• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2015, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 // A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
16 //
17 // Inspired by Daniel J. Bernstein's public domain nistp224 implementation
18 // and Adam Langley's public domain 64-bit C implementation of curve25519.
19 
20 #include <openssl/base.h>
21 
22 #include <openssl/bn.h>
23 #include <openssl/ec.h>
24 #include <openssl/err.h>
25 #include <openssl/mem.h>
26 
27 #include <assert.h>
28 #include <string.h>
29 
30 #include "internal.h"
31 #include "../delocate.h"
32 #include "../../internal.h"
33 
34 
35 #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
36 
37 // Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
38 // using 64-bit coefficients called 'limbs', and sometimes (for multiplication
39 // results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
40 // 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
41 // representation is an 'p224_felem'; a 7-p224_widelimb representation is a
42 // 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
43 // don't always reduce the representations: we ensure that inputs to each
44 // p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
45 // 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
46 // are then again partially reduced to obtain an p224_felem satisfying a_i <
47 // 2^57. We only reduce to the unique minimal representation at the end of the
48 // computation.
49 
50 typedef uint64_t p224_limb;
51 typedef uint128_t p224_widelimb;
52 
53 typedef p224_limb p224_felem[4];
54 typedef p224_widelimb p224_widefelem[7];
55 
56 // Precomputed multiples of the standard generator
57 // Points are given in coordinates (X, Y, Z) where Z normally is 1
58 // (0 for the point at infinity).
59 // For each field element, slice a_0 is word 0, etc.
60 //
61 // The table has 2 * 16 elements, starting with the following:
62 // index | bits    | point
63 // ------+---------+------------------------------
64 //     0 | 0 0 0 0 | 0G
65 //     1 | 0 0 0 1 | 1G
66 //     2 | 0 0 1 0 | 2^56G
67 //     3 | 0 0 1 1 | (2^56 + 1)G
68 //     4 | 0 1 0 0 | 2^112G
69 //     5 | 0 1 0 1 | (2^112 + 1)G
70 //     6 | 0 1 1 0 | (2^112 + 2^56)G
71 //     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
72 //     8 | 1 0 0 0 | 2^168G
73 //     9 | 1 0 0 1 | (2^168 + 1)G
74 //    10 | 1 0 1 0 | (2^168 + 2^56)G
75 //    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
76 //    12 | 1 1 0 0 | (2^168 + 2^112)G
77 //    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
78 //    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
79 //    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
80 // followed by a copy of this with each element multiplied by 2^28.
81 //
82 // The reason for this is so that we can clock bits into four different
83 // locations when doing simple scalar multiplies against the base point,
84 // and then another four locations using the second 16 elements.
85 static const p224_felem g_p224_pre_comp[2][16][3] = {
86     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
87      {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
88       {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
89       {1, 0, 0, 0}},
90      {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
91       {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
92       {1, 0, 0, 0}},
93      {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
94       {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
95       {1, 0, 0, 0}},
96      {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
97       {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
98       {1, 0, 0, 0}},
99      {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
100       {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
101       {1, 0, 0, 0}},
102      {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
103       {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
104       {1, 0, 0, 0}},
105      {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
106       {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
107       {1, 0, 0, 0}},
108      {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
109       {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
110       {1, 0, 0, 0}},
111      {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
112       {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
113       {1, 0, 0, 0}},
114      {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
115       {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
116       {1, 0, 0, 0}},
117      {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
118       {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
119       {1, 0, 0, 0}},
120      {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
121       {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
122       {1, 0, 0, 0}},
123      {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
124       {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
125       {1, 0, 0, 0}},
126      {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
127       {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
128       {1, 0, 0, 0}},
129      {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
130       {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
131       {1, 0, 0, 0}}},
132     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
133      {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
134       {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
135       {1, 0, 0, 0}},
136      {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
137       {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
138       {1, 0, 0, 0}},
139      {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
140       {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
141       {1, 0, 0, 0}},
142      {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
143       {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
144       {1, 0, 0, 0}},
145      {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
146       {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
147       {1, 0, 0, 0}},
148      {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
149       {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
150       {1, 0, 0, 0}},
151      {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
152       {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
153       {1, 0, 0, 0}},
154      {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
155       {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
156       {1, 0, 0, 0}},
157      {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
158       {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
159       {1, 0, 0, 0}},
160      {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
161       {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
162       {1, 0, 0, 0}},
163      {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
164       {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
165       {1, 0, 0, 0}},
166      {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
167       {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
168       {1, 0, 0, 0}},
169      {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
170       {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
171       {1, 0, 0, 0}},
172      {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
173       {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
174       {1, 0, 0, 0}},
175      {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
176       {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
177       {1, 0, 0, 0}}}};
178 
179 
180 // Helper functions to convert field elements to/from internal representation
181 
p224_generic_to_felem(p224_felem out,const EC_FELEM * in)182 static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) {
183   // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
184   // uses four 64-bit words. (The top-most word only has 32 bits.)
185   out[0] = in->words[0] & 0x00ffffffffffffff;
186   out[1] = ((in->words[0] >> 56) | (in->words[1] << 8)) & 0x00ffffffffffffff;
187   out[2] = ((in->words[1] >> 48) | (in->words[2] << 16)) & 0x00ffffffffffffff;
188   out[3] = ((in->words[2] >> 40) | (in->words[3] << 24)) & 0x00ffffffffffffff;
189 }
190 
191 // Requires 0 <= in < 2*p (always call p224_felem_reduce first)
p224_felem_to_generic(EC_FELEM * out,const p224_felem in)192 static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) {
193   // Reduce to unique minimal representation.
