1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 * ECC cipher suite support in OpenSSL originally developed by
113 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114 */
115 /* ====================================================================
116 * Copyright 2005 Nokia. All rights reserved.
117 *
118 * The portions of the attached software ("Contribution") is developed by
119 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120 * license.
121 *
122 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124 * support (see RFC 4279) to OpenSSL.
125 *
126 * No patent licenses or other rights except those expressly stated in
127 * the OpenSSL open source license shall be deemed granted or received
128 * expressly, by implication, estoppel, or otherwise.
129 *
130 * No assurances are provided by Nokia that the Contribution does not
131 * infringe the patent or other intellectual property rights of any third
132 * party or that the license provides you with all the necessary rights
133 * to make use of the Contribution.
134 *
135 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139 * OTHERWISE.
140 */
141
142 #ifndef OPENSSL_HEADER_SSL_INTERNAL_H
143 #define OPENSSL_HEADER_SSL_INTERNAL_H
144
145 #include <openssl/base.h>
146
147 #include <stdlib.h>
148
149 #include <algorithm>
150 #include <bitset>
151 #include <initializer_list>
152 #include <limits>
153 #include <new>
154 #include <type_traits>
155 #include <utility>
156
157 #include <openssl/aead.h>
158 #include <openssl/curve25519.h>
159 #include <openssl/err.h>
160 #include <openssl/hpke.h>
161 #include <openssl/lhash.h>
162 #include <openssl/mem.h>
163 #include <openssl/span.h>
164 #include <openssl/ssl.h>
165 #include <openssl/stack.h>
166
167 #include "../crypto/err/internal.h"
168 #include "../crypto/internal.h"
169 #include "../crypto/lhash/internal.h"
170
171
172 #if defined(OPENSSL_WINDOWS)
173 // Windows defines struct timeval in winsock2.h.
174 OPENSSL_MSVC_PRAGMA(warning(push, 3))
175 #include <winsock2.h>
176 OPENSSL_MSVC_PRAGMA(warning(pop))
177 #else
178 #include <sys/time.h>
179 #endif
180
181
182 BSSL_NAMESPACE_BEGIN
183
184 struct SSL_CONFIG;
185 struct SSL_HANDSHAKE;
186 struct SSL_PROTOCOL_METHOD;
187 struct SSL_X509_METHOD;
188
189 // C++ utilities.
190
191 // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
192 // returns nullptr on allocation error. It only implements single-object
193 // allocation and not new T[n].
194 //
195 // Note: unlike |new|, this does not support non-public constructors.
196 template <typename T, typename... Args>
New(Args &&...args)197 T *New(Args &&... args) {
198 void *t = OPENSSL_malloc(sizeof(T));
199 if (t == nullptr) {
200 return nullptr;
201 }
202 return new (t) T(std::forward<Args>(args)...);
203 }
204
205 // Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
206 //
207 // Note: unlike |delete| this does not support non-public destructors.
208 template <typename T>
Delete(T * t)209 void Delete(T *t) {
210 if (t != nullptr) {
211 t->~T();
212 OPENSSL_free(t);
213 }
214 }
215
216 // All types with kAllowUniquePtr set may be used with UniquePtr. Other types
217 // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
218 namespace internal {
219 template <typename T>
220 struct DeleterImpl<T, std::enable_if_t<T::kAllowUniquePtr>> {
221 static void Free(T *t) { Delete(t); }
222 };
223 } // namespace internal
224
225 // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
226 // error.
227 template <typename T, typename... Args>
228 UniquePtr<T> MakeUnique(Args &&... args) {
229 return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230 }
231
232 // Array<T> is an owning array of elements of |T|.
233 template <typename T>
234 class Array {
235 public:
236 // Array's default constructor creates an empty array.
237 Array() {}
238 Array(const Array &) = delete;
239 Array(Array &&other) { *this = std::move(other); }
240
241 ~Array() { Reset(); }
242
243 Array &operator=(const Array &) = delete;
244 Array &operator=(Array &&other) {
245 Reset();
246 other.Release(&data_, &size_);
247 return *this;
248 }
249
250 const T *data() const { return data_; }
251 T *data() { return data_; }
252 size_t size() const { return size_; }
253 bool empty() const { return size_ == 0; }
254
255 const T &operator[](size_t i) const { return data_[i]; }
256 T &operator[](size_t i) { return data_[i]; }
257
258 T *begin() { return data_; }
259 const T *begin() const { return data_; }
260 T *end() { return data_ + size_; }
261 const T *end() const { return data_ + size_; }
262
263 void Reset() { Reset(nullptr, 0); }
264
265 // Reset releases the current contents of the array and takes ownership of the
266 // raw pointer supplied by the caller.
