1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 *
113 * Portions of the attached software ("Contribution") are developed by
114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115 *
116 * The Contribution is licensed pursuant to the OpenSSL open source
117 * license provided above.
118 *
119 * ECC cipher suite support in OpenSSL originally written by
120 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
121 *
122 */
123 /* ====================================================================
124 * Copyright 2005 Nokia. All rights reserved.
125 *
126 * The portions of the attached software ("Contribution") is developed by
127 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
128 * license.
129 *
130 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
131 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
132 * support (see RFC 4279) to OpenSSL.
133 *
134 * No patent licenses or other rights except those expressly stated in
135 * the OpenSSL open source license shall be deemed granted or received
136 * expressly, by implication, estoppel, or otherwise.
137 *
138 * No assurances are provided by Nokia that the Contribution does not
139 * infringe the patent or other intellectual property rights of any third
140 * party or that the license provides you with all the necessary rights
141 * to make use of the Contribution.
142 *
143 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
144 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
145 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
146 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
147 * OTHERWISE. */
148
149 #include <openssl/ssl.h>
150
151 #include <assert.h>
152 #include <string.h>
153
154 #include <openssl/bn.h>
155 #include <openssl/bytestring.h>
156 #include <openssl/cipher.h>
157 #include <openssl/curve25519.h>
158 #include <openssl/digest.h>
159 #include <openssl/ec.h>
160 #include <openssl/ecdsa.h>
161 #include <openssl/err.h>
162 #include <openssl/evp.h>
163 #include <openssl/hmac.h>
164 #include <openssl/md5.h>
165 #include <openssl/mem.h>
166 #include <openssl/nid.h>
167 #include <openssl/rand.h>
168 #include <openssl/x509.h>
169
170 #include "internal.h"
171 #include "../crypto/internal.h"
172
173
174 BSSL_NAMESPACE_BEGIN
175
ssl_client_cipher_list_contains_cipher(const SSL_CLIENT_HELLO * client_hello,uint16_t id)176 bool ssl_client_cipher_list_contains_cipher(
177 const SSL_CLIENT_HELLO *client_hello, uint16_t id) {
178 CBS cipher_suites;
179 CBS_init(&cipher_suites, client_hello->cipher_suites,
180 client_hello->cipher_suites_len);
181
182 while (CBS_len(&cipher_suites) > 0) {
183 uint16_t got_id;
184 if (!CBS_get_u16(&cipher_suites, &got_id)) {
185 return false;
186 }
187
188 if (got_id == id) {
189 return true;
190 }
191 }
192
193 return false;
194 }
195
negotiate_version(SSL_HANDSHAKE * hs,uint8_t * out_alert,const SSL_CLIENT_HELLO * client_hello)196 static bool negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
197 const SSL_CLIENT_HELLO *client_hello) {
198 SSL *const ssl = hs->ssl;
199 assert(!ssl->s3->have_version);
200 CBS supported_versions, versions;
201 if (ssl_client_hello_get_extension(client_hello, &supported_versions,
202 TLSEXT_TYPE_supported_versions)) {
203 if (!CBS_get_u8_length_prefixed(&supported_versions, &versions) ||
204 CBS_len(&supported_versions) != 0 ||
205 CBS_len(&versions) == 0) {
206 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
207 *out_alert = SSL_AD_DECODE_ERROR;
208 return false;
209 }
210 } else {
211 // Convert the ClientHello version to an equivalent supported_versions
212 // extension.
213 static const uint8_t kTLSVersions[] = {
214 0x03, 0x03, // TLS 1.2
215 0x03, 0x02, // TLS 1.1
216 0x03, 0x01, // TLS 1
217 };
218
219 static const uint8_t kDTLSVersions[] = {
220 0xfe, 0xfd, // DTLS 1.2
221 0xfe, 0xff, // DTLS 1.0
222 };
223
224 size_t versions_len = 0;
225 if (SSL_is_dtls(ssl)) {
226 if (client_hello->version <= DTLS1_2_VERSION) {
227 versions_len = 4;
228 } else if (client_hello->version <= DTLS1_VERSION) {
229 versions_len = 2;
230 }
231 versions = MakeConstSpan(kDTLSVersions).last(versions_len);
232 } else {
233 if (client_hello->version >= TLS1_2_VERSION) {
234 versions_len = 6;
235 } else if (client_hello->version >= TLS1_1_VERSION) {
236 versions_len = 4;
237 } else if (client_hello->version >= TLS1_VERSION) {
238 versions_len = 2;
239 }
240 versions = MakeConstSpan(kTLSVersions).last(versions_len);
241 }
242 }
243
244 if (!ssl_negotiate_version(hs, out_alert, &ssl->version, &versions)) {
245 return false;
246 }
247
248 // At this point, the connection's version is known and |ssl->version| is
249 // fixed. Begin enforcing the record-layer version.
250 ssl->s3->have_version = true;
251 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version);
252
253 // Handle FALLBACK_SCSV.
254 if (ssl_client_cipher_list_contains_cipher(client_hello,
255 SSL3_CK_FALLBACK_SCSV & 0xffff) &&
256 ssl_protocol_version(ssl) < hs->max_version) {
257 OPENSSL_PUT_ERROR(SSL, SSL_R_INAPPROPRIATE_FALLBACK);
258 *out_alert = SSL3_AD_INAPPROPRIATE_FALLBACK;
259 return false;
260 }
261
262 return true;
263 }
264
ssl_parse_client_cipher_list(const SSL_CLIENT_HELLO * client_hello)265 static UniquePtr<STACK_OF(SSL_CIPHER)> ssl_parse_client_cipher_list(
266 const SSL_CLIENT_HELLO *client_hello) {
267 CBS cipher_suites;
268 CBS_init(&cipher_suites, client_hello->cipher_suites,
269 client_hello->cipher_suites_len);
270
271 UniquePtr<STACK_OF(SSL_CIPHER)> sk(sk_SSL_CIPHER_new_null());
272 if (!sk) {
273 return nullptr;
274 }
275
276 while (CBS_len(&cipher_suites) > 0) {
277 uint16_t cipher_suite;
278
279 if (!CBS_get_u16(&cipher_suites, &cipher_suite)) {
280 OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
281 return nullptr;
282 }
283
284 const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite);
285 if (c != NULL && !sk_SSL_CIPHER_push(sk.get(), c)) {
286 return nullptr;
287 }
288 }
289
290 return sk;
291 }
292
choose_cipher(SSL_HANDSHAKE * hs,const STACK_OF (SSL_CIPHER)* client_pref,uint32_t mask_k,uint32_t mask_a)293 static const SSL_CIPHER *choose_cipher(SSL_HANDSHAKE *hs,
294 const STACK_OF(SSL_CIPHER) *client_pref,
295 uint32_t mask_k, uint32_t mask_a) {
296 SSL *const ssl = hs->ssl;
297 const STACK_OF(SSL_CIPHER) *prio, *allow;
298 // in_group_flags will either be NULL, or will point to an array of bytes
299 // which indicate equal-preference groups in the |prio| stack. See the
300 // comment about |in_group_flags| in the |SSLCipherPreferenceList|
301 // struct.
302 const bool *in_group_flags;
303 // group_min contains the minimal index so far found in a group, or -1 if no
304 // such value exists yet.
305 int group_min = -1;
306
307 const SSLCipherPreferenceList *server_pref =
308 hs->config->cipher_list ? hs->config->cipher_list.get()
309 : ssl->ctx->cipher_list.get();
310 if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
311 prio = server_pref->ciphers.get();
312 in_group_flags = server_pref->in_group_flags;
313 allow = client_pref;
314 } else {
315 prio = client_pref;
316 in_group_flags = NULL;
317 allow = server_pref->ciphers.get();
318 }
319
320 for (size_t i = 0; i < sk_SSL_CIPHER_num(prio); i++) {
321 const SSL_CIPHER *c = sk_SSL_CIPHER_value(prio, i);
322
323 size_t cipher_index;
324 if (// Check if the cipher is supported for the current version.
325 SSL_CIPHER_get_min_version(c) <= ssl_protocol_version(ssl) &&
326 ssl_protocol_version(ssl) <= SSL_CIPHER_get_max_version(c) &&
327 // Check the cipher is supported for the server configuration.
328 (c->algorithm_mkey & mask_k) &&
329 (c->algorithm_auth & mask_a) &&
330 // Check the cipher is in the |allow| list.
331 sk_SSL_CIPHER_find(allow, &cipher_index, c)) {
332 if (in_group_flags != NULL && in_group_flags[i]) {
333 // This element of |prio| is in a group. Update the minimum index found
334 // so far and continue looking.
335 if (group_min == -1 || (size_t)group_min > cipher_index) {
336 group_min = cipher_index;
337 }
338 } else {
339 if (group_min != -1 && (size_t)group_min < cipher_index) {
340 cipher_index = group_min;
341 }
342 return sk_SSL_CIPHER_value(allow, cipher_index);
343 }
344 }
345
346 if (in_group_flags != NULL && !in_group_flags[i] && group_min != -1) {
347 // We are about to leave a group, but we found a match in it, so that's
348 // our answer.
