1 /* Copyright (c) 2015, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 // A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
16 //
17 // Inspired by Daniel J. Bernstein's public domain nistp224 implementation
18 // and Adam Langley's public domain 64-bit C implementation of curve25519.
19
20 #include <openssl/base.h>
21
22 #include <openssl/bn.h>
23 #include <openssl/ec.h>
24 #include <openssl/err.h>
25 #include <openssl/mem.h>
26
27 #include <assert.h>
28 #include <string.h>
29
30 #include "internal.h"
31 #include "../delocate.h"
32 #include "../../internal.h"
33
34
35 #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
36
37 // Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
38 // using 64-bit coefficients called 'limbs', and sometimes (for multiplication
39 // results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
40 // 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
41 // representation is an 'p224_felem'; a 7-p224_widelimb representation is a
42 // 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
43 // don't always reduce the representations: we ensure that inputs to each
44 // p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
45 // 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
46 // are then again partially reduced to obtain an p224_felem satisfying a_i <
47 // 2^57. We only reduce to the unique minimal representation at the end of the
48 // computation.
49
50 typedef uint64_t p224_limb;
51 typedef uint128_t p224_widelimb;
52
53 typedef p224_limb p224_felem[4];
54 typedef p224_widelimb p224_widefelem[7];
55
56 // Precomputed multiples of the standard generator
57 // Points are given in coordinates (X, Y, Z) where Z normally is 1
58 // (0 for the point at infinity).
59 // For each field element, slice a_0 is word 0, etc.
60 //
61 // The table has 2 * 16 elements, starting with the following:
62 // index | bits | point
63 // ------+---------+------------------------------
64 // 0 | 0 0 0 0 | 0G
65 // 1 | 0 0 0 1 | 1G
66 // 2 | 0 0 1 0 | 2^56G
67 // 3 | 0 0 1 1 | (2^56 + 1)G
68 // 4 | 0 1 0 0 | 2^112G
69 // 5 | 0 1 0 1 | (2^112 + 1)G
70 // 6 | 0 1 1 0 | (2^112 + 2^56)G
71 // 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
72 // 8 | 1 0 0 0 | 2^168G
73 // 9 | 1 0 0 1 | (2^168 + 1)G
74 // 10 | 1 0 1 0 | (2^168 + 2^56)G
75 // 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
76 // 12 | 1 1 0 0 | (2^168 + 2^112)G
77 // 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
78 // 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
79 // 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
80 // followed by a copy of this with each element multiplied by 2^28.
81 //
82 // The reason for this is so that we can clock bits into four different
83 // locations when doing simple scalar multiplies against the base point,
84 // and then another four locations using the second 16 elements.
85 static const p224_felem g_p224_pre_comp[2][16][3] = {
86 {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
87 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
88 {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
89 {1, 0, 0, 0}},
90 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
91 {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
92 {1, 0, 0, 0}},
93 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
94 {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
95 {1, 0, 0, 0}},
96 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
97 {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
98 {1, 0, 0, 0}},
99 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
100 {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
101 {1, 0, 0, 0}},
102 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
103 {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
104 {1, 0, 0, 0}},
105 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
106 {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
107 {1, 0, 0, 0}},
108 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
109 {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
110 {1, 0, 0, 0}},
111 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
112 {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
113 {1, 0, 0, 0}},
114 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
115 {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
116 {1, 0, 0, 0}},
117 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
118 {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
119 {1, 0, 0, 0}},
120 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
121 {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
122 {1, 0, 0, 0}},
123 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
124 {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
125 {1, 0, 0, 0}},
126 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
127 {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
128 {1, 0, 0, 0}},
129 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
130 {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
131 {1, 0, 0, 0}}},
132 {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
133 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
134 {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
135 {1, 0, 0, 0}},
136 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
137 {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
138 {1, 0, 0, 0}},
139 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
140 {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
141 {1, 0, 0, 0}},
142 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
143 {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
144 {1, 0, 0, 0}},
145 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
146 {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
147 {1, 0, 0, 0}},
148 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
149 {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
150 {1, 0, 0, 0}},
151 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
152 {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
153 {1, 0, 0, 0}},
154 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
155 {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
156 {1, 0, 0, 0}},
157 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
158 {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
159 {1, 0, 0, 0}},
160 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
161 {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
162 {1, 0, 0, 0}},
163 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
164 {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
165 {1, 0, 0, 0}},
166 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
167 {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
168 {1, 0, 0, 0}},
169 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
170 {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
171 {1, 0, 0, 0}},
172 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
173 {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
174 {1, 0, 0, 0}},
175 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
176 {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
177 {1, 0, 0, 0}}}};
178
179
180 // Helper functions to convert field elements to/from internal representation
181
p224_generic_to_felem(p224_felem out,const EC_FELEM * in)182 static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) {
183 // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
184 // uses four 64-bit words. (The top-most word only has 32 bits.)
185 out[0] = in->words[0] & 0x00ffffffffffffff;
186 out[1] = ((in->words[0] >> 56) | (in->words[1] << 8)) & 0x00ffffffffffffff;
187 out[2] = ((in->words[1] >> 48) | (in->words[2] << 16)) & 0x00ffffffffffffff;
188 out[3] = ((in->words[2] >> 40) | (in->words[3] << 24)) & 0x00ffffffffffffff;
189 }
190
191 // Requires 0 <= in < 2*p (always call p224_felem_reduce first)
p224_felem_to_generic(EC_FELEM * out,const p224_felem in)192 static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) {
193 // Reduce to unique minimal representation.