267 void Reset(T *new_data, size_t new_size) {
268 for (size_t i = 0; i < size_; i++) {
269 data_[i].~T();
270 }
271 OPENSSL_free(data_);
272 data_ = new_data;
273 size_ = new_size;
274 }
275
276 // Release releases ownership of the array to a raw pointer supplied by the
277 // caller.
278 void Release(T **out, size_t *out_size) {
279 *out = data_;
280 *out_size = size_;
281 data_ = nullptr;
282 size_ = 0;
283 }
284
285 // Init replaces the array with a newly-allocated array of |new_size|
286 // default-constructed copies of |T|. It returns true on success and false on
287 // error.
288 //
289 // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
290 bool Init(size_t new_size) {
291 Reset();
292 if (new_size == 0) {
293 return true;
294 }
295
296 if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
297 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
298 return false;
299 }
300 data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
301 if (data_ == nullptr) {
302 return false;
303 }
304 size_ = new_size;
305 for (size_t i = 0; i < size_; i++) {
306 new (&data_[i]) T;
307 }
308 return true;
309 }
310
311 // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
312 // true on success and false on error.
313 bool CopyFrom(Span<const T> in) {
314 if (!Init(in.size())) {
315 return false;
316 }
317 std::copy(in.begin(), in.end(), data_);
318 return true;
319 }
320
321 // Shrink shrinks the stored size of the array to |new_size|. It crashes if
322 // the new size is larger. Note this does not shrink the allocation itself.
323 void Shrink(size_t new_size) {
324 if (new_size > size_) {
325 abort();
326 }
327 for (size_t i = new_size; i < size_; i++) {
328 data_[i].~T();
329 }
330 size_ = new_size;
331 }
332
333 private:
334 T *data_ = nullptr;
335 size_t size_ = 0;
336 };
337
338 // GrowableArray<T> is an array that owns elements of |T|, backed by an
339 // Array<T>. When necessary, pushing will automatically trigger a resize.
340 //
341 // Note, for simplicity, this class currently differs from |std::vector| in that
342 // |T| must be efficiently default-constructible. Allocated elements beyond the
343 // end of the array are constructed and destructed.
344 template <typename T>
345 class GrowableArray {
346 public:
347 GrowableArray() = default;
348 GrowableArray(const GrowableArray &) = delete;
349 GrowableArray(GrowableArray &&other) { *this = std::move(other); }
350 ~GrowableArray() {}
351
352 GrowableArray &operator=(const GrowableArray &) = delete;
353 GrowableArray &operator=(GrowableArray &&other) {
354 size_ = other.size_;
355 other.size_ = 0;
356 array_ = std::move(other.array_);
357 return *this;
358 }
359
360 const T *data() const { return array_.data(); }
361 T *data() { return array_.data(); }
362 size_t size() const { return size_; }
363 bool empty() const { return size_ == 0; }
364
365 const T &operator[](size_t i) const { return array_[i]; }
366 T &operator[](size_t i) { return array_[i]; }
367
368 T *begin() { return array_.data(); }
369 const T *begin() const { return array_.data(); }
370 T *end() { return array_.data() + size_; }
371 const T *end() const { return array_.data() + size_; }
372
373 void clear() {
374 size_ = 0;
375 array_.Reset();
376 }
377
378 // Push adds |elem| at the end of the internal array, growing if necessary. It
379 // returns false when allocation fails.
380 bool Push(T elem) {
381 if (!MaybeGrow()) {
382 return false;
383 }
384 array_[size_] = std::move(elem);
385 size_++;
386 return true;
387 }
388
389 // CopyFrom replaces the contents of the array with a copy of |in|. It returns
390 // true on success and false on allocation error.
391 bool CopyFrom(Span<const T> in) {
392 if (!array_.CopyFrom(in)) {
393 return false;
394 }
395 size_ = in.size();
396 return true;
397 }
398
399 private:
400 // If there is no room for one more element, creates a new backing array with
401 // double the size of the old one and copies elements over.
402 bool MaybeGrow() {
403 if (array_.size() == 0) {
404 return array_.Init(kDefaultSize);
405 }
406 // No need to grow if we have room for one more T.
407 if (size_ < array_.size()) {
408 return true;
409 }
410 // Double the array's size if it's safe to do so.
411 if (array_.size() > std::numeric_limits<size_t>::max() / 2) {
412 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
413 return false;
414 }
415 Array<T> new_array;
416 if (!new_array.Init(array_.size() * 2)) {
417 return false;
418 }
419 for (size_t i = 0; i < array_.size(); i++) {
420 new_array[i] = std::move(array_[i]);
421 }
422 array_ = std::move(new_array);
423
424 return true;
425 }
426
427 // |size_| is the number of elements stored in this GrowableArray.