349 return sk_SSL_CIPHER_value(allow, group_min);
350 }
351 }
352
353 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_CIPHER);
354 return nullptr;
355 }
356
357 struct TLS12ServerParams {
okTLS12ServerParams358 bool ok() const { return cipher != nullptr; }
359
360 const SSL_CIPHER *cipher = nullptr;
361 uint16_t signature_algorithm = 0;
362 };
363
choose_params(SSL_HANDSHAKE * hs,const SSL_CREDENTIAL * cred,const STACK_OF (SSL_CIPHER)* client_pref,bool has_ecdhe_group)364 static TLS12ServerParams choose_params(SSL_HANDSHAKE *hs,
365 const SSL_CREDENTIAL *cred,
366 const STACK_OF(SSL_CIPHER) *client_pref,
367 bool has_ecdhe_group) {
368 // Determine the usable cipher suites.
369 uint32_t mask_k = 0, mask_a = 0;
370 if (has_ecdhe_group) {
371 mask_k |= SSL_kECDHE;
372 }
373 if (hs->config->psk_server_callback != nullptr) {
374 mask_k |= SSL_kPSK;
375 mask_a |= SSL_aPSK;
376 }
377 uint16_t sigalg = 0;
378 if (cred != nullptr && cred->type == SSLCredentialType::kX509) {
379 bool sign_ok = tls1_choose_signature_algorithm(hs, cred, &sigalg);
380 ERR_clear_error();
381
382 // ECDSA keys must additionally be checked against the peer's supported
383 // curve list.
384 int key_type = EVP_PKEY_id(cred->pubkey.get());
385 if (hs->config->check_ecdsa_curve && key_type == EVP_PKEY_EC) {
386 EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(cred->pubkey.get());
387 uint16_t group_id;
388 if (!ssl_nid_to_group_id(
389 &group_id, EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key))) ||
390 std::find(hs->peer_supported_group_list.begin(),
391 hs->peer_supported_group_list.end(),
392 group_id) == hs->peer_supported_group_list.end()) {
393 sign_ok = false;
394
395 // If this would make us unable to pick any cipher, return an error.
396 // This is not strictly necessary, but it gives us a more specific
397 // error to help the caller diagnose issues.
398 if (mask_a == 0) {
399 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
400 return TLS12ServerParams();
401 }
402 }
403 }
404
405 mask_a |= ssl_cipher_auth_mask_for_key(cred->pubkey.get(), sign_ok);
406 if (key_type == EVP_PKEY_RSA) {
407 mask_k |= SSL_kRSA;
408 }
409 }
410
411 TLS12ServerParams params;
412 params.cipher = choose_cipher(hs, client_pref, mask_k, mask_a);
413 if (params.cipher == nullptr) {
414 return TLS12ServerParams();
415 }
416 if (ssl_cipher_requires_server_key_exchange(params.cipher) &&
417 ssl_cipher_uses_certificate_auth(params.cipher)) {
418 params.signature_algorithm = sigalg;
419 }
420 return params;
421 }
422
do_start_accept(SSL_HANDSHAKE * hs)423 static enum ssl_hs_wait_t do_start_accept(SSL_HANDSHAKE *hs) {
424 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_START, 1);
425 hs->state = state12_read_client_hello;
426 return ssl_hs_ok;
427 }
428
429 // is_probably_jdk11_with_tls13 returns whether |client_hello| was probably sent
430 // from a JDK 11 client with both TLS 1.3 and a prior version enabled.
is_probably_jdk11_with_tls13(const SSL_CLIENT_HELLO * client_hello)431 static bool is_probably_jdk11_with_tls13(const SSL_CLIENT_HELLO *client_hello) {
432 // JDK 11 ClientHellos contain a number of unusual properties which should
433 // limit false positives.
434
435 // JDK 11 does not support ChaCha20-Poly1305. This is unusual: many modern
436 // clients implement ChaCha20-Poly1305.
437 if (ssl_client_cipher_list_contains_cipher(
438 client_hello, TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) {
439 return false;
440 }
441
442 // JDK 11 always sends extensions in a particular order.
443 constexpr uint16_t kMaxFragmentLength = 0x0001;
444 constexpr uint16_t kStatusRequestV2 = 0x0011;
445 static constexpr struct {
446 uint16_t id;
447 bool required;
448 } kJavaExtensions[] = {
449 {TLSEXT_TYPE_server_name, false},
450 {kMaxFragmentLength, false},
451 {TLSEXT_TYPE_status_request, false},
452 {TLSEXT_TYPE_supported_groups, true},
453 {TLSEXT_TYPE_ec_point_formats, false},
454 {TLSEXT_TYPE_signature_algorithms, true},
455 // Java always sends signature_algorithms_cert.
456 {TLSEXT_TYPE_signature_algorithms_cert, true},
457 {TLSEXT_TYPE_application_layer_protocol_negotiation, false},
458 {kStatusRequestV2, false},
459 {TLSEXT_TYPE_extended_master_secret, false},
460 {TLSEXT_TYPE_supported_versions, true},
461 {TLSEXT_TYPE_cookie, false},
462 {TLSEXT_TYPE_psk_key_exchange_modes, true},
463 {TLSEXT_TYPE_key_share, true},
464 {TLSEXT_TYPE_renegotiate, false},
465 {TLSEXT_TYPE_pre_shared_key, false},
466 };
467 Span<const uint8_t> sigalgs, sigalgs_cert;
468 bool has_status_request = false, has_status_request_v2 = false;
469 CBS extensions, supported_groups;
470 CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len);
471 for (const auto &java_extension : kJavaExtensions) {
472 CBS copy = extensions;
473 uint16_t id;
474 if (CBS_get_u16(©, &id) && id == java_extension.id) {
475 // The next extension is the one we expected.
476 extensions = copy;
477 CBS body;
478 if (!CBS_get_u16_length_prefixed(&extensions, &body)) {
479 return false;
480 }
481 switch (id) {
482 case TLSEXT_TYPE_status_request:
483 has_status_request = true;
484 break;
485 case kStatusRequestV2:
486 has_status_request_v2 = true;
487 break;
488 case TLSEXT_TYPE_signature_algorithms:
489 sigalgs = body;
490 break;
491 case TLSEXT_TYPE_signature_algorithms_cert:
492 sigalgs_cert = body;
493 break;
494 case TLSEXT_TYPE_supported_groups:
495 supported_groups = body;
496 break;
497 }
498 } else if (java_extension.required) {
499 return false;
500 }
501 }
502 if (CBS_len(&extensions) != 0) {
503 return false;
504 }
505
506 // JDK 11 never advertises X25519. It is not offered by default, and
507 // -Djdk.tls.namedGroups=x25519 does not work. This is unusual: many modern
508 // clients implement X25519.
509 while (CBS_len(&supported_groups) > 0) {
510 uint16_t group;
511 if (!CBS_get_u16(&supported_groups, &group) ||
512 group == SSL_GROUP_X25519) {
513 return false;
514 }
515 }
516
517 if (// JDK 11 always sends the same contents in signature_algorithms and
518 // signature_algorithms_cert. This is unusual: signature_algorithms_cert,
519 // if omitted, is treated as if it were signature_algorithms.
520 sigalgs != sigalgs_cert ||
521 // When TLS 1.2 or below is enabled, JDK 11 sends status_request_v2 iff it
522 // sends status_request. This is unusual: status_request_v2 is not widely
523 // implemented.
524 has_status_request != has_status_request_v2) {
525 return false;
526 }
527
528 return true;
529 }
530
decrypt_ech(SSL_HANDSHAKE * hs,uint8_t * out_alert,const SSL_CLIENT_HELLO * client_hello)531 static bool decrypt_ech(SSL_HANDSHAKE *hs, uint8_t *out_alert,
532 const SSL_CLIENT_HELLO *client_hello) {
533 SSL *const ssl = hs->ssl;
534 CBS body;
535 if (!ssl_client_hello_get_extension(client_hello, &body,
536 TLSEXT_TYPE_encrypted_client_hello)) {
537 return true;
538 }
539 uint8_t type;
540 if (!CBS_get_u8(&body, &type)) {
541 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
542 *out_alert = SSL_AD_DECODE_ERROR;
543 return false;
544 }
545 if (type != ECH_CLIENT_OUTER) {
546 return true;
547 }
548 // This is a ClientHelloOuter ECH extension. Attempt to decrypt it.
549 uint8_t config_id;
550 uint16_t kdf_id, aead_id;
551 CBS enc, payload;
552 if (!CBS_get_u16(&body, &kdf_id) || //
553 !CBS_get_u16(&body, &aead_id) || //
554 !CBS_get_u8(&body, &config_id) ||
555 !CBS_get_u16_length_prefixed(&body, &enc) ||
556 !CBS_get_u16_length_prefixed(&body, &payload) || //
557 CBS_len(&body) != 0) {
558 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
559 *out_alert = SSL_AD_DECODE_ERROR;
560 return false;
561 }
562
563 {
564 MutexReadLock lock(&ssl->ctx->lock);
565 hs->ech_keys = UpRef(ssl->ctx->ech_keys);
566 }
567
568 if (!hs->ech_keys) {
569 ssl->s3->ech_status = ssl_ech_rejected;
570 return true;
571 }
572
573 for (const auto &config : hs->ech_keys->configs) {
574 hs->ech_hpke_ctx.Reset();
575 if (config_id != config->ech_config().config_id ||
576 !config->SetupContext(hs->ech_hpke_ctx.get(), kdf_id, aead_id, enc)) {
577 // Ignore the error and try another ECHConfig.
578 ERR_clear_error();
579 continue;
580 }
581 bool is_decrypt_error;
582 if (!ssl_client_hello_decrypt(hs, out_alert, &is_decrypt_error,
583 &hs->ech_client_hello_buf, client_hello,
584 payload)) {
585 if (is_decrypt_error) {
586 // Ignore the error and try another ECHConfig.
