adc \$0,$A1[0] 1350 1351 mul $a0 # a[4]*a[0] 1352 add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] 1353 mov $ai,%rax # a[3] 1354 mov 8($aptr,$j),$ai # a[5] 1355 mov %rdx,$A0[0] 1356 adc \$0,$A0[0] 1357 add $A1[1],$A0[1] 1358 adc \$0,$A0[0] 1359 1360 1361 mul $a1 # a[4]*a[3] 1362 add %rax,$A1[0] # a[4]*a[3]+t[5] 1363 mov $ai,%rax 1364 mov $A0[1],($tptr,$j) # t[4] 1365 mov %rdx,$A1[1] 1366 adc \$0,$A1[1] 1367 1368 mul $a0 # a[5]*a[2] 1369 add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] 1370 mov $ai,%rax 1371 mov 16($aptr,$j),$ai # a[6] 1372 mov %rdx,$A0[1] 1373 adc \$0,$A0[1] 1374 add $A1[0],$A0[0] 1375 adc \$0,$A0[1] 1376 1377 mul $a1 # a[5]*a[3] 1378 add %rax,$A1[1] # a[5]*a[3]+t[6] 1379 mov $ai,%rax 1380 mov $A0[0],8($tptr,$j) # t[5] 1381 mov %rdx,$A1[0] 1382 adc \$0,$A1[0] 1383 1384 mul $a0 # a[6]*a[2] 1385 add %rax,$A0[1] # a[6]*a[2]+a[5]*a[3]+t[6] 1386 mov $ai,%rax # a[3] 1387 mov 24($aptr,$j),$ai # a[7] 1388 mov %rdx,$A0[0] 1389 adc \$0,$A0[0] 1390 add $A1[1],$A0[1] 1391 adc \$0,$A0[0] 1392 1393 1394 mul $a1 # a[6]*a[5] 1395 add %rax,$A1[0] # a[6]*a[5]+t[7] 1396 mov $ai,%rax 1397 mov $A0[1],16($tptr,$j) # t[6] 1398 mov %rdx,$A1[1] 1399 adc \$0,$A1[1] 1400 lea 32($j),$j 1401 1402 mul $a0 # a[7]*a[4] 1403 add %rax,$A0[0] # a[7]*a[4]+a[6]*a[5]+t[6] 1404 mov $ai,%rax 1405 mov %rdx,$A0[1] 1406 adc \$0,$A0[1] 1407 add $A1[0],$A0[0] 1408 adc \$0,$A0[1] 1409 mov $A0[0],-8($tptr,$j) # t[7] 1410 1411 cmp \$0,$j 1412 jne .Lsqr4x_1st 1413 1414 mul $a1 # a[7]*a[5] 1415 add %rax,$A1[1] 1416 lea 16($i),$i 1417 adc \$0,%rdx 1418 add $A0[1],$A1[1] 1419 adc \$0,%rdx 1420 1421 mov $A1[1],($tptr) # t[8] 1422 mov %rdx,$A1[0] 1423 mov %rdx,8($tptr) # t[9] 1424 jmp .Lsqr4x_outer 1425 1426.align 32 1427.Lsqr4x_outer: # comments apply to $num==6 case 1428 mov -32($aptr,$i),$a0 # a[0] 1429 lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] 1430 mov -24($aptr,$i),%rax # a[1] 1431 lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] 1432 mov -16($aptr,$i),$ai # a[2] 1433 mov %rax,$a1 1434 1435 mul $a0 # a[1]*a[0] 1436 mov -24($tptr,$i),$A0[0] # t[1] 1437 add %rax,$A0[0] # a[1]*a[0]+t[1] 1438 mov $ai,%rax # a[2] 1439 adc \$0,%rdx 1440 mov $A0[0],-24($tptr,$i) # t[1] 1441 mov %rdx,$A0[1] 1442 1443 mul $a0 # a[2]*a[0] 1444 add %rax,$A0[1] 1445 mov $ai,%rax 1446 adc \$0,%rdx 1447 add -16($tptr,$i),$A0[1] # a[2]*a[0]+t[2] 1448 mov %rdx,$A0[0] 1449 adc \$0,$A0[0] 1450 mov $A0[1],-16($tptr,$i) # t[2] 1451 1452 xor $A1[0],$A1[0] 1453 1454 mov -8($aptr,$i),$ai # a[3] 1455 mul $a1 # a[2]*a[1] 1456 add %rax,$A1[0] # a[2]*a[1]+t[3] 1457 mov $ai,%rax 1458 adc \$0,%rdx 1459 add -8($tptr,$i),$A1[0] 1460 mov %rdx,$A1[1] 1461 adc \$0,$A1[1] 1462 1463 mul $a0 # a[3]*a[0] 1464 add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] 1465 mov $ai,%rax 1466 adc \$0,%rdx 1467 add $A1[0],$A0[0] 1468 mov %rdx,$A0[1] 1469 adc \$0,$A0[1] 1470 mov $A0[0],-8($tptr,$i) # t[3] 1471 1472 lea ($i),$j 1473 jmp .Lsqr4x_inner 1474 1475.align 32 1476.Lsqr4x_inner: 1477 mov ($aptr,$j),$ai # a[4] 1478 mul $a1 # a[3]*a[1] 1479 add %rax,$A1[1] # a[3]*a[1]+t[4] 1480 mov $ai,%rax 1481 mov %rdx,$A1[0] 1482 adc \$0,$A1[0] 1483 add ($tptr,$j),$A1[1] 1484 adc \$0,$A1[0] 1485 1486 .byte 0x67 1487 mul $a0 # a[4]*a[0] 1488 add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] 1489 mov $ai,%rax # a[3] 1490 mov 8($aptr,$j),$ai # a[5] 1491 mov %rdx,$A0[0] 1492 adc \$0,$A0[0] 1493 add $A1[1],$A0[1] 1494 adc \$0,$A0[0] 1495 1496 mul $a1 # a[4]*a[3] 1497 add %rax,$A1[0] # a[4]*a[3]+t[5] 1498 mov $A0[1],($tptr,$j) # t[4] 1499 mov $ai,%rax 1500 mov %rdx,$A1[1] 1501 adc \$0,$A1[1] 1502 add 8($tptr,$j),$A1[0] 1503 lea 16($j),$j # j++ 1504 adc \$0,$A1[1] 1505 1506 mul $a0 # a[5]*a[2] 1507 add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] 1508 mov $ai,%rax 1509 adc \$0,%rdx 1510 add $A1[0],$A0[0] 1511 mov %rdx,$A0[1] 1512 adc \$0,$A0[1] 1513 mov $A0[0],-8($tptr,$j) # t[5], "preloaded t[1]" below 1514 1515 cmp \$0,$j 1516 jne .Lsqr4x_inner 1517 1518 .byte 0x67 1519 mul $a1 # a[5]*a[3] 1520 add %rax,$A1[1] 1521 adc \$0,%rdx 1522 add $A0[1],$A1[1] 1523 adc \$0,%rdx 1524 1525 mov $A1[1],($tptr) # t[6], "preloaded t[2]" below 1526 mov %rdx,$A1[0] 1527 mov %rdx,8($tptr) # t[7], "preloaded t[3]" below 1528 1529 add \$16,$i 1530 jnz .Lsqr4x_outer 1531 1532 # comments apply to $num==4 case 1533 mov -32($aptr),$a0 # a[0] 1534 lea 48+8(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] 1535 mov -24($aptr),%rax # a[1] 1536 lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] 1537 mov -16($aptr),$ai # a[2] 1538 mov %rax,$a1 1539 1540 mul $a0 # a[1]*a[0] 1541 add %rax,$A0[0] # a[1]*a[0]+t[1], preloaded t[1] 1542 mov $ai,%rax # a[2] 1543 mov %rdx,$A0[1] 1544 adc \$0,$A0[1] 1545 1546 mul $a0 # a[2]*a[0] 1547 add %rax,$A0[1] 1548 mov $ai,%rax 1549 mov $A0[0],-24($tptr) # t[1] 1550 mov %rdx,$A0[0] 1551 adc \$0,$A0[0] 1552 add $A1[1],$A0[1] # a[2]*a[0]+t[2], preloaded t[2] 1553 mov -8($aptr),$ai # a[3] 1554 adc \$0,$A0[0] 1555 1556 mul $a1 # a[2]*a[1] 1557 add %rax,$A1[0] # a[2]*a[1]+t[3], preloaded t[3] 1558 mov $ai,%rax 1559 mov $A0[1],-16($tptr) # t[2] 1560 mov %rdx,$A1[1] 1561 adc \$0,$A1[1] 1562 1563 mul $a0 # a[3]*a[0] 1564 add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] 1565 mov $ai,%rax 1566 mov %rdx,$A0[1] 1567 adc \$0,$A0[1] 1568 add $A1[0],$A0[0] 1569 adc \$0,$A0[1] 1570 mov $A0[0],-8($tptr) # t[3] 1571 1572 mul $a1 # a[3]*a[1] 1573 add %rax,$A1[1] 1574 mov -16($aptr),%rax # a[2] 1575 adc \$0,%rdx 1576 add $A0[1],$A1[1] 1577 adc \$0,%rdx 1578 1579 mov $A1[1],($tptr) # t[4] 1580 mov %rdx,$A1[0] 1581 mov %rdx,8($tptr) # t[5] 1582 1583 mul $ai # a[2]*a[3] 1584___ 1585{ 1586my ($shift,$carry)=($a0,$a1); 1587my @S=(@A1,$ai,$n0); 1588$code.=<<___; 1589 add \$16,$i 1590 xor $shift,$shift 1591 sub $num,$i # $i=16-$num 1592 xor $carry,$carry 1593 1594 add $A1[0],%rax # t[5] 1595 adc \$0,%rdx 1596 mov %rax,8($tptr) # t[5] 1597 mov %rdx,16($tptr) # t[6] 1598 mov $carry,24($tptr) # t[7] 1599 1600 mov -16($aptr,$i),%rax # a[0] 1601 lea 48+8(%rsp),$tptr 1602 xor $A0[0],$A0[0] # t[0] 1603 mov 8($tptr),$A0[1] # t[1] 1604 1605 lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift 1606 shr \$63,$A0[0] 1607 lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | 1608 shr \$63,$A0[1] 1609 or $A0[0],$S[1] # | t[2*i]>>63 1610 mov 16($tptr),$A0[0] # t[2*i+2] # prefetch 1611 mov $A0[1],$shift # shift=t[2*i+1]>>63 1612 mul %rax # a[i]*a[i] 1613 neg $carry # mov $carry,cf 1614 mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch 1615 adc %rax,$S[0] 1616 mov -8($aptr,$i),%rax # a[i+1] # prefetch 1617 mov $S[0],($tptr) 1618 adc %rdx,$S[1] 1619 1620 lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift 1621 mov $S[1],8($tptr) 1622 sbb $carry,$carry # mov cf,$carry 1623 shr \$63,$A0[0] 1624 lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | 1625 shr \$63,$A0[1] 1626 or $A0[0],$S[3] # | t[2*i]>>63 1627 mov 32($tptr),$A0[0] # t[2*i+2] # prefetch 1628 mov $A0[1],$shift # shift=t[2*i+1]>>63 1629 mul %rax # a[i]*a[i] 1630 neg $carry # mov $carry,cf 1631 mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch 1632 adc %rax,$S[2] 1633 mov 0($aptr,$i),%rax # a[i+1] # prefetch 1634 mov $S[2],16($tptr) 1635 adc %rdx,$S[3] 1636 lea 16($i),$i 1637 mov $S[3],24($tptr) 1638 sbb $carry,$carry # mov cf,$carry 1639 lea 64($tptr),$tptr 1640 jmp .Lsqr4x_shift_n_add 1641 1642.align 32 1643.Lsqr4x_shift_n_add: 1644 lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift 1645 shr \$63,$A0[0] 1646 lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | 1647 shr \$63,$A0[1] 1648 or $A0[0],$S[1] # | t[2*i]>>63 1649 mov -16($tptr),$A0[0] # t[2*i+2] # prefetch 1650 mov $A0[1],$shift # shift=t[2*i+1]>>63 1651 mul %rax # a[i]*a[i] 1652 neg $carry # mov $carry,cf 1653 mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch 1654 adc %rax,$S[0] 1655 mov -8($aptr,$i),%rax # a[i+1] # prefetch 1656 mov $S[0],-32($tptr) 1657 adc %rdx,$S[1] 