194   static const int64_t two56 = ((p224_limb)1) << 56;
195   // 0 <= in < 2*p, p = 2^224 - 2^96 + 1
196   // if in > p , reduce in = in - 2^224 + 2^96 - 1
197   int64_t tmp[4], a;
198   tmp[0] = in[0];
199   tmp[1] = in[1];
200   tmp[2] = in[2];
201   tmp[3] = in[3];
202   // Case 1: a = 1 iff in >= 2^224
203   a = (in[3] >> 56);
204   tmp[0] -= a;
205   tmp[1] += a << 40;
206   tmp[3] &= 0x00ffffffffffffff;
207   // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
208   // the lower part is non-zero
209   a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
210       (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
211   a &= 0x00ffffffffffffff;
212   // turn a into an all-one mask (if a = 0) or an all-zero mask
213   a = (a - 1) >> 63;
214   // subtract 2^224 - 2^96 + 1 if a is all-one
215   tmp[3] &= a ^ 0xffffffffffffffff;
216   tmp[2] &= a ^ 0xffffffffffffffff;
217   tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
218   tmp[0] -= 1 & a;
219 
220   // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
221   // be non-zero, so we only need one step
222   a = tmp[0] >> 63;
223   tmp[0] += two56 & a;
224   tmp[1] -= 1 & a;
225 
226   // carry 1 -> 2 -> 3
227   tmp[2] += tmp[1] >> 56;
228   tmp[1] &= 0x00ffffffffffffff;
229 
230   tmp[3] += tmp[2] >> 56;
231   tmp[2] &= 0x00ffffffffffffff;
232 
233   // Now 0 <= tmp < p
234   p224_felem tmp2;
235   tmp2[0] = tmp[0];
236   tmp2[1] = tmp[1];
237   tmp2[2] = tmp[2];
238   tmp2[3] = tmp[3];
239 
240   // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
241   // uses four 64-bit words. (The top-most word only has 32 bits.)
242   out->words[0] = tmp2[0] | (tmp2[1] << 56);
243   out->words[1] = (tmp2[1] >> 8) | (tmp2[2] << 48);
244   out->words[2] = (tmp2[2] >> 16) | (tmp2[3] << 40);
245   out->words[3] = tmp2[3] >> 24;
246 }
247 
248 
249 // Field operations, using the internal representation of field elements.
250 // NB! These operations are specific to our point multiplication and cannot be
251 // expected to be correct in general - e.g., multiplication with a large scalar
252 // will cause an overflow.
253 
p224_felem_assign(p224_felem out,const p224_felem in)254 static void p224_felem_assign(p224_felem out, const p224_felem in) {
255   out[0] = in[0];
256   out[1] = in[1];
257   out[2] = in[2];
258   out[3] = in[3];
259 }
260 
261 // Sum two field elements: out += in
p224_felem_sum(p224_felem out,const p224_felem in)262 static void p224_felem_sum(p224_felem out, const p224_felem in) {
263   out[0] += in[0];
264   out[1] += in[1];
265   out[2] += in[2];
266   out[3] += in[3];
267 }
268 
269 // Subtract field elements: out -= in
270 // Assumes in[i] < 2^57
p224_felem_diff(p224_felem out,const p224_felem in)271 static void p224_felem_diff(p224_felem out, const p224_felem in) {
272   static const p224_limb two58p2 =
273       (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
274   static const p224_limb two58m2 =
275       (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
276   static const p224_limb two58m42m2 =
277       (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
278 
279   // Add 0 mod 2^224-2^96+1 to ensure out > in
280   out[0] += two58p2;
281   out[1] += two58m42m2;
282   out[2] += two58m2;
283   out[3] += two58m2;
284 
285   out[0] -= in[0];
286   out[1] -= in[1];
287   out[2] -= in[2];
288   out[3] -= in[3];
289 }
290 
291 // Subtract in unreduced 128-bit mode: out -= in
292 // Assumes in[i] < 2^119
p224_widefelem_diff(p224_widefelem out,const p224_widefelem in)293 static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
294   static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
295   static const p224_widelimb two120m64 =
296       (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
297   static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
298                                              (((p224_widelimb)1) << 104) -
299                                              (((p224_widelimb)1) << 64);
300 
301   // Add 0 mod 2^224-2^96+1 to ensure out > in
302   out[0] += two120;
303   out[1] += two120m64;
304   out[2] += two120m64;
305   out[3] += two120;
306   out[4] += two120m104m64;
307   out[5] += two120m64;
308   out[6] += two120m64;
309 
310   out[0] -= in[0];
311   out[1] -= in[1];
312   out[2] -= in[2];
313   out[3] -= in[3];
314   out[4] -= in[4];
315   out[5] -= in[5];
316   out[6] -= in[6];
317 }
318 
319 // Subtract in mixed mode: out128 -= in64
320 // in[i] < 2^63
p224_felem_diff_128_64(p224_widefelem out,const p224_felem in)321 static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
322   static const p224_widelimb two64p8 =
323       (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
324   static const p224_widelimb two64m8 =
325       (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
326   static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
327                                           (((p224_widelimb)1) << 48) -
328                                           (((p224_widelimb)1) << 8);
329 
330   // Add 0 mod 2^224-2^96+1 to ensure out > in
331   out[0] += two64p8;
332   out[1] += two64m48m8;
333   out[2] += two64m8;
334   out[3] += two64m8;
335 
336   out[0] -= in[0];
337   out[1] -= in[1];
338   out[2] -= in[2];
339   out[3] -= in[3];
340 }
341 
342 // Multiply a field element by a scalar: out = out * scalar
343 // The scalars we actually use are small, so results fit without overflow
p224_felem_scalar(p224_felem out,const p224_limb scalar)344 static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
345   out[0] *= scalar;
346   out[1] *= scalar;
347   out[2] *= scalar;
348   out[3] *= scalar;
349 }
350 
351 // Multiply an unreduced field element by a scalar: out = out * scalar
352 // The scalars we actually use are small, so results fit without overflow
p224_widefelem_scalar(p224_widefelem out,const p224_widelimb scalar)353 static void p224_widefelem_scalar(p224_widefelem out,
354                                   const p224_widelimb scalar) {
355   out[0] *= scalar;
356   out[1] *= scalar;
357   out[2] *= scalar;
358   out[3] *= scalar;
359   out[4] *= scalar;
360   out[5] *= scalar;
361   out[6] *= scalar;
362 }
363 
364 // Square a field element: out = in^2
p224_felem_square(p224_widefelem out,const p224_felem in)365 static void p224_felem_square(p224_widefelem out, const p224_felem in) {
366   p224_limb tmp0, tmp1, tmp2;
367   tmp0 = 2 * in[0];
368   tmp1 = 2 * in[1];
369   tmp2 = 2 * in[2];
370   out[0] = ((p224_widelimb)in[0]) * in[0];
371   out[1] = ((p224_widelimb)in[0]) * tmp1;
372   out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
373   out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
374   out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
375   out[5] = ((p224_widelimb)in[3]) * tmp2;
376   out[6] = ((p224_widelimb)in[3]) * in[3];
377 }
378 
379 // Multiply two field elements: out = in1 * in2
p224_felem_mul(p224_widefelem out,const p224_felem in1,const p224_felem in2)380 static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
381                            const p224_felem in2) {
382   out[0] = ((p224_widelimb)in1[0]) * in2[0];
383   out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
384   out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
385            ((p224_widelimb)in1[2]) * in2[0];
386   out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
387            ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
388   out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
389            ((p224_widelimb)in1[3]) * in2[1];
390   out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
391   out[6] = ((p224_widelimb)in1[3]) * in2[3];
392 }
393 
394 // Reduce seven 128-bit coefficients to four 64-bit coefficients.