587 ERR_clear_error();
588 // The |out_alert| calling convention currently relies on a default of
589 // |SSL_AD_DECODE_ERROR|. https://crbug.com/boringssl/373 tracks
590 // switching to sum types, which avoids this.
591 *out_alert = SSL_AD_DECODE_ERROR;
592 continue;
593 }
594 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED);
595 return false;
596 }
597 hs->ech_config_id = config_id;
598 ssl->s3->ech_status = ssl_ech_accepted;
599 return true;
600 }
601
602 // If we did not accept ECH, proceed with the ClientHelloOuter. Note this
603 // could be key mismatch or ECH GREASE, so we must complete the handshake
604 // as usual, except EncryptedExtensions will contain retry configs.
605 ssl->s3->ech_status = ssl_ech_rejected;
606 return true;
607 }
608
extract_sni(SSL_HANDSHAKE * hs,uint8_t * out_alert,const SSL_CLIENT_HELLO * client_hello)609 static bool extract_sni(SSL_HANDSHAKE *hs, uint8_t *out_alert,
610 const SSL_CLIENT_HELLO *client_hello) {
611 SSL *const ssl = hs->ssl;
612 CBS sni;
613 if (!ssl_client_hello_get_extension(client_hello, &sni,
614 TLSEXT_TYPE_server_name)) {
615 // No SNI extension to parse.
616 return true;
617 }
618
619 CBS server_name_list, host_name;
620 uint8_t name_type;
621 if (!CBS_get_u16_length_prefixed(&sni, &server_name_list) ||
622 !CBS_get_u8(&server_name_list, &name_type) ||
623 // Although the server_name extension was intended to be extensible to
624 // new name types and multiple names, OpenSSL 1.0.x had a bug which meant
625 // different name types will cause an error. Further, RFC 4366 originally
626 // defined syntax inextensibly. RFC 6066 corrected this mistake, but
627 // adding new name types is no longer feasible.
628 //
629 // Act as if the extensibility does not exist to simplify parsing.
630 !CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
631 CBS_len(&server_name_list) != 0 ||
632 CBS_len(&sni) != 0) {
633 *out_alert = SSL_AD_DECODE_ERROR;
634 return false;
635 }
636
637 if (name_type != TLSEXT_NAMETYPE_host_name ||
638 CBS_len(&host_name) == 0 ||
639 CBS_len(&host_name) > TLSEXT_MAXLEN_host_name ||
640 CBS_contains_zero_byte(&host_name)) {
641 *out_alert = SSL_AD_UNRECOGNIZED_NAME;
642 return false;
643 }
644
645 // Copy the hostname as a string.
646 char *raw = nullptr;
647 if (!CBS_strdup(&host_name, &raw)) {
648 *out_alert = SSL_AD_INTERNAL_ERROR;
649 return false;
650 }
651 ssl->s3->hostname.reset(raw);
652
653 hs->should_ack_sni = true;
654 return true;
655 }
656
do_read_client_hello(SSL_HANDSHAKE * hs)657 static enum ssl_hs_wait_t do_read_client_hello(SSL_HANDSHAKE *hs) {
658 SSL *const ssl = hs->ssl;
659
660 SSLMessage msg;
661 if (!ssl->method->get_message(ssl, &msg)) {
662 return ssl_hs_read_message;
663 }
664
665 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_HELLO)) {
666 return ssl_hs_error;
667 }
668
669 SSL_CLIENT_HELLO client_hello;
670 if (!ssl_client_hello_init(ssl, &client_hello, msg.body)) {
671 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
672 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
673 return ssl_hs_error;
674 }
675
676 // ClientHello should be the end of the flight. We check this early to cover
677 // all protocol versions.
678 if (ssl->method->has_unprocessed_handshake_data(ssl)) {
679 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
680 OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
681 return ssl_hs_error;
682 }
683
684 if (hs->config->handoff) {
685 return ssl_hs_handoff;
686 }
687
688 uint8_t alert = SSL_AD_DECODE_ERROR;
689 if (!decrypt_ech(hs, &alert, &client_hello)) {
690 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
691 return ssl_hs_error;
692 }
693
694 // ECH may have changed which ClientHello we process. Update |msg| and
695 // |client_hello| in case.
696 if (!hs->GetClientHello(&msg, &client_hello)) {
697 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
698 return ssl_hs_error;
699 }
700
701 if (!extract_sni(hs, &alert, &client_hello)) {
702 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
703 return ssl_hs_error;
704 }
705
706 hs->state = state12_read_client_hello_after_ech;
707 return ssl_hs_ok;
708 }
709
do_read_client_hello_after_ech(SSL_HANDSHAKE * hs)710 static enum ssl_hs_wait_t do_read_client_hello_after_ech(SSL_HANDSHAKE *hs) {
711 SSL *const ssl = hs->ssl;
712
713 SSLMessage msg_unused;
714 SSL_CLIENT_HELLO client_hello;
715 if (!hs->GetClientHello(&msg_unused, &client_hello)) {
716 return ssl_hs_error;
717 }
718
719 // Run the early callback.
720 if (ssl->ctx->select_certificate_cb != NULL) {
721 switch (ssl->ctx->select_certificate_cb(&client_hello)) {
722 case ssl_select_cert_retry:
723 return ssl_hs_certificate_selection_pending;
724
725 case ssl_select_cert_error:
726 // Connection rejected.
727 OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED);
728 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
729 return ssl_hs_error;
730
731 default:
732 /* fallthrough */;
733 }
734 }
735
736 // Freeze the version range after the early callback.
737 if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) {
738 return ssl_hs_error;
739 }
740
741 if (hs->config->jdk11_workaround &&
742 is_probably_jdk11_with_tls13(&client_hello)) {
743 hs->apply_jdk11_workaround = true;
744 }
745
746 uint8_t alert = SSL_AD_DECODE_ERROR;
747 if (!negotiate_version(hs, &alert, &client_hello)) {
748 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
749 return ssl_hs_error;
750 }
751
752 hs->client_version = client_hello.version;
753 if (client_hello.random_len != SSL3_RANDOM_SIZE) {
754 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
755 return ssl_hs_error;
756 }
757 OPENSSL_memcpy(ssl->s3->client_random, client_hello.random,
758 client_hello.random_len);
759
760 // Only null compression is supported. TLS 1.3 further requires the peer
761 // advertise no other compression.
762 if (OPENSSL_memchr(client_hello.compression_methods, 0,
763 client_hello.compression_methods_len) == NULL ||
764 (ssl_protocol_version(ssl) >= TLS1_3_VERSION &&
765 client_hello.compression_methods_len != 1)) {
766 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMPRESSION_LIST);
767 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
768 return ssl_hs_error;
769 }
770
771 // TLS extensions.
772 if (!ssl_parse_clienthello_tlsext(hs, &client_hello)) {
773 OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
774 return ssl_hs_error;
775 }
776
777 hs->state = state12_cert_callback;
778 return ssl_hs_ok;
779 }
780
do_cert_callback(SSL_HANDSHAKE * hs)781 static enum ssl_hs_wait_t do_cert_callback(SSL_HANDSHAKE *hs) {
782 SSL *const ssl = hs->ssl;
783
784 // Call |cert_cb| to update server certificates if required.
785 if (hs->config->cert->cert_cb != NULL) {
786 int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg);
787 if (rv == 0) {
788 OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
789 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
790 return ssl_hs_error;
791 }
792 if (rv < 0) {
793 return ssl_hs_x509_lookup;
794 }
795 }
796
797 if (hs->ocsp_stapling_requested &&
798 ssl->ctx->legacy_ocsp_callback != nullptr) {
799 switch (ssl->ctx->legacy_ocsp_callback(
800 ssl, ssl->ctx->legacy_ocsp_callback_arg)) {
801 case SSL_TLSEXT_ERR_OK:
802 break;
803 case SSL_TLSEXT_ERR_NOACK:
804 hs->ocsp_stapling_requested = false;
805 break;
806 default:
807 OPENSSL_PUT_ERROR(SSL, SSL_R_OCSP_CB_ERROR);
808 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
809 return ssl_hs_error;
810 }
811 }
812
813 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
814 // Jump to the TLS 1.3 state machine.
815 hs->state = state12_tls13;
816 return ssl_hs_ok;
817 }
818
819 // It should not be possible to negotiate TLS 1.2 with ECH. The
820 // ClientHelloInner decoding function rejects ClientHellos which offer TLS 1.2
821 // or below.
822 assert(ssl->s3->ech_status != ssl_ech_accepted);
823
824 ssl->s3->early_data_reason = ssl_early_data_protocol_version;
825
826 hs->state = state12_select_parameters;
827 return ssl_hs_ok;
828 }
829
do_tls13(SSL_HANDSHAKE * hs)830 static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) {
831 enum ssl_hs_wait_t wait = tls13_server_handshake(hs);
832 if (wait == ssl_hs_ok) {
833 hs->state = state12_finish_server_handshake;
834 return ssl_hs_ok;
835 }
836
837 return wait;
838 }
839
do_select_parameters(SSL_HANDSHAKE * hs)840 static enum ssl_hs_wait_t do_select_parameters(SSL_HANDSHAKE *hs) {
841 SSL *const ssl = hs->ssl;
842 SSLMessage msg;
843 SSL_CLIENT_HELLO client_hello;
844 if (!hs->GetClientHello(&msg, &client_hello)) {
845 return ssl_hs_error;
846 }
847
848 // Determine the ECDHE group to use, if we are to use ECDHE.