1658 1659 lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift 1660 mov $S[1],-24($tptr) 1661 sbb $carry,$carry # mov cf,$carry 1662 shr \$63,$A0[0] 1663 lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | 1664 shr \$63,$A0[1] 1665 or $A0[0],$S[3] # | t[2*i]>>63 1666 mov 0($tptr),$A0[0] # t[2*i+2] # prefetch 1667 mov $A0[1],$shift # shift=t[2*i+1]>>63 1668 mul %rax # a[i]*a[i] 1669 neg $carry # mov $carry,cf 1670 mov 8($tptr),$A0[1] # t[2*i+2+1] # prefetch 1671 adc %rax,$S[2] 1672 mov 0($aptr,$i),%rax # a[i+1] # prefetch 1673 mov $S[2],-16($tptr) 1674 adc %rdx,$S[3] 1675 1676 lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift 1677 mov $S[3],-8($tptr) 1678 sbb $carry,$carry # mov cf,$carry 1679 shr \$63,$A0[0] 1680 lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | 1681 shr \$63,$A0[1] 1682 or $A0[0],$S[1] # | t[2*i]>>63 1683 mov 16($tptr),$A0[0] # t[2*i+2] # prefetch 1684 mov $A0[1],$shift # shift=t[2*i+1]>>63 1685 mul %rax # a[i]*a[i] 1686 neg $carry # mov $carry,cf 1687 mov 24($tptr),$A0[1] # t[2*i+2+1] # prefetch 1688 adc %rax,$S[0] 1689 mov 8($aptr,$i),%rax # a[i+1] # prefetch 1690 mov $S[0],0($tptr) 1691 adc %rdx,$S[1] 1692 1693 lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift 1694 mov $S[1],8($tptr) 1695 sbb $carry,$carry # mov cf,$carry 1696 shr \$63,$A0[0] 1697 lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | 1698 shr \$63,$A0[1] 1699 or $A0[0],$S[3] # | t[2*i]>>63 1700 mov 32($tptr),$A0[0] # t[2*i+2] # prefetch 1701 mov $A0[1],$shift # shift=t[2*i+1]>>63 1702 mul %rax # a[i]*a[i] 1703 neg $carry # mov $carry,cf 1704 mov 40($tptr),$A0[1] # t[2*i+2+1] # prefetch 1705 adc %rax,$S[2] 1706 mov 16($aptr,$i),%rax # a[i+1] # prefetch 1707 mov $S[2],16($tptr) 1708 adc %rdx,$S[3] 1709 mov $S[3],24($tptr) 1710 sbb $carry,$carry # mov cf,$carry 1711 lea 64($tptr),$tptr 1712 add \$32,$i 1713 jnz .Lsqr4x_shift_n_add 1714 1715 lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift 1716 .byte 0x67 1717 shr \$63,$A0[0] 1718 lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | 1719 shr \$63,$A0[1] 1720 or $A0[0],$S[1] # | t[2*i]>>63 1721 mov -16($tptr),$A0[0] # t[2*i+2] # prefetch 1722 mov $A0[1],$shift # shift=t[2*i+1]>>63 1723 mul %rax # a[i]*a[i] 1724 neg $carry # mov $carry,cf 1725 mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch 1726 adc %rax,$S[0] 1727 mov -8($aptr),%rax # a[i+1] # prefetch 1728 mov $S[0],-32($tptr) 1729 adc %rdx,$S[1] 1730 1731 lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1|shift 1732 mov $S[1],-24($tptr) 1733 sbb $carry,$carry # mov cf,$carry 1734 shr \$63,$A0[0] 1735 lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | 1736 shr \$63,$A0[1] 1737 or $A0[0],$S[3] # | t[2*i]>>63 1738 mul %rax # a[i]*a[i] 1739 neg $carry # mov $carry,cf 1740 adc %rax,$S[2] 1741 adc %rdx,$S[3] 1742 mov $S[2],-16($tptr) 1743 mov $S[3],-8($tptr) 1744___ 1745} 1746###################################################################### 1747# Montgomery reduction part, "word-by-word" algorithm. 1748# 1749# This new path is inspired by multiple submissions from Intel, by 1750# Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford, 1751# Vinodh Gopal... 1752{ 1753my ($nptr,$tptr,$carry,$m0)=("%rbp","%rdi","%rsi","%rbx"); 1754 1755$code.=<<___; 1756 movq %xmm2,$nptr 1757__bn_sqr8x_reduction: 1758 xor %rax,%rax 1759 lea ($nptr,$num),%rcx # end of n[] 1760 lea 48+8(%rsp,$num,2),%rdx # end of t[] buffer 1761 mov %rcx,0+8(%rsp) 1762 lea 48+8(%rsp,$num),$tptr # end of initial t[] window 1763 mov %rdx,8+8(%rsp) 1764 neg $num 1765 jmp .L8x_reduction_loop 1766 1767.align 32 1768.L8x_reduction_loop: 1769 lea ($tptr,$num),$tptr # start of current t[] window 1770 .byte 0x66 1771 mov 8*0($tptr),$m0 1772 mov 8*1($tptr),%r9 1773 mov 8*2($tptr),%r10 1774 mov 8*3($tptr),%r11 1775 mov 8*4($tptr),%r12 1776 mov 8*5($tptr),%r13 1777 mov 8*6($tptr),%r14 1778 mov 8*7($tptr),%r15 1779 mov %rax,(%rdx) # store top-most carry bit 1780 lea 8*8($tptr),$tptr 1781 1782 .byte 0x67 1783 mov $m0,%r8 1784 imulq 32+8(%rsp),$m0 # n0*a[0] 1785 mov 8*0($nptr),%rax # n[0] 1786 mov \$8,%ecx 1787 jmp .L8x_reduce 1788 1789.align 32 1790.L8x_reduce: 1791 mulq $m0 1792 mov 8*1($nptr),%rax # n[1] 1793 neg %r8 1794 mov %rdx,%r8 1795 adc \$0,%r8 1796 1797 mulq $m0 1798 add %rax,%r9 1799 mov 8*2($nptr),%rax 1800 adc \$0,%rdx 1801 add %r9,%r8 1802 mov $m0,48-8+8(%rsp,%rcx,8) # put aside n0*a[i] 1803 mov %rdx,%r9 1804 adc \$0,%r9 1805 1806 mulq $m0 1807 add %rax,%r10 1808 mov 8*3($nptr),%rax 1809 adc \$0,%rdx 1810 add %r10,%r9 1811 mov 32+8(%rsp),$carry # pull n0, borrow $carry 1812 mov %rdx,%r10 1813 adc \$0,%r10 1814 1815 mulq $m0 1816 add %rax,%r11 1817 mov 8*4($nptr),%rax 1818 adc \$0,%rdx 1819 imulq %r8,$carry # modulo-scheduled 1820 add %r11,%r10 1821 mov %rdx,%r11 1822 adc \$0,%r11 1823 1824 mulq $m0 1825 add %rax,%r12 1826 mov 8*5($nptr),%rax 1827 adc \$0,%rdx 1828 add %r12,%r11 1829 mov %rdx,%r12 1830 adc \$0,%r12 1831 1832 mulq $m0 1833 add %rax,%r13 1834 mov 8*6($nptr),%rax 1835 adc \$0,%rdx 1836 add %r13,%r12 1837 mov %rdx,%r13 1838 adc \$0,%r13 1839 1840 mulq $m0 1841 add %rax,%r14 1842 mov 8*7($nptr),%rax 1843 adc \$0,%rdx 1844 add %r14,%r13 1845 mov %rdx,%r14 1846 adc \$0,%r14 1847 1848 mulq $m0 1849 mov $carry,$m0 # n0*a[i] 1850 add %rax,%r15 1851 mov 8*0($nptr),%rax # n[0] 1852 adc \$0,%rdx 1853 add %r15,%r14 1854 mov %rdx,%r15 1855 adc \$0,%r15 1856 1857 dec %ecx 1858 jnz .L8x_reduce 1859 1860 lea 8*8($nptr),$nptr 1861 xor %rax,%rax 1862 mov 8+8(%rsp),%rdx # pull end of t[] 1863 cmp 0+8(%rsp),$nptr # end of n[]? 1864 jae .L8x_no_tail 1865 1866 .byte 0x66 1867 add 8*0($tptr),%r8 1868 adc 8*1($tptr),%r9 1869 adc 8*2($tptr),%r10 1870 adc 8*3($tptr),%r11 1871 adc 8*4($tptr),%r12 1872 adc 8*5($tptr),%r13 1873 adc 8*6($tptr),%r14 1874 adc 8*7($tptr),%r15 1875 sbb $carry,$carry # top carry 1876 1877 mov 48+56+8(%rsp),$m0 # pull n0*a[0] 1878 mov \$8,%ecx 1879 mov 8*0($nptr),%rax 1880 jmp .L8x_tail 1881 1882.align 32 1883.L8x_tail: 1884 mulq $m0 1885 add %rax,%r8 1886 mov 8*1($nptr),%rax 1887 mov %r8,($tptr) # save result 1888 mov %rdx,%r8 1889 adc \$0,%r8 1890 1891 mulq $m0 1892 add %rax,%r9 1893 mov 8*2($nptr),%rax 1894 adc \$0,%rdx 1895 add %r9,%r8 1896 lea 8($tptr),$tptr # $tptr++ 1897 mov %rdx,%r9 1898 adc \$0,%r9 1899 1900 mulq $m0 1901 add %rax,%r10 1902 mov 8*3($nptr),%rax 1903 adc \$0,%rdx 1904 add %r10,%r9 1905 mov %rdx,%r10 1906 adc \$0,%r10 1907 1908 mulq $m0 1909 add %rax,%r11 1910 mov 8*4($nptr),%rax 1911 adc \$0,%rdx 1912 add %r11,%r10 1913 mov %rdx,%r11 1914 adc \$0,%r11 1915 1916 mulq $m0 1917 add %rax,%r12 1918 mov 8*5($nptr),%rax 1919 adc \$0,%rdx 1920 add %r12,%r11 1921 mov %rdx,%r12 1922 adc \$0,%r12 1923 1924 mulq $m0 1925 add %rax,%r13 1926 mov 8*6($nptr),%rax 1927 adc \$0,%rdx 1928 add %r13,%r12 1929 mov %rdx,%r13 1930 adc \$0,%r13 1931 1932 mulq $m0 1933 add %rax,%r14 1934 mov 8*7($nptr),%rax 1935 adc \$0,%rdx 1936 add %r14,%r13 1937 mov %rdx,%r14 1938 adc \$0,%r14 1939 1940 mulq $m0 1941 mov 48-16+8(%rsp,%rcx,8),$m0# pull n0*a[i] 1942 add %rax,%r15 1943 adc \$0,%rdx 1944 add %r15,%r14 1945 mov 8*0($nptr),%rax # pull n[0] 1946 mov %rdx,%r15 1947 adc \$0,%r15 1948 1949 dec %ecx 1950 jnz .L8x_tail 1951 1952 lea 8*8($nptr),$nptr 1953 mov 8+8(%rsp),%rdx # pull end of t[] 1954 cmp 0+8(%rsp),$nptr # end of n[]? 1955 jae .L8x_tail_done # break out of loop 1956 1957 mov 48+56+8(%rsp),$m0 # pull n0*a[0] 1958 neg $carry 1959 mov 8*0($nptr),%rax # pull n[0] 1960 adc 8*0($tptr),%r8 1961 adc 8*1($tptr),%r9 1962 adc 8*2($tptr),%r10 1963 adc 8*3($tptr),%r11 1964 adc 8*4($tptr),%r12 1965 adc 8*5($tptr),%r13 1966 adc 8*6($tptr),%r14 1967 adc 8*7($tptr),%r15 1968 sbb $carry,$carry # top carry 1969 1970 mov \$8,%ecx 1971 jmp .L8x_tail 1972 1973.align 32 1974.L8x_tail_done: 1975 xor %rax,%rax 1976 add (%rdx),%r8 # can this overflow? 