395 // Requires in[i] < 2^126,
396 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
p224_felem_reduce(p224_felem out,const p224_widefelem in)397 static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
398   static const p224_widelimb two127p15 =
399       (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
400   static const p224_widelimb two127m71 =
401       (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
402   static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
403                                             (((p224_widelimb)1) << 71) -
404                                             (((p224_widelimb)1) << 55);
405   p224_widelimb output[5];
406 
407   // Add 0 mod 2^224-2^96+1 to ensure all differences are positive
408   output[0] = in[0] + two127p15;
409   output[1] = in[1] + two127m71m55;
410   output[2] = in[2] + two127m71;
411   output[3] = in[3];
412   output[4] = in[4];
413 
414   // Eliminate in[4], in[5], in[6]
415   output[4] += in[6] >> 16;
416   output[3] += (in[6] & 0xffff) << 40;
417   output[2] -= in[6];
418 
419   output[3] += in[5] >> 16;
420   output[2] += (in[5] & 0xffff) << 40;
421   output[1] -= in[5];
422 
423   output[2] += output[4] >> 16;
424   output[1] += (output[4] & 0xffff) << 40;
425   output[0] -= output[4];
426 
427   // Carry 2 -> 3 -> 4
428   output[3] += output[2] >> 56;
429   output[2] &= 0x00ffffffffffffff;
430 
431   output[4] = output[3] >> 56;
432   output[3] &= 0x00ffffffffffffff;
433 
434   // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72
435 
436   // Eliminate output[4]
437   output[2] += output[4] >> 16;
438   // output[2] < 2^56 + 2^56 = 2^57
439   output[1] += (output[4] & 0xffff) << 40;
440   output[0] -= output[4];
441 
442   // Carry 0 -> 1 -> 2 -> 3
443   output[1] += output[0] >> 56;
444   out[0] = output[0] & 0x00ffffffffffffff;
445 
446   output[2] += output[1] >> 56;
447   // output[2] < 2^57 + 2^72
448   out[1] = output[1] & 0x00ffffffffffffff;
449   output[3] += output[2] >> 56;
450   // output[3] <= 2^56 + 2^16
451   out[2] = output[2] & 0x00ffffffffffffff;
452 
453   // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
454   // out[3] <= 2^56 + 2^16 (due to final carry),
455   // so out < 2*p
456   out[3] = output[3];
457 }
458 
459 // Get negative value: out = -in
460 // Requires in[i] < 2^63,
461 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
p224_felem_neg(p224_felem out,const p224_felem in)462 static void p224_felem_neg(p224_felem out, const p224_felem in) {
463   p224_widefelem tmp = {0};
464   p224_felem_diff_128_64(tmp, in);
465   p224_felem_reduce(out, tmp);
466 }
467 
468 // Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
469 // elements are reduced to in < 2^225, so we only need to check three cases: 0,
470 // 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
p224_felem_is_zero(const p224_felem in)471 static p224_limb p224_felem_is_zero(const p224_felem in) {
472   p224_limb zero = in[0] | in[1] | in[2] | in[3];
473   zero = (((int64_t)(zero)-1) >> 63) & 1;
474 
475   p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
476                      (in[2] ^ 0x00ffffffffffffff) |
477                      (in[3] ^ 0x00ffffffffffffff);
478   two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
479   p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
480                      (in[2] ^ 0x00ffffffffffffff) |
481                      (in[3] ^ 0x01ffffffffffffff);
482   two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
483   return (zero | two224m96p1 | two225m97p2);
484 }
485 
486 // Invert a field element
487 // Computation chain copied from djb's code
p224_felem_inv(p224_felem out,const p224_felem in)488 static void p224_felem_inv(p224_felem out, const p224_felem in) {
489   p224_felem ftmp, ftmp2, ftmp3, ftmp4;
490   p224_widefelem tmp;
491 
492   p224_felem_square(tmp, in);
493   p224_felem_reduce(ftmp, tmp);  // 2
494   p224_felem_mul(tmp, in, ftmp);
495   p224_felem_reduce(ftmp, tmp);  // 2^2 - 1
496   p224_felem_square(tmp, ftmp);
497   p224_felem_reduce(ftmp, tmp);  // 2^3 - 2
498   p224_felem_mul(tmp, in, ftmp);
499   p224_felem_reduce(ftmp, tmp);  // 2^3 - 1
500   p224_felem_square(tmp, ftmp);
501   p224_felem_reduce(ftmp2, tmp);  // 2^4 - 2
502   p224_felem_square(tmp, ftmp2);
503   p224_felem_reduce(ftmp2, tmp);  // 2^5 - 4
504   p224_felem_square(tmp, ftmp2);
505   p224_felem_reduce(ftmp2, tmp);  // 2^6 - 8
506   p224_felem_mul(tmp, ftmp2, ftmp);
507   p224_felem_reduce(ftmp, tmp);  // 2^6 - 1