849 uint16_t group_id = 0;
850 bool has_ecdhe_group = tls1_get_shared_group(hs, &group_id);
851
852 // Select the credential and cipher suite. This must be done after |cert_cb|
853 // runs, so the final credential list is known.
854 //
855 // TODO(davidben): In the course of picking these, we also pick the ECDHE
856 // group and signature algorithm. It would be tidier if we saved that decision
857 // and avoided redoing it later.
858 UniquePtr<STACK_OF(SSL_CIPHER)> client_pref =
859 ssl_parse_client_cipher_list(&client_hello);
860 if (client_pref == nullptr) {
861 return ssl_hs_error;
862 }
863 Array<SSL_CREDENTIAL *> creds;
864 if (!ssl_get_credential_list(hs, &creds)) {
865 return ssl_hs_error;
866 }
867 TLS12ServerParams params;
868 if (creds.empty()) {
869 // The caller may have configured no credentials, but set a PSK callback.
870 params =
871 choose_params(hs, /*cred=*/nullptr, client_pref.get(), has_ecdhe_group);
872 } else {
873 // Select the first credential which works.
874 for (SSL_CREDENTIAL *cred : creds) {
875 ERR_clear_error();
876 params = choose_params(hs, cred, client_pref.get(), has_ecdhe_group);
877 if (params.ok()) {
878 hs->credential = UpRef(cred);
879 break;
880 }
881 }
882 }
883 if (!params.ok()) {
884 // The error from the last attempt is in the error queue.
885 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
886 return ssl_hs_error;
887 }
888 hs->new_cipher = params.cipher;
889 hs->signature_algorithm = params.signature_algorithm;
890
891 hs->session_id_len = client_hello.session_id_len;
892 // This is checked in |ssl_client_hello_init|.
893 assert(hs->session_id_len <= sizeof(hs->session_id));
894 OPENSSL_memcpy(hs->session_id, client_hello.session_id, hs->session_id_len);
895
896 // Determine whether we are doing session resumption.
897 UniquePtr<SSL_SESSION> session;
898 bool tickets_supported = false, renew_ticket = false;
899 enum ssl_hs_wait_t wait = ssl_get_prev_session(
900 hs, &session, &tickets_supported, &renew_ticket, &client_hello);
901 if (wait != ssl_hs_ok) {
902 return wait;
903 }
904
905 if (session) {
906 if (session->extended_master_secret && !hs->extended_master_secret) {
907 // A ClientHello without EMS that attempts to resume a session with EMS
908 // is fatal to the connection.
909 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
910 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
911 return ssl_hs_error;
912 }
913
914 if (!ssl_session_is_resumable(hs, session.get()) ||
915 // If the client offers the EMS extension, but the previous session
916 // didn't use it, then negotiate a new session.
917 hs->extended_master_secret != session->extended_master_secret) {
918 session.reset();
919 }
920 }
921
922 if (session) {
923 // Use the old session.
924 hs->ticket_expected = renew_ticket;
925 ssl->session = std::move(session);
926 ssl->s3->session_reused = true;
927 hs->can_release_private_key = true;
928 } else {
929 hs->ticket_expected = tickets_supported;
930 ssl_set_session(ssl, nullptr);
931 if (!ssl_get_new_session(hs)) {
932 return ssl_hs_error;
933 }
934
935 // Assign a session ID if not using session tickets.
936 if (!hs->ticket_expected &&
937 (ssl->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)) {
938 hs->new_session->session_id_length = SSL3_SSL_SESSION_ID_LENGTH;
939 RAND_bytes(hs->new_session->session_id,
940 hs->new_session->session_id_length);
941 }
942 }
943
944 if (ssl->ctx->dos_protection_cb != NULL &&
945 ssl->ctx->dos_protection_cb(&client_hello) == 0) {
946 // Connection rejected for DOS reasons.
947 OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED);
948 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
949 return ssl_hs_error;
950 }
951
952 if (ssl->session == NULL) {
953 hs->new_session->cipher = hs->new_cipher;
954 if (hs->new_session->cipher->algorithm_mkey & SSL_kECDHE) {
955 assert(has_ecdhe_group);
956 hs->new_session->group_id = group_id;
957 }
958
959 // Determine whether to request a client certificate.
960 hs->cert_request = !!(hs->config->verify_mode & SSL_VERIFY_PEER);
961 // Only request a certificate if Channel ID isn't negotiated.
962 if ((hs->config->verify_mode & SSL_VERIFY_PEER_IF_NO_OBC) &&
963 hs->channel_id_negotiated) {
964 hs->cert_request = false;
965 }
966 // CertificateRequest may only be sent in certificate-based ciphers.
967 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
968 hs->cert_request = false;
969 }
970
971 if (!hs->cert_request) {
972 // OpenSSL returns X509_V_OK when no certificates are requested. This is
973 // classed by them as a bug, but it's assumed by at least NGINX.
974 hs->new_session->verify_result = X509_V_OK;
975 }
976 }
977
978 // HTTP/2 negotiation depends on the cipher suite, so ALPN negotiation was
979 // deferred. Complete it now.
980 uint8_t alert = SSL_AD_DECODE_ERROR;
981 if (!ssl_negotiate_alpn(hs, &alert, &client_hello)) {
982 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
983 return ssl_hs_error;
984 }
985
986 // Now that all parameters are known, initialize the handshake hash and hash
987 // the ClientHello.
988 if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) ||
989 !ssl_hash_message(hs, msg)) {
990 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
991 return ssl_hs_error;
992 }
993
994 // Handback includes the whole handshake transcript, so we cannot free the
995 // transcript buffer in the handback case.
996 if (!hs->cert_request && !hs->handback) {
997 hs->transcript.FreeBuffer();
998 }
999
1000 ssl->method->next_message(ssl);
1001
1002 hs->state = state12_send_server_hello;
1003 return ssl_hs_ok;
1004 }
1005
copy_suffix(Span<uint8_t> out,Span<const uint8_t> in)1006 static void copy_suffix(Span<uint8_t> out, Span<const uint8_t> in) {
1007 out = out.last(in.size());
1008 OPENSSL_memcpy(out.data(), in.data(), in.size());
1009 }
1010
do_send_server_hello(SSL_HANDSHAKE * hs)1011 static enum ssl_hs_wait_t do_send_server_hello(SSL_HANDSHAKE *hs) {
1012 SSL *const ssl = hs->ssl;
1013
1014 // We only accept ChannelIDs on connections with ECDHE in order to avoid a
1015 // known attack while we fix ChannelID itself.
1016 if (hs->channel_id_negotiated &&
1017 (hs->new_cipher->algorithm_mkey & SSL_kECDHE) == 0) {
1018 hs->channel_id_negotiated = false;
1019 }
1020
1021 // If this is a resumption and the original handshake didn't support
1022 // ChannelID then we didn't record the original handshake hashes in the
1023 // session and so cannot resume with ChannelIDs.
1024 if (ssl->session != NULL &&
1025 ssl->session->original_handshake_hash_len == 0) {
1026 hs->channel_id_negotiated = false;
1027 }
1028
1029 SSL_HANDSHAKE_HINTS *const hints = hs->hints.get();
1030 if (hints && !hs->hints_requested &&
1031 hints->server_random_tls12.size() == SSL3_RANDOM_SIZE) {
1032 OPENSSL_memcpy(ssl->s3->server_random, hints->server_random_tls12.data(),
1033 SSL3_RANDOM_SIZE);
1034 } else {
1035 struct OPENSSL_timeval now;
1036 ssl_get_current_time(ssl, &now);
1037 CRYPTO_store_u32_be(ssl->s3->server_random,
1038 static_cast<uint32_t>(now.tv_sec));
1039 if (!RAND_bytes(ssl->s3->server_random + 4, SSL3_RANDOM_SIZE - 4)) {
1040 return ssl_hs_error;
1041 }
1042 if (hints && hs->hints_requested &&
1043 !hints->server_random_tls12.CopyFrom(ssl->s3->server_random)) {
1044 return ssl_hs_error;
1045 }
1046 }
1047
1048 // Implement the TLS 1.3 anti-downgrade feature.
1049 if (ssl_supports_version(hs, TLS1_3_VERSION)) {
1050 if (ssl_protocol_version(ssl) == TLS1_2_VERSION) {
1051 if (hs->apply_jdk11_workaround) {
1052 // JDK 11 implements the TLS 1.3 downgrade signal, so we cannot send it
1053 // here. However, the signal is only effective if all TLS 1.2
1054 // ServerHellos produced by the server are marked. Thus we send a
1055 // different non-standard signal for the time being, until JDK 11.0.2 is
1056 // released and clients have updated.
1057 copy_suffix(ssl->s3->server_random, kJDK11DowngradeRandom);
1058 } else {
1059 copy_suffix(ssl->s3->server_random, kTLS13DowngradeRandom);
1060 }
1061 } else {
1062 copy_suffix(ssl->s3->server_random, kTLS12DowngradeRandom);
1063 }
1064 }
1065
1066 Span<const uint8_t> session_id;
1067 if (ssl->session != nullptr) {
1068 // Echo the session ID from the ClientHello to indicate resumption.