428 size_t size_ = 0;
429 // |array_| is the backing array. Note that |array_.size()| is this
430 // GrowableArray's current capacity and that |size_ <= array_.size()|.
431 Array<T> array_;
432 // |kDefaultSize| is the default initial size of the backing array.
433 static constexpr size_t kDefaultSize = 16;
434 };
435
436 // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
437 OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
438
439 // GetAllNames helps to implement |*_get_all_*_names| style functions. It
440 // writes at most |max_out| string pointers to |out| and returns the number that
441 // it would have liked to have written. The strings written consist of
442 // |fixed_names_len| strings from |fixed_names| followed by |objects_len|
443 // strings taken by projecting |objects| through |name|.
444 template <typename T, typename Name>
445 inline size_t GetAllNames(const char **out, size_t max_out,
446 Span<const char *const> fixed_names, Name(T::*name),
447 Span<const T> objects) {
448 auto span = bssl::MakeSpan(out, max_out);
449 for (size_t i = 0; !span.empty() && i < fixed_names.size(); i++) {
450 span[0] = fixed_names[i];
451 span = span.subspan(1);
452 }
453 span = span.subspan(0, objects.size());
454 for (size_t i = 0; i < span.size(); i++) {
455 span[i] = objects[i].*name;
456 }
457 return fixed_names.size() + objects.size();
458 }
459
460 // RefCounted is a common base for ref-counted types. This is an instance of the
461 // C++ curiously-recurring template pattern, so a type Foo must subclass
462 // RefCounted<Foo>. It additionally must friend RefCounted<Foo> to allow calling
463 // the destructor.
464 template <typename Derived>
465 class RefCounted {
466 public:
467 RefCounted(const RefCounted &) = delete;
468 RefCounted &operator=(const RefCounted &) = delete;
469
470 // These methods are intentionally named differently from `bssl::UpRef` to
471 // avoid a collision. Only the implementations of `FOO_up_ref` and `FOO_free`
472 // should call these.
473 void UpRefInternal() { CRYPTO_refcount_inc(&references_); }
474 void DecRefInternal() {
475 if (CRYPTO_refcount_dec_and_test_zero(&references_)) {
476 Derived *d = static_cast<Derived *>(this);
477 d->~Derived();
478 OPENSSL_free(d);
479 }
480 }
481
482 protected:
483 // Ensure that only `Derived`, which must inherit from `RefCounted<Derived>`,
484 // can call the constructor. This catches bugs where someone inherited from
485 // the wrong base.
486 class CheckSubClass {
487 private:
488 friend Derived;
489 CheckSubClass() = default;
490 };
491 RefCounted(CheckSubClass) {
492 static_assert(std::is_base_of<RefCounted, Derived>::value,
493 "Derived must subclass RefCounted<Derived>");
494 }
495
496 ~RefCounted() = default;
497
498 private:
499 CRYPTO_refcount_t references_ = 1;
500 };
501
502
503 // Protocol versions.
504 //
505 // Due to DTLS's historical wire version differences, we maintain two notions of
506 // version.
507 //
508 // The "version" or "wire version" is the actual 16-bit value that appears on
509 // the wire. It uniquely identifies a version and is also used at API
510 // boundaries. The set of supported versions differs between TLS and DTLS. Wire
511 // versions are opaque values and may not be compared numerically.
512 //
513 // The "protocol version" identifies the high-level handshake variant being
514 // used. DTLS versions map to the corresponding TLS versions. Protocol versions
515 // are sequential and may be compared numerically.
516
517 // ssl_protocol_version_from_wire sets |*out| to the protocol version
518 // corresponding to wire version |version| and returns true. If |version| is not
519 // a valid TLS or DTLS version, it returns false.
520 //
521 // Note this simultaneously handles both DTLS and TLS. Use one of the
522 // higher-level functions below for most operations.
523 bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
524
525 // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
526 // minimum and maximum enabled protocol versions, respectively.
527 bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version,
528 uint16_t *out_max_version);
529
530 // ssl_supports_version returns whether |hs| supports |version|.
531 bool ssl_supports_version(const SSL_HANDSHAKE *hs, uint16_t version);
532
533 // ssl_method_supports_version returns whether |method| supports |version|.
534 bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method,
535 uint16_t version);
536
537 // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
538 // decreasing preference order. The version list is filtered to those whose
539 // protocol version is at least |extra_min_version|.
540 bool ssl_add_supported_versions(const SSL_HANDSHAKE *hs, CBB *cbb,
541 uint16_t extra_min_version);
542
543 // ssl_negotiate_version negotiates a common version based on |hs|'s preferences
544 // and the peer preference list in |peer_versions|. On success, it returns true
545 // and sets |*out_version| to the selected version. Otherwise, it returns false
546 // and sets |*out_alert| to an alert to send.