508   p224_felem_square(tmp, ftmp);
509   p224_felem_reduce(ftmp2, tmp);  // 2^7 - 2
510   for (size_t i = 0; i < 5; ++i) {  // 2^12 - 2^6
511     p224_felem_square(tmp, ftmp2);
512     p224_felem_reduce(ftmp2, tmp);
513   }
514   p224_felem_mul(tmp, ftmp2, ftmp);
515   p224_felem_reduce(ftmp2, tmp);  // 2^12 - 1
516   p224_felem_square(tmp, ftmp2);
517   p224_felem_reduce(ftmp3, tmp);  // 2^13 - 2
518   for (size_t i = 0; i < 11; ++i) {  // 2^24 - 2^12
519     p224_felem_square(tmp, ftmp3);
520     p224_felem_reduce(ftmp3, tmp);
521   }
522   p224_felem_mul(tmp, ftmp3, ftmp2);
523   p224_felem_reduce(ftmp2, tmp);  // 2^24 - 1
524   p224_felem_square(tmp, ftmp2);
525   p224_felem_reduce(ftmp3, tmp);  // 2^25 - 2
526   for (size_t i = 0; i < 23; ++i) {  // 2^48 - 2^24
527     p224_felem_square(tmp, ftmp3);
528     p224_felem_reduce(ftmp3, tmp);
529   }
530   p224_felem_mul(tmp, ftmp3, ftmp2);
531   p224_felem_reduce(ftmp3, tmp);  // 2^48 - 1
532   p224_felem_square(tmp, ftmp3);
533   p224_felem_reduce(ftmp4, tmp);  // 2^49 - 2
534   for (size_t i = 0; i < 47; ++i) {  // 2^96 - 2^48
535     p224_felem_square(tmp, ftmp4);
536     p224_felem_reduce(ftmp4, tmp);
537   }
538   p224_felem_mul(tmp, ftmp3, ftmp4);
539   p224_felem_reduce(ftmp3, tmp);  // 2^96 - 1
540   p224_felem_square(tmp, ftmp3);
541   p224_felem_reduce(ftmp4, tmp);  // 2^97 - 2
542   for (size_t i = 0; i < 23; ++i) {  // 2^120 - 2^24
543     p224_felem_square(tmp, ftmp4);
544     p224_felem_reduce(ftmp4, tmp);
545   }
546   p224_felem_mul(tmp, ftmp2, ftmp4);
547   p224_felem_reduce(ftmp2, tmp);  // 2^120 - 1
548   for (size_t i = 0; i < 6; ++i) {  // 2^126 - 2^6
549     p224_felem_square(tmp, ftmp2);
550     p224_felem_reduce(ftmp2, tmp);
551   }
552   p224_felem_mul(tmp, ftmp2, ftmp);
553   p224_felem_reduce(ftmp, tmp);  // 2^126 - 1
554   p224_felem_square(tmp, ftmp);
555   p224_felem_reduce(ftmp, tmp);  // 2^127 - 2
556   p224_felem_mul(tmp, ftmp, in);
557   p224_felem_reduce(ftmp, tmp);  // 2^127 - 1
558   for (size_t i = 0; i < 97; ++i) {  // 2^224 - 2^97
559     p224_felem_square(tmp, ftmp);
560     p224_felem_reduce(ftmp, tmp);
561   }
562   p224_felem_mul(tmp, ftmp, ftmp3);
563   p224_felem_reduce(out, tmp);  // 2^224 - 2^96 - 1
564 }
565 
566 // Copy in constant time:
567 // if icopy == 1, copy in to out,
568 // if icopy == 0, copy out to itself.
p224_copy_conditional(p224_felem out,const p224_felem in,p224_limb icopy)569 static void p224_copy_conditional(p224_felem out, const p224_felem in,
570                                   p224_limb icopy) {
571   // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
572   const p224_limb copy = -icopy;
573   for (size_t i = 0; i < 4; ++i) {
574     const p224_limb tmp = copy & (in[i] ^ out[i]);
575     out[i] ^= tmp;
576   }
577 }
578 
579 // ELLIPTIC CURVE POINT OPERATIONS
580 //
581 // Points are represented in Jacobian projective coordinates:
582 // (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
583 // or to the point at infinity if Z == 0.
584 
585 // Double an elliptic curve point:
586 // (X', Y', Z') = 2 * (X, Y, Z), where
587 // X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
588 // Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
589 // Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
590 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
591 // while x_out == y_in is not (maybe this works, but it's not tested).
p224_point_double(p224_felem x_out,p224_felem y_out,p224_felem z_out,const p224_felem x_in,const p224_felem y_in,const p224_felem z_in)592 static void p224_point_double(p224_felem x_out, p224_felem y_out,
593                               p224_felem z_out, const p224_felem x_in,
594                               const p224_felem y_in, const p224_felem z_in) {
595   p224_widefelem tmp, tmp2;
596   p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
597 
598   p224_felem_assign(ftmp, x_in);
599   p224_felem_assign(ftmp2, x_in);
600 
601   // delta = z^2
602   p224_felem_square(tmp, z_in);
603   p224_felem_reduce(delta, tmp);
604 
605   // gamma = y^2
606   p224_felem_square(tmp, y_in);
607   p224_felem_reduce(gamma, tmp);
608 
609   // beta = x*gamma
610   p224_felem_mul(tmp, x_in, gamma);
611   p224_felem_reduce(beta, tmp);
612 
613   // alpha = 3*(x-delta)*(x+delta)
614   p224_felem_diff(ftmp, delta);
615   // ftmp[i] < 2^57 + 2^58 + 2 < 2^59
616   p224_felem_sum(ftmp2, delta);
617   // ftmp2[i] < 2^57 + 2^57 = 2^58
618   p224_felem_scalar(ftmp2, 3);
619   // ftmp2[i] < 3 * 2^58 < 2^60