1069 session_id = MakeConstSpan(hs->session_id, hs->session_id_len);
1070 } else {
1071 session_id = MakeConstSpan(hs->new_session->session_id,
1072 hs->new_session->session_id_length);
1073 }
1074
1075 ScopedCBB cbb;
1076 CBB body, session_id_bytes;
1077 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_SERVER_HELLO) ||
1078 !CBB_add_u16(&body, ssl->version) ||
1079 !CBB_add_bytes(&body, ssl->s3->server_random, SSL3_RANDOM_SIZE) ||
1080 !CBB_add_u8_length_prefixed(&body, &session_id_bytes) ||
1081 !CBB_add_bytes(&session_id_bytes, session_id.data(), session_id.size()) ||
1082 !CBB_add_u16(&body, SSL_CIPHER_get_protocol_id(hs->new_cipher)) ||
1083 !CBB_add_u8(&body, 0 /* no compression */) ||
1084 !ssl_add_serverhello_tlsext(hs, &body) ||
1085 !ssl_add_message_cbb(ssl, cbb.get())) {
1086 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1087 return ssl_hs_error;
1088 }
1089
1090 if (ssl->session != nullptr) {
1091 // No additional hints to generate in resumption.
1092 if (hs->hints_requested) {
1093 return ssl_hs_hints_ready;
1094 }
1095 hs->state = state12_send_server_finished;
1096 } else {
1097 hs->state = state12_send_server_certificate;
1098 }
1099 return ssl_hs_ok;
1100 }
1101
do_send_server_certificate(SSL_HANDSHAKE * hs)1102 static enum ssl_hs_wait_t do_send_server_certificate(SSL_HANDSHAKE *hs) {
1103 SSL *const ssl = hs->ssl;
1104 ScopedCBB cbb;
1105
1106 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1107 assert(hs->credential != nullptr);
1108 if (!ssl_send_tls12_certificate(hs)) {
1109 return ssl_hs_error;
1110 }
1111
1112 if (hs->certificate_status_expected) {
1113 CBB body, ocsp_response;
1114 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1115 SSL3_MT_CERTIFICATE_STATUS) ||
1116 !CBB_add_u8(&body, TLSEXT_STATUSTYPE_ocsp) ||
1117 !CBB_add_u24_length_prefixed(&body, &ocsp_response) ||
1118 !CBB_add_bytes(
1119 &ocsp_response,
1120 CRYPTO_BUFFER_data(hs->credential->ocsp_response.get()),
1121 CRYPTO_BUFFER_len(hs->credential->ocsp_response.get())) ||
1122 !ssl_add_message_cbb(ssl, cbb.get())) {
1123 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1124 return ssl_hs_error;
1125 }
1126 }
1127 }
1128
1129 // Assemble ServerKeyExchange parameters if needed.
1130 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1131 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1132 if (ssl_cipher_requires_server_key_exchange(hs->new_cipher) ||
1133 ((alg_a & SSL_aPSK) && hs->config->psk_identity_hint)) {
1134 // Pre-allocate enough room to comfortably fit an ECDHE public key. Prepend
1135 // the client and server randoms for the signing transcript.
1136 CBB child;
1137 if (!CBB_init(cbb.get(), SSL3_RANDOM_SIZE * 2 + 128) ||
1138 !CBB_add_bytes(cbb.get(), ssl->s3->client_random, SSL3_RANDOM_SIZE) ||
1139 !CBB_add_bytes(cbb.get(), ssl->s3->server_random, SSL3_RANDOM_SIZE)) {
1140 return ssl_hs_error;
1141 }
1142
1143 // PSK ciphers begin with an identity hint.
1144 if (alg_a & SSL_aPSK) {
1145 size_t len = hs->config->psk_identity_hint == nullptr
1146 ? 0
1147 : strlen(hs->config->psk_identity_hint.get());
1148 if (!CBB_add_u16_length_prefixed(cbb.get(), &child) ||
1149 !CBB_add_bytes(&child,
1150 (const uint8_t *)hs->config->psk_identity_hint.get(),
1151 len)) {
1152 return ssl_hs_error;
1153 }
1154 }
1155
1156 if (alg_k & SSL_kECDHE) {
1157 assert(hs->new_session->group_id != 0);
1158 hs->key_shares[0] = SSLKeyShare::Create(hs->new_session->group_id);
1159 if (!hs->key_shares[0] ||
1160 !CBB_add_u8(cbb.get(), NAMED_CURVE_TYPE) ||
1161 !CBB_add_u16(cbb.get(), hs->new_session->group_id) ||
1162 !CBB_add_u8_length_prefixed(cbb.get(), &child)) {
1163 return ssl_hs_error;
1164 }
1165
1166 SSL_HANDSHAKE_HINTS *const hints = hs->hints.get();
1167 bool hint_ok = false;
1168 if (hints && !hs->hints_requested &&
1169 hints->ecdhe_group_id == hs->new_session->group_id &&
1170 !hints->ecdhe_public_key.empty() &&
1171 !hints->ecdhe_private_key.empty()) {
1172 CBS cbs = MakeConstSpan(hints->ecdhe_private_key);
1173 hint_ok = hs->key_shares[0]->DeserializePrivateKey(&cbs);
1174 }
1175 if (hint_ok) {
1176 // Reuse the ECDH key from handshake hints.
1177 if (!CBB_add_bytes(&child, hints->ecdhe_public_key.data(),
1178 hints->ecdhe_public_key.size())) {
1179 return ssl_hs_error;
1180 }
1181 } else {
1182 // Generate a key, and emit the public half.
1183 if (!hs->key_shares[0]->Generate(&child)) {
1184 return ssl_hs_error;
1185 }
1186 // If generating hints, save the ECDHE key.
1187 if (hints && hs->hints_requested) {
1188 bssl::ScopedCBB private_key_cbb;
1189 if (!hints->ecdhe_public_key.CopyFrom(
1190 MakeConstSpan(CBB_data(&child), CBB_len(&child))) ||
1191 !CBB_init(private_key_cbb.get(), 32) ||
1192 !hs->key_shares[0]->SerializePrivateKey(private_key_cbb.get()) ||
1193 !CBBFinishArray(private_key_cbb.get(),
1194 &hints->ecdhe_private_key)) {
1195 return ssl_hs_error;
1196 }
1197 hints->ecdhe_group_id = hs->new_session->group_id;
1198 }
1199 }
1200 } else {
1201 assert(alg_k & SSL_kPSK);
1202 }
1203
1204 if (!CBBFinishArray(cbb.get(), &hs->server_params)) {
1205 return ssl_hs_error;
1206 }
1207 }
1208
1209 hs->state = state12_send_server_key_exchange;
1210 return ssl_hs_ok;
1211 }
1212
do_send_server_key_exchange(SSL_HANDSHAKE * hs)1213 static enum ssl_hs_wait_t do_send_server_key_exchange(SSL_HANDSHAKE *hs) {
1214 SSL *const ssl = hs->ssl;
1215
1216 if (hs->server_params.size() == 0) {
1217 hs->state = state12_send_server_hello_done;
1218 return ssl_hs_ok;
1219 }
1220
1221 ScopedCBB cbb;
1222 CBB body, child;
1223 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1224 SSL3_MT_SERVER_KEY_EXCHANGE) ||
1225 // |hs->server_params| contains a prefix for signing.
1226 hs->server_params.size() < 2 * SSL3_RANDOM_SIZE ||
1227 !CBB_add_bytes(&body, hs->server_params.data() + 2 * SSL3_RANDOM_SIZE,
1228 hs->server_params.size() - 2 * SSL3_RANDOM_SIZE)) {
1229 return ssl_hs_error;
1230 }
1231
1232 // Add a signature.
1233 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1234 // Determine the signature algorithm.
1235 uint16_t signature_algorithm;
1236 if (!tls1_choose_signature_algorithm(hs, hs->credential.get(),
1237 &signature_algorithm)) {
1238 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1239 return ssl_hs_error;
1240 }
1241 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1242 if (!CBB_add_u16(&body, signature_algorithm)) {
1243 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1244 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1245 return ssl_hs_error;
1246 }
1247 }
1248
1249 // Add space for the signature.