1977 adc \$0,%r9 1978 adc \$0,%r10 1979 adc \$0,%r11 1980 adc \$0,%r12 1981 adc \$0,%r13 1982 adc \$0,%r14 1983 adc \$0,%r15 1984 adc \$0,%rax 1985 1986 neg $carry 1987.L8x_no_tail: 1988 adc 8*0($tptr),%r8 1989 adc 8*1($tptr),%r9 1990 adc 8*2($tptr),%r10 1991 adc 8*3($tptr),%r11 1992 adc 8*4($tptr),%r12 1993 adc 8*5($tptr),%r13 1994 adc 8*6($tptr),%r14 1995 adc 8*7($tptr),%r15 1996 adc \$0,%rax # top-most carry 1997 mov -8($nptr),%rcx # np[num-1] 1998 xor $carry,$carry 1999 2000 movq %xmm2,$nptr # restore $nptr 2001 2002 mov %r8,8*0($tptr) # store top 512 bits 2003 mov %r9,8*1($tptr) 2004 movq %xmm3,$num # $num is %r9, can't be moved upwards 2005 mov %r10,8*2($tptr) 2006 mov %r11,8*3($tptr) 2007 mov %r12,8*4($tptr) 2008 mov %r13,8*5($tptr) 2009 mov %r14,8*6($tptr) 2010 mov %r15,8*7($tptr) 2011 lea 8*8($tptr),$tptr 2012 2013 cmp %rdx,$tptr # end of t[]? 2014 jb .L8x_reduction_loop 2015 ret 2016.cfi_endproc 2017.size bn_sqr8x_internal,.-bn_sqr8x_internal 2018___ 2019} 2020############################################################## 2021# Post-condition, 4x unrolled 2022# 2023{ 2024my ($tptr,$nptr)=("%rbx","%rbp"); 2025$code.=<<___; 2026.type __bn_post4x_internal,\@abi-omnipotent 2027.align 32 2028__bn_post4x_internal: 2029.cfi_startproc 2030 mov 8*0($nptr),%r12 2031 lea (%rdi,$num),$tptr # %rdi was $tptr above 2032 mov $num,%rcx 2033 movq %xmm1,$rptr # restore $rptr 2034 neg %rax 2035 movq %xmm1,$aptr # prepare for back-to-back call 2036 sar \$3+2,%rcx 2037 dec %r12 # so that after 'not' we get -n[0] 2038 xor %r10,%r10 2039 mov 8*1($nptr),%r13 2040 mov 8*2($nptr),%r14 2041 mov 8*3($nptr),%r15 2042 jmp .Lsqr4x_sub_entry 2043 2044.align 16 2045.Lsqr4x_sub: 2046 mov 8*0($nptr),%r12 2047 mov 8*1($nptr),%r13 2048 mov 8*2($nptr),%r14 2049 mov 8*3($nptr),%r15 2050.Lsqr4x_sub_entry: 2051 lea 8*4($nptr),$nptr 2052 not %r12 2053 not %r13 2054 not %r14 2055 not %r15 2056 and %rax,%r12 2057 and %rax,%r13 2058 and %rax,%r14 2059 and %rax,%r15 2060 2061 neg %r10 # mov %r10,%cf 2062 adc 8*0($tptr),%r12 2063 adc 8*1($tptr),%r13 2064 adc 8*2($tptr),%r14 2065 adc 8*3($tptr),%r15 2066 mov %r12,8*0($rptr) 2067 lea 8*4($tptr),$tptr 2068 mov %r13,8*1($rptr) 2069 sbb %r10,%r10 # mov %cf,%r10 2070 mov %r14,8*2($rptr) 2071 mov %r15,8*3($rptr) 2072 lea 8*4($rptr),$rptr 2073 2074 inc %rcx # pass %cf 2075 jnz .Lsqr4x_sub 2076 2077 mov $num,%r10 # prepare for back-to-back call 2078 neg $num # restore $num 2079 ret 2080.cfi_endproc 2081.size __bn_post4x_internal,.-__bn_post4x_internal 2082___ 2083} 2084}}} 2085 2086if ($addx) {{{ 2087my $bp="%rdx"; # restore original value 2088 2089$code.=<<___; 2090.globl bn_mulx4x_mont_gather5 2091.type bn_mulx4x_mont_gather5,\@function,6 2092.align 32 2093bn_mulx4x_mont_gather5: 2094.cfi_startproc 2095 _CET_ENDBR 2096 mov %rsp,%rax 2097.cfi_def_cfa_register %rax 2098 push %rbx 2099.cfi_push %rbx 2100 push %rbp 2101.cfi_push %rbp 2102 push %r12 2103.cfi_push %r12 2104 push %r13 2105.cfi_push %r13 2106 push %r14 2107.cfi_push %r14 2108 push %r15 2109.cfi_push %r15 2110.Lmulx4x_prologue: 2111 2112 # num is declared as an int, a 32-bit parameter, so the upper half is 2113 # undefined. It is important that this write to ${num}, which zeros the 2114 # upper half, predates the first access. 2115 shl \$3,${num}d # convert $num to bytes 2116 lea ($num,$num,2),%r10 # 3*$num in bytes 2117 neg $num # -$num 2118 mov ($n0),$n0 # *n0 2119 2120 ############################################################## 2121 # Ensure that stack frame doesn't alias with $rptr+3*$num 2122 # modulo 4096, which covers ret[num], am[num] and n[num] 2123 # (see bn_exp.c). This is done to allow memory disambiguation 2124 # logic do its magic. [Extra [num] is allocated in order 2125 # to align with bn_power5's frame, which is cleansed after 2126 # completing exponentiation. Extra 256 bytes is for power mask 2127 # calculated from 7th argument, the index.] 2128 # 2129 lea -320(%rsp,$num,2),%r11 2130 mov %rsp,%rbp 2131 sub $rp,%r11 2132 and \$4095,%r11 2133 cmp %r11,%r10 2134 jb .Lmulx4xsp_alt 2135 sub %r11,%rbp # align with $aptr 2136 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) 2137 jmp .Lmulx4xsp_done 2138 2139.Lmulx4xsp_alt: 2140 lea 4096-320(,$num,2),%r10 2141 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) 2142 sub %r10,%r11 2143 mov \$0,%r10 2144 cmovc %r10,%r11 2145 sub %r11,%rbp 2146.Lmulx4xsp_done: 2147 and \$-64,%rbp # ensure alignment 2148 mov %rsp,%r11 2149 sub %rbp,%r11 2150 and \$-4096,%r11 2151 lea (%rbp,%r11),%rsp 2152 mov (%rsp),%r10 2153 cmp %rbp,%rsp 2154 ja .Lmulx4x_page_walk 2155 jmp .Lmulx4x_page_walk_done 2156 2157.Lmulx4x_page_walk: 2158 lea -4096(%rsp),%rsp 2159 mov (%rsp),%r10 2160 cmp %rbp,%rsp 2161 ja .Lmulx4x_page_walk 2162.Lmulx4x_page_walk_done: 2163 2164 ############################################################## 2165 # Stack layout 2166 # +0 -num 2167 # +8 off-loaded &b[i] 2168 # +16 end of b[num] 2169 # +24 inner counter 2170 # +32 saved n0 2171 # +40 saved %rsp 2172 # +48 2173 # +56 saved rp 2174 # +64 tmp[num+1] 2175 # 2176 mov $n0, 32(%rsp) # save *n0 2177 mov %rax,40(%rsp) # save original %rsp 2178.cfi_cfa_expression %rsp+40,deref,+8 2179.Lmulx4x_body: 2180 call mulx4x_internal 2181 2182 mov 40(%rsp),%rsi # restore %rsp 2183.cfi_def_cfa %rsi,8 2184 mov \$1,%rax 2185 2186 mov -48(%rsi),%r15 2187.cfi_restore %r15 2188 mov -40(%rsi),%r14 2189.cfi_restore %r14 2190 mov -32(%rsi),%r13 2191.cfi_restore %r13 2192 mov -24(%rsi),%r12 2193.cfi_restore %r12 2194 mov -16(%rsi),%rbp 2195.cfi_restore %rbp 2196 mov -8(%rsi),%rbx 2197.cfi_restore %rbx 2198 lea (%rsi),%rsp 2199.cfi_def_cfa_register %rsp 2200.Lmulx4x_epilogue: 2201 ret 2202.cfi_endproc 2203.size bn_mulx4x_mont_gather5,.-bn_mulx4x_mont_gather5 2204 2205.type mulx4x_internal,\@abi-omnipotent 2206.align 32 2207mulx4x_internal: 2208.cfi_startproc 2209 mov $num,8(%rsp) # save -$num (it was in bytes) 2210 mov $num,%r10 2211 neg $num # restore $num 2212 shl \$5,$num 2213 neg %r10 # restore $num 2214 lea 128($bp,$num),%r13 # end of powers table (+size optimization) 2215 shr \$5+5,$num 2216 movd `($win64?56:8)`(%rax),%xmm5 # load 7th argument 2217 sub \$1,$num 2218 lea .Linc(%rip),%rax 2219 mov %r13,16+8(%rsp) # end of b[num] 2220 mov $num,24+8(%rsp) # inner counter 2221 mov $rp, 56+8(%rsp) # save $rp 2222___ 2223my ($aptr, $bptr, $nptr, $tptr, $mi, $bi, $zero, $num)= 2224 ("%rsi","%rdi","%rcx","%rbx","%r8","%r9","%rbp","%rax"); 2225my $rptr=$bptr; 2226my $STRIDE=2**5*8; # 5 is "window size" 2227$code.=<<___; 2228 movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 2229 movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 2230 lea 88-112(%rsp,%r10),%r10 # place the mask after tp[num+1] (+ICache optimization) 2231 lea 128($bp),$bptr # size optimization 2232 2233 pshufd \$0,%xmm5,%xmm5 # broadcast index 2234 movdqa %xmm1,%xmm4 2235 .byte 0x67 2236 movdqa %xmm1,%xmm2 2237___ 2238######################################################################## 2239# Calculate masks by comparing 0..31 to $idx and save result to stack. 2240# 2241# We compute sixteen 16-byte masks and store them on the stack. Mask i is stored 2242# in `16*i - 128`(%rax) and contains the comparisons for idx == 2*i and 2243# idx == 2*i + 1 in its lower and upper halves, respectively. Mask calculations 2244# are scheduled in groups of four. 2245$code.=<<___; 2246 .byte 0x67 2247 paddd %xmm0,%xmm1 2248 pcmpeqd %xmm5,%xmm0 # compare to 1,0 2249 movdqa %xmm4,%xmm3 2250___ 2251for($i=0;$i<$STRIDE/16-4;$i+=4) { 2252$code.=<<___; 2253 paddd %xmm1,%xmm2 2254 pcmpeqd %xmm5,%xmm1 # compare to 3,2 2255 movdqa %xmm0,`16*($i+0)+112`(%r10) 2256 movdqa %xmm4,%xmm0 2257 2258 paddd %xmm2,%xmm3 2259 pcmpeqd %xmm5,%xmm2 # compare to 5,4 2260 movdqa %xmm1,`16*($i+1)+112`(%r10) 2261 movdqa %xmm4,%xmm1 2262 2263 paddd %xmm3,%xmm0 2264 pcmpeqd %xmm5,%xmm3 # compare to 7,6 2265 movdqa %xmm2,`16*($i+2)+112`(%r10) 2266 movdqa %xmm4,%xmm2 2267 2268 paddd %xmm0,%xmm1 2269 pcmpeqd %xmm5,%xmm0 2270 movdqa %xmm3,`16*($i+3)+112`(%r10) 2271 movdqa %xmm4,%xmm3 2272___ 2273} 2274$code.