620   p224_felem_mul(tmp, ftmp, ftmp2);
621   // tmp[i] < 2^60 * 2^59 * 4 = 2^121
622   p224_felem_reduce(alpha, tmp);
623 
624   // x' = alpha^2 - 8*beta
625   p224_felem_square(tmp, alpha);
626   // tmp[i] < 4 * 2^57 * 2^57 = 2^116
627   p224_felem_assign(ftmp, beta);
628   p224_felem_scalar(ftmp, 8);
629   // ftmp[i] < 8 * 2^57 = 2^60
630   p224_felem_diff_128_64(tmp, ftmp);
631   // tmp[i] < 2^116 + 2^64 + 8 < 2^117
632   p224_felem_reduce(x_out, tmp);
633 
634   // z' = (y + z)^2 - gamma - delta
635   p224_felem_sum(delta, gamma);
636   // delta[i] < 2^57 + 2^57 = 2^58
637   p224_felem_assign(ftmp, y_in);
638   p224_felem_sum(ftmp, z_in);
639   // ftmp[i] < 2^57 + 2^57 = 2^58
640   p224_felem_square(tmp, ftmp);
641   // tmp[i] < 4 * 2^58 * 2^58 = 2^118
642   p224_felem_diff_128_64(tmp, delta);
643   // tmp[i] < 2^118 + 2^64 + 8 < 2^119
644   p224_felem_reduce(z_out, tmp);
645 
646   // y' = alpha*(4*beta - x') - 8*gamma^2
647   p224_felem_scalar(beta, 4);
648   // beta[i] < 4 * 2^57 = 2^59
649   p224_felem_diff(beta, x_out);
650   // beta[i] < 2^59 + 2^58 + 2 < 2^60
651   p224_felem_mul(tmp, alpha, beta);
652   // tmp[i] < 4 * 2^57 * 2^60 = 2^119
653   p224_felem_square(tmp2, gamma);
654   // tmp2[i] < 4 * 2^57 * 2^57 = 2^116
655   p224_widefelem_scalar(tmp2, 8);
656   // tmp2[i] < 8 * 2^116 = 2^119
657   p224_widefelem_diff(tmp, tmp2);
658   // tmp[i] < 2^119 + 2^120 < 2^121
659   p224_felem_reduce(y_out, tmp);
660 }
661 
662 // Add two elliptic curve points:
663 // (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
664 // X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
665 // 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
666 // Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
667 // X_1)^2 - X_3) -
668 //        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
669 // Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
670 //
671 // This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
672 
673 // This function is not entirely constant-time: it includes a branch for
674 // checking whether the two input points are equal, (while not equal to the
675 // point at infinity). This case never happens during single point
676 // multiplication, so there is no timing leak for ECDH or ECDSA signing.
p224_point_add(p224_felem x3,p224_felem y3,p224_felem z3,const p224_felem x1,const p224_felem y1,const p224_felem z1,const int mixed,const p224_felem x2,const p224_felem y2,const p224_felem z2)677 static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
678                            const p224_felem x1, const p224_felem y1,
679                            const p224_felem z1, const int mixed,
680                            const p224_felem x2, const p224_felem y2,
681                            const p224_felem z2) {
682   p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
683   p224_widefelem tmp, tmp2;
684   p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
685 
686   if (!mixed) {
687     // ftmp2 = z2^2
688     p224_felem_square(tmp, z2);
689     p224_felem_reduce(ftmp2, tmp);
690 
691     // ftmp4 = z2^3
692     p224_felem_mul(tmp, ftmp2, z2);
693     p224_felem_reduce(ftmp4, tmp);
694 
695     // ftmp4 = z2^3*y1
696     p224_felem_mul(tmp2, ftmp4, y1);
697     p224_felem_reduce(ftmp4, tmp2);
698 
699     // ftmp2 = z2^2*x1
700     p224_felem_mul(tmp2, ftmp2, x1);
701     p224_felem_reduce(ftmp2, tmp2);
702   } else {
703     // We'll assume z2 = 1 (special case z2 = 0 is handled later)
704 
705     // ftmp4 = z2^3*y1
706     p224_felem_assign(ftmp4, y1);
707 
708     // ftmp2 = z2^2*x1
709     p224_felem_assign(ftmp2, x1);
710   }
711 
712   // ftmp = z1^2
713   p224_felem_square(tmp, z1);
714   p224_felem_reduce(ftmp, tmp);
715 
716   // ftmp3 = z1^3
717   p224_felem_mul(tmp, ftmp, z1);
718   p224_felem_reduce(ftmp3, tmp);
719 
720   // tmp = z1^3*y2
721   p224_felem_mul(tmp, ftmp3, y2);
722   // tmp[i] < 4 * 2^57 * 2^57 = 2^116
723 
724   // ftmp3 = z1^3*y2 - z2^3*y1
725   p224_felem_diff_128_64(tmp, ftmp4);
726   // tmp[i] < 2^116 + 2^64 + 8 < 2^117
727   p224_felem_reduce(ftmp3, tmp);
728 
729   // tmp = z1^2*x2
730   p224_felem_mul(tmp, ftmp, x2);
731   // tmp[i] < 4 * 2^57 * 2^57 = 2^116
732 
733   // ftmp = z1^2*x2 - z2^2*x1
734   p224_felem_diff_128_64(tmp, ftmp2);
735   // tmp[i] < 2^116 + 2^64 + 8 < 2^117
736   p224_felem_reduce(ftmp, tmp);
737 
738   // The formulae are incorrect if the points are equal, so we check for this
739   // and do doubling if this happens.