194 static const int64_t two56 = ((p224_limb)1) << 56;
195 // 0 <= in < 2*p, p = 2^224 - 2^96 + 1
196 // if in > p , reduce in = in - 2^224 + 2^96 - 1
197 int64_t tmp[4], a;
198 tmp[0] = in[0];
199 tmp[1] = in[1];
200 tmp[2] = in[2];
201 tmp[3] = in[3];
202 // Case 1: a = 1 iff in >= 2^224
203 a = (in[3] >> 56);
204 tmp[0] -= a;
205 tmp[1] += a << 40;
206 tmp[3] &= 0x00ffffffffffffff;
207 // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
208 // the lower part is non-zero
209 a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
210 (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
211 a &= 0x00ffffffffffffff;
212 // turn a into an all-one mask (if a = 0) or an all-zero mask
213 a = (a - 1) >> 63;
214 // subtract 2^224 - 2^96 + 1 if a is all-one
215 tmp[3] &= a ^ 0xffffffffffffffff;
216 tmp[2] &= a ^ 0xffffffffffffffff;
217 tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
218 tmp[0] -= 1 & a;
219
220 // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
221 // be non-zero, so we only need one step
222 a = tmp[0] >> 63;
223 tmp[0] += two56 & a;
224 tmp[1] -= 1 & a;
225
226 // carry 1 -> 2 -> 3
227 tmp[2] += tmp[1] >> 56;
228 tmp[1] &= 0x00ffffffffffffff;
229
230 tmp[3] += tmp[2] >> 56;
231 tmp[2] &= 0x00ffffffffffffff;
232
233 // Now 0 <= tmp < p
234 p224_felem tmp2;
235 tmp2[0] = tmp[0];
236 tmp2[1] = tmp[1];
237 tmp2[2] = tmp[2];
238 tmp2[3] = tmp[3];
239
240 // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
241 // uses four 64-bit words. (The top-most word only has 32 bits.)
242 out->words[0] = tmp2[0] | (tmp2[1] << 56);
243 out->words[1] = (tmp2[1] >> 8) | (tmp2[2] << 48);
244 out->words[2] = (tmp2[2] >> 16) | (tmp2[3] << 40);
245 out->words[3] = tmp2[3] >> 24;
246 }
247
248
249 // Field operations, using the internal representation of field elements.
250 // NB! These operations are specific to our point multiplication and cannot be
251 // expected to be correct in general - e.g., multiplication with a large scalar
252 // will cause an overflow.
253
p224_felem_assign(p224_felem out,const p224_felem in)254 static void p224_felem_assign(p224_felem out, const p224_felem in) {
255 out[0] = in[0];
256 out[1] = in[1];
257 out[2] = in[2];
258 out[3] = in[3];
259 }
260
261 // Sum two field elements: out += in
p224_felem_sum(p224_felem out,const p224_felem in)262 static void p224_felem_sum(p224_felem out, const p224_felem in) {
263 out[0] += in[0];
264 out[1] += in[1];
265 out[2] += in[2];
266 out[3] += in[3];
267 }
268
269 // Subtract field elements: out -= in
270 // Assumes in[i] < 2^57
p224_felem_diff(p224_felem out,const p224_felem in)271 static void p224_felem_diff(p224_felem out, const p224_felem in) {
272 static const p224_limb two58p2 =
273 (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
274 static const p224_limb two58m2 =
275 (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
276 static const p224_limb two58m42m2 =
277 (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
278
279 // Add 0 mod 2^224-2^96+1 to ensure out > in
280 out[0] += two58p2;
281 out[1] += two58m42m2;
282 out[2] += two58m2;
283 out[3] += two58m2;
284
285 out[0] -= in[0];
286 out[1] -= in[1];
287 out[2] -= in[2];
288 out[3] -= in[3];
289 }
290
291 // Subtract in unreduced 128-bit mode: out -= in
292 // Assumes in[i] < 2^119
p224_widefelem_diff(p224_widefelem out,const p224_widefelem in)293 static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
294 static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
295 static const p224_widelimb two120m64 =
296 (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
297 static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
298 (((p224_widelimb)1) << 104) -
299 (((p224_widelimb)1) << 64);
300
301 // Add 0 mod 2^224-2^96+1 to ensure out > in
302 out[0] += two120;
303 out[1] += two120m64;
304 out[2] += two120m64;
305 out[3] += two120;
306 out[4] += two120m104m64;
307 out[5] += two120m64;
308 out[6] += two120m64;
309
310 out[0] -= in[0];
311 out[1] -= in[1];
312 out[2] -= in[2];
313 out[3] -= in[3];
314 out[4] -= in[4];
315 out[5] -= in[5];
316 out[6] -= in[6];
317 }
318
319 // Subtract in mixed mode: out128 -= in64
320 // in[i] < 2^63
p224_felem_diff_128_64(p224_widefelem out,const p224_felem in)321 static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
322 static const p224_widelimb two64p8 =
323 (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
324 static const p224_widelimb two64m8 =
325 (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
326 static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
327 (((p224_widelimb)1) << 48) -
328 (((p224_widelimb)1) << 8);
329
330 // Add 0 mod 2^224-2^96+1 to ensure out > in
331 out[0] += two64p8;
332 out[1] += two64m48m8;
333 out[2] += two64m8;
334 out[3] += two64m8;
335
336 out[0] -= in[0];
337 out[1] -= in[1];
338 out[2] -= in[2];
339 out[3] -= in[3];
340 }
341
342 // Multiply a field element by a scalar: out = out * scalar
343 // The scalars we actually use are small, so results fit without overflow
p224_felem_scalar(p224_felem out,const p224_limb scalar)344 static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
345 out[0] *= scalar;
346 out[1] *= scalar;
347 out[2] *= scalar;
348 out[3] *= scalar;
349 }
350
351 // Multiply an unreduced field element by a scalar: out = out * scalar
352 // The scalars we actually use are small, so results fit without overflow
p224_widefelem_scalar(p224_widefelem out,const p224_widelimb scalar)353 static void p224_widefelem_scalar(p224_widefelem out,
354 const p224_widelimb scalar) {
355 out[0] *= scalar;
356 out[1] *= scalar;
357 out[2] *= scalar;
358 out[3] *= scalar;
359 out[4] *= scalar;
360 out[5] *= scalar;
361 out[6] *= scalar;
362 }
363
364 // Square a field element: out = in^2
p224_felem_square(p224_widefelem out,const p224_felem in)365 static void p224_felem_square(p224_widefelem out, const p224_felem in) {
366 p224_limb tmp0, tmp1, tmp2;
367 tmp0 = 2 * in[0];
368 tmp1 = 2 * in[1];
369 tmp2 = 2 * in[2];
370 out[0] = ((p224_widelimb)in[0]) * in[0];
371 out[1] = ((p224_widelimb)in[0]) * tmp1;
372 out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
373 out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
374 out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
375 out[5] = ((p224_widelimb)in[3]) * tmp2;
376 out[6] = ((p224_widelimb)in[3]) * in[3];
377 }
378
379 // Multiply two field elements: out = in1 * in2
p224_felem_mul(p224_widefelem out,const p224_felem in1,const p224_felem in2)380 static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
381 const p224_felem in2) {
382 out[0] = ((p224_widelimb)in1[0]) * in2[0];
383 out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
384 out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
385 ((p224_widelimb)in1[2]) * in2[0];
386 out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
387 ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
388 out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
389 ((p224_widelimb)in1[3]) * in2[1];
390 out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
391 out[6] = ((p224_widelimb)in1[3]) * in2[3];
392 }
393
394 // Reduce seven 128-bit coefficients to four 64-bit coefficients.