1250 const size_t max_sig_len = EVP_PKEY_size(hs->credential->pubkey.get());
1251 uint8_t *ptr;
1252 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1253 !CBB_reserve(&child, &ptr, max_sig_len)) {
1254 return ssl_hs_error;
1255 }
1256
1257 size_t sig_len;
1258 switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len,
1259 signature_algorithm, hs->server_params)) {
1260 case ssl_private_key_success:
1261 if (!CBB_did_write(&child, sig_len)) {
1262 return ssl_hs_error;
1263 }
1264 break;
1265 case ssl_private_key_failure:
1266 return ssl_hs_error;
1267 case ssl_private_key_retry:
1268 return ssl_hs_private_key_operation;
1269 }
1270 }
1271
1272 hs->can_release_private_key = true;
1273 if (!ssl_add_message_cbb(ssl, cbb.get())) {
1274 return ssl_hs_error;
1275 }
1276
1277 hs->server_params.Reset();
1278
1279 hs->state = state12_send_server_hello_done;
1280 return ssl_hs_ok;
1281 }
1282
do_send_server_hello_done(SSL_HANDSHAKE * hs)1283 static enum ssl_hs_wait_t do_send_server_hello_done(SSL_HANDSHAKE *hs) {
1284 SSL *const ssl = hs->ssl;
1285 if (hs->hints_requested) {
1286 return ssl_hs_hints_ready;
1287 }
1288
1289 ScopedCBB cbb;
1290 CBB body;
1291
1292 if (hs->cert_request) {
1293 CBB cert_types, sigalgs_cbb;
1294 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1295 SSL3_MT_CERTIFICATE_REQUEST) ||
1296 !CBB_add_u8_length_prefixed(&body, &cert_types) ||
1297 !CBB_add_u8(&cert_types, SSL3_CT_RSA_SIGN) ||
1298 !CBB_add_u8(&cert_types, TLS_CT_ECDSA_SIGN) ||
1299 (ssl_protocol_version(ssl) >= TLS1_2_VERSION &&
1300 (!CBB_add_u16_length_prefixed(&body, &sigalgs_cbb) ||
1301 !tls12_add_verify_sigalgs(hs, &sigalgs_cbb))) ||
1302 !ssl_add_client_CA_list(hs, &body) ||
1303 !ssl_add_message_cbb(ssl, cbb.get())) {
1304 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1305 return ssl_hs_error;
1306 }
1307 }
1308
1309 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1310 SSL3_MT_SERVER_HELLO_DONE) ||
1311 !ssl_add_message_cbb(ssl, cbb.get())) {
1312 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1313 return ssl_hs_error;
1314 }
1315
1316 hs->state = state12_read_client_certificate;
1317 return ssl_hs_flush;
1318 }
1319
do_read_client_certificate(SSL_HANDSHAKE * hs)1320 static enum ssl_hs_wait_t do_read_client_certificate(SSL_HANDSHAKE *hs) {
1321 SSL *const ssl = hs->ssl;
1322
1323 if (hs->handback && hs->new_cipher->algorithm_mkey == SSL_kECDHE) {
1324 return ssl_hs_handback;
1325 }
1326 if (!hs->cert_request) {
1327 hs->state = state12_verify_client_certificate;
1328 return ssl_hs_ok;
1329 }
1330
1331 SSLMessage msg;
1332 if (!ssl->method->get_message(ssl, &msg)) {
1333 return ssl_hs_read_message;
1334 }
1335
1336 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE)) {
1337 return ssl_hs_error;
1338 }
1339
1340 if (!ssl_hash_message(hs, msg)) {
1341 return ssl_hs_error;
1342 }
1343
1344 CBS certificate_msg = msg.body;
1345 uint8_t alert = SSL_AD_DECODE_ERROR;
1346 if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey,
1347 hs->config->retain_only_sha256_of_client_certs
1348 ? hs->new_session->peer_sha256
1349 : nullptr,
1350 &certificate_msg, ssl->ctx->pool)) {
1351 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1352 return ssl_hs_error;
1353 }
1354
1355 if (CBS_len(&certificate_msg) != 0 ||
1356 !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) {
1357 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1358 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1359 return ssl_hs_error;
1360 }
1361
1362 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0) {
1363 // No client certificate so the handshake buffer may be discarded.
1364 hs->transcript.FreeBuffer();
1365
1366 if (hs->config->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) {
1367 // Fail for TLS only if we required a certificate
1368 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE);
1369 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1370 return ssl_hs_error;
1371 }
1372
1373 // OpenSSL returns X509_V_OK when no certificates are received. This is
1374 // classed by them as a bug, but it's assumed by at least NGINX.
1375 hs->new_session->verify_result = X509_V_OK;
1376 } else if (hs->config->retain_only_sha256_of_client_certs) {
1377 // The hash will have been filled in.
1378 hs->new_session->peer_sha256_valid = true;
1379 }
1380
1381 ssl->method->next_message(ssl);
1382 hs->state = state12_verify_client_certificate;
1383 return ssl_hs_ok;
1384 }
1385
do_verify_client_certificate(SSL_HANDSHAKE * hs)1386 static enum ssl_hs_wait_t do_verify_client_certificate(SSL_HANDSHAKE *hs) {
1387 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) > 0) {
1388 switch (ssl_verify_peer_cert(hs)) {
1389 case ssl_verify_ok:
1390 break;
1391 case ssl_verify_invalid:
1392 return ssl_hs_error;
1393 case ssl_verify_retry:
1394 return ssl_hs_certificate_verify;
1395 }
1396 }
1397
1398 hs->state = state12_read_client_key_exchange;
1399 return ssl_hs_ok;
1400 }
1401
do_read_client_key_exchange(SSL_HANDSHAKE * hs)1402 static enum ssl_hs_wait_t do_read_client_key_exchange(SSL_HANDSHAKE *hs) {
1403 SSL *const ssl = hs->ssl;
1404 SSLMessage msg;
1405 if (!ssl->method->get_message(ssl, &msg)) {
1406 return ssl_hs_read_message;
1407 }
1408
1409 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_KEY_EXCHANGE)) {
1410 return ssl_hs_error;
1411 }
1412
1413 CBS client_key_exchange = msg.body;
1414 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1415 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1416
1417 // If using a PSK key exchange, parse the PSK identity.
1418 if (alg_a & SSL_aPSK) {
1419 CBS psk_identity;
1420
1421 // If using PSK, the ClientKeyExchange contains a psk_identity. If PSK,
1422 // then this is the only field in the message.
1423 if (!CBS_get_u16_length_prefixed(&client_key_exchange, &psk_identity) ||
1424 ((alg_k & SSL_kPSK) && CBS_len(&client_key_exchange) != 0)) {
1425 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1426 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1427 return ssl_hs_error;
1428 }
1429
1430 if (CBS_len(&psk_identity) > PSK_MAX_IDENTITY_LEN ||
1431 CBS_contains_zero_byte(&psk_identity)) {
1432 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
1433 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
1434 return ssl_hs_error;
1435 }
1436 char *raw = nullptr;
1437 if (!CBS_strdup(&psk_identity, &raw)) {
1438 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1439 return ssl_hs_error;
1440 }
1441 hs->new_session->psk_identity.reset(raw);
1442 }
1443
1444 // Depending on the key exchange method, compute |premaster_secret|.
1445 Array<uint8_t> premaster_secret;
1446 if (alg_k & SSL_kRSA) {
1447 CBS encrypted_premaster_secret;
1448 if (!CBS_get_u16_length_prefixed(&client_key_exchange,
1449 &encrypted_premaster_secret) ||
1450 CBS_len(&client_key_exchange) != 0) {
1451 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1452 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1453 return ssl_hs_error;
1454 }
1455
1456 // Allocate a buffer large enough for an RSA decryption.
1457 Array<uint8_t> decrypt_buf;
1458 if (!decrypt_buf.Init(EVP_PKEY_size(hs->credential->pubkey.get()))) {
1459 return ssl_hs_error;
1460 }
1461
1462 // Decrypt with no padding. PKCS#1 padding will be removed as part of the
1463 // timing-sensitive code below.
1464 size_t decrypt_len;
1465 switch (ssl_private_key_decrypt(hs, decrypt_buf.data(), &decrypt_len,
1466 decrypt_buf.size(),
1467 encrypted_premaster_secret)) {
1468 case ssl_private_key_success:
1469 break;
1470 case ssl_private_key_failure:
1471 return ssl_hs_error;
1472 case ssl_private_key_retry:
1473 return ssl_hs_private_key_operation;
1474 }
1475
1476 if (decrypt_len != decrypt_buf.size()) {
1477 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED);
1478 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1479 return ssl_hs_error;
1480 }
1481
1482 CONSTTIME_SECRET(decrypt_buf.data(), decrypt_len);
1483
1484 // Prepare a random premaster, to be used on invalid padding. See RFC 5246,
1485 // section 7.4.7.1.
1486 if (!premaster_secret.Init(SSL_MAX_MASTER_KEY_LENGTH) ||
1487 !RAND_bytes(premaster_secret.data(), premaster_secret.size())) {
1488 return ssl_hs_error;
1489 }
1490
1491 // The smallest padded premaster is 11 bytes of overhead. Small keys are
1492 // publicly invalid.
1493 if (decrypt_len < 11 + premaster_secret.size()) {
1494 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED);
1495 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1496 return ssl_hs_error;
1497 }
1498
1499 // Check the padding. See RFC 3447, section 7.2.2.
1500 size_t padding_len = decrypt_len - premaster_secret.size();
1501 uint8_t good = constant_time_eq_int_8(decrypt_buf[0], 0) &
1502 constant_time_eq_int_8(decrypt_buf[1], 2);
1503 for (size_t i = 2; i < padding_len - 1; i++) {
1504 good &= ~constant_time_is_zero_8(decrypt_buf[i]);
1505 }
1506 good &= constant_time_is_zero_8(decrypt_buf[padding_len - 1]);
1507
1508 // The premaster secret must begin with |client_version|. This too must be
1509 // checked in constant time (http://eprint.iacr.org/2003/052/).
1510 good &= constant_time_eq_8(decrypt_buf[padding_len],
1511 (unsigned)(hs->client_version >> 8));
1512 good &= constant_time_eq_8(decrypt_buf[padding_len + 1],
1513 (unsigned)(hs->client_version & 0xff));
1514
1515 // Select, in constant time, either the decrypted premaster or the random
1516 // premaster based on |good|.
1517 for (size_t i = 0; i < premaster_secret.size(); i++) {
1518 premaster_secret[i] = constant_time_select_8(
1519 good, decrypt_buf[padding_len + i], premaster_secret[i]);
1520 }
1521 } else if (alg_k & SSL_kECDHE) {
1522 // Parse the ClientKeyExchange.