740   x_equal = p224_felem_is_zero(ftmp);
741   y_equal = p224_felem_is_zero(ftmp3);
742   z1_is_zero = p224_felem_is_zero(z1);
743   z2_is_zero = p224_felem_is_zero(z2);
744   // In affine coordinates, (X_1, Y_1) == (X_2, Y_2)
745   p224_limb is_nontrivial_double =
746       x_equal & y_equal & (1 - z1_is_zero) & (1 - z2_is_zero);
747   if (constant_time_declassify_w(is_nontrivial_double)) {
748     p224_point_double(x3, y3, z3, x1, y1, z1);
749     return;
750   }
751 
752   // ftmp5 = z1*z2
753   if (!mixed) {
754     p224_felem_mul(tmp, z1, z2);
755     p224_felem_reduce(ftmp5, tmp);
756   } else {
757     // special case z2 = 0 is handled later
758     p224_felem_assign(ftmp5, z1);
759   }
760 
761   // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2)
762   p224_felem_mul(tmp, ftmp, ftmp5);
763   p224_felem_reduce(z_out, tmp);
764 
765   // ftmp = (z1^2*x2 - z2^2*x1)^2
766   p224_felem_assign(ftmp5, ftmp);
767   p224_felem_square(tmp, ftmp);
768   p224_felem_reduce(ftmp, tmp);
769 
770   // ftmp5 = (z1^2*x2 - z2^2*x1)^3
771   p224_felem_mul(tmp, ftmp, ftmp5);
772   p224_felem_reduce(ftmp5, tmp);
773 
774   // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2
775   p224_felem_mul(tmp, ftmp2, ftmp);
776   p224_felem_reduce(ftmp2, tmp);
777 
778   // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3
779   p224_felem_mul(tmp, ftmp4, ftmp5);
780   // tmp[i] < 4 * 2^57 * 2^57 = 2^116
781 
782   // tmp2 = (z1^3*y2 - z2^3*y1)^2
783   p224_felem_square(tmp2, ftmp3);
784   // tmp2[i] < 4 * 2^57 * 2^57 < 2^116
785 
786   // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3
787   p224_felem_diff_128_64(tmp2, ftmp5);
788   // tmp2[i] < 2^116 + 2^64 + 8 < 2^117
789 
790   // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
791   p224_felem_assign(ftmp5, ftmp2);
792   p224_felem_scalar(ftmp5, 2);
793   // ftmp5[i] < 2 * 2^57 = 2^58
794 
795   /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
796      2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
797   p224_felem_diff_128_64(tmp2, ftmp5);
798   // tmp2[i] < 2^117 + 2^64 + 8 < 2^118
799   p224_felem_reduce(x_out, tmp2);
800 
801   // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out
802   p224_felem_diff(ftmp2, x_out);
803   // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59
804 
805   // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
806   p224_felem_mul(tmp2, ftmp3, ftmp2);
807   // tmp2[i] < 4 * 2^57 * 2^59 = 2^118
808 
809   /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
810      z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
811   p224_widefelem_diff(tmp2, tmp);
812   // tmp2[i] < 2^118 + 2^120 < 2^121
813   p224_felem_reduce(y_out, tmp2);
814 
815   // the result (x_out, y_out, z_out) is incorrect if one of the inputs is
816   // the point at infinity, so we need to check for this separately
817 
818   // if point 1 is at infinity, copy point 2 to output, and vice versa
819   p224_copy_conditional(x_out, x2, z1_is_zero);
820   p224_copy_conditional(x_out, x1, z2_is_zero);
821   p224_copy_conditional(y_out, y2, z1_is_zero);
822   p224_copy_conditional(y_out, y1, z2_is_zero);
823   p224_copy_conditional(z_out, z2, z1_is_zero);
824   p224_copy_conditional(z_out, z1, z2_is_zero);
825   p224_felem_assign(x3, x_out);
826   p224_felem_assign(y3, y_out);
827   p224_felem_assign(z3, z_out);
828 }
829 
830 // p224_select_point selects the |idx|th point from a precomputation table and
831 // copies it to out.
p224_select_point(const uint64_t idx,size_t size,const p224_felem pre_comp[][3],p224_felem out[3])832 static void p224_select_point(const uint64_t idx, size_t size,
833                               const p224_felem pre_comp[/*size*/][3],
834                               p224_felem out[3]) {
835   p224_limb *outlimbs = &out[0][0];
836   OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
837 
838   for (size_t i = 0; i < size; i++) {
839     const p224_limb *inlimbs = &pre_comp[i][0][0];
840     static_assert(sizeof(uint64_t) <= sizeof(crypto_word_t),
841                   "crypto_word_t too small");
842     static_assert(sizeof(size_t) <= sizeof(crypto_word_t),
843                   "crypto_word_t too small");
844     // Without a value barrier, Clang adds a branch here.
845     uint64_t mask = value_barrier_w(constant_time_eq_w(i, idx));
846     for (size_t j = 0; j < 4 * 3; j++) {
847       outlimbs[j] |= inlimbs[j] & mask;
848     }
849   }
850 }
851 
852 // p224_get_bit returns the |i|th bit in |in|.
p224_get_bit(const EC_SCALAR * in,size_t i)853 static crypto_word_t p224_get_bit(const EC_SCALAR *in, size_t i) {
854   if (i >= 224) {
855     return 0;
856   }
857   static_assert(sizeof(in->words[0]) == 8, "BN_ULONG is not 64-bit");
858   return (in->words[i >> 6] >> (i & 63)) & 1;
859 }
860 
861 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns
862 // (X', Y') = (X/Z^2, Y/Z^3)
ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP * group,const EC_JACOBIAN * point,EC_FELEM * x,EC_FELEM * y)863 static int ec_GFp_nistp224_point_get_affine_coordinates(
864     const EC_GROUP *group, const EC_JACOBIAN *point, EC_FELEM *x,
865     EC_FELEM *y) {
866   if (constant_time_declassify_int(
867           ec_GFp_simple_is_at_infinity(group, point))) {
868     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
869     return 0;
870   }
871 
872   p224_felem z1, z2;
873   p224_widefelem tmp;
874   p224_generic_to_felem(z1, &point->Z);
875   p224_felem_inv(z2, z1);
876   p224_felem_square(tmp, z2);
877   p224_felem_reduce(z1, tmp);
878 
879   if (x != NULL) {
880     p224_felem x_in, x_out;
881     p224_generic_to_felem(x_in, &point->X);
882     p224_felem_mul(tmp, x_in, z1);
883     p224_felem_reduce(x_out, tmp);
884     p224_felem_to_generic(x, x_out);
885   }
886 
887   if (y != NULL) {
888     p224_felem y_in, y_out;
889     p224_generic_to_felem(y_in, &point->Y);
890     p224_felem_mul(tmp, z1, z2);
891     p224_felem_reduce(z1, tmp);
892     p224_felem_mul(tmp, y_in, z1);
893     p224_felem_reduce(y_out, tmp);
894     p224_felem_to_generic(y, y_out);
895   }
896 
897   return 1;
898 }
899 
ec_GFp_nistp224_add(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * a,const EC_JACOBIAN * b)900 static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_JACOBIAN *r,
901                                 const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
902   p224_felem x1, y1, z1, x2, y2, z2;
903   p224_generic_to_felem(x1, &a->X);
904   p224_generic_to_felem(y1, &a->Y);
905   p224_generic_to_felem(z1, &a->Z);
906   p224_generic_to_felem(x2, &b->X);
907   p224_generic_to_felem(y2, &b->Y);
908   p224_generic_to_felem(z2, &b->Z);
909   p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
910   // The outputs are already reduced, but still need to be contracted.