547 bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
548 uint16_t *out_version, const CBS *peer_versions);
549
550 // ssl_protocol_version returns |ssl|'s protocol version. It is an error to
551 // call this function before the version is determined.
552 uint16_t ssl_protocol_version(const SSL *ssl);
553
554 // Cipher suites.
555
556 BSSL_NAMESPACE_END
557
558 struct ssl_cipher_st {
559 // name is the OpenSSL name for the cipher.
560 const char *name;
561 // standard_name is the IETF name for the cipher.
562 const char *standard_name;
563 // id is the cipher suite value bitwise OR-d with 0x03000000.
564 uint32_t id;
565
566 // algorithm_* determine the cipher suite. See constants below for the values.
567 uint32_t algorithm_mkey;
568 uint32_t algorithm_auth;
569 uint32_t algorithm_enc;
570 uint32_t algorithm_mac;
571 uint32_t algorithm_prf;
572 };
573
574 BSSL_NAMESPACE_BEGIN
575
576 // Bits for |algorithm_mkey| (key exchange algorithm).
577 #define SSL_kRSA 0x00000001u
578 #define SSL_kECDHE 0x00000002u
579 // SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
580 #define SSL_kPSK 0x00000004u
581 #define SSL_kGENERIC 0x00000008u
582
583 // Bits for |algorithm_auth| (server authentication).
584 #define SSL_aRSA_SIGN 0x00000001u
585 #define SSL_aRSA_DECRYPT 0x00000002u
586 #define SSL_aECDSA 0x00000004u
587 // SSL_aPSK is set for both PSK and ECDHE_PSK.
588 #define SSL_aPSK 0x00000008u
589 #define SSL_aGENERIC 0x00000010u
590
591 #define SSL_aCERT (SSL_aRSA_SIGN | SSL_aRSA_DECRYPT | SSL_aECDSA)
592
593 // Bits for |algorithm_enc| (symmetric encryption).
594 #define SSL_3DES 0x00000001u
595 #define SSL_AES128 0x00000002u
596 #define SSL_AES256 0x00000004u
597 #define SSL_AES128GCM 0x00000008u
598 #define SSL_AES256GCM 0x00000010u
599 #define SSL_CHACHA20POLY1305 0x00000020u
600
601 #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
602
603 // Bits for |algorithm_mac| (symmetric authentication).
604 #define SSL_SHA1 0x00000001u
605 #define SSL_SHA256 0x00000002u
606 // SSL_AEAD is set for all AEADs.
607 #define SSL_AEAD 0x00000004u
608
609 // Bits for |algorithm_prf| (handshake digest).
610 #define SSL_HANDSHAKE_MAC_DEFAULT 0x1
611 #define SSL_HANDSHAKE_MAC_SHA256 0x2
612 #define SSL_HANDSHAKE_MAC_SHA384 0x4
613
614 // SSL_MAX_MD_SIZE is size of the largest hash function used in TLS, SHA-384.
615 #define SSL_MAX_MD_SIZE 48
616
617 // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal-
618 // preference groups. For TLS clients, the groups are moot because the server
619 // picks the cipher and groups cannot be expressed on the wire. However, for
620 // servers, the equal-preference groups allow the client's preferences to be
621 // partially respected. (This only has an effect with
622 // SSL_OP_CIPHER_SERVER_PREFERENCE).
623 //
624 // The equal-preference groups are expressed by grouping SSL_CIPHERs together.
625 // All elements of a group have the same priority: no ordering is expressed
626 // within a group.
627 //
628 // The values in |ciphers| are in one-to-one correspondence with
629 // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
630 // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
631 // indicate that the corresponding SSL_CIPHER is not the last element of a
632 // group, or 0 to indicate that it is.
633 //
634 // For example, if |in_group_flags| contains all zeros then that indicates a
635 // traditional, fully-ordered preference. Every SSL_CIPHER is the last element
636 // of the group (i.e. they are all in a one-element group).
637 //
638 // For a more complex example, consider:
639 // ciphers: A B C D E F
640 // in_group_flags: 1 1 0 0 1 0
641 //
642 // That would express the following, order:
643 //
644 // A E
645 // B -> D -> F
646 // C
647 struct SSLCipherPreferenceList {
648 static constexpr bool kAllowUniquePtr = true;
649
650 SSLCipherPreferenceList() = default;
651 ~SSLCipherPreferenceList();
652
653 bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers,
654 Span<const bool> in_group_flags);
655 bool Init(const SSLCipherPreferenceList &);
656
657 void Remove(const SSL_CIPHER *cipher);
658
659 UniquePtr<STACK_OF(SSL_CIPHER)> ciphers;
660 bool *in_group_flags = nullptr;
661 };
662
663 // AllCiphers returns an array of all supported ciphers, sorted by id.