1523 CBS ciphertext;
1524 if (!CBS_get_u8_length_prefixed(&client_key_exchange, &ciphertext) ||
1525 CBS_len(&client_key_exchange) != 0) {
1526 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1527 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1528 return ssl_hs_error;
1529 }
1530
1531 // Decapsulate the premaster secret.
1532 uint8_t alert = SSL_AD_DECODE_ERROR;
1533 if (!hs->key_shares[0]->Decap(&premaster_secret, &alert, ciphertext)) {
1534 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1535 return ssl_hs_error;
1536 }
1537
1538 // The key exchange state may now be discarded.
1539 hs->key_shares[0].reset();
1540 hs->key_shares[1].reset();
1541 } else if (!(alg_k & SSL_kPSK)) {
1542 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1543 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1544 return ssl_hs_error;
1545 }
1546
1547 // For a PSK cipher suite, the actual pre-master secret is combined with the
1548 // pre-shared key.
1549 if (alg_a & SSL_aPSK) {
1550 if (hs->config->psk_server_callback == NULL) {
1551 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1552 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1553 return ssl_hs_error;
1554 }
1555
1556 // Look up the key for the identity.
1557 uint8_t psk[PSK_MAX_PSK_LEN];
1558 unsigned psk_len = hs->config->psk_server_callback(
1559 ssl, hs->new_session->psk_identity.get(), psk, sizeof(psk));
1560 if (psk_len > PSK_MAX_PSK_LEN) {
1561 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1562 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1563 return ssl_hs_error;
1564 } else if (psk_len == 0) {
1565 // PSK related to the given identity not found.
1566 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
1567 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNKNOWN_PSK_IDENTITY);
1568 return ssl_hs_error;
1569 }
1570
1571 if (alg_k & SSL_kPSK) {
1572 // In plain PSK, other_secret is a block of 0s with the same length as the
1573 // pre-shared key.
1574 if (!premaster_secret.Init(psk_len)) {
1575 return ssl_hs_error;
1576 }
1577 OPENSSL_memset(premaster_secret.data(), 0, premaster_secret.size());
1578 }
1579
1580 ScopedCBB new_premaster;
1581 CBB child;
1582 if (!CBB_init(new_premaster.get(),
1583 2 + psk_len + 2 + premaster_secret.size()) ||
1584 !CBB_add_u16_length_prefixed(new_premaster.get(), &child) ||
1585 !CBB_add_bytes(&child, premaster_secret.data(),
1586 premaster_secret.size()) ||
1587 !CBB_add_u16_length_prefixed(new_premaster.get(), &child) ||
1588 !CBB_add_bytes(&child, psk, psk_len) ||
1589 !CBBFinishArray(new_premaster.get(), &premaster_secret)) {
1590 return ssl_hs_error;
1591 }
1592 }
1593
1594 if (!ssl_hash_message(hs, msg)) {
1595 return ssl_hs_error;
1596 }
1597
1598 // Compute the master secret.
1599 hs->new_session->secret_length = tls1_generate_master_secret(
1600 hs, hs->new_session->secret, premaster_secret);
1601 if (hs->new_session->secret_length == 0) {
1602 return ssl_hs_error;
1603 }
1604 hs->new_session->extended_master_secret = hs->extended_master_secret;
1605 CONSTTIME_DECLASSIFY(hs->new_session->secret, hs->new_session->secret_length);
1606 hs->can_release_private_key = true;
1607
1608 ssl->method->next_message(ssl);
1609 hs->state = state12_read_client_certificate_verify;
1610 return ssl_hs_ok;
1611 }
1612
do_read_client_certificate_verify(SSL_HANDSHAKE * hs)1613 static enum ssl_hs_wait_t do_read_client_certificate_verify(SSL_HANDSHAKE *hs) {
1614 SSL *const ssl = hs->ssl;
1615
1616 // Only RSA and ECDSA client certificates are supported, so a
1617 // CertificateVerify is required if and only if there's a client certificate.
1618 if (!hs->peer_pubkey) {
1619 hs->transcript.FreeBuffer();
1620 hs->state = state12_read_change_cipher_spec;
1621 return ssl_hs_ok;
1622 }
1623
1624 SSLMessage msg;
1625 if (!ssl->method->get_message(ssl, &msg)) {
1626 return ssl_hs_read_message;
1627 }
1628
1629 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_VERIFY)) {
1630 return ssl_hs_error;
1631 }
1632
1633 // The peer certificate must be valid for signing.
1634 const CRYPTO_BUFFER *leaf =
1635 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0);
1636 CBS leaf_cbs;
1637 CRYPTO_BUFFER_init_CBS(leaf, &leaf_cbs);
1638 if (!ssl_cert_check_key_usage(&leaf_cbs, key_usage_digital_signature)) {
1639 return ssl_hs_error;
1640 }
1641
1642 CBS certificate_verify = msg.body, signature;
1643
1644 // Determine the signature algorithm.
1645 uint16_t signature_algorithm = 0;
1646 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1647 if (!CBS_get_u16(&certificate_verify, &signature_algorithm)) {
1648 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1649 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1650 return ssl_hs_error;
1651 }
1652 uint8_t alert = SSL_AD_DECODE_ERROR;
1653 if (!tls12_check_peer_sigalg(hs, &alert, signature_algorithm)) {
1654 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1655 return ssl_hs_error;
1656 }
1657 hs->new_session->peer_signature_algorithm = signature_algorithm;
1658 } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm,
1659 hs->peer_pubkey.get())) {
1660 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
1661 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE);
1662 return ssl_hs_error;
1663 }
1664
1665 // Parse and verify the signature.
1666 if (!CBS_get_u16_length_prefixed(&certificate_verify, &signature) ||
1667 CBS_len(&certificate_verify) != 0) {
1668 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1669 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1670 return ssl_hs_error;
1671 }
1672
1673 if (!ssl_public_key_verify(ssl, signature, signature_algorithm,
1674 hs->peer_pubkey.get(), hs->transcript.buffer())) {
1675 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
1676 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1677 return ssl_hs_error;
1678 }
1679
1680 // The handshake buffer is no longer necessary, and we may hash the current
1681 // message.
1682 hs->transcript.FreeBuffer();
1683 if (!ssl_hash_message(hs, msg)) {
1684 return ssl_hs_error;
1685 }
1686
1687 ssl->method->next_message(ssl);
1688 hs->state = state12_read_change_cipher_spec;
1689 return ssl_hs_ok;
1690 }
1691
do_read_change_cipher_spec(SSL_HANDSHAKE * hs)1692 static enum ssl_hs_wait_t do_read_change_cipher_spec(SSL_HANDSHAKE *hs) {
1693 if (hs->handback && hs->ssl->session != NULL) {
1694 return ssl_hs_handback;
1695 }
1696 hs->state = state12_process_change_cipher_spec;
1697 return ssl_hs_read_change_cipher_spec;
1698 }
1699
do_process_change_cipher_spec(SSL_HANDSHAKE * hs)1700 static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) {
1701 if (!tls1_change_cipher_state(hs, evp_aead_open)) {
1702 return ssl_hs_error;
1703 }
1704
1705 hs->state = state12_read_next_proto;
1706 return ssl_hs_ok;
1707 }
1708
do_read_next_proto(SSL_HANDSHAKE * hs)1709 static enum ssl_hs_wait_t do_read_next_proto(SSL_HANDSHAKE *hs) {
1710 SSL *const ssl = hs->ssl;
1711
1712 if (!hs->next_proto_neg_seen) {
1713 hs->state = state12_read_channel_id;
1714 return ssl_hs_ok;
1715 }
1716
1717 SSLMessage msg;
1718 if (!ssl->method->get_message(ssl, &msg)) {
1719 return ssl_hs_read_message;
1720 }
1721
1722 if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEXT_PROTO) ||
1723 !ssl_hash_message(hs, msg)) {
1724 return ssl_hs_error;
1725 }
1726
1727 CBS next_protocol = msg.body, selected_protocol, padding;
1728 if (!CBS_get_u8_length_prefixed(&next_protocol, &selected_protocol) ||
1729 !CBS_get_u8_length_prefixed(&next_protocol, &padding) ||
1730 CBS_len(&next_protocol) != 0) {
1731 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1732 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1733 return ssl_hs_error;
1734 }
1735
1736 if (!ssl->s3->next_proto_negotiated.CopyFrom(selected_protocol)) {
1737 return ssl_hs_error;
1738 }
1739
1740 ssl->method->next_message(ssl);
1741 hs->state = state12_read_channel_id;
1742 return ssl_hs_ok;
1743 }
1744
do_read_channel_id(SSL_HANDSHAKE * hs)1745 static enum ssl_hs_wait_t do_read_channel_id(SSL_HANDSHAKE *hs) {
1746 SSL *const ssl = hs->ssl;
1747
1748 if (!hs->channel_id_negotiated) {
1749 hs->state = state12_read_client_finished;
1750 return ssl_hs_ok;
1751 }
1752
1753 SSLMessage msg;
1754 if (!ssl->method->get_message(ssl, &msg)) {
1755 return ssl_hs_read_message;
1756 }
1757
1758 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CHANNEL_ID) ||
1759 !tls1_verify_channel_id(hs, msg) ||
1760 !ssl_hash_message(hs, msg)) {
1761 return ssl_hs_error;
1762 }
1763
1764 ssl->method->next_message(ssl);
1765 hs->state = state12_read_client_finished;
1766 return ssl_hs_ok;
1767 }
1768
do_read_client_finished(SSL_HANDSHAKE * hs)1769 static enum ssl_hs_wait_t do_read_client_finished(SSL_HANDSHAKE *hs) {
1770 SSL *const ssl = hs->ssl;
1771 enum ssl_hs_wait_t wait = ssl_get_finished(hs);
1772 if (wait != ssl_hs_ok) {
1773 return wait;
1774 }
1775
1776 if (ssl->session != NULL) {
1777 hs->state = state12_finish_server_handshake;
1778 } else {
1779 hs->state = state12_send_server_finished;
1780 }
1781
1782 // If this is a full handshake with ChannelID then record the handshake
1783 // hashes in |hs->new_session| in case we need them to verify a
1784 // ChannelID signature on a resumption of this session in the future.