911   p224_felem_to_generic(&r->X, x1);
912   p224_felem_to_generic(&r->Y, y1);
913   p224_felem_to_generic(&r->Z, z1);
914 }
915 
ec_GFp_nistp224_dbl(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * a)916 static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_JACOBIAN *r,
917                                 const EC_JACOBIAN *a) {
918   p224_felem x, y, z;
919   p224_generic_to_felem(x, &a->X);
920   p224_generic_to_felem(y, &a->Y);
921   p224_generic_to_felem(z, &a->Z);
922   p224_point_double(x, y, z, x, y, z);
923   // The outputs are already reduced, but still need to be contracted.
924   p224_felem_to_generic(&r->X, x);
925   p224_felem_to_generic(&r->Y, y);
926   p224_felem_to_generic(&r->Z, z);
927 }
928 
ec_GFp_nistp224_make_precomp(p224_felem out[17][3],const EC_JACOBIAN * p)929 static void ec_GFp_nistp224_make_precomp(p224_felem out[17][3],
930                                          const EC_JACOBIAN *p) {
931   OPENSSL_memset(out[0], 0, sizeof(p224_felem) * 3);
932 
933   p224_generic_to_felem(out[1][0], &p->X);
934   p224_generic_to_felem(out[1][1], &p->Y);
935   p224_generic_to_felem(out[1][2], &p->Z);
936 
937   for (size_t j = 2; j <= 16; ++j) {
938     if (j & 1) {
939       p224_point_add(out[j][0], out[j][1], out[j][2], out[1][0], out[1][1],
940                      out[1][2], 0, out[j - 1][0], out[j - 1][1], out[j - 1][2]);
941     } else {
942       p224_point_double(out[j][0], out[j][1], out[j][2], out[j / 2][0],
943                         out[j / 2][1], out[j / 2][2]);
944     }
945   }
946 }
947 
ec_GFp_nistp224_point_mul(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * p,const EC_SCALAR * scalar)948 static void ec_GFp_nistp224_point_mul(const EC_GROUP *group, EC_JACOBIAN *r,
949                                       const EC_JACOBIAN *p,
950                                       const EC_SCALAR *scalar) {
951   p224_felem p_pre_comp[17][3];
952   ec_GFp_nistp224_make_precomp(p_pre_comp, p);
953 
954   // Set nq to the point at infinity.
955   p224_felem nq[3], tmp[4];
956   OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
957 
958   int skip = 1;  // Save two point operations in the first round.
959   for (size_t i = 220; i < 221; i--) {
960     if (!skip) {
961       p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
962     }
963 
964     // Add every 5 doublings.
965     if (i % 5 == 0) {
966       crypto_word_t bits = p224_get_bit(scalar, i + 4) << 5;
967       bits |= p224_get_bit(scalar, i + 3) << 4;
968       bits |= p224_get_bit(scalar, i + 2) << 3;
969       bits |= p224_get_bit(scalar, i + 1) << 2;
970       bits |= p224_get_bit(scalar, i) << 1;
971       bits |= p224_get_bit(scalar, i - 1);
972       crypto_word_t sign, digit;
973       ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
974 
975       // Select the point to add or subtract.
976       p224_select_point(digit, 17, (const p224_felem(*)[3])p_pre_comp, tmp);
977       p224_felem_neg(tmp[3], tmp[1]);  // (X, -Y, Z) is the negative point
978       p224_copy_conditional(tmp[1], tmp[3], sign);
979 
980       if (!skip) {
981         p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
982                        tmp[0], tmp[1], tmp[2]);
983       } else {
984         OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
985         skip = 0;
986       }
987     }
988   }
989 
990   // Reduce the output to its unique minimal representation.
991   p224_felem_to_generic(&r->X, nq[0]);
992   p224_felem_to_generic(&r->Y, nq[1]);
993   p224_felem_to_generic(&r->Z, nq[2]);
994 }
995 
ec_GFp_nistp224_point_mul_base(const EC_GROUP * group,EC_JACOBIAN * r,const EC_SCALAR * scalar)996 static void ec_GFp_nistp224_point_mul_base(const EC_GROUP *group,
997                                            EC_JACOBIAN *r,
998                                            const EC_SCALAR *scalar) {
999   // Set nq to the point at infinity.
1000   p224_felem nq[3], tmp[3];
1001   OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1002 
1003   int skip = 1;  // Save two point operations in the first round.
1004   for (size_t i = 27; i < 28; i--) {
1005     // double
1006     if (!skip) {
1007       p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1008     }
1009 
1010     // First, look 28 bits upwards.
1011     crypto_word_t bits = p224_get_bit(scalar, i + 196) << 3;
1012     bits |= p224_get_bit(scalar, i + 140) << 2;
1013     bits |= p224_get_bit(scalar, i + 84) << 1;
1014     bits |= p224_get_bit(scalar, i + 28);
1015     // Select the point to add, in constant time.
1016     p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
1017 
1018     if (!skip) {
1019       p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1020                      tmp[0], tmp[1], tmp[2]);
1021     } else {
1022       OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1023       skip = 0;
1024     }
1025 
1026     // Second, look at the current position/
1027     bits = p224_get_bit(scalar, i + 168) << 3;
1028     bits |= p224_get_bit(scalar, i + 112) << 2;
1029     bits |= p224_get_bit(scalar, i + 56) << 1;
1030     bits |= p224_get_bit(scalar, i);
1031     // Select the point to add, in constant time.
1032     p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
1033     p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1034                    tmp[0], tmp[1], tmp[2]);
1035   }
1036 
1037   // Reduce the output to its unique minimal representation.
