• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <assert.h>
58 #include <errno.h>
59 #include <stdio.h>
60 #include <string.h>
61 
62 #include <openssl/base64.h>
63 #include <openssl/bio.h>
64 #include <openssl/buffer.h>
65 #include <openssl/evp.h>
66 #include <openssl/mem.h>
67 
68 #include "../../crypto/internal.h"
69 
70 
71 #define B64_BLOCK_SIZE 1024
72 #define B64_BLOCK_SIZE2 768
73 #define B64_NONE 0
74 #define B64_ENCODE 1
75 #define B64_DECODE 2
76 #define EVP_ENCODE_LENGTH(l) (((l+2)/3*4)+(l/48+1)*2+80)
77 
78 typedef struct b64_struct {
79   int buf_len;
80   int buf_off;
81   int tmp_len;  // used to find the start when decoding
82   int tmp_nl;   // If true, scan until '\n'
83   int encode;
84   int start;  // have we started decoding yet?
85   int cont;   // <= 0 when finished
86   EVP_ENCODE_CTX base64;
87   char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10];
88   char tmp[B64_BLOCK_SIZE];
89 } BIO_B64_CTX;
90 
b64_new(BIO * bio)91 static int b64_new(BIO *bio) {
92   BIO_B64_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx));
93   if (ctx == NULL) {
94     return 0;
95   }
96 
97   ctx->cont = 1;
98   ctx->start = 1;
99 
100   bio->init = 1;
101   bio->ptr = (char *)ctx;
102   return 1;
103 }
104 
b64_free(BIO * bio)105 static int b64_free(BIO *bio) {
106   if (bio == NULL) {
107     return 0;
108   }
109   OPENSSL_free(bio->ptr);
110   bio->ptr = NULL;
111   bio->init = 0;
112   bio->flags = 0;
113   return 1;
114 }
115 
b64_read(BIO * b,char * out,int outl)116 static int b64_read(BIO *b, char *out, int outl) {
117   int ret = 0, i, ii, j, k, x, n, num, ret_code = 0;
118   BIO_B64_CTX *ctx;
119   uint8_t *p, *q;
120 
121   if (out == NULL) {
122     return 0;
123   }
124   ctx = (BIO_B64_CTX *) b->ptr;
125 
126   if (ctx == NULL || b->next_bio == NULL) {
127     return 0;
128   }
129 
130   BIO_clear_retry_flags(b);
131 
132   if (ctx->encode != B64_DECODE) {
133     ctx->encode = B64_DECODE;
134     ctx->buf_len = 0;
135     ctx->buf_off = 0;
136     ctx->tmp_len = 0;
137     EVP_DecodeInit(&ctx->base64);
138   }
139 
140   // First check if there are bytes decoded/encoded
141   if (ctx->buf_len > 0) {
142     assert(ctx->buf_len >= ctx->buf_off);
143     i = ctx->buf_len - ctx->buf_off;
144     if (i > outl) {
145       i = outl;
146     }
147     assert(ctx->buf_off + i < (int)sizeof(ctx->buf));
148     OPENSSL_memcpy(out, &ctx->buf[ctx->buf_off], i);
149     ret = i;
150     out += i;
151     outl -= i;
152     ctx->buf_off += i;
153     if (ctx->buf_len == ctx->buf_off) {
154       ctx->buf_len = 0;
155       ctx->buf_off = 0;
156     }
157   }
158 
159   // At this point, we have room of outl bytes and an empty buffer, so we
160   // should read in some more.
161 
162   ret_code = 0;
163   while (outl > 0) {
164     if (ctx->cont <= 0) {
165       break;
166     }
167 
168     i = BIO_read(b->next_bio, &(ctx->tmp[ctx->tmp_len]),
169                  B64_BLOCK_SIZE - ctx->tmp_len);
170 
171     if (i <= 0) {
172       ret_code = i;
173 
174       // Should we continue next time we are called?
175       if (!BIO_should_retry(b->next_bio)) {
176         ctx->cont = i;
177         // If buffer empty break
178         if (ctx->tmp_len == 0) {
179           break;
180         } else {
181           // Fall through and process what we have
182           i = 0;
183         }
184       } else {
185         // else we retry and add more data to buffer
186         break;
187       }
188     }
189     i += ctx->tmp_len;
190     ctx->tmp_len = i;
191 
192     // We need to scan, a line at a time until we have a valid line if we are
193     // starting.
194     if (ctx->start && (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL))) {
195       // ctx->start = 1;
196       ctx->tmp_len = 0;
197     } else if (ctx->start) {
198       q = p = (uint8_t *)ctx->tmp;
199       num = 0;
200       for (j = 0; j < i; j++) {
201         if (*(q++) != '\n') {
202           continue;
203         }
204 
205         // due to a previous very long line, we need to keep on scanning for a
206         // '\n' before we even start looking for base64 encoded stuff.