395 // Requires in[i] < 2^126,
396 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
p224_felem_reduce(p224_felem out,const p224_widefelem in)397 static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
398 static const p224_widelimb two127p15 =
399 (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
400 static const p224_widelimb two127m71 =
401 (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
402 static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
403 (((p224_widelimb)1) << 71) -
404 (((p224_widelimb)1) << 55);
405 p224_widelimb output[5];
406
407 // Add 0 mod 2^224-2^96+1 to ensure all differences are positive
408 output[0] = in[0] + two127p15;
409 output[1] = in[1] + two127m71m55;
410 output[2] = in[2] + two127m71;
411 output[3] = in[3];
412 output[4] = in[4];
413
414 // Eliminate in[4], in[5], in[6]
415 output[4] += in[6] >> 16;
416 output[3] += (in[6] & 0xffff) << 40;
417 output[2] -= in[6];
418
419 output[3] += in[5] >> 16;
420 output[2] += (in[5] & 0xffff) << 40;
421 output[1] -= in[5];
422
423 output[2] += output[4] >> 16;
424 output[1] += (output[4] & 0xffff) << 40;
425 output[0] -= output[4];
426
427 // Carry 2 -> 3 -> 4
428 output[3] += output[2] >> 56;
429 output[2] &= 0x00ffffffffffffff;
430
431 output[4] = output[3] >> 56;
432 output[3] &= 0x00ffffffffffffff;
433
434 // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72
435
436 // Eliminate output[4]
437 output[2] += output[4] >> 16;
438 // output[2] < 2^56 + 2^56 = 2^57
439 output[1] += (output[4] & 0xffff) << 40;
440 output[0] -= output[4];
441
442 // Carry 0 -> 1 -> 2 -> 3
443 output[1] += output[0] >> 56;
444 out[0] = output[0] & 0x00ffffffffffffff;
445
446 output[2] += output[1] >> 56;
447 // output[2] < 2^57 + 2^72
448 out[1] = output[1] & 0x00ffffffffffffff;
449 output[3] += output[2] >> 56;
450 // output[3] <= 2^56 + 2^16
451 out[2] = output[2] & 0x00ffffffffffffff;
452
453 // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
454 // out[3] <= 2^56 + 2^16 (due to final carry),
455 // so out < 2*p
456 out[3] = output[3];
457 }
458
459 // Get negative value: out = -in
460 // Requires in[i] < 2^63,
461 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
p224_felem_neg(p224_felem out,const p224_felem in)462 static void p224_felem_neg(p224_felem out, const p224_felem in) {
463 p224_widefelem tmp = {0};
464 p224_felem_diff_128_64(tmp, in);
465 p224_felem_reduce(out, tmp);
466 }
467
468 // Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
469 // elements are reduced to in < 2^225, so we only need to check three cases: 0,
470 // 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
p224_felem_is_zero(const p224_felem in)471 static p224_limb p224_felem_is_zero(const p224_felem in) {
472 p224_limb zero = in[0] | in[1] | in[2] | in[3];
473 zero = (((int64_t)(zero)-1) >> 63) & 1;
474
475 p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
476 (in[2] ^ 0x00ffffffffffffff) |
477 (in[3] ^ 0x00ffffffffffffff);
478 two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
479 p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
480 (in[2] ^ 0x00ffffffffffffff) |
481 (in[3] ^ 0x01ffffffffffffff);
482 two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
483 return (zero | two224m96p1 | two225m97p2);
484 }
485
486 // Invert a field element
487 // Computation chain copied from djb's code
p224_felem_inv(p224_felem out,const p224_felem in)488 static void p224_felem_inv(p224_felem out, const p224_felem in) {
489 p224_felem ftmp, ftmp2, ftmp3, ftmp4;
490 p224_widefelem tmp;
491
492 p224_felem_square(tmp, in);
493 p224_felem_reduce(ftmp, tmp); // 2
494 p224_felem_mul(tmp, in, ftmp);
495 p224_felem_reduce(ftmp, tmp); // 2^2 - 1
496 p224_felem_square(tmp, ftmp);
497 p224_felem_reduce(ftmp, tmp); // 2^3 - 2
498 p224_felem_mul(tmp, in, ftmp);
499 p224_felem_reduce(ftmp, tmp); // 2^3 - 1
500 p224_felem_square(tmp, ftmp);
501 p224_felem_reduce(ftmp2, tmp); // 2^4 - 2
502 p224_felem_square(tmp, ftmp2);
503 p224_felem_reduce(ftmp2, tmp); // 2^5 - 4
504 p224_felem_square(tmp, ftmp2);
505 p224_felem_reduce(ftmp2, tmp); // 2^6 - 8
506 p224_felem_mul(tmp, ftmp2, ftmp);
507 p224_felem_reduce(ftmp, tmp); // 2^6 - 1