1038   p224_felem_to_generic(&r->X, nq[0]);
1039   p224_felem_to_generic(&r->Y, nq[1]);
1040   p224_felem_to_generic(&r->Z, nq[2]);
1041 }
1042 
ec_GFp_nistp224_point_mul_public(const EC_GROUP * group,EC_JACOBIAN * r,const EC_SCALAR * g_scalar,const EC_JACOBIAN * p,const EC_SCALAR * p_scalar)1043 static void ec_GFp_nistp224_point_mul_public(const EC_GROUP *group,
1044                                              EC_JACOBIAN *r,
1045                                              const EC_SCALAR *g_scalar,
1046                                              const EC_JACOBIAN *p,
1047                                              const EC_SCALAR *p_scalar) {
1048   // TODO(davidben): If P-224 ECDSA verify performance ever matters, using
1049   // |ec_compute_wNAF| for |p_scalar| would likely be an easy improvement.
1050   p224_felem p_pre_comp[17][3];
1051   ec_GFp_nistp224_make_precomp(p_pre_comp, p);
1052 
1053   // Set nq to the point at infinity.
1054   p224_felem nq[3], tmp[3];
1055   OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1056 
1057   // Loop over both scalars msb-to-lsb, interleaving additions of multiples of
1058   // the generator (two in each of the last 28 rounds) and additions of p (every
1059   // 5th round).
1060   int skip = 1;  // Save two point operations in the first round.
1061   for (size_t i = 220; i < 221; i--) {
1062     if (!skip) {
1063       p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1064     }
1065 
1066     // Add multiples of the generator.
1067     if (i <= 27) {
1068       // First, look 28 bits upwards.
1069       crypto_word_t bits = p224_get_bit(g_scalar, i + 196) << 3;
1070       bits |= p224_get_bit(g_scalar, i + 140) << 2;
1071       bits |= p224_get_bit(g_scalar, i + 84) << 1;
1072       bits |= p224_get_bit(g_scalar, i + 28);
1073 
1074       size_t index = (size_t)bits;
1075       p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1076                      g_p224_pre_comp[1][index][0], g_p224_pre_comp[1][index][1],
1077                      g_p224_pre_comp[1][index][2]);
1078       assert(!skip);
1079 
1080       // Second, look at the current position.
1081       bits = p224_get_bit(g_scalar, i + 168) << 3;
1082       bits |= p224_get_bit(g_scalar, i + 112) << 2;
1083       bits |= p224_get_bit(g_scalar, i + 56) << 1;
1084       bits |= p224_get_bit(g_scalar, i);
1085       index = (size_t)bits;
1086       p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1087                      g_p224_pre_comp[0][index][0], g_p224_pre_comp[0][index][1],
1088                      g_p224_pre_comp[0][index][2]);
1089     }
1090 
1091     // Incorporate |p_scalar| every 5 doublings.
1092     if (i % 5 == 0) {
1093       crypto_word_t bits = p224_get_bit(p_scalar, i + 4) << 5;
1094       bits |= p224_get_bit(p_scalar, i + 3) << 4;
1095       bits |= p224_get_bit(p_scalar, i + 2) << 3;
1096       bits |= p224_get_bit(p_scalar, i + 1) << 2;
1097       bits |= p224_get_bit(p_scalar, i) << 1;
1098       bits |= p224_get_bit(p_scalar, i - 1);
1099       crypto_word_t sign, digit;
1100       ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1101 
1102       // Select the point to add or subtract.
1103       OPENSSL_memcpy(tmp, p_pre_comp[digit], 3 * sizeof(p224_felem));
1104       if (sign) {
1105         p224_felem_neg(tmp[1], tmp[1]);  // (X, -Y, Z) is the negative point
1106       }
1107 
1108       if (!skip) {
1109         p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
1110                        tmp[0], tmp[1], tmp[2]);
1111       } else {
1112         OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1113         skip = 0;
1114       }
1115     }
1116   }
1117 
1118   // Reduce the output to its unique minimal representation.
1119   p224_felem_to_generic(&r->X, nq[0]);
1120   p224_felem_to_generic(&r->Y, nq[1]);
1121   p224_felem_to_generic(&r->Z, nq[2]);
1122 }
1123 
ec_GFp_nistp224_felem_mul(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a,const EC_FELEM * b)1124 static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r,
1125                                       const EC_FELEM *a, const EC_FELEM *b) {
1126   p224_felem felem1, felem2;
1127   p224_widefelem wide;
1128   p224_generic_to_felem(felem1, a);
1129   p224_generic_to_felem(felem2, b);
1130   p224_felem_mul(wide, felem1, felem2);
1131   p224_felem_reduce(felem1, wide);
1132   p224_felem_to_generic(r, felem1);
1133 }
1134 
ec_GFp_nistp224_felem_sqr(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a)1135 static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
1136                                       const EC_FELEM *a) {
1137   p224_felem felem;
1138   p224_generic_to_felem(felem, a);
1139   p224_widefelem wide;
1140   p224_felem_square(wide, felem);
1141   p224_felem_reduce(felem, wide);
1142   p224_felem_to_generic(r, felem);
1143 }
1144 
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistp224_method)1145 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
1146   out->point_get_affine_coordinates =
1147       ec_GFp_nistp224_point_get_affine_coordinates;
1148   out->add = ec_GFp_nistp224_add;
1149   out->dbl = ec_GFp_nistp224_dbl;
1150   out->mul = ec_GFp_nistp224_point_mul;
1151   out->mul_base = ec_GFp_nistp224_point_mul_base;
1152   out->mul_public = ec_GFp_nistp224_point_mul_public;
1153   out->felem_mul = ec_GFp_nistp224_felem_mul;
1154   out->felem_sqr = ec_GFp_nistp224_felem_sqr;
1155   out->felem_to_bytes = ec_GFp_simple_felem_to_bytes;
1156   out->felem_from_bytes = ec_GFp_simple_felem_from_bytes;
1157   out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
1158   out->scalar_to_montgomery_inv_vartime =
1159       ec_simple_scalar_to_montgomery_inv_vartime;
1160   out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate;
1161 }
1162 
1163 #endif  // BORINGSSL_HAS_UINT128 && !SMALL
1164