664 Span<const SSL_CIPHER> AllCiphers();
665
666 // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
667 // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
668 // and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
669 // respectively. The MAC key length is zero except for legacy block and stream
670 // ciphers. It returns true on success and false on error.
671 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
672 size_t *out_mac_secret_len,
673 size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
674 uint16_t version, bool is_dtls);
675
676 // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
677 // |cipher|.
678 const EVP_MD *ssl_get_handshake_digest(uint16_t version,
679 const SSL_CIPHER *cipher);
680
681 // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
682 // newly-allocated |SSLCipherPreferenceList| containing the result. It returns
683 // true on success and false on failure. If |strict| is true, nonsense will be
684 // rejected. If false, nonsense will be silently ignored. An empty result is
685 // considered an error regardless of |strict|. |has_aes_hw| indicates if the
686 // list should be ordered based on having support for AES in hardware or not.
687 bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
688 const bool has_aes_hw, const char *rule_str,
689 bool strict);
690
691 // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
692 // values suitable for use with |key| in TLS 1.2 and below. |sign_ok| indicates
693 // whether |key| may be used for signing.
694 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key, bool sign_ok);
695
696 // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
697 // server and, optionally, the client with a certificate.
698 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
699
700 // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
701 // ServerKeyExchange message.
702 //
703 // This function may return false while still allowing |cipher| an optional
704 // ServerKeyExchange. This is the case for plain PSK ciphers.
705 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
706
707 // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
708 // length of an encrypted 1-byte record, for use in record-splitting. Otherwise
709 // it returns zero.
710 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
711
712 // ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best
713 // available from |cipher_suites| compatible with |version| and |policy|. It
714 // returns NULL if there isn't a compatible cipher. |has_aes_hw| indicates if
715 // the choice should be made as if support for AES in hardware is available.
716 const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, bool has_aes_hw,
717 uint16_t version,
718 enum ssl_compliance_policy_t policy);
719
720 // ssl_tls13_cipher_meets_policy returns true if |cipher_id| is acceptable given
721 // |policy|.
722 bool ssl_tls13_cipher_meets_policy(uint16_t cipher_id,
723 enum ssl_compliance_policy_t policy);
724
725 // ssl_cipher_is_deprecated returns true if |cipher| is deprecated.
726 OPENSSL_EXPORT bool ssl_cipher_is_deprecated(const SSL_CIPHER *cipher);
727
728
729 // Transcript layer.
730
731 // SSLTranscript maintains the handshake transcript as a combination of a
732 // buffer and running hash.
733 class SSLTranscript {
734 public:
735 SSLTranscript();
736 ~SSLTranscript();
737
738 SSLTranscript(SSLTranscript &&other) = default;
739 SSLTranscript &operator=(SSLTranscript &&other) = default;
740
741 // Init initializes the handshake transcript. If called on an existing
742 // transcript, it resets the transcript and hash. It returns true on success
743 // and false on failure.
744 bool Init();
745
746 // InitHash initializes the handshake hash based on the PRF and contents of
747 // the handshake transcript. Subsequent calls to |Update| will update the
748 // rolling hash. It returns one on success and zero on failure. It is an error
749 // to call this function after the handshake buffer is released. This may be
750 // called multiple times to change the hash function.
751 bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
752
753 // UpdateForHelloRetryRequest resets the rolling hash with the
754 // HelloRetryRequest construction. It returns true on success and false on
755 // failure. It is an error to call this function before the handshake buffer
756 // is released.
757 bool UpdateForHelloRetryRequest();
758
759 // CopyToHashContext initializes |ctx| with |digest| and the data thus far in
760 // the transcript. It returns true on success and false on failure. If the
761 // handshake buffer is still present, |digest| may be any supported digest.
762 // Otherwise, |digest| must match the transcript hash.
763 bool CopyToHashContext(EVP_MD_CTX *ctx, const EVP_MD *digest) const;
764
765 Span<const uint8_t> buffer() const {
766 return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
767 buffer_->length);
768 }
769
770 // FreeBuffer releases the handshake buffer. Subsequent calls to
771 // |Update| will not update the handshake buffer.
772 void FreeBuffer();
773
774 // DigestLen returns the length of the PRF hash.
775 size_t DigestLen() const;
776
777 // Digest returns the PRF hash. For TLS 1.1 and below, this is
778 // |EVP_md5_sha1|.
779 const EVP_MD *Digest() const;
780
781 // Update adds |in| to the handshake buffer and handshake hash, whichever is
782 // enabled. It returns true on success and false on failure.