=<<___; # last iteration can be optimized 2275 .byte 0x67 2276 paddd %xmm1,%xmm2 2277 pcmpeqd %xmm5,%xmm1 2278 movdqa %xmm0,`16*($i+0)+112`(%r10) 2279 2280 paddd %xmm2,%xmm3 2281 pcmpeqd %xmm5,%xmm2 2282 movdqa %xmm1,`16*($i+1)+112`(%r10) 2283 2284 pcmpeqd %xmm5,%xmm3 2285 movdqa %xmm2,`16*($i+2)+112`(%r10) 2286 2287 pand `16*($i+0)-128`($bptr),%xmm0 # while it's still in register 2288 pand `16*($i+1)-128`($bptr),%xmm1 2289 pand `16*($i+2)-128`($bptr),%xmm2 2290 movdqa %xmm3,`16*($i+3)+112`(%r10) 2291 pand `16*($i+3)-128`($bptr),%xmm3 2292 por %xmm2,%xmm0 2293 por %xmm3,%xmm1 2294___ 2295for($i=0;$i<$STRIDE/16-4;$i+=4) { 2296$code.=<<___; 2297 movdqa `16*($i+0)-128`($bptr),%xmm4 2298 movdqa `16*($i+1)-128`($bptr),%xmm5 2299 movdqa `16*($i+2)-128`($bptr),%xmm2 2300 pand `16*($i+0)+112`(%r10),%xmm4 2301 movdqa `16*($i+3)-128`($bptr),%xmm3 2302 pand `16*($i+1)+112`(%r10),%xmm5 2303 por %xmm4,%xmm0 2304 pand `16*($i+2)+112`(%r10),%xmm2 2305 por %xmm5,%xmm1 2306 pand `16*($i+3)+112`(%r10),%xmm3 2307 por %xmm2,%xmm0 2308 por %xmm3,%xmm1 2309___ 2310} 2311$code.=<<___; 2312 pxor %xmm1,%xmm0 2313 # Combine the upper and lower halves of %xmm0. 2314 pshufd \$0x4e,%xmm0,%xmm1 # Swap upper and lower halves. 2315 por %xmm1,%xmm0 2316 lea $STRIDE($bptr),$bptr 2317 movq %xmm0,%rdx # bp[0] 2318 lea 64+8*4+8(%rsp),$tptr 2319 2320 mov %rdx,$bi 2321 mulx 0*8($aptr),$mi,%rax # a[0]*b[0] 2322 mulx 1*8($aptr),%r11,%r12 # a[1]*b[0] 2323 add %rax,%r11 2324 mulx 2*8($aptr),%rax,%r13 # ... 2325 adc %rax,%r12 2326 adc \$0,%r13 2327 mulx 3*8($aptr),%rax,%r14 2328 2329 mov $mi,%r15 2330 imulq 32+8(%rsp),$mi # "t[0]"*n0 2331 xor $zero,$zero # cf=0, of=0 2332 mov $mi,%rdx 2333 2334 mov $bptr,8+8(%rsp) # off-load &b[i] 2335 2336 lea 4*8($aptr),$aptr 2337 adcx %rax,%r13 2338 adcx $zero,%r14 # cf=0 2339 2340 mulx 0*8($nptr),%rax,%r10 2341 adcx %rax,%r15 # discarded 2342 adox %r11,%r10 2343 mulx 1*8($nptr),%rax,%r11 2344 adcx %rax,%r10 2345 adox %r12,%r11 2346 mulx 2*8($nptr),%rax,%r12 2347 mov 24+8(%rsp),$bptr # counter value 2348 mov %r10,-8*4($tptr) 2349 adcx %rax,%r11 2350 adox %r13,%r12 2351 mulx 3*8($nptr),%rax,%r15 2352 mov $bi,%rdx 2353 mov %r11,-8*3($tptr) 2354 adcx %rax,%r12 2355 adox $zero,%r15 # of=0 2356 lea 4*8($nptr),$nptr 2357 mov %r12,-8*2($tptr) 2358 jmp .Lmulx4x_1st 2359 2360.align 32 2361.Lmulx4x_1st: 2362 adcx $zero,%r15 # cf=0, modulo-scheduled 2363 mulx 0*8($aptr),%r10,%rax # a[4]*b[0] 2364 adcx %r14,%r10 2365 mulx 1*8($aptr),%r11,%r14 # a[5]*b[0] 2366 adcx %rax,%r11 2367 mulx 2*8($aptr),%r12,%rax # ... 2368 adcx %r14,%r12 2369 mulx 3*8($aptr),%r13,%r14 2370 .byte 0x67,0x67 2371 mov $mi,%rdx 2372 adcx %rax,%r13 2373 adcx $zero,%r14 # cf=0 2374 lea 4*8($aptr),$aptr 2375 lea 4*8($tptr),$tptr 2376 2377 adox %r15,%r10 2378 mulx 0*8($nptr),%rax,%r15 2379 adcx %rax,%r10 2380 adox %r15,%r11 2381 mulx 1*8($nptr),%rax,%r15 2382 adcx %rax,%r11 2383 adox %r15,%r12 2384 mulx 2*8($nptr),%rax,%r15 2385 mov %r10,-5*8($tptr) 2386 adcx %rax,%r12 2387 mov %r11,-4*8($tptr) 2388 adox %r15,%r13 2389 mulx 3*8($nptr),%rax,%r15 2390 mov $bi,%rdx 2391 mov %r12,-3*8($tptr) 2392 adcx %rax,%r13 2393 adox $zero,%r15 2394 lea 4*8($nptr),$nptr 2395 mov %r13,-2*8($tptr) 2396 2397 dec $bptr # of=0, pass cf 2398 jnz .Lmulx4x_1st 2399 2400 mov 8(%rsp),$num # load -num 2401 adc $zero,%r15 # modulo-scheduled 2402 lea ($aptr,$num),$aptr # rewind $aptr 2403 add %r15,%r14 2404 mov 8+8(%rsp),$bptr # re-load &b[i] 2405 adc $zero,$zero # top-most carry 2406 mov %r14,-1*8($tptr) 2407 jmp .Lmulx4x_outer 2408 2409.align 32 2410.Lmulx4x_outer: 2411 lea 16-256($tptr),%r10 # where 256-byte mask is (+density control) 2412 pxor %xmm4,%xmm4 2413 .byte 0x67,0x67 2414 pxor %xmm5,%xmm5 2415___ 2416for($i=0;$i<$STRIDE/16;$i+=4) { 2417$code.=<<___; 2418 movdqa `16*($i+0)-128`($bptr),%xmm0 2419 movdqa `16*($i+1)-128`($bptr),%xmm1 2420 movdqa `16*($i+2)-128`($bptr),%xmm2 2421 pand `16*($i+0)+256`(%r10),%xmm0 2422 movdqa `16*($i+3)-128`($bptr),%xmm3 2423 pand `16*($i+1)+256`(%r10),%xmm1 2424 por %xmm0,%xmm4 2425 pand `16*($i+2)+256`(%r10),%xmm2 2426 por %xmm1,%xmm5 2427 pand `16*($i+3)+256`(%r10),%xmm3 2428 por %xmm2,%xmm4 2429 por %xmm3,%xmm5 2430___ 2431} 2432$code.=<<___; 2433 por %xmm5,%xmm4 2434 # Combine the upper and lower halves of %xmm4 as %xmm0. 2435 pshufd \$0x4e,%xmm4,%xmm0 # Swap upper and lower halves. 2436 por %xmm4,%xmm0 2437 lea $STRIDE($bptr),$bptr 2438 movq %xmm0,%rdx # m0=bp[i] 2439 2440 mov $zero,($tptr) # save top-most carry 2441 lea 4*8($tptr,$num),$tptr # rewind $tptr 2442 mulx 0*8($aptr),$mi,%r11 # a[0]*b[i] 2443 xor $zero,$zero # cf=0, of=0 2444 mov %rdx,$bi 2445 mulx 1*8($aptr),%r14,%r12 # a[1]*b[i] 2446 adox -4*8($tptr),$mi # +t[0] 2447 adcx %r14,%r11 2448 mulx 2*8($aptr),%r15,%r13 # ... 2449 adox -3*8($tptr),%r11 2450 adcx %r15,%r12 2451 mulx 3*8($aptr),%rdx,%r14 2452 adox -2*8($tptr),%r12 2453 adcx %rdx,%r13 2454 lea ($nptr,$num),$nptr # rewind $nptr 2455 lea 4*8($aptr),$aptr 2456 adox -1*8($tptr),%r13 2457 adcx $zero,%r14 2458 adox $zero,%r14 2459 2460 mov $mi,%r15 2461 imulq 32+8(%rsp),$mi # "t[0]"*n0 2462 2463 mov $mi,%rdx 2464 xor $zero,$zero # cf=0, of=0 2465 mov $bptr,8+8(%rsp) # off-load &b[i] 2466 2467 mulx 0*8($nptr),%rax,%r10 2468 adcx %rax,%r15 # discarded 2469 adox %r11,%r10 2470 mulx 1*8($nptr),%rax,%r11 2471 adcx %rax,%r10 2472 adox %r12,%r11 2473 mulx 2*8($nptr),%rax,%r12 2474 adcx %rax,%r11 2475 adox %r13,%r12 2476 mulx 3*8($nptr),%rax,%r15 2477 mov $bi,%rdx 2478 mov 24+8(%rsp),$bptr # counter value 2479 mov %r10,-8*4($tptr) 2480 adcx %rax,%r12 2481 mov %r11,-8*3($tptr) 2482 adox $zero,%r15 # of=0 2483 mov %r12,-8*2($tptr) 2484 lea 4*8($nptr),$nptr 2485 jmp .Lmulx4x_inner 2486 2487.align 32 2488.Lmulx4x_inner: 2489 mulx 0*8($aptr),%r10,%rax # a[4]*b[i] 2490 adcx $zero,%r15 # cf=0, modulo-scheduled 2491 adox %r14,%r10 2492 mulx 1*8($aptr),%r11,%r14 # a[5]*b[i] 2493 adcx 0*8($tptr),%r10 2494 adox %rax,%r11 2495 mulx 2*8($aptr),%r12,%rax # ... 2496 adcx 1*8($tptr),%r11 2497 adox %r14,%r12 2498 mulx 3*8($aptr),%r13,%r14 2499 mov $mi,%rdx 2500 adcx 2*8($tptr),%r12 2501 adox %rax,%r13 2502 adcx 3*8($tptr),%r13 2503 adox $zero,%r14 # of=0 2504 lea 4*8($aptr),$aptr 2505 lea 4*8($tptr),$tptr 2506 adcx $zero,%r14 # cf=0 2507 2508 adox %r15,%r10 2509 mulx 0*8($nptr),%rax,%r15 2510 adcx %rax,%r10 2511 adox %r15,%r11 2512 mulx 1*8($nptr),%rax,%r15 2513 adcx %rax,%r11 2514 adox %r15,%r12 2515 mulx 2*8($nptr),%rax,%r15 2516 mov %r10,-5*8($tptr) 2517 adcx %rax,%r12 2518 adox %r15,%r13 2519 mov %r11,-4*8($tptr) 2520 mulx 3*8($nptr),%rax,%r15 2521 mov $bi,%rdx 2522 lea 4*8($nptr),$nptr 2523 mov %r12,-3*8($tptr) 2524 adcx %rax,%r13 2525 adox $zero,%r15 2526 mov %r13,-2*8($tptr) 2527 2528 dec $bptr # of=0, pass cf 2529 jnz .Lmulx4x_inner 2530 2531 mov 0+8(%rsp),$num # load -num 2532 adc $zero,%r15 # modulo-scheduled 2533 sub 0*8($tptr),$bptr # pull top-most carry to %cf 2534 mov 8+8(%rsp),$bptr # re-load &b[i] 2535 mov 16+8(%rsp),%r10 2536 adc %r15,%r14 2537 lea ($aptr,$num),$aptr # rewind $aptr 2538 adc $zero,$zero # top-most carry 2539 mov %r14,-1*8($tptr) 2540 2541 cmp %r10,$bptr 2542 jb .Lmulx4x_outer 2543 2544 mov -8($nptr),%r10 2545 mov $zero,%r8 2546 mov ($nptr,$num),%r12 2547 lea ($nptr,$num),%rbp # rewind $nptr 2548 mov $num,%rcx 2549 lea ($tptr,$num),%rdi # rewind $tptr 2550 xor %eax,%eax 2551 xor %r15,%r15 2552 sub %r14,%r10 # compare top-most words 2553 adc %r15,%r15 2554 or %r15,%r8 2555 sar \$3+2,%rcx 2556 sub %r8,%rax # %rax=-%r8 2557 mov 56+8(%rsp),%rdx # restore rp 2558 dec %r12 # so that after 'not' we get -n[0] 2559 mov 8*1(%rbp),%r13 2560 xor %r8,%r8 2561 mov 8*2(%rbp),%r14 2562 mov 8*3(%rbp),%r15 2563 jmp .Lsqrx4x_sub_entry # common post-condition 2564.cfi_endproc 2565.size mulx4x_internal,.