508 p224_felem_square(tmp, ftmp);
509 p224_felem_reduce(ftmp2, tmp); // 2^7 - 2
510 for (size_t i = 0; i < 5; ++i) { // 2^12 - 2^6
511 p224_felem_square(tmp, ftmp2);
512 p224_felem_reduce(ftmp2, tmp);
513 }
514 p224_felem_mul(tmp, ftmp2, ftmp);
515 p224_felem_reduce(ftmp2, tmp); // 2^12 - 1
516 p224_felem_square(tmp, ftmp2);
517 p224_felem_reduce(ftmp3, tmp); // 2^13 - 2
518 for (size_t i = 0; i < 11; ++i) { // 2^24 - 2^12
519 p224_felem_square(tmp, ftmp3);
520 p224_felem_reduce(ftmp3, tmp);
521 }
522 p224_felem_mul(tmp, ftmp3, ftmp2);
523 p224_felem_reduce(ftmp2, tmp); // 2^24 - 1
524 p224_felem_square(tmp, ftmp2);
525 p224_felem_reduce(ftmp3, tmp); // 2^25 - 2
526 for (size_t i = 0; i < 23; ++i) { // 2^48 - 2^24
527 p224_felem_square(tmp, ftmp3);
528 p224_felem_reduce(ftmp3, tmp);
529 }
530 p224_felem_mul(tmp, ftmp3, ftmp2);
531 p224_felem_reduce(ftmp3, tmp); // 2^48 - 1
532 p224_felem_square(tmp, ftmp3);
533 p224_felem_reduce(ftmp4, tmp); // 2^49 - 2
534 for (size_t i = 0; i < 47; ++i) { // 2^96 - 2^48
535 p224_felem_square(tmp, ftmp4);
536 p224_felem_reduce(ftmp4, tmp);
537 }
538 p224_felem_mul(tmp, ftmp3, ftmp4);
539 p224_felem_reduce(ftmp3, tmp); // 2^96 - 1
540 p224_felem_square(tmp, ftmp3);
541 p224_felem_reduce(ftmp4, tmp); // 2^97 - 2
542 for (size_t i = 0; i < 23; ++i) { // 2^120 - 2^24
543 p224_felem_square(tmp, ftmp4);
544 p224_felem_reduce(ftmp4, tmp);
545 }
546 p224_felem_mul(tmp, ftmp2, ftmp4);
547 p224_felem_reduce(ftmp2, tmp); // 2^120 - 1
548 for (size_t i = 0; i < 6; ++i) { // 2^126 - 2^6
549 p224_felem_square(tmp, ftmp2);
550 p224_felem_reduce(ftmp2, tmp);
551 }
552 p224_felem_mul(tmp, ftmp2, ftmp);
553 p224_felem_reduce(ftmp, tmp); // 2^126 - 1
554 p224_felem_square(tmp, ftmp);
555 p224_felem_reduce(ftmp, tmp); // 2^127 - 2
556 p224_felem_mul(tmp, ftmp, in);
557 p224_felem_reduce(ftmp, tmp); // 2^127 - 1
558 for (size_t i = 0; i < 97; ++i) { // 2^224 - 2^97
559 p224_felem_square(tmp, ftmp);
560 p224_felem_reduce(ftmp, tmp);
561 }
562 p224_felem_mul(tmp, ftmp, ftmp3);
563 p224_felem_reduce(out, tmp); // 2^224 - 2^96 - 1
564 }
565
566 // Copy in constant time:
567 // if icopy == 1, copy in to out,
568 // if icopy == 0, copy out to itself.
p224_copy_conditional(p224_felem out,const p224_felem in,p224_limb icopy)569 static void p224_copy_conditional(p224_felem out, const p224_felem in,
570 p224_limb icopy) {
571 // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
572 const p224_limb copy = -icopy;
573 for (size_t i = 0; i < 4; ++i) {
574 const p224_limb tmp = copy & (in[i] ^ out[i]);
575 out[i] ^= tmp;
576 }
577 }
578
579 // ELLIPTIC CURVE POINT OPERATIONS
580 //
581 // Points are represented in Jacobian projective coordinates:
582 // (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
583 // or to the point at infinity if Z == 0.
584
585 // Double an elliptic curve point:
586 // (X', Y', Z') = 2 * (X, Y, Z), where
587 // X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
588 // Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
589 // Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
590 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
591 // while x_out == y_in is not (maybe this works, but it's not tested).
p224_point_double(p224_felem x_out,p224_felem y_out,p224_felem z_out,const p224_felem x_in,const p224_felem y_in,const p224_felem z_in)592 static void p224_point_double(p224_felem x_out, p224_felem y_out,
593 p224_felem z_out, const p224_felem x_in,
594 const p224_felem y_in, const p224_felem z_in) {
595 p224_widefelem tmp, tmp2;
596 p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
597
598 p224_felem_assign(ftmp, x_in);
599 p224_felem_assign(ftmp2, x_in);
600
601 // delta = z^2
602 p224_felem_square(tmp, z_in);
603 p224_felem_reduce(delta, tmp);
604
605 // gamma = y^2
606 p224_felem_square(tmp, y_in);
607 p224_felem_reduce(gamma, tmp);
608
609 // beta = x*gamma
610 p224_felem_mul(tmp, x_in, gamma);
611 p224_felem_reduce(beta, tmp);
612
613 // alpha = 3*(x-delta)*(x+delta)
614 p224_felem_diff(ftmp, delta);
615 // ftmp[i] < 2^57 + 2^58 + 2 < 2^59
616 p224_felem_sum(ftmp2, delta);
617 // ftmp2[i] < 2^57 + 2^57 = 2^58
618 p224_felem_scalar(ftmp2, 3);
619 // ftmp2[i] < 3 * 2^58 < 2^60