207         if (ctx->tmp_nl) {
208           p = q;
209           ctx->tmp_nl = 0;
210           continue;
211         }
212 
213         k = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &num, p,
214                              q - p);
215 
216         if (k <= 0 && num == 0 && ctx->start) {
217           EVP_DecodeInit(&ctx->base64);
218         } else {
219           if (p != (uint8_t *)&(ctx->tmp[0])) {
220             i -= (p - (uint8_t *)&(ctx->tmp[0]));
221             for (x = 0; x < i; x++) {
222               ctx->tmp[x] = p[x];
223             }
224           }
225           EVP_DecodeInit(&ctx->base64);
226           ctx->start = 0;
227           break;
228         }
229         p = q;
230       }
231 
232       // we fell off the end without starting
233       if (j == i && num == 0) {
234         // Is this is one long chunk?, if so, keep on reading until a new
235         // line.
236         if (p == (uint8_t *)&(ctx->tmp[0])) {
237           // Check buffer full
238           if (i == B64_BLOCK_SIZE) {
239             ctx->tmp_nl = 1;
240             ctx->tmp_len = 0;
241           }
242         } else if (p != q) {  // finished on a '\n'
243           n = q - p;
244           for (ii = 0; ii < n; ii++) {
245             ctx->tmp[ii] = p[ii];
246           }
247           ctx->tmp_len = n;
248         }
249         // else finished on a '\n'
250         continue;
251       } else {
252         ctx->tmp_len = 0;
253       }
254     } else if (i < B64_BLOCK_SIZE && ctx->cont > 0) {
255       // If buffer isn't full and we can retry then restart to read in more
256       // data.
257       continue;
258     }
259 
260     if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) {
261       int z, jj;
262 
263       jj = i & ~3;  // process per 4
264       z = EVP_DecodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp, jj);
265       if (jj > 2) {
266         if (ctx->tmp[jj - 1] == '=') {
267           z--;
268           if (ctx->tmp[jj - 2] == '=') {
269             z--;
270           }
271         }
272       }
273       // z is now number of output bytes and jj is the number consumed.
274       if (jj != i) {
275         OPENSSL_memmove(ctx->tmp, &ctx->tmp[jj], i - jj);
276         ctx->tmp_len = i - jj;
277       }
278       ctx->buf_len = 0;
279       if (z > 0) {
280         ctx->buf_len = z;
281       }
282       i = z;
283     } else {
284       i = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf,
285                            &ctx->buf_len, (uint8_t *)ctx->tmp, i);
286       ctx->tmp_len = 0;
287     }
288     ctx->buf_off = 0;
289     if (i < 0) {
290       ret_code = 0;
291       ctx->buf_len = 0;
292       break;
293     }
294 
295     if (ctx->buf_len <= outl) {
296       i = ctx->buf_len;
297     } else {
298       i = outl;
299     }
300 
301     OPENSSL_memcpy(out, ctx->buf, i);
302     ret += i;
303     ctx->buf_off = i;
304     if (ctx->buf_off == ctx->buf_len) {
305       ctx->buf_len = 0;
306       ctx->buf_off = 0;
307     }
308     outl -= i;
309     out += i;
310   }
311 
312   BIO_copy_next_retry(b);
313   return ret == 0 ? ret_code : ret;
314 }
315 
b64_write(BIO * b,const char * in,int inl)316 static int b64_write(BIO *b, const char *in, int inl) {
317   int ret = 0, n, i;
318   BIO_B64_CTX *ctx;
319 
320   ctx = (BIO_B64_CTX *)b->ptr;
321   BIO_clear_retry_flags(b);
322 
323   if (ctx->encode != B64_ENCODE) {
324     ctx->encode = B64_ENCODE;
325     ctx->buf_len = 0;
326     ctx->buf_off = 0;
327     ctx->tmp_len = 0;
328     EVP_EncodeInit(&(ctx->base64));
329   }
330 
331   assert(ctx->buf_off < (int)sizeof(ctx->buf));
332   assert(ctx->buf_len <= (int)sizeof(ctx->buf));
333   assert(ctx->buf_len >= ctx->buf_off);
334 
335   n = ctx->buf_len - ctx->buf_off;
336   while (n > 0) {
337     i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n);
338     if (i <= 0) {
339       BIO_copy_next_retry(b);
340       return i;
341     }
342     assert(i <= n);
343     ctx->buf_off += i;
344     assert(ctx->buf_off <= (int)sizeof(ctx->buf));
345     assert(ctx->buf_len >= ctx->buf_off);
346     n -= i;
347   }
348 
349   // at this point all pending data has been written.
350   ctx->buf_off = 0;
351   ctx->buf_len = 0;
352 
353   if (in == NULL || inl <= 0) {
354     return 0;
355   }
356 
357   while (inl > 0) {
358     n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl;
359 
360     if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) {
361       if (ctx->tmp_len > 0) {
362         assert(ctx->tmp_len <= 3);
363         n = 3 - ctx->tmp_len;
364         // There's a theoretical possibility of this.
365         if (n > inl) {
366           n = inl;
367         }
368         OPENSSL_memcpy(&(ctx->tmp[ctx->tmp_len]), in, n);
369         ctx->tmp_len += n;
370         ret += n;
371         if (ctx->tmp_len < 3) {
372           break;
373         }
374         ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp,
375                                        ctx->tmp_len);
376         assert(ctx->buf_len <= (int)sizeof(ctx->buf));
377         assert(ctx->buf_len >= ctx->buf_off);
378 
379         // Since we're now done using the temporary buffer, the length should
380         // be zeroed.