-mulx4x_internal 2566___ 2567}{ 2568###################################################################### 2569# void bn_powerx5( 2570my $rptr="%rdi"; # BN_ULONG *rptr, 2571my $aptr="%rsi"; # const BN_ULONG *aptr, 2572my $bptr="%rdx"; # const BN_ULONG *table, 2573my $nptr="%rcx"; # const BN_ULONG *nptr, 2574my $n0 ="%r8"; # const BN_ULONG *n0); 2575my $num ="%r9"; # int num, has to be divisible by 8 2576 # int pwr); 2577 2578my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); 2579my @A0=("%r10","%r11"); 2580my @A1=("%r12","%r13"); 2581my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); 2582 2583$code.=<<___; 2584.globl bn_powerx5 2585.type bn_powerx5,\@function,6 2586.align 32 2587bn_powerx5: 2588.cfi_startproc 2589 _CET_ENDBR 2590 mov %rsp,%rax 2591.cfi_def_cfa_register %rax 2592 push %rbx 2593.cfi_push %rbx 2594 push %rbp 2595.cfi_push %rbp 2596 push %r12 2597.cfi_push %r12 2598 push %r13 2599.cfi_push %r13 2600 push %r14 2601.cfi_push %r14 2602 push %r15 2603.cfi_push %r15 2604.Lpowerx5_prologue: 2605 2606 # num is declared as an int, a 32-bit parameter, so the upper half is 2607 # undefined. It is important that this write to ${num}, which zeros the 2608 # upper half, predates the first access. 2609 shl \$3,${num}d # convert $num to bytes 2610 lea ($num,$num,2),%r10 # 3*$num in bytes 2611 neg $num 2612 mov ($n0),$n0 # *n0 2613 2614 ############################################################## 2615 # Ensure that stack frame doesn't alias with $rptr+3*$num 2616 # modulo 4096, which covers ret[num], am[num] and n[num] 2617 # (see bn_exp.c). This is done to allow memory disambiguation 2618 # logic do its magic. [Extra 256 bytes is for power mask 2619 # calculated from 7th argument, the index.] 2620 # 2621 lea -320(%rsp,$num,2),%r11 2622 mov %rsp,%rbp 2623 sub $rptr,%r11 2624 and \$4095,%r11 2625 cmp %r11,%r10 2626 jb .Lpwrx_sp_alt 2627 sub %r11,%rbp # align with $aptr 2628 lea -320(%rbp,$num,2),%rbp # future alloca(frame+2*$num*8+256) 2629 jmp .Lpwrx_sp_done 2630 2631.align 32 2632.Lpwrx_sp_alt: 2633 lea 4096-320(,$num,2),%r10 2634 lea -320(%rbp,$num,2),%rbp # alloca(frame+2*$num*8+256) 2635 sub %r10,%r11 2636 mov \$0,%r10 2637 cmovc %r10,%r11 2638 sub %r11,%rbp 2639.Lpwrx_sp_done: 2640 and \$-64,%rbp 2641 mov %rsp,%r11 2642 sub %rbp,%r11 2643 and \$-4096,%r11 2644 lea (%rbp,%r11),%rsp 2645 mov (%rsp),%r10 2646 cmp %rbp,%rsp 2647 ja .Lpwrx_page_walk 2648 jmp .Lpwrx_page_walk_done 2649 2650.Lpwrx_page_walk: 2651 lea -4096(%rsp),%rsp 2652 mov (%rsp),%r10 2653 cmp %rbp,%rsp 2654 ja .Lpwrx_page_walk 2655.Lpwrx_page_walk_done: 2656 2657 mov $num,%r10 2658 neg $num 2659 2660 ############################################################## 2661 # Stack layout 2662 # 2663 # +0 saved $num, used in reduction section 2664 # +8 &t[2*$num], used in reduction section 2665 # +16 intermediate carry bit 2666 # +24 top-most carry bit, used in reduction section 2667 # +32 saved *n0 2668 # +40 saved %rsp 2669 # +48 t[2*$num] 2670 # 2671 pxor %xmm0,%xmm0 2672 movq $rptr,%xmm1 # save $rptr 2673 movq $nptr,%xmm2 # save $nptr 2674 movq %r10, %xmm3 # -$num 2675 movq $bptr,%xmm4 2676 mov $n0, 32(%rsp) 2677 mov %rax, 40(%rsp) # save original %rsp 2678.cfi_cfa_expression %rsp+40,deref,+8 2679.Lpowerx5_body: 2680 2681 call __bn_sqrx8x_internal 2682 call __bn_postx4x_internal 2683 call __bn_sqrx8x_internal 2684 call __bn_postx4x_internal 2685 call __bn_sqrx8x_internal 2686 call __bn_postx4x_internal 2687 call __bn_sqrx8x_internal 2688 call __bn_postx4x_internal 2689 call __bn_sqrx8x_internal 2690 call __bn_postx4x_internal 2691 2692 mov %r10,$num # -num 2693 mov $aptr,$rptr 2694 movq %xmm2,$nptr 2695 movq %xmm4,$bptr 2696 mov 40(%rsp),%rax 2697 2698 call mulx4x_internal 2699 2700 mov 40(%rsp),%rsi # restore %rsp 2701.cfi_def_cfa %rsi,8 2702 mov \$1,%rax 2703 2704 mov -48(%rsi),%r15 2705.cfi_restore %r15 2706 mov -40(%rsi),%r14 2707.cfi_restore %r14 2708 mov -32(%rsi),%r13 2709.cfi_restore %r13 2710 mov -24(%rsi),%r12 2711.cfi_restore %r12 2712 mov -16(%rsi),%rbp 2713.cfi_restore %rbp 2714 mov -8(%rsi),%rbx 2715.cfi_restore %rbx 2716 lea (%rsi),%rsp 2717.cfi_def_cfa_register %rsp 2718.Lpowerx5_epilogue: 2719 ret 2720.cfi_endproc 2721.size bn_powerx5,.-bn_powerx5 2722 2723.globl bn_sqrx8x_internal 2724.hidden bn_sqrx8x_internal 2725.type bn_sqrx8x_internal,\@abi-omnipotent 2726.align 32 2727bn_sqrx8x_internal: 2728__bn_sqrx8x_internal: 2729.cfi_startproc 2730 _CET_ENDBR 2731 ################################################################## 2732 # Squaring part: 2733 # 2734 # a) multiply-n-add everything but a[i]*a[i]; 2735 # b) shift result of a) by 1 to the left and accumulate 2736 # a[i]*a[i] products; 2737 # 2738 ################################################################## 2739 # a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0] 2740 # a[1]a[0] 2741 # a[2]a[0] 2742 # a[3]a[0] 2743 # a[2]a[1] 2744 # a[3]a[1] 2745 # a[3]a[2] 2746 # 2747 # a[4]a[0] 2748 # a[5]a[0] 2749 # a[6]a[0] 2750 # a[7]a[0] 2751 # a[4]a[1] 2752 # a[5]a[1] 2753 # a[6]a[1] 2754 # a[7]a[1] 2755 # a[4]a[2] 2756 # a[5]a[2] 2757 # a[6]a[2] 2758 # a[7]a[2] 2759 # a[4]a[3] 2760 # a[5]a[3] 2761 # a[6]a[3] 2762 # a[7]a[3] 2763 # 2764 # a[5]a[4] 2765 # a[6]a[4] 2766 # a[7]a[4] 2767 # a[6]a[5] 2768 # a[7]a[5] 2769 # a[7]a[6] 2770 # a[7]a[7]a[6]a[6]a[5]a[5]a[4]a[4]a[3]a[3]a[2]a[2]a[1]a[1]a[0]a[0] 2771___ 2772{ 2773my ($zero,$carry)=("%rbp","%rcx"); 2774my $aaptr=$zero; 2775$code.=<<___; 2776 lea 48+8(%rsp),$tptr 2777 lea ($aptr,$num),$aaptr 2778 mov $num,0+8(%rsp) # save $num 2779 mov $aaptr,8+8(%rsp) # save end of $aptr 2780 jmp .Lsqr8x_zero_start 2781 2782.align 32 2783.byte 0x66,0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00 2784.Lsqrx8x_zero: 2785 .byte 0x3e 2786 movdqa %xmm0,0*8($tptr) 2787 movdqa %xmm0,2*8($tptr) 2788 movdqa %xmm0,4*8($tptr) 2789 movdqa %xmm0,6*8($tptr) 2790.Lsqr8x_zero_start: # aligned at 32 2791 movdqa %xmm0,8*8($tptr) 2792 movdqa %xmm0,10*8($tptr) 2793 movdqa %xmm0,12*8($tptr) 2794 movdqa %xmm0,14*8($tptr) 2795 lea 16*8($tptr),$tptr 2796 sub \$64,$num 2797 jnz .Lsqrx8x_zero 2798 2799 mov 0*8($aptr),%rdx # a[0], modulo-scheduled 2800 #xor %r9,%r9 # t[1], ex-$num, zero already 2801 xor %r10,%r10 2802 xor %r11,%r11 2803 xor %r12,%r12 2804 xor %r13,%r13 2805 xor %r14,%r14 2806 xor %r15,%r15 2807 lea 48+8(%rsp),$tptr 2808 xor $zero,$zero # cf=0, cf=0 2809 jmp .Lsqrx8x_outer_loop 2810 2811.align 32 2812.Lsqrx8x_outer_loop: 2813 mulx 1*8($aptr),%r8,%rax # a[1]*a[0] 2814 adcx %r9,%r8 # a[1]*a[0]+=t[1] 2815 adox %rax,%r10 2816 mulx 2*8($aptr),%r9,%rax # a[2]*a[0] 2817 adcx %r10,%r9 2818 adox %rax,%r11 2819 .byte 0xc4,0xe2,0xab,0xf6,0x86,0x18,0x00,0x00,0x00 # mulx 3*8($aptr),%r10,%rax # ... 2820 adcx %r11,%r10 2821 adox %rax,%r12 2822 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x20,0x00,0x00,0x00 # mulx 4*8($aptr),%r11,%rax 2823 adcx %r12,%r11 2824 adox %rax,%r13 2825 mulx 5*8($aptr),%r12,%rax 2826 adcx %r13,%r12 2827 adox %rax,%r14 2828 mulx 6*8($aptr),%r13,%rax 2829 adcx %r14,%r13 2830 adox %r15,%rax 2831 mulx 7*8($aptr),%r14,%r15 2832 mov 1*8($aptr),%rdx # a[1] 2833 adcx %rax,%r14 2834 adox $zero,%r15 2835 adc 8*8($tptr),%r15 2836 mov %r8,1*8($tptr) # t[1] 2837 mov %r9,2*8($tptr) # t[2] 2838 sbb $carry,$carry # mov %cf,$carry 2839 xor $zero,$zero # cf=0, of=0 2840 2841 2842 mulx 2*8($aptr),%r8,%rbx # a[2]*a[1] 2843 mulx 3*8($aptr),%r9,%rax # a[3]*a[1] 2844 adcx %r10,%r8 2845 adox %rbx,%r9 2846 mulx 4*8($aptr),%r10,%rbx # ... 2847 adcx %r11,%r9 2848 adox %rax,%r10 2849 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x28,0x00,0x00,0x00 # mulx 5*8($aptr),%r11,%rax 2850 adcx %r12,%r10 2851 adox %rbx,%r11 2852 .byte 0xc4,0xe2,0x9b,0xf6,0x9e,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r12,%rbx 2853 adcx %r13,%r11 2854 adox %r14,%r12 2855 .byte 0xc4,0x62,0x93,0xf6,0xb6,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r13,%r14 2856 mov 2*8($aptr),%rdx # a[2] 2857 adcx %rax,%r12 2858 adox %rbx,%r13 2859 adcx %r15,%r13 2860 adox $zero,%r14 # of=0 2861 adcx $zero,%r14 # cf=0 2862 2863 mov %r8,3*8($tptr) # t[3] 2864 mov %r9,4*8($tptr) # t[4] 2865 2866 mulx 3*8($aptr),%r8,%rbx # a[3]*a[2] 2867 mulx 4*8($aptr),%r9,%rax # a[4]*a[2] 2868 adcx %r10,%r8 2869 adox %rbx,%r9 2870 mulx 5*8($aptr),%r10,%rbx # ... 