620 p224_felem_mul(tmp, ftmp, ftmp2);
621 // tmp[i] < 2^60 * 2^59 * 4 = 2^121
622 p224_felem_reduce(alpha, tmp);
623
624 // x' = alpha^2 - 8*beta
625 p224_felem_square(tmp, alpha);
626 // tmp[i] < 4 * 2^57 * 2^57 = 2^116
627 p224_felem_assign(ftmp, beta);
628 p224_felem_scalar(ftmp, 8);
629 // ftmp[i] < 8 * 2^57 = 2^60
630 p224_felem_diff_128_64(tmp, ftmp);
631 // tmp[i] < 2^116 + 2^64 + 8 < 2^117
632 p224_felem_reduce(x_out, tmp);
633
634 // z' = (y + z)^2 - gamma - delta
635 p224_felem_sum(delta, gamma);
636 // delta[i] < 2^57 + 2^57 = 2^58
637 p224_felem_assign(ftmp, y_in);
638 p224_felem_sum(ftmp, z_in);
639 // ftmp[i] < 2^57 + 2^57 = 2^58
640 p224_felem_square(tmp, ftmp);
641 // tmp[i] < 4 * 2^58 * 2^58 = 2^118
642 p224_felem_diff_128_64(tmp, delta);
643 // tmp[i] < 2^118 + 2^64 + 8 < 2^119
644 p224_felem_reduce(z_out, tmp);
645
646 // y' = alpha*(4*beta - x') - 8*gamma^2
647 p224_felem_scalar(beta, 4);
648 // beta[i] < 4 * 2^57 = 2^59
649 p224_felem_diff(beta, x_out);
650 // beta[i] < 2^59 + 2^58 + 2 < 2^60
651 p224_felem_mul(tmp, alpha, beta);
652 // tmp[i] < 4 * 2^57 * 2^60 = 2^119
653 p224_felem_square(tmp2, gamma);
654 // tmp2[i] < 4 * 2^57 * 2^57 = 2^116
655 p224_widefelem_scalar(tmp2, 8);
656 // tmp2[i] < 8 * 2^116 = 2^119
657 p224_widefelem_diff(tmp, tmp2);
658 // tmp[i] < 2^119 + 2^120 < 2^121
659 p224_felem_reduce(y_out, tmp);
660 }
661
662 // Add two elliptic curve points:
663 // (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
664 // X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
665 // 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
666 // Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
667 // X_1)^2 - X_3) -
668 // Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
669 // Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
670 //
671 // This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
672
673 // This function is not entirely constant-time: it includes a branch for
674 // checking whether the two input points are equal, (while not equal to the
675 // point at infinity). This case never happens during single point
676 // multiplication, so there is no timing leak for ECDH or ECDSA signing.
p224_point_add(p224_felem x3,p224_felem y3,p224_felem z3,const p224_felem x1,const p224_felem y1,const p224_felem z1,const int mixed,const p224_felem x2,const p224_felem y2,const p224_felem z2)677 static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
678 const p224_felem x1, const p224_felem y1,
679 const p224_felem z1, const int mixed,
680 const p224_felem x2, const p224_felem y2,
681 const p224_felem z2) {
682 p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
683 p224_widefelem tmp, tmp2;
684 p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
685
686 if (!mixed) {
687 // ftmp2 = z2^2
688 p224_felem_square(tmp, z2);
689 p224_felem_reduce(ftmp2, tmp);
690
691 // ftmp4 = z2^3
692 p224_felem_mul(tmp, ftmp2, z2);
693 p224_felem_reduce(ftmp4, tmp);
694
695 // ftmp4 = z2^3*y1
696 p224_felem_mul(tmp2, ftmp4, y1);
697 p224_felem_reduce(ftmp4, tmp2);
698
699 // ftmp2 = z2^2*x1
700 p224_felem_mul(tmp2, ftmp2, x1);
701 p224_felem_reduce(ftmp2, tmp2);
702 } else {
703 // We'll assume z2 = 1 (special case z2 = 0 is handled later)
704
705 // ftmp4 = z2^3*y1
706 p224_felem_assign(ftmp4, y1);
707
708 // ftmp2 = z2^2*x1
709 p224_felem_assign(ftmp2, x1);
710 }
711
712 // ftmp = z1^2
713 p224_felem_square(tmp, z1);
714 p224_felem_reduce(ftmp, tmp);
715
716 // ftmp3 = z1^3
717 p224_felem_mul(tmp, ftmp, z1);
718 p224_felem_reduce(ftmp3, tmp);
719
720 // tmp = z1^3*y2
721 p224_felem_mul(tmp, ftmp3, y2);
722 // tmp[i] < 4 * 2^57 * 2^57 = 2^116
723
724 // ftmp3 = z1^3*y2 - z2^3*y1
725 p224_felem_diff_128_64(tmp, ftmp4);
726 // tmp[i] < 2^116 + 2^64 + 8 < 2^117
727 p224_felem_reduce(ftmp3, tmp);
728
729 // tmp = z1^2*x2
730 p224_felem_mul(tmp, ftmp, x2);
731 // tmp[i] < 4 * 2^57 * 2^57 = 2^116
732
733 // ftmp = z1^2*x2 - z2^2*x1
734 p224_felem_diff_128_64(tmp, ftmp2);
735 // tmp[i] < 2^116 + 2^64 + 8 < 2^117
736 p224_felem_reduce(ftmp, tmp);
737
738 // The formulae are incorrect if the points are equal, so we check for this
739 // and do doubling if this happens.