783 bool Update(Span<const uint8_t> in);
784
785 // GetHash writes the handshake hash to |out| which must have room for at
786 // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
787 // the number of bytes written. Otherwise, it returns false.
788 bool GetHash(uint8_t *out, size_t *out_len) const;
789
790 // GetFinishedMAC computes the MAC for the Finished message into the bytes
791 // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
792 // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
793 // on failure.
794 bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
795 bool from_server) const;
796
797 private:
798 // buffer_, if non-null, contains the handshake transcript.
799 UniquePtr<BUF_MEM> buffer_;
800 // hash, if initialized with an |EVP_MD|, maintains the handshake hash.
801 ScopedEVP_MD_CTX hash_;
802 };
803
804 // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
805 // as the secret and |label| as the label. |seed1| and |seed2| are concatenated
806 // to form the seed parameter. It returns true on success and false on failure.
807 bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
808 Span<const uint8_t> secret, Span<const char> label,
809 Span<const uint8_t> seed1, Span<const uint8_t> seed2);
810
811
812 // Encryption layer.
813
814 // SSLAEADContext contains information about an AEAD that is being used to
815 // encrypt an SSL connection.
816 class SSLAEADContext {
817 public:
818 SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
819 ~SSLAEADContext();
820 static constexpr bool kAllowUniquePtr = true;
821
822 SSLAEADContext(const SSLAEADContext &&) = delete;
823 SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
824
825 // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
826 static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
827
828 // Create creates an |SSLAEADContext| using the supplied key material. It
829 // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
830 // resulting object, depending on |direction|. |version| is the normalized
831 // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
832 static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
833 uint16_t version, bool is_dtls,
834 const SSL_CIPHER *cipher,
835 Span<const uint8_t> enc_key,
836 Span<const uint8_t> mac_key,
837 Span<const uint8_t> fixed_iv);
838
839 // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the
840 // given cipher and version. The resulting object can be queried for various
841 // properties but cannot encrypt or decrypt data.
842 static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC(
843 uint16_t version, const SSL_CIPHER *cipher);
844
845 // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
846 // cipher, to make version-specific determinations in the record layer prior
847 // to a cipher being selected.
848 void SetVersionIfNullCipher(uint16_t version);
849
850 // ProtocolVersion returns the protocol version associated with this
851 // SSLAEADContext. It can only be called once |version_| has been set to a
852 // valid value.
853 uint16_t ProtocolVersion() const;
854
855 // RecordVersion returns the record version that should be used with this
856 // SSLAEADContext for record construction and crypto.
857 uint16_t RecordVersion() const;
858
859 const SSL_CIPHER *cipher() const { return cipher_; }
860
861 // is_null_cipher returns true if this is the null cipher.
862 bool is_null_cipher() const { return !cipher_; }
863
864 // ExplicitNonceLen returns the length of the explicit nonce.
865 size_t ExplicitNonceLen() const;
866
867 // MaxOverhead returns the maximum overhead of calling |Seal|.
868 size_t MaxOverhead() const;
869
870 // SuffixLen calculates the suffix length written by |SealScatter| and writes
871 // it to |*out_suffix_len|. It returns true on success and false on error.
872 // |in_len| and |extra_in_len| should equal the argument of the same names
873 // passed to |SealScatter|.
874 bool SuffixLen(size_t *out_suffix_len, size_t in_len,
875 size_t extra_in_len) const;
876
877 // CiphertextLen calculates the total ciphertext length written by
878 // |SealScatter| and writes it to |*out_len|. It returns true on success and
879 // false on error. |in_len| and |extra_in_len| should equal the argument of
880 // the same names passed to |SealScatter|.
881 bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const;
882
883 // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
884 // to the plaintext in |in| and returns true. Otherwise, it returns
885 // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
886 bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
887 uint64_t seqnum, Span<const uint8_t> header, Span<uint8_t> in);
888
889 // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
890 // result to |out|. It returns true on success and false on error.
891 //
892 // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
893 bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
894 uint16_t record_version, uint64_t seqnum,
895 Span<const uint8_t> header, const uint8_t *in, size_t in_len);
896
897 // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
898 // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
899 // success and zero on error.
900 //
901 // On successful return, exactly |ExplicitNonceLen| bytes are written to
902 // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
903 // |out_suffix|.
904 //
905 // |extra_in| may point to an additional plaintext buffer. If present,
906 // |extra_in_len| additional bytes are encrypted and authenticated, and the
907 // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
908 // be used to size |out_suffix| accordingly.
909 //
910 // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
911 // alias anything.
912 bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
913 uint8_t type, uint16_t record_version, uint64_t seqnum,
914 Span<const uint8_t> header, const uint8_t *in, size_t in_len,
915 const uint8_t *extra_in, size_t extra_in_len);
916
917 bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
918
919 private:
920 // GetAdditionalData returns the additional data, writing into |storage| if
921 // necessary.