2871 adcx %r11,%r9 2872 adox %rax,%r10 2873 .byte 0xc4,0xe2,0xa3,0xf6,0x86,0x30,0x00,0x00,0x00 # mulx 6*8($aptr),%r11,%rax 2874 adcx %r12,%r10 2875 adox %r13,%r11 2876 .byte 0xc4,0x62,0x9b,0xf6,0xae,0x38,0x00,0x00,0x00 # mulx 7*8($aptr),%r12,%r13 2877 .byte 0x3e 2878 mov 3*8($aptr),%rdx # a[3] 2879 adcx %rbx,%r11 2880 adox %rax,%r12 2881 adcx %r14,%r12 2882 mov %r8,5*8($tptr) # t[5] 2883 mov %r9,6*8($tptr) # t[6] 2884 mulx 4*8($aptr),%r8,%rax # a[4]*a[3] 2885 adox $zero,%r13 # of=0 2886 adcx $zero,%r13 # cf=0 2887 2888 mulx 5*8($aptr),%r9,%rbx # a[5]*a[3] 2889 adcx %r10,%r8 2890 adox %rax,%r9 2891 mulx 6*8($aptr),%r10,%rax # ... 2892 adcx %r11,%r9 2893 adox %r12,%r10 2894 mulx 7*8($aptr),%r11,%r12 2895 mov 4*8($aptr),%rdx # a[4] 2896 mov 5*8($aptr),%r14 # a[5] 2897 adcx %rbx,%r10 2898 adox %rax,%r11 2899 mov 6*8($aptr),%r15 # a[6] 2900 adcx %r13,%r11 2901 adox $zero,%r12 # of=0 2902 adcx $zero,%r12 # cf=0 2903 2904 mov %r8,7*8($tptr) # t[7] 2905 mov %r9,8*8($tptr) # t[8] 2906 2907 mulx %r14,%r9,%rax # a[5]*a[4] 2908 mov 7*8($aptr),%r8 # a[7] 2909 adcx %r10,%r9 2910 mulx %r15,%r10,%rbx # a[6]*a[4] 2911 adox %rax,%r10 2912 adcx %r11,%r10 2913 mulx %r8,%r11,%rax # a[7]*a[4] 2914 mov %r14,%rdx # a[5] 2915 adox %rbx,%r11 2916 adcx %r12,%r11 2917 #adox $zero,%rax # of=0 2918 adcx $zero,%rax # cf=0 2919 2920 mulx %r15,%r14,%rbx # a[6]*a[5] 2921 mulx %r8,%r12,%r13 # a[7]*a[5] 2922 mov %r15,%rdx # a[6] 2923 lea 8*8($aptr),$aptr 2924 adcx %r14,%r11 2925 adox %rbx,%r12 2926 adcx %rax,%r12 2927 adox $zero,%r13 2928 2929 .byte 0x67,0x67 2930 mulx %r8,%r8,%r14 # a[7]*a[6] 2931 adcx %r8,%r13 2932 adcx $zero,%r14 2933 2934 cmp 8+8(%rsp),$aptr 2935 je .Lsqrx8x_outer_break 2936 2937 neg $carry # mov $carry,%cf 2938 mov \$-8,%rcx 2939 mov $zero,%r15 2940 mov 8*8($tptr),%r8 2941 adcx 9*8($tptr),%r9 # +=t[9] 2942 adcx 10*8($tptr),%r10 # ... 2943 adcx 11*8($tptr),%r11 2944 adc 12*8($tptr),%r12 2945 adc 13*8($tptr),%r13 2946 adc 14*8($tptr),%r14 2947 adc 15*8($tptr),%r15 2948 lea ($aptr),$aaptr 2949 lea 2*64($tptr),$tptr 2950 sbb %rax,%rax # mov %cf,$carry 2951 2952 mov -64($aptr),%rdx # a[0] 2953 mov %rax,16+8(%rsp) # offload $carry 2954 mov $tptr,24+8(%rsp) 2955 2956 #lea 8*8($tptr),$tptr # see 2*8*8($tptr) above 2957 xor %eax,%eax # cf=0, of=0 2958 jmp .Lsqrx8x_loop 2959 2960.align 32 2961.Lsqrx8x_loop: 2962 mov %r8,%rbx 2963 mulx 0*8($aaptr),%rax,%r8 # a[8]*a[i] 2964 adcx %rax,%rbx # +=t[8] 2965 adox %r9,%r8 2966 2967 mulx 1*8($aaptr),%rax,%r9 # ... 2968 adcx %rax,%r8 2969 adox %r10,%r9 2970 2971 mulx 2*8($aaptr),%rax,%r10 2972 adcx %rax,%r9 2973 adox %r11,%r10 2974 2975 mulx 3*8($aaptr),%rax,%r11 2976 adcx %rax,%r10 2977 adox %r12,%r11 2978 2979 .byte 0xc4,0x62,0xfb,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 4*8($aaptr),%rax,%r12 2980 adcx %rax,%r11 2981 adox %r13,%r12 2982 2983 mulx 5*8($aaptr),%rax,%r13 2984 adcx %rax,%r12 2985 adox %r14,%r13 2986 2987 mulx 6*8($aaptr),%rax,%r14 2988 mov %rbx,($tptr,%rcx,8) # store t[8+i] 2989 mov \$0,%ebx 2990 adcx %rax,%r13 2991 adox %r15,%r14 2992 2993 .byte 0xc4,0x62,0xfb,0xf6,0xbd,0x38,0x00,0x00,0x00 # mulx 7*8($aaptr),%rax,%r15 2994 mov 8($aptr,%rcx,8),%rdx # a[i] 2995 adcx %rax,%r14 2996 adox %rbx,%r15 # %rbx is 0, of=0 2997 adcx %rbx,%r15 # cf=0 2998 2999 .byte 0x67 3000 inc %rcx # of=0 3001 jnz .Lsqrx8x_loop 3002 3003 lea 8*8($aaptr),$aaptr 3004 mov \$-8,%rcx 3005 cmp 8+8(%rsp),$aaptr # done? 3006 je .Lsqrx8x_break 3007 3008 sub 16+8(%rsp),%rbx # mov 16(%rsp),%cf 3009 .byte 0x66 3010 mov -64($aptr),%rdx 3011 adcx 0*8($tptr),%r8 3012 adcx 1*8($tptr),%r9 3013 adc 2*8($tptr),%r10 3014 adc 3*8($tptr),%r11 3015 adc 4*8($tptr),%r12 3016 adc 5*8($tptr),%r13 3017 adc 6*8($tptr),%r14 3018 adc 7*8($tptr),%r15 3019 lea 8*8($tptr),$tptr 3020 .byte 0x67 3021 sbb %rax,%rax # mov %cf,%rax 3022 xor %ebx,%ebx # cf=0, of=0 3023 mov %rax,16+8(%rsp) # offload carry 3024 jmp .Lsqrx8x_loop 3025 3026.align 32 3027.Lsqrx8x_break: 3028 xor $zero,$zero 3029 sub 16+8(%rsp),%rbx # mov 16(%rsp),%cf 3030 adcx $zero,%r8 3031 mov 24+8(%rsp),$carry # initial $tptr, borrow $carry 3032 adcx $zero,%r9 3033 mov 0*8($aptr),%rdx # a[8], modulo-scheduled 3034 adc \$0,%r10 3035 mov %r8,0*8($tptr) 3036 adc \$0,%r11 3037 adc \$0,%r12 3038 adc \$0,%r13 3039 adc \$0,%r14 3040 adc \$0,%r15 3041 cmp $carry,$tptr # cf=0, of=0 3042 je .Lsqrx8x_outer_loop 3043 3044 mov %r9,1*8($tptr) 3045 mov 1*8($carry),%r9 3046 mov %r10,2*8($tptr) 3047 mov 2*8($carry),%r10 3048 mov %r11,3*8($tptr) 3049 mov 3*8($carry),%r11 3050 mov %r12,4*8($tptr) 3051 mov 4*8($carry),%r12 3052 mov %r13,5*8($tptr) 3053 mov 5*8($carry),%r13 3054 mov %r14,6*8($tptr) 3055 mov 6*8($carry),%r14 3056 mov %r15,7*8($tptr) 3057 mov 7*8($carry),%r15 3058 mov $carry,$tptr 3059 jmp .Lsqrx8x_outer_loop 3060 3061.align 32 3062.Lsqrx8x_outer_break: 3063 mov %r9,9*8($tptr) # t[9] 3064 movq %xmm3,%rcx # -$num 3065 mov %r10,10*8($tptr) # ... 3066 mov %r11,11*8($tptr) 3067 mov %r12,12*8($tptr) 3068 mov %r13,13*8($tptr) 3069 mov %r14,14*8($tptr) 3070___ 3071}{ 3072my $i="%rcx"; 3073$code.=<<___; 3074 lea 48+8(%rsp),$tptr 3075 mov ($aptr,$i),%rdx # a[0] 3076 3077 mov 8($tptr),$A0[1] # t[1] 3078 xor $A0[0],$A0[0] # t[0], of=0, cf=0 3079 mov 0+8(%rsp),$num # restore $num 3080 adox $A0[1],$A0[1] 3081 mov 16($tptr),$A1[0] # t[2] # prefetch 3082 mov 24($tptr),$A1[1] # t[3] # prefetch 3083 #jmp .Lsqrx4x_shift_n_add # happens to be aligned 3084 3085.align 32 3086.Lsqrx4x_shift_n_add: 3087 mulx %rdx,%rax,%rbx 3088 adox $A1[0],$A1[0] 3089 adcx $A0[0],%rax 3090 .byte 0x48,0x8b,0x94,0x0e,0x08,0x00,0x00,0x00 # mov 8($aptr,$i),%rdx # a[i+1] # prefetch 3091 .byte 0x4c,0x8b,0x97,0x20,0x00,0x00,0x00 # mov 32($tptr),$A0[0] # t[2*i+4] # prefetch 3092 adox $A1[1],$A1[1] 3093 adcx $A0[1],%rbx 3094 mov 40($tptr),$A0[1] # t[2*i+4+1] # prefetch 3095 mov %rax,0($tptr) 3096 mov %rbx,8($tptr) 3097 3098 mulx %rdx,%rax,%rbx 3099 adox $A0[0],$A0[0] 3100 adcx $A1[0],%rax 3101 mov 16($aptr,$i),%rdx # a[i+2] # prefetch 3102 mov 48($tptr),$A1[0] # t[2*i+6] # prefetch 3103 adox $A0[1],$A0[1] 3104 adcx $A1[1],%rbx 3105 mov 56($tptr),$A1[1] # t[2*i+6+1] # prefetch 3106 mov %rax,16($tptr) 3107 mov %rbx,24($tptr) 3108 3109 mulx %rdx,%rax,%rbx 3110 adox $A1[0],$A1[0] 3111 adcx $A0[0],%rax 3112 mov 24($aptr,$i),%rdx # a[i+3] # prefetch 3113 lea 32($i),$i 3114 mov 64($tptr),$A0[0] # t[2*i+8] # prefetch 3115 adox $A1[1],$A1[1] 3116 adcx $A0[1],%rbx 3117 mov 72($tptr),$A0[1] # t[2*i+8+1] # prefetch 3118 mov %rax,32($tptr) 3119 mov %rbx,40($tptr) 3120 3121 mulx %rdx,%rax,%rbx 3122 adox $A0[0],$A0[0] 3123 adcx $A1[0],%rax 3124 jrcxz .Lsqrx4x_shift_n_add_break 3125 .byte 0x48,0x8b,0x94,0x0e,0x00,0x00,0x00,0x00 # mov 0($aptr,$i),%rdx # a[i+4] # prefetch 3126 adox $A0[1],$A0[1] 3127 adcx $A1[1],%rbx 3128 mov 80($tptr),$A1[0] # t[2*i+10] # prefetch 3129 mov 88($tptr),$A1[1] # t[2*i+10+1] # prefetch 3130 mov %rax,48($tptr) 3131 mov %rbx,56($tptr) 3132 lea 64($tptr),$tptr 3133 nop 3134 jmp .Lsqrx4x_shift_n_add 3135 3136.align 32 3137.Lsqrx4x_shift_n_add_break: 3138 adcx $A1[1],%rbx 3139 mov %rax,48($tptr) 3140 mov %rbx,56($tptr) 3141 lea 64($tptr),$tptr # end of t[] buffer 3142___ 3143} 3144###################################################################### 3145# Montgomery reduction part, "word-by-word" algorithm. 3146# 3147# This new path is inspired by multiple submissions from Intel, by 3148# Shay Gueron, Vlad Krasnov, Erdinc Ozturk, James Guilford, 3149# Vinodh Gopal... 3150{ 3151my ($nptr,$carry,$m0)=("%rbp","%rsi","%rdx"); 3152 3153$code.