740 x_equal = p224_felem_is_zero(ftmp);
741 y_equal = p224_felem_is_zero(ftmp3);
742 z1_is_zero = p224_felem_is_zero(z1);
743 z2_is_zero = p224_felem_is_zero(z2);
744 // In affine coordinates, (X_1, Y_1) == (X_2, Y_2)
745 p224_limb is_nontrivial_double =
746 x_equal & y_equal & (1 - z1_is_zero) & (1 - z2_is_zero);
747 if (constant_time_declassify_w(is_nontrivial_double)) {
748 p224_point_double(x3, y3, z3, x1, y1, z1);
749 return;
750 }
751
752 // ftmp5 = z1*z2
753 if (!mixed) {
754 p224_felem_mul(tmp, z1, z2);
755 p224_felem_reduce(ftmp5, tmp);
756 } else {
757 // special case z2 = 0 is handled later
758 p224_felem_assign(ftmp5, z1);
759 }
760
761 // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2)
762 p224_felem_mul(tmp, ftmp, ftmp5);
763 p224_felem_reduce(z_out, tmp);
764
765 // ftmp = (z1^2*x2 - z2^2*x1)^2
766 p224_felem_assign(ftmp5, ftmp);
767 p224_felem_square(tmp, ftmp);
768 p224_felem_reduce(ftmp, tmp);
769
770 // ftmp5 = (z1^2*x2 - z2^2*x1)^3
771 p224_felem_mul(tmp, ftmp, ftmp5);
772 p224_felem_reduce(ftmp5, tmp);
773
774 // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2
775 p224_felem_mul(tmp, ftmp2, ftmp);
776 p224_felem_reduce(ftmp2, tmp);
777
778 // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3
779 p224_felem_mul(tmp, ftmp4, ftmp5);
780 // tmp[i] < 4 * 2^57 * 2^57 = 2^116
781
782 // tmp2 = (z1^3*y2 - z2^3*y1)^2
783 p224_felem_square(tmp2, ftmp3);
784 // tmp2[i] < 4 * 2^57 * 2^57 < 2^116
785
786 // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3
787 p224_felem_diff_128_64(tmp2, ftmp5);
788 // tmp2[i] < 2^116 + 2^64 + 8 < 2^117
789
790 // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
791 p224_felem_assign(ftmp5, ftmp2);
792 p224_felem_scalar(ftmp5, 2);
793 // ftmp5[i] < 2 * 2^57 = 2^58
794
795 /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
796 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
797 p224_felem_diff_128_64(tmp2, ftmp5);
798 // tmp2[i] < 2^117 + 2^64 + 8 < 2^118
799 p224_felem_reduce(x_out, tmp2);
800
801 // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out
802 p224_felem_diff(ftmp2, x_out);
803 // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59
804
805 // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
806 p224_felem_mul(tmp2, ftmp3, ftmp2);
807 // tmp2[i] < 4 * 2^57 * 2^59 = 2^118
808
809 /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
810 z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
811 p224_widefelem_diff(tmp2, tmp);
812 // tmp2[i] < 2^118 + 2^120 < 2^121
813 p224_felem_reduce(y_out, tmp2);
814
815 // the result (x_out, y_out, z_out) is incorrect if one of the inputs is
816 // the point at infinity, so we need to check for this separately
817
818 // if point 1 is at infinity, copy point 2 to output, and vice versa
819 p224_copy_conditional(x_out, x2, z1_is_zero);
820 p224_copy_conditional(x_out, x1, z2_is_zero);
821 p224_copy_conditional(y_out, y2, z1_is_zero);
822 p224_copy_conditional(y_out, y1, z2_is_zero);
823 p224_copy_conditional(z_out, z2, z1_is_zero);
824 p224_copy_conditional(z_out, z1, z2_is_zero);
825 p224_felem_assign(x3, x_out);
826 p224_felem_assign(y3, y_out);
827 p224_felem_assign(z3, z_out);
828 }
829
830 // p224_select_point selects the |idx|th point from a precomputation table and
831 // copies it to out.
p224_select_point(const uint64_t idx,size_t size,const p224_felem pre_comp[][3],p224_felem out[3])832 static void p224_select_point(const uint64_t idx, size_t size,
833 const p224_felem pre_comp[/*size*/][3],
834 p224_felem out[3]) {
835 p224_limb *outlimbs = &out[0][0];
836 OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
837
838 for (size_t i = 0; i < size; i++) {
839 const p224_limb *inlimbs = &pre_comp[i][0][0];
840 static_assert(sizeof(uint64_t) <= sizeof(crypto_word_t),
841 "crypto_word_t too small");
842 static_assert(sizeof(size_t) <= sizeof(crypto_word_t),
843 "crypto_word_t too small");
844 // Without a value barrier, Clang adds a branch here.
845 uint64_t mask = value_barrier_w(constant_time_eq_w(i, idx));
846 for (size_t j = 0; j < 4 * 3; j++) {
847 outlimbs[j] |= inlimbs[j] & mask;
848 }
849 }
850 }
851
852 // p224_get_bit returns the |i|th bit in |in|.
p224_get_bit(const EC_SCALAR * in,size_t i)853 static crypto_word_t p224_get_bit(const EC_SCALAR *in, size_t i) {
854 if (i >= 224) {
855 return 0;
856 }
857 static_assert(sizeof(in->words[0]) == 8, "BN_ULONG is not 64-bit");
858 return (in->words[i >> 6] >> (i & 63)) & 1;
859 }
860
861 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns
862 // (X', Y') = (X/Z^2, Y/Z^3)
ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP * group,const EC_JACOBIAN * point,EC_FELEM * x,EC_FELEM * y)863 static int ec_GFp_nistp224_point_get_affine_coordinates(
864 const EC_GROUP *group, const EC_JACOBIAN *point, EC_FELEM *x,
865 EC_FELEM *y) {
866 if (constant_time_declassify_int(
867 ec_GFp_simple_is_at_infinity(group, point))) {
868 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
869 return 0;
870 }
871
872 p224_felem z1, z2;
873 p224_widefelem tmp;
874 p224_generic_to_felem(z1, &point->Z);
875 p224_felem_inv(z2, z1);
876 p224_felem_square(tmp, z2);
877 p224_felem_reduce(z1, tmp);
878
879 if (x != NULL) {
880 p224_felem x_in, x_out;
881 p224_generic_to_felem(x_in, &point->X);
882 p224_felem_mul(tmp, x_in, z1);
883 p224_felem_reduce(x_out, tmp);
884 p224_felem_to_generic(x, x_out);
885 }
886
887 if (y != NULL) {
888 p224_felem y_in, y_out;
889 p224_generic_to_felem(y_in, &point->Y);
890 p224_felem_mul(tmp, z1, z2);
891 p224_felem_reduce(z1, tmp);
892 p224_felem_mul(tmp, y_in, z1);
893 p224_felem_reduce(y_out, tmp);
894 p224_felem_to_generic(y, y_out);
895 }
896
897 return 1;
898 }
899
ec_GFp_nistp224_add(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * a,const EC_JACOBIAN * b)900 static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_JACOBIAN *r,
901 const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
902 p224_felem x1, y1, z1, x2, y2, z2;
903 p224_generic_to_felem(x1, &a->X);
904 p224_generic_to_felem(y1, &a->Y);
905 p224_generic_to_felem(z1, &a->Z);
906 p224_generic_to_felem(x2, &b->X);
907 p224_generic_to_felem(y2, &b->Y);
908 p224_generic_to_felem(z2, &b->Z);
909 p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
910 // The outputs are already reduced, but still need to be contracted.