922 Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type,
923 uint16_t record_version,
924 uint64_t seqnum, size_t plaintext_len,
925 Span<const uint8_t> header);
926
927 const SSL_CIPHER *cipher_;
928 ScopedEVP_AEAD_CTX ctx_;
929 // fixed_nonce_ contains any bytes of the nonce that are fixed for all
930 // records.
931 uint8_t fixed_nonce_[12];
932 uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
933 // version_ is the wire version that should be used with this AEAD.
934 uint16_t version_;
935 // is_dtls_ is whether DTLS is being used with this AEAD.
936 bool is_dtls_;
937 // variable_nonce_included_in_record_ is true if the variable nonce
938 // for a record is included as a prefix before the ciphertext.
939 bool variable_nonce_included_in_record_ : 1;
940 // random_variable_nonce_ is true if the variable nonce is
941 // randomly generated, rather than derived from the sequence
942 // number.
943 bool random_variable_nonce_ : 1;
944 // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
945 // variable nonce rather than prepended.
946 bool xor_fixed_nonce_ : 1;
947 // omit_length_in_ad_ is true if the length should be omitted in the
948 // AEAD's ad parameter.
949 bool omit_length_in_ad_ : 1;
950 // ad_is_header_ is true if the AEAD's ad parameter is the record header.
951 bool ad_is_header_ : 1;
952 };
953
954
955 // DTLS replay bitmap.
956
957 // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
958 // replayed packets. It should be initialized by zeroing every field.
959 struct DTLS1_BITMAP {
960 // map is a bitset of sequence numbers that have been seen. Bit i corresponds
961 // to |max_seq_num - i|.
962 std::bitset<256> map;
963 // max_seq_num is the largest sequence number seen so far as a 64-bit
964 // integer.
965 uint64_t max_seq_num = 0;
966 };
967
968
969 // Record layer.
970
971 // ssl_record_prefix_len returns the length of the prefix before the ciphertext
972 // of a record for |ssl|.
973 //
974 // TODO(davidben): Expose this as part of public API once the high-level
975 // buffer-free APIs are available.
976 size_t ssl_record_prefix_len(const SSL *ssl);
977
978 enum ssl_open_record_t {
979 ssl_open_record_success,
980 ssl_open_record_discard,
981 ssl_open_record_partial,
982 ssl_open_record_close_notify,
983 ssl_open_record_error,
984 };
985
986 // tls_open_record decrypts a record from |in| in-place.
987 //
988 // If the input did not contain a complete record, it returns
989 // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
990 // bytes necessary. It is guaranteed that a successful call to |tls_open_record|
991 // will consume at least that many bytes.
992 //
993 // Otherwise, it sets |*out_consumed| to the number of bytes of input
994 // consumed. Note that input may be consumed on all return codes if a record was
995 // decrypted.
996 //
997 // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
998 // record type and |*out| to the record body in |in|. Note that |*out| may be
999 // empty.
1000 //
1001 // If a record was successfully processed but should be discarded, it returns
1002 // |ssl_open_record_discard|.
1003 //
1004 // If a record was successfully processed but is a close_notify, it returns
1005 // |ssl_open_record_close_notify|.
1006 //
1007 // On failure or fatal alert, it returns |ssl_open_record_error| and sets
1008 // |*out_alert| to an alert to emit, or zero if no alert should be emitted.
1009 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
1010 Span<uint8_t> *out, size_t *out_consumed,
1011 uint8_t *out_alert, Span<uint8_t> in);
1012
1013 // dtls_open_record implements |tls_open_record| for DTLS. It only returns
1014 // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
1015 // zero. The caller should read one packet and try again.
1016 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
1017 Span<uint8_t> *out,
1018 size_t *out_consumed,
1019 uint8_t *out_alert, Span<uint8_t> in);
1020
1021 // ssl_seal_align_prefix_len returns the length of the prefix before the start
1022 // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
1023 // use this to align buffers.
1024 //
1025 // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
1026 // record and is the offset into second record's ciphertext. Thus sealing a
1027 // small record may result in a smaller output than this value.
1028 //
1029 // TODO(davidben): Is this alignment valuable? Record-splitting makes this a
1030 // mess.
1031 size_t ssl_seal_align_prefix_len(const SSL *ssl);
1032
1033 // tls_seal_record seals a new record of type |type| and body |in| and writes it
1034 // to |out|. At most |max_out| bytes will be written. It returns true on success
1035 // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC
1036 // 1/n-1 record splitting and may write two records concatenated.