381         ctx->tmp_len = 0;
382       } else {
383         if (n < 3) {
384           OPENSSL_memcpy(ctx->tmp, in, n);
385           ctx->tmp_len = n;
386           ret += n;
387           break;
388         }
389         n -= n % 3;
390         ctx->buf_len =
391             EVP_EncodeBlock((uint8_t *)ctx->buf, (const uint8_t *)in, n);
392         assert(ctx->buf_len <= (int)sizeof(ctx->buf));
393         assert(ctx->buf_len >= ctx->buf_off);
394         ret += n;
395       }
396     } else {
397       EVP_EncodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &ctx->buf_len,
398                        (uint8_t *)in, n);
399       assert(ctx->buf_len <= (int)sizeof(ctx->buf));
400       assert(ctx->buf_len >= ctx->buf_off);
401       ret += n;
402     }
403     inl -= n;
404     in += n;
405 
406     ctx->buf_off = 0;
407     n = ctx->buf_len;
408 
409     while (n > 0) {
410       i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n);
411       if (i <= 0) {
412         BIO_copy_next_retry(b);
413         return ret == 0 ? i : ret;
414       }
415       assert(i <= n);
416       n -= i;
417       ctx->buf_off += i;
418       assert(ctx->buf_off <= (int)sizeof(ctx->buf));
419       assert(ctx->buf_len >= ctx->buf_off);
420     }
421     ctx->buf_len = 0;
422     ctx->buf_off = 0;
423   }
424   return ret;
425 }
426 
b64_ctrl(BIO * b,int cmd,long num,void * ptr)427 static long b64_ctrl(BIO *b, int cmd, long num, void *ptr) {
428   BIO_B64_CTX *ctx;
429   long ret = 1;
430   int i;
431 
432   ctx = (BIO_B64_CTX *)b->ptr;
433 
434   switch (cmd) {
435     case BIO_CTRL_RESET:
436       ctx->cont = 1;
437       ctx->start = 1;
438       ctx->encode = B64_NONE;
439       ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
440       break;
441 
442     case BIO_CTRL_EOF:  // More to read
443       if (ctx->cont <= 0) {
444         ret = 1;
445       } else {
446         ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
447       }
448       break;
449 
450     case BIO_CTRL_WPENDING:  // More to write in buffer
451       assert(ctx->buf_len >= ctx->buf_off);
452       ret = ctx->buf_len - ctx->buf_off;
453       if ((ret == 0) && (ctx->encode != B64_NONE) && (ctx->base64.data_used != 0)) {
454         ret = 1;
455       } else if (ret <= 0) {
456         ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
457       }
458       break;
459 
460     case BIO_CTRL_PENDING:  // More to read in buffer
461       assert(ctx->buf_len >= ctx->buf_off);
462       ret = ctx->buf_len - ctx->buf_off;
463       if (ret <= 0) {
464         ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
465       }
466       break;
467 
468     case BIO_CTRL_FLUSH:
469     // do a final write
470     again:
471       while (ctx->buf_len != ctx->buf_off) {
472         i = b64_write(b, NULL, 0);
473         if (i < 0) {
474           return i;
475         }
476       }
477       if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) {
478         if (ctx->tmp_len != 0) {
479           ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf,
480                                          (uint8_t *)ctx->tmp, ctx->tmp_len);
481           ctx->buf_off = 0;
482           ctx->tmp_len = 0;
483           goto again;
484         }
485       } else if (ctx->encode != B64_NONE && ctx->base64.data_used != 0) {
486         ctx->buf_off = 0;
487         EVP_EncodeFinal(&(ctx->base64), (uint8_t *)ctx->buf, &(ctx->buf_len));
488         // push out the bytes
489         goto again;
490       }
491       // Finally flush the underlying BIO
492       ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
493       break;
494 
495     case BIO_C_DO_STATE_MACHINE:
496       BIO_clear_retry_flags(b);
497       ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
498       BIO_copy_next_retry(b);
499       break;
500 
501     case BIO_CTRL_INFO:
502     case BIO_CTRL_GET:
503     case BIO_CTRL_SET:
504     default:
505       ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
506       break;
507   }
508   return ret;
509 }
510 
b64_callback_ctrl(BIO * b,int cmd,bio_info_cb fp)511 static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb fp) {
512   if (b->next_bio == NULL) {
513     return 0;
514   }
515   return BIO_callback_ctrl(b->next_bio, cmd, fp);
516 }
517 
518 static const BIO_METHOD b64_method = {
519     BIO_TYPE_BASE64, "base64 encoding", b64_write, b64_read, NULL /* puts */,
520     NULL /* gets */, b64_ctrl,          b64_new,   b64_free, b64_callback_ctrl,
521 };
522 
BIO_f_base64(void)523 const BIO_METHOD *BIO_f_base64(void) { return &b64_method; }
524