911 p224_felem_to_generic(&r->X, x1);
912 p224_felem_to_generic(&r->Y, y1);
913 p224_felem_to_generic(&r->Z, z1);
914 }
915
ec_GFp_nistp224_dbl(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * a)916 static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_JACOBIAN *r,
917 const EC_JACOBIAN *a) {
918 p224_felem x, y, z;
919 p224_generic_to_felem(x, &a->X);
920 p224_generic_to_felem(y, &a->Y);
921 p224_generic_to_felem(z, &a->Z);
922 p224_point_double(x, y, z, x, y, z);
923 // The outputs are already reduced, but still need to be contracted.
924 p224_felem_to_generic(&r->X, x);
925 p224_felem_to_generic(&r->Y, y);
926 p224_felem_to_generic(&r->Z, z);
927 }
928
ec_GFp_nistp224_make_precomp(p224_felem out[17][3],const EC_JACOBIAN * p)929 static void ec_GFp_nistp224_make_precomp(p224_felem out[17][3],
930 const EC_JACOBIAN *p) {
931 OPENSSL_memset(out[0], 0, sizeof(p224_felem) * 3);
932
933 p224_generic_to_felem(out[1][0], &p->X);
934 p224_generic_to_felem(out[1][1], &p->Y);
935 p224_generic_to_felem(out[1][2], &p->Z);
936
937 for (size_t j = 2; j <= 16; ++j) {
938 if (j & 1) {
939 p224_point_add(out[j][0], out[j][1], out[j][2], out[1][0], out[1][1],
940 out[1][2], 0, out[j - 1][0], out[j - 1][1], out[j - 1][2]);
941 } else {
942 p224_point_double(out[j][0], out[j][1], out[j][2], out[j / 2][0],
943 out[j / 2][1], out[j / 2][2]);
944 }
945 }
946 }
947
ec_GFp_nistp224_point_mul(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * p,const EC_SCALAR * scalar)948 static void ec_GFp_nistp224_point_mul(const EC_GROUP *group, EC_JACOBIAN *r,
949 const EC_JACOBIAN *p,
950 const EC_SCALAR *scalar) {
951 p224_felem p_pre_comp[17][3];
952 ec_GFp_nistp224_make_precomp(p_pre_comp, p);
953
954 // Set nq to the point at infinity.
955 p224_felem nq[3], tmp[4];
956 OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
957
958 int skip = 1; // Save two point operations in the first round.
959 for (size_t i = 220; i < 221; i--) {
960 if (!skip) {
961 p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
962 }
963
964 // Add every 5 doublings.
965 if (i % 5 == 0) {
966 crypto_word_t bits = p224_get_bit(scalar, i + 4) << 5;
967 bits |= p224_get_bit(scalar, i + 3) << 4;
968 bits |= p224_get_bit(scalar, i + 2) << 3;
969 bits |= p224_get_bit(scalar, i + 1) << 2;
970 bits |= p224_get_bit(scalar, i) << 1;
971 bits |= p224_get_bit(scalar, i - 1);
972 crypto_word_t sign, digit;
973 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
974
975 // Select the point to add or subtract.
976 p224_select_point(digit, 17, (const p224_felem(*)[3])p_pre_comp, tmp);
977 p224_felem_neg(tmp[3], tmp[1]); // (X, -Y, Z) is the negative point
978 p224_copy_conditional(tmp[1], tmp[3], sign);
979
980 if (!skip) {
981 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
982 tmp[0], tmp[1], tmp[2]);
983 } else {
984 OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
985 skip = 0;
986 }
987 }
988 }
989
990 // Reduce the output to its unique minimal representation.
991 p224_felem_to_generic(&r->X, nq[0]);
992 p224_felem_to_generic(&r->Y, nq[1]);
993 p224_felem_to_generic(&r->Z, nq[2]);
994 }
995
ec_GFp_nistp224_point_mul_base(const EC_GROUP * group,EC_JACOBIAN * r,const EC_SCALAR * scalar)996 static void ec_GFp_nistp224_point_mul_base(const EC_GROUP *group,
997 EC_JACOBIAN *r,
998 const EC_SCALAR *scalar) {
999 // Set nq to the point at infinity.
1000 p224_felem nq[3], tmp[3];
1001 OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1002
1003 int skip = 1; // Save two point operations in the first round.
1004 for (size_t i = 27; i < 28; i--) {
1005 // double
1006 if (!skip) {
1007 p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1008 }
1009
1010 // First, look 28 bits upwards.
1011 crypto_word_t bits = p224_get_bit(scalar, i + 196) << 3;
1012 bits |= p224_get_bit(scalar, i + 140) << 2;
1013 bits |= p224_get_bit(scalar, i + 84) << 1;
1014 bits |= p224_get_bit(scalar, i + 28);
1015 // Select the point to add, in constant time.
1016 p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
1017
1018 if (!skip) {
1019 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1020 tmp[0], tmp[1], tmp[2]);
1021 } else {
1022 OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1023 skip = 0;
1024 }
1025
1026 // Second, look at the current position/
1027 bits = p224_get_bit(scalar, i + 168) << 3;
1028 bits |= p224_get_bit(scalar, i + 112) << 2;
1029 bits |= p224_get_bit(scalar, i + 56) << 1;
1030 bits |= p224_get_bit(scalar, i);
1031 // Select the point to add, in constant time.
1032 p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
1033 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1034 tmp[0], tmp[1], tmp[2]);
1035 }
1036
1037 // Reduce the output to its unique minimal representation.