=<<___; 3154 movq %xmm2,$nptr 3155__bn_sqrx8x_reduction: 3156 xor %eax,%eax # initial top-most carry bit 3157 mov 32+8(%rsp),%rbx # n0 3158 mov 48+8(%rsp),%rdx # "%r8", 8*0($tptr) 3159 lea -8*8($nptr,$num),%rcx # end of n[] 3160 #lea 48+8(%rsp,$num,2),$tptr # end of t[] buffer 3161 mov %rcx, 0+8(%rsp) # save end of n[] 3162 mov $tptr,8+8(%rsp) # save end of t[] 3163 3164 lea 48+8(%rsp),$tptr # initial t[] window 3165 jmp .Lsqrx8x_reduction_loop 3166 3167.align 32 3168.Lsqrx8x_reduction_loop: 3169 mov 8*1($tptr),%r9 3170 mov 8*2($tptr),%r10 3171 mov 8*3($tptr),%r11 3172 mov 8*4($tptr),%r12 3173 mov %rdx,%r8 3174 imulq %rbx,%rdx # n0*a[i] 3175 mov 8*5($tptr),%r13 3176 mov 8*6($tptr),%r14 3177 mov 8*7($tptr),%r15 3178 mov %rax,24+8(%rsp) # store top-most carry bit 3179 3180 lea 8*8($tptr),$tptr 3181 xor $carry,$carry # cf=0,of=0 3182 mov \$-8,%rcx 3183 jmp .Lsqrx8x_reduce 3184 3185.align 32 3186.Lsqrx8x_reduce: 3187 mov %r8, %rbx 3188 mulx 8*0($nptr),%rax,%r8 # n[0] 3189 adcx %rbx,%rax # discarded 3190 adox %r9,%r8 3191 3192 mulx 8*1($nptr),%rbx,%r9 # n[1] 3193 adcx %rbx,%r8 3194 adox %r10,%r9 3195 3196 mulx 8*2($nptr),%rbx,%r10 3197 adcx %rbx,%r9 3198 adox %r11,%r10 3199 3200 mulx 8*3($nptr),%rbx,%r11 3201 adcx %rbx,%r10 3202 adox %r12,%r11 3203 3204 .byte 0xc4,0x62,0xe3,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 8*4($nptr),%rbx,%r12 3205 mov %rdx,%rax 3206 mov %r8,%rdx 3207 adcx %rbx,%r11 3208 adox %r13,%r12 3209 3210 mulx 32+8(%rsp),%rbx,%rdx # %rdx discarded 3211 mov %rax,%rdx 3212 mov %rax,64+48+8(%rsp,%rcx,8) # put aside n0*a[i] 3213 3214 mulx 8*5($nptr),%rax,%r13 3215 adcx %rax,%r12 3216 adox %r14,%r13 3217 3218 mulx 8*6($nptr),%rax,%r14 3219 adcx %rax,%r13 3220 adox %r15,%r14 3221 3222 mulx 8*7($nptr),%rax,%r15 3223 mov %rbx,%rdx 3224 adcx %rax,%r14 3225 adox $carry,%r15 # $carry is 0 3226 adcx $carry,%r15 # cf=0 3227 3228 .byte 0x67,0x67,0x67 3229 inc %rcx # of=0 3230 jnz .Lsqrx8x_reduce 3231 3232 mov $carry,%rax # xor %rax,%rax 3233 cmp 0+8(%rsp),$nptr # end of n[]? 3234 jae .Lsqrx8x_no_tail 3235 3236 mov 48+8(%rsp),%rdx # pull n0*a[0] 3237 add 8*0($tptr),%r8 3238 lea 8*8($nptr),$nptr 3239 mov \$-8,%rcx 3240 adcx 8*1($tptr),%r9 3241 adcx 8*2($tptr),%r10 3242 adc 8*3($tptr),%r11 3243 adc 8*4($tptr),%r12 3244 adc 8*5($tptr),%r13 3245 adc 8*6($tptr),%r14 3246 adc 8*7($tptr),%r15 3247 lea 8*8($tptr),$tptr 3248 sbb %rax,%rax # top carry 3249 3250 xor $carry,$carry # of=0, cf=0 3251 mov %rax,16+8(%rsp) 3252 jmp .Lsqrx8x_tail 3253 3254.align 32 3255.Lsqrx8x_tail: 3256 mov %r8,%rbx 3257 mulx 8*0($nptr),%rax,%r8 3258 adcx %rax,%rbx 3259 adox %r9,%r8 3260 3261 mulx 8*1($nptr),%rax,%r9 3262 adcx %rax,%r8 3263 adox %r10,%r9 3264 3265 mulx 8*2($nptr),%rax,%r10 3266 adcx %rax,%r9 3267 adox %r11,%r10 3268 3269 mulx 8*3($nptr),%rax,%r11 3270 adcx %rax,%r10 3271 adox %r12,%r11 3272 3273 .byte 0xc4,0x62,0xfb,0xf6,0xa5,0x20,0x00,0x00,0x00 # mulx 8*4($nptr),%rax,%r12 3274 adcx %rax,%r11 3275 adox %r13,%r12 3276 3277 mulx 8*5($nptr),%rax,%r13 3278 adcx %rax,%r12 3279 adox %r14,%r13 3280 3281 mulx 8*6($nptr),%rax,%r14 3282 adcx %rax,%r13 3283 adox %r15,%r14 3284 3285 mulx 8*7($nptr),%rax,%r15 3286 mov 72+48+8(%rsp,%rcx,8),%rdx # pull n0*a[i] 3287 adcx %rax,%r14 3288 adox $carry,%r15 3289 mov %rbx,($tptr,%rcx,8) # save result 3290 mov %r8,%rbx 3291 adcx $carry,%r15 # cf=0 3292 3293 inc %rcx # of=0 3294 jnz .Lsqrx8x_tail 3295 3296 cmp 0+8(%rsp),$nptr # end of n[]? 3297 jae .Lsqrx8x_tail_done # break out of loop 3298 3299 sub 16+8(%rsp),$carry # mov 16(%rsp),%cf 3300 mov 48+8(%rsp),%rdx # pull n0*a[0] 3301 lea 8*8($nptr),$nptr 3302 adc 8*0($tptr),%r8 3303 adc 8*1($tptr),%r9 3304 adc 8*2($tptr),%r10 3305 adc 8*3($tptr),%r11 3306 adc 8*4($tptr),%r12 3307 adc 8*5($tptr),%r13 3308 adc 8*6($tptr),%r14 3309 adc 8*7($tptr),%r15 3310 lea 8*8($tptr),$tptr 3311 sbb %rax,%rax 3312 sub \$8,%rcx # mov \$-8,%rcx 3313 3314 xor $carry,$carry # of=0, cf=0 3315 mov %rax,16+8(%rsp) 3316 jmp .Lsqrx8x_tail 3317 3318.align 32 3319.Lsqrx8x_tail_done: 3320 xor %rax,%rax 3321 add 24+8(%rsp),%r8 # can this overflow? 3322 adc \$0,%r9 3323 adc \$0,%r10 3324 adc \$0,%r11 3325 adc \$0,%r12 3326 adc \$0,%r13 3327 adc \$0,%r14 3328 adc \$0,%r15 3329 adc \$0,%rax 3330 3331 sub 16+8(%rsp),$carry # mov 16(%rsp),%cf 3332.Lsqrx8x_no_tail: # %cf is 0 if jumped here 3333 adc 8*0($tptr),%r8 3334 movq %xmm3,%rcx 3335 adc 8*1($tptr),%r9 3336 mov 8*7($nptr),$carry 3337 movq %xmm2,$nptr # restore $nptr 3338 adc 8*2($tptr),%r10 3339 adc 8*3($tptr),%r11 3340 adc 8*4($tptr),%r12 3341 adc 8*5($tptr),%r13 3342 adc 8*6($tptr),%r14 3343 adc 8*7($tptr),%r15 3344 adc \$0,%rax # top-most carry 3345 3346 mov 32+8(%rsp),%rbx # n0 3347 mov 8*8($tptr,%rcx),%rdx # modulo-scheduled "%r8" 3348 3349 mov %r8,8*0($tptr) # store top 512 bits 3350 lea 8*8($tptr),%r8 # borrow %r8 3351 mov %r9,8*1($tptr) 3352 mov %r10,8*2($tptr) 3353 mov %r11,8*3($tptr) 3354 mov %r12,8*4($tptr) 3355 mov %r13,8*5($tptr) 3356 mov %r14,8*6($tptr) 3357 mov %r15,8*7($tptr) 3358 3359 lea 8*8($tptr,%rcx),$tptr # start of current t[] window 3360 cmp 8+8(%rsp),%r8 # end of t[]? 3361 jb .Lsqrx8x_reduction_loop 3362 ret 3363.cfi_endproc 3364.size bn_sqrx8x_internal,.-bn_sqrx8x_internal 3365___ 3366} 3367############################################################## 3368# Post-condition, 4x unrolled 3369# 3370{ 3371my ($rptr,$nptr)=("%rdx","%rbp"); 3372$code.=<<___; 3373.align 32 3374.type __bn_postx4x_internal,\@abi-omnipotent 3375__bn_postx4x_internal: 3376.cfi_startproc 3377 mov 8*0($nptr),%r12 3378 mov %rcx,%r10 # -$num 3379 mov %rcx,%r9 # -$num 3380 neg %rax 3381 sar \$3+2,%rcx 3382 #lea 48+8(%rsp,%r9),$tptr 3383 movq %xmm1,$rptr # restore $rptr 3384 movq %xmm1,$aptr # prepare for back-to-back call 3385 dec %r12 # so that after 'not' we get -n[0] 3386 mov 8*1($nptr),%r13 3387 xor %r8,%r8 3388 mov 8*2($nptr),%r14 3389 mov 8*3($nptr),%r15 3390 jmp .Lsqrx4x_sub_entry 3391 3392.align 16 3393.Lsqrx4x_sub: 3394 mov 8*0($nptr),%r12 3395 mov 8*1($nptr),%r13 3396 mov 8*2($nptr),%r14 3397 mov 8*3($nptr),%r15 3398.Lsqrx4x_sub_entry: 3399 andn %rax,%r12,%r12 3400 lea 8*4($nptr),$nptr 3401 andn %rax,%r13,%r13 3402 andn %rax,%r14,%r14 3403 andn %rax,%r15,%r15 3404 3405 neg %r8 # mov %r8,%cf 3406 adc 8*0($tptr),%r12 3407 adc 8*1($tptr),%r13 3408 adc 8*2($tptr),%r14 3409 adc 8*3($tptr),%r15 3410 mov %r12,8*0($rptr) 3411 lea 8*4($tptr),$tptr 3412 mov %r13,8*1($rptr) 3413 sbb %r8,%r8 # mov %cf,%r8 3414 mov %r14,8*2($rptr) 3415 mov %r15,8*3($rptr) 3416 lea 8*4($rptr),$rptr 3417 3418 inc %rcx 3419 jnz .Lsqrx4x_sub 3420 3421 neg %r9 # restore $num 3422 3423 ret 3424.cfi_endproc 3425.size __bn_postx4x_internal,.-__bn_postx4x_internal 3426___ 3427} 3428}}} 3429{ 3430my ($inp,$num,$tbl,$idx)=$win64?("%rcx","%edx","%r8", "%r9d") : # Win64 order 3431 ("%rdi","%esi","%rdx","%ecx"); # Unix order 3432my $out=$inp; 3433my $STRIDE=2**5*8; 3434my $N=$STRIDE/4; 3435 3436$code.=<<___; 3437.globl bn_scatter5 3438.type bn_scatter5,\@abi-omnipotent 3439.align 16 3440bn_scatter5: 3441.cfi_startproc 3442 _CET_ENDBR 3443 cmp \$0, $num 3444 jz .Lscatter_epilogue 3445 3446 # $tbl stores 32 entries, t0 through t31. Each entry has $num words. 3447 # They are interleaved in memory as follows: 3448 # 3449 # t0[0] t1[0] t2[0] ... t31[0] 3450 # t0[1] t1[1] t2[1] ... t31[1] 3451 # ... 3452 # t0[$num-1] t1[$num-1] t2[$num-1] ... t31[$num-1] 3453 3454 lea ($tbl,$idx,8),$tbl 3455.Lscatter: 3456 mov ($inp),%rax 3457 lea 8($inp),$inp 3458 mov %rax,($tbl) 3459 lea 32*8($tbl),$tbl 3460 sub \$1,$num 3461 jnz .Lscatter 3462.Lscatter_epilogue: 3463 ret 3464.cfi_endproc 3465.size bn_scatter5,.-bn_scatter5 3466 3467.globl bn_gather5 3468.type bn_gather5,\@abi-omnipotent 3469.align 32 3470bn_gather5: 3471.cfi_startproc 3472.LSEH_begin_bn_gather5: # Win64 thing, but harmless in other cases 3473 _CET_ENDBR 3474 # I can't trust assembler to use specific encoding:-( 3475 .byte 0x4c,0x8d,0x14,0x24 #lea (%rsp),%r10 3476.cfi_def_cfa_register %r10 3477 .byte 0x48,0x81,0xec,0x08,0x01,0x00,0x00 #sub $0x108,%rsp 3478 lea .Linc(%rip),%rax 3479 and \$-16,%rsp # shouldn't be formally required 3480 3481 movd $idx,%xmm5 3482 movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 3483 movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 3484 lea 128($tbl),%r11 # size optimization 3485 lea 128(%rsp),%rax # size optimization 3486 3487 pshufd \$0,%xmm5,%xmm5 # broadcast $idx 3488 movdqa %xmm1,%xmm4 3489 movdqa %xmm1,%xmm2 3490___ 3491######################################################################## 3492# Calculate masks by comparing 0..31 to $idx and save result to stack. 