1785 if (ssl->session == NULL && ssl->s3->channel_id_valid &&
1786 !tls1_record_handshake_hashes_for_channel_id(hs)) {
1787 return ssl_hs_error;
1788 }
1789
1790 return ssl_hs_ok;
1791 }
1792
do_send_server_finished(SSL_HANDSHAKE * hs)1793 static enum ssl_hs_wait_t do_send_server_finished(SSL_HANDSHAKE *hs) {
1794 SSL *const ssl = hs->ssl;
1795
1796 if (hs->ticket_expected) {
1797 const SSL_SESSION *session;
1798 UniquePtr<SSL_SESSION> session_copy;
1799 if (ssl->session == NULL) {
1800 // Fix the timeout to measure from the ticket issuance time.
1801 ssl_session_rebase_time(ssl, hs->new_session.get());
1802 session = hs->new_session.get();
1803 } else {
1804 // We are renewing an existing session. Duplicate the session to adjust
1805 // the timeout.
1806 session_copy =
1807 SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH);
1808 if (!session_copy) {
1809 return ssl_hs_error;
1810 }
1811
1812 ssl_session_rebase_time(ssl, session_copy.get());
1813 session = session_copy.get();
1814 }
1815
1816 ScopedCBB cbb;
1817 CBB body, ticket;
1818 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1819 SSL3_MT_NEW_SESSION_TICKET) ||
1820 !CBB_add_u32(&body, session->timeout) ||
1821 !CBB_add_u16_length_prefixed(&body, &ticket) ||
1822 !ssl_encrypt_ticket(hs, &ticket, session) ||
1823 !ssl_add_message_cbb(ssl, cbb.get())) {
1824 return ssl_hs_error;
1825 }
1826 }
1827
1828 if (!ssl->method->add_change_cipher_spec(ssl) ||
1829 !tls1_change_cipher_state(hs, evp_aead_seal) ||
1830 !ssl_send_finished(hs)) {
1831 return ssl_hs_error;
1832 }
1833
1834 if (ssl->session != NULL) {
1835 hs->state = state12_read_change_cipher_spec;
1836 } else {
1837 hs->state = state12_finish_server_handshake;
1838 }
1839 return ssl_hs_flush;
1840 }
1841
do_finish_server_handshake(SSL_HANDSHAKE * hs)1842 static enum ssl_hs_wait_t do_finish_server_handshake(SSL_HANDSHAKE *hs) {
1843 SSL *const ssl = hs->ssl;
1844
1845 if (hs->handback) {
1846 return ssl_hs_handback;
1847 }
1848
1849 ssl->method->on_handshake_complete(ssl);
1850
1851 // If we aren't retaining peer certificates then we can discard it now.
1852 if (hs->new_session != NULL &&
1853 hs->config->retain_only_sha256_of_client_certs) {
1854 hs->new_session->certs.reset();
1855 ssl->ctx->x509_method->session_clear(hs->new_session.get());
1856 }
1857
1858 bool has_new_session = hs->new_session != nullptr;
1859 if (has_new_session) {
1860 assert(ssl->session == nullptr);
1861 ssl->s3->established_session = std::move(hs->new_session);
1862 ssl->s3->established_session->not_resumable = false;
1863 } else {
1864 assert(ssl->session != nullptr);
1865 ssl->s3->established_session = UpRef(ssl->session);
1866 }
1867
1868 hs->handshake_finalized = true;
1869 ssl->s3->initial_handshake_complete = true;
1870 if (has_new_session) {
1871 ssl_update_cache(ssl);
1872 }
1873
1874 hs->state = state12_done;
1875 return ssl_hs_ok;
1876 }
1877
ssl_server_handshake(SSL_HANDSHAKE * hs)1878 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs) {
1879 while (hs->state != state12_done) {
1880 enum ssl_hs_wait_t ret = ssl_hs_error;
1881 enum tls12_server_hs_state_t state =
1882 static_cast<enum tls12_server_hs_state_t>(hs->state);
1883 switch (state) {
1884 case state12_start_accept:
1885 ret = do_start_accept(hs);
1886 break;
1887 case state12_read_client_hello:
1888 ret = do_read_client_hello(hs);
1889 break;
1890 case state12_read_client_hello_after_ech:
1891 ret = do_read_client_hello_after_ech(hs);
1892 break;
1893 case state12_cert_callback:
1894 ret = do_cert_callback(hs);
1895 break;
1896 case state12_tls13:
1897 ret = do_tls13(hs);
1898 break;
1899 case state12_select_parameters:
1900 ret = do_select_parameters(hs);
1901 break;
1902 case state12_send_server_hello:
1903 ret = do_send_server_hello(hs);
1904 break;
1905 case state12_send_server_certificate:
1906 ret = do_send_server_certificate(hs);
1907 break;
1908 case state12_send_server_key_exchange:
1909 ret = do_send_server_key_exchange(hs);
1910 break;
1911 case state12_send_server_hello_done:
1912 ret = do_send_server_hello_done(hs);
1913 break;
1914 case state12_read_client_certificate:
1915 ret = do_read_client_certificate(hs);
1916 break;
1917 case state12_verify_client_certificate:
1918 ret = do_verify_client_certificate(hs);
1919 break;
1920 case state12_read_client_key_exchange:
1921 ret = do_read_client_key_exchange(hs);
1922 break;
1923 case state12_read_client_certificate_verify:
1924 ret = do_read_client_certificate_verify(hs);
1925 break;
1926 case state12_read_change_cipher_spec:
1927 ret = do_read_change_cipher_spec(hs);
1928 break;
1929 case state12_process_change_cipher_spec:
1930 ret = do_process_change_cipher_spec(hs);
1931 break;
1932 case state12_read_next_proto:
1933 ret = do_read_next_proto(hs);
1934 break;
1935 case state12_read_channel_id:
1936 ret = do_read_channel_id(hs);
1937 break;
1938 case state12_read_client_finished:
1939 ret = do_read_client_finished(hs);
1940 break;
1941 case state12_send_server_finished:
1942 ret = do_send_server_finished(hs);
1943 break;
1944 case state12_finish_server_handshake:
1945 ret = do_finish_server_handshake(hs);
1946 break;
1947 case state12_done:
1948 ret = ssl_hs_ok;
1949 break;
1950 }
1951
1952 if (hs->state != state) {
1953 ssl_do_info_callback(hs->ssl, SSL_CB_ACCEPT_LOOP, 1);
1954 }
1955
1956 if (ret != ssl_hs_ok) {
1957 return ret;
1958 }
1959 }
1960
1961 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1);
1962 return ssl_hs_ok;
1963 }
1964
ssl_server_handshake_state(SSL_HANDSHAKE * hs)1965 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs) {
1966 enum tls12_server_hs_state_t state =
1967 static_cast<enum tls12_server_hs_state_t>(hs->state);
1968 switch (state) {
1969 case state12_start_accept:
1970 return "TLS server start_accept";
1971 case state12_read_client_hello:
1972 return "TLS server read_client_hello";
1973 case state12_read_client_hello_after_ech:
1974 return "TLS server read_client_hello_after_ech";
1975 case state12_cert_callback:
1976 return "TLS server cert_callback";
1977 case state12_tls13:
1978 return tls13_server_handshake_state(hs);
1979 case state12_select_parameters:
1980 return "TLS server select_parameters";
1981 case state12_send_server_hello:
1982 return "TLS server send_server_hello";
1983 case state12_send_server_certificate:
1984 return "TLS server send_server_certificate";
1985 case state12_send_server_key_exchange:
1986 return "TLS server send_server_key_exchange";
1987 case state12_send_server_hello_done:
1988 return "TLS server send_server_hello_done";
1989 case state12_read_client_certificate:
1990 return "TLS server read_client_certificate";
1991 case state12_verify_client_certificate:
1992 return "TLS server verify_client_certificate";
1993 case state12_read_client_key_exchange:
1994 return "TLS server read_client_key_exchange";
1995 case state12_read_client_certificate_verify:
1996 return "TLS server read_client_certificate_verify";
1997 case state12_read_change_cipher_spec:
1998 return "TLS server read_change_cipher_spec";
1999 case state12_process_change_cipher_spec:
2000 return "TLS server process_change_cipher_spec";
2001 case state12_read_next_proto:
2002 return "TLS server read_next_proto";
2003 case state12_read_channel_id:
2004 return "TLS server read_channel_id";
2005 case state12_read_client_finished:
2006 return "TLS server read_client_finished";
2007 case state12_send_server_finished:
2008 return "TLS server send_server_finished";
2009 case state12_finish_server_handshake:
2010 return "TLS server finish_server_handshake";
2011 case state12_done:
2012 return "TLS server done";
2013 }
2014
2015 return "TLS server unknown";
2016 }
2017
2018 BSSL_NAMESPACE_END
2019