1038 p224_felem_to_generic(&r->X, nq[0]);
1039 p224_felem_to_generic(&r->Y, nq[1]);
1040 p224_felem_to_generic(&r->Z, nq[2]);
1041 }
1042
ec_GFp_nistp224_point_mul_public(const EC_GROUP * group,EC_JACOBIAN * r,const EC_SCALAR * g_scalar,const EC_JACOBIAN * p,const EC_SCALAR * p_scalar)1043 static void ec_GFp_nistp224_point_mul_public(const EC_GROUP *group,
1044 EC_JACOBIAN *r,
1045 const EC_SCALAR *g_scalar,
1046 const EC_JACOBIAN *p,
1047 const EC_SCALAR *p_scalar) {
1048 // TODO(davidben): If P-224 ECDSA verify performance ever matters, using
1049 // |ec_compute_wNAF| for |p_scalar| would likely be an easy improvement.
1050 p224_felem p_pre_comp[17][3];
1051 ec_GFp_nistp224_make_precomp(p_pre_comp, p);
1052
1053 // Set nq to the point at infinity.
1054 p224_felem nq[3], tmp[3];
1055 OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1056
1057 // Loop over both scalars msb-to-lsb, interleaving additions of multiples of
1058 // the generator (two in each of the last 28 rounds) and additions of p (every
1059 // 5th round).
1060 int skip = 1; // Save two point operations in the first round.
1061 for (size_t i = 220; i < 221; i--) {
1062 if (!skip) {
1063 p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1064 }
1065
1066 // Add multiples of the generator.
1067 if (i <= 27) {
1068 // First, look 28 bits upwards.
1069 crypto_word_t bits = p224_get_bit(g_scalar, i + 196) << 3;
1070 bits |= p224_get_bit(g_scalar, i + 140) << 2;
1071 bits |= p224_get_bit(g_scalar, i + 84) << 1;
1072 bits |= p224_get_bit(g_scalar, i + 28);
1073
1074 size_t index = (size_t)bits;
1075 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1076 g_p224_pre_comp[1][index][0], g_p224_pre_comp[1][index][1],
1077 g_p224_pre_comp[1][index][2]);
1078 assert(!skip);
1079
1080 // Second, look at the current position.
1081 bits = p224_get_bit(g_scalar, i + 168) << 3;
1082 bits |= p224_get_bit(g_scalar, i + 112) << 2;
1083 bits |= p224_get_bit(g_scalar, i + 56) << 1;
1084 bits |= p224_get_bit(g_scalar, i);
1085 index = (size_t)bits;
1086 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1087 g_p224_pre_comp[0][index][0], g_p224_pre_comp[0][index][1],
1088 g_p224_pre_comp[0][index][2]);
1089 }
1090
1091 // Incorporate |p_scalar| every 5 doublings.
1092 if (i % 5 == 0) {
1093 crypto_word_t bits = p224_get_bit(p_scalar, i + 4) << 5;
1094 bits |= p224_get_bit(p_scalar, i + 3) << 4;
1095 bits |= p224_get_bit(p_scalar, i + 2) << 3;
1096 bits |= p224_get_bit(p_scalar, i + 1) << 2;
1097 bits |= p224_get_bit(p_scalar, i) << 1;
1098 bits |= p224_get_bit(p_scalar, i - 1);
1099 crypto_word_t sign, digit;
1100 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1101
1102 // Select the point to add or subtract.
1103 OPENSSL_memcpy(tmp, p_pre_comp[digit], 3 * sizeof(p224_felem));
1104 if (sign) {
1105 p224_felem_neg(tmp[1], tmp[1]); // (X, -Y, Z) is the negative point
1106 }
1107
1108 if (!skip) {
1109 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
1110 tmp[0], tmp[1], tmp[2]);
1111 } else {
1112 OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1113 skip = 0;
1114 }
1115 }
1116 }
1117
1118 // Reduce the output to its unique minimal representation.
1119 p224_felem_to_generic(&r->X, nq[0]);
1120 p224_felem_to_generic(&r->Y, nq[1]);
1121 p224_felem_to_generic(&r->Z, nq[2]);
1122 }
1123
ec_GFp_nistp224_felem_mul(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a,const EC_FELEM * b)1124 static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r,
1125 const EC_FELEM *a, const EC_FELEM *b) {
1126 p224_felem felem1, felem2;
1127 p224_widefelem wide;
1128 p224_generic_to_felem(felem1, a);
1129 p224_generic_to_felem(felem2, b);
1130 p224_felem_mul(wide, felem1, felem2);
1131 p224_felem_reduce(felem1, wide);
1132 p224_felem_to_generic(r, felem1);
1133 }
1134
ec_GFp_nistp224_felem_sqr(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a)1135 static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
1136 const EC_FELEM *a) {
1137 p224_felem felem;
1138 p224_generic_to_felem(felem, a);
1139 p224_widefelem wide;
1140 p224_felem_square(wide, felem);
1141 p224_felem_reduce(felem, wide);
1142 p224_felem_to_generic(r, felem);
1143 }
1144
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistp224_method)1145 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
1146 out->point_get_affine_coordinates =
1147 ec_GFp_nistp224_point_get_affine_coordinates;
1148 out->add = ec_GFp_nistp224_add;
1149 out->dbl = ec_GFp_nistp224_dbl;
1150 out->mul = ec_GFp_nistp224_point_mul;
1151 out->mul_base = ec_GFp_nistp224_point_mul_base;
1152 out->mul_public = ec_GFp_nistp224_point_mul_public;
1153 out->felem_mul = ec_GFp_nistp224_felem_mul;
1154 out->felem_sqr = ec_GFp_nistp224_felem_sqr;
1155 out->felem_to_bytes = ec_GFp_simple_felem_to_bytes;
1156 out->felem_from_bytes = ec_GFp_simple_felem_from_bytes;
1157 out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
1158 out->scalar_to_montgomery_inv_vartime =
1159 ec_simple_scalar_to_montgomery_inv_vartime;
1160 out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate;
1161 }
1162
1163 #endif // BORINGSSL_HAS_UINT128 && !SMALL
1164