3493# 3494# We compute sixteen 16-byte masks and store them on the stack. Mask i is stored 3495# in `16*i - 128`(%rax) and contains the comparisons for idx == 2*i and 3496# idx == 2*i + 1 in its lower and upper halves, respectively. Mask calculations 3497# are scheduled in groups of four. 3498for($i=0;$i<$STRIDE/16;$i+=4) { 3499$code.=<<___; 3500 paddd %xmm0,%xmm1 3501 pcmpeqd %xmm5,%xmm0 # compare to 1,0 3502___ 3503$code.=<<___ if ($i); 3504 movdqa %xmm3,`16*($i-1)-128`(%rax) 3505___ 3506$code.=<<___; 3507 movdqa %xmm4,%xmm3 3508 3509 paddd %xmm1,%xmm2 3510 pcmpeqd %xmm5,%xmm1 # compare to 3,2 3511 movdqa %xmm0,`16*($i+0)-128`(%rax) 3512 movdqa %xmm4,%xmm0 3513 3514 paddd %xmm2,%xmm3 3515 pcmpeqd %xmm5,%xmm2 # compare to 5,4 3516 movdqa %xmm1,`16*($i+1)-128`(%rax) 3517 movdqa %xmm4,%xmm1 3518 3519 paddd %xmm3,%xmm0 3520 pcmpeqd %xmm5,%xmm3 # compare to 7,6 3521 movdqa %xmm2,`16*($i+2)-128`(%rax) 3522 movdqa %xmm4,%xmm2 3523___ 3524} 3525$code.=<<___; 3526 movdqa %xmm3,`16*($i-1)-128`(%rax) 3527 jmp .Lgather 3528 3529.align 32 3530.Lgather: 3531 pxor %xmm4,%xmm4 3532 pxor %xmm5,%xmm5 3533___ 3534for($i=0;$i<$STRIDE/16;$i+=4) { 3535# Combine the masks with the corresponding table entries to select the correct 3536# entry. 3537$code.=<<___; 3538 movdqa `16*($i+0)-128`(%r11),%xmm0 3539 movdqa `16*($i+1)-128`(%r11),%xmm1 3540 movdqa `16*($i+2)-128`(%r11),%xmm2 3541 pand `16*($i+0)-128`(%rax),%xmm0 3542 movdqa `16*($i+3)-128`(%r11),%xmm3 3543 pand `16*($i+1)-128`(%rax),%xmm1 3544 por %xmm0,%xmm4 3545 pand `16*($i+2)-128`(%rax),%xmm2 3546 por %xmm1,%xmm5 3547 pand `16*($i+3)-128`(%rax),%xmm3 3548 por %xmm2,%xmm4 3549 por %xmm3,%xmm5 3550___ 3551} 3552$code.=<<___; 3553 por %xmm5,%xmm4 3554 lea $STRIDE(%r11),%r11 3555 # Combine the upper and lower halves of %xmm0. 3556 pshufd \$0x4e,%xmm4,%xmm0 # Swap upper and lower halves. 3557 por %xmm4,%xmm0 3558 movq %xmm0,($out) # m0=bp[0] 3559 lea 8($out),$out 3560 sub \$1,$num 3561 jnz .Lgather 3562 3563 lea (%r10),%rsp 3564.cfi_def_cfa_register %rsp 3565 ret 3566.LSEH_end_bn_gather5: 3567.cfi_endproc 3568.size bn_gather5,.-bn_gather5 3569___ 3570} 3571$code.=<<___; 3572.section .rodata 3573.align 64 3574.Linc: 3575 .long 0,0, 1,1 3576 .long 2,2, 2,2 3577.asciz "Montgomery Multiplication with scatter/gather for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 3578.text 3579___ 3580 3581# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, 3582# CONTEXT *context,DISPATCHER_CONTEXT *disp) 3583if ($win64) { 3584$rec="%rcx"; 3585$frame="%rdx"; 3586$context="%r8"; 3587$disp="%r9"; 3588 3589$code.=<<___; 3590.extern __imp_RtlVirtualUnwind 3591.type mul_handler,\@abi-omnipotent 3592.align 16 3593mul_handler: 3594 push %rsi 3595 push %rdi 3596 push %rbx 3597 push %rbp 3598 push %r12 3599 push %r13 3600 push %r14 3601 push %r15 3602 pushfq 3603 sub \$64,%rsp 3604 3605 mov 120($context),%rax # pull context->Rax 3606 mov 248($context),%rbx # pull context->Rip 3607 3608 mov 8($disp),%rsi # disp->ImageBase 3609 mov 56($disp),%r11 # disp->HandlerData 3610 3611 mov 0(%r11),%r10d # HandlerData[0] 3612 lea (%rsi,%r10),%r10 # end of prologue label 3613 cmp %r10,%rbx # context->Rip<end of prologue label 3614 jb .Lcommon_seh_tail 3615 3616 mov 4(%r11),%r10d # HandlerData[1] 3617 lea (%rsi,%r10),%r10 # beginning of body label 3618 cmp %r10,%rbx # context->Rip<body label 3619 jb .Lcommon_pop_regs 3620 3621 mov 152($context),%rax # pull context->Rsp 3622 3623 mov 8(%r11),%r10d # HandlerData[2] 3624 lea (%rsi,%r10),%r10 # epilogue label 3625 cmp %r10,%rbx # context->Rip>=epilogue label 3626 jae .Lcommon_seh_tail 3627 3628 lea .Lmul_epilogue(%rip),%r10 3629 cmp %r10,%rbx 3630 ja .Lbody_40 3631 3632 mov 192($context),%r10 # pull $num 3633 mov 8(%rax,%r10,8),%rax # pull saved stack pointer 3634 3635 jmp .Lcommon_pop_regs 3636 3637.Lbody_40: 3638 mov 40(%rax),%rax # pull saved stack pointer 3639.Lcommon_pop_regs: 3640 mov -8(%rax),%rbx 3641 mov -16(%rax),%rbp 3642 mov -24(%rax),%r12 3643 mov -32(%rax),%r13 3644 mov -40(%rax),%r14 3645 mov -48(%rax),%r15 3646 mov %rbx,144($context) # restore context->Rbx 3647 mov %rbp,160($context) # restore context->Rbp 3648 mov %r12,216($context) # restore context->R12 3649 mov %r13,224($context) # restore context->R13 3650 mov %r14,232($context) # restore context->R14 3651 mov %r15,240($context) # restore context->R15 3652 3653.Lcommon_seh_tail: 3654 mov 8(%rax),%rdi 3655 mov 16(%rax),%rsi 3656 mov %rax,152($context) # restore context->Rsp 3657 mov %rsi,168($context) # restore context->Rsi 3658 mov %rdi,176($context) # restore context->Rdi 3659 3660 mov 40($disp),%rdi # disp->ContextRecord 3661 mov $context,%rsi # context 3662 mov \$154,%ecx # sizeof(CONTEXT) 3663 .long 0xa548f3fc # cld; rep movsq 3664 3665 mov $disp,%rsi 3666 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER 3667 mov 8(%rsi),%rdx # arg2, disp->ImageBase 3668 mov 0(%rsi),%r8 # arg3, disp->ControlPc 3669 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry 3670 mov 40(%rsi),%r10 # disp->ContextRecord 3671 lea 56(%rsi),%r11 # &disp->HandlerData 3672 lea 24(%rsi),%r12 # &disp->EstablisherFrame 3673 mov %r10,32(%rsp) # arg5 3674 mov %r11,40(%rsp) # arg6 3675 mov %r12,48(%rsp) # arg7 3676 mov %rcx,56(%rsp) # arg8, (NULL) 3677 call *__imp_RtlVirtualUnwind(%rip) 3678 3679 mov \$1,%eax # ExceptionContinueSearch 3680 add \$64,%rsp 3681 popfq 3682 pop %r15 3683 pop %r14 3684 pop %r13 3685 pop %r12 3686 pop %rbp 3687 pop %rbx 3688 pop %rdi 3689 pop %rsi 3690 ret 3691.size mul_handler,.-mul_handler 3692 3693.section .pdata 3694.align 4 3695 .rva .LSEH_begin_bn_mul_mont_gather5_nohw 3696 .rva .LSEH_end_bn_mul_mont_gather5_nohw 3697 .rva .LSEH_info_bn_mul_mont_gather5_nohw 3698 3699 .rva .LSEH_begin_bn_mul4x_mont_gather5 3700 .rva .LSEH_end_bn_mul4x_mont_gather5 3701 .rva .LSEH_info_bn_mul4x_mont_gather5 3702 3703 .rva .LSEH_begin_bn_power5_nohw 3704 .rva .LSEH_end_bn_power5_nohw 3705 .rva .LSEH_info_bn_power5_nohw 3706___ 3707$code.=<<___ if ($addx); 3708 .rva .LSEH_begin_bn_mulx4x_mont_gather5 3709 .rva .LSEH_end_bn_mulx4x_mont_gather5 3710 .rva .LSEH_info_bn_mulx4x_mont_gather5 3711 3712 .rva .LSEH_begin_bn_powerx5 3713 .rva .LSEH_end_bn_powerx5 3714 .rva .LSEH_info_bn_powerx5 3715___ 3716$code.=<<___; 3717 .rva .LSEH_begin_bn_gather5 3718 .rva .LSEH_end_bn_gather5 3719 .rva .LSEH_info_bn_gather5 3720 3721.section .xdata 3722.align 8 3723.LSEH_info_bn_mul_mont_gather5_nohw: 3724 .byte 9,0,0,0 3725 .rva mul_handler 3726 .rva .Lmul_body,.Lmul_body,.Lmul_epilogue # HandlerData[] 3727.align 8 3728.LSEH_info_bn_mul4x_mont_gather5: 3729 .byte 9,0,0,0 3730 .rva mul_handler 3731 .rva .Lmul4x_prologue,.Lmul4x_body,.Lmul4x_epilogue # HandlerData[] 3732.align 8 3733.LSEH_info_bn_power5_nohw: 3734 .byte 9,0,0,0 3735 .rva mul_handler 3736 .rva .Lpower5_prologue,.Lpower5_body,.Lpower5_epilogue # HandlerData[] 3737___ 3738$code.=<<___ if ($addx); 3739.align 8 3740.LSEH_info_bn_mulx4x_mont_gather5: 3741 .byte 9,0,0,0 3742 .rva mul_handler 3743 .rva .Lmulx4x_prologue,.Lmulx4x_body,.Lmulx4x_epilogue # HandlerData[] 3744.align 8 3745.LSEH_info_bn_powerx5: 3746 .byte 9,0,0,0 3747 .rva mul_handler 3748 .rva .Lpowerx5_prologue,.Lpowerx5_body,.Lpowerx5_epilogue # HandlerData[] 3749___ 3750$code.=<<___; 3751.align 8 3752.LSEH_info_bn_gather5: 3753 .byte 0x01,0x0b,0x03,0x0a 3754 .byte 0x0b,0x01,0x21,0x00 # sub rsp,0x108 3755 .byte 0x04,0xa3,0x00,0x00 # lea r10,(rsp) 3756.align 8 3757___ 3758} 3759 3760$code =~ s/\`([^\`]*)\`/eval($1)/gem; 3761 3762print $code; 3763close STDOUT or die "error closing STDOUT: $!"; 3764