1037 //
1038 // For a large record, the bulk of the ciphertext will begin
1039 // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
1040 // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
1041 // bytes to |out|.
1042 //
1043 // |in| and |out| may not alias.
1044 bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1045 uint8_t type, const uint8_t *in, size_t in_len);
1046
1047 enum dtls1_use_epoch_t {
1048 dtls1_use_previous_epoch,
1049 dtls1_use_current_epoch,
1050 };
1051
1052 // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
1053 // record.
1054 size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
1055
1056 // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
1057 // front of the plaintext when sealing a record in-place.
1058 size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
1059
1060 // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
1061 // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
1062 // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
1063 // ahead of |out|.
1064 bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1065 uint8_t type, const uint8_t *in, size_t in_len,
1066 enum dtls1_use_epoch_t use_epoch);
1067
1068 // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
1069 // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
1070 // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
1071 // appropriate.
1072 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
1073 Span<const uint8_t> in);
1074
1075
1076 // Private key operations.
1077
1078 // ssl_private_key_* perform the corresponding operation on
1079 // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
1080 // call the corresponding function or |complete| depending on whether there is a
1081 // pending operation. Otherwise, they implement the operation with
1082 // |EVP_PKEY|.
1083
1084 enum ssl_private_key_result_t ssl_private_key_sign(
1085 SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
1086 uint16_t sigalg, Span<const uint8_t> in);
1087
1088 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
1089 uint8_t *out,
1090 size_t *out_len,
1091 size_t max_out,
1092 Span<const uint8_t> in);
1093
1094 // ssl_pkey_supports_algorithm returns whether |pkey| may be used to sign
1095 // |sigalg|.
1096 bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
1097 uint16_t sigalg);
1098
1099 // ssl_public_key_verify verifies that the |signature| is valid for the public
1100 // key |pkey| and input |in|, using the signature algorithm |sigalg|.
1101 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
1102 uint16_t sigalg, EVP_PKEY *pkey,
1103 Span<const uint8_t> in);
1104
1105
1106 // Key shares.
1107
1108 // SSLKeyShare abstracts over KEM-like constructions, for use with TLS 1.2 ECDHE
1109 // cipher suites and the TLS 1.3 key_share extension.
1110 //
1111 // TODO(davidben): This class is named SSLKeyShare after the TLS 1.3 key_share
1112 // extension, but it really implements a KEM abstraction. Additionally, we use
1113 // the same type for Encap, which is a one-off, stateless operation, as Generate
1114 // and Decap. Slightly tidier would be for Generate to return a new SSLKEMKey
1115 // (or we introduce EVP_KEM and EVP_KEM_KEY), with a Decap method, and for Encap
1116 // to be static function.
1117 class SSLKeyShare {
1118 public:
1119 virtual ~SSLKeyShare() {}
1120 static constexpr bool kAllowUniquePtr = true;
1121
1122 // Create returns a SSLKeyShare instance for use with group |group_id| or
1123 // nullptr on error.
1124 static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
1125
1126 // GroupID returns the group ID.
1127 virtual uint16_t GroupID() const = 0;
1128
1129 // Generate generates a keypair and writes the public key to |out_public_key|.
1130 // It returns true on success and false on error.
1131 virtual bool Generate(CBB *out_public_key) = 0;
1132
1133 // Encap generates an ephemeral, symmetric secret and encapsulates it with
1134 // |peer_key|. On success, it returns true, writes the encapsulated secret to
1135 // |out_ciphertext|, and sets |*out_secret| to the shared secret. On failure,
1136 // it returns false and sets |*out_alert| to an alert to send to the peer.
1137 virtual bool Encap(CBB *out_ciphertext, Array<uint8_t> *out_secret,
1138 uint8_t *out_alert,
1139 Span<const uint8_t> peer_key) = 0;
1140
1141 // Decap decapsulates the symmetric secret in |ciphertext|. On success, it
1142 // returns true and sets |*out_secret| to the shared secret. On failure, it
1143 // returns false and sets |*out_alert| to an alert to send to the peer.
1144 virtual bool Decap(Array<uint8_t> *out_secret, uint8_t *out_alert,
1145 Span<const uint8_t> ciphertext) = 0;
1146
1147 // SerializePrivateKey writes the private key to |out|, returning true if
1148 // successful and false otherwise. It should be called after |Generate|.
1149 virtual bool SerializePrivateKey(CBB *out) { return false; }
1150
1151 // DeserializePrivateKey initializes the state of the key exchange from |in|,
1152 // returning true if successful and false otherwise.
1153 virtual bool DeserializePrivateKey(CBS *in) { return false; }
1154 };
1155
1156 struct NamedGroup {
1157 int nid;
1158 uint16_t group_id;
1159 const char name[32], alias[32];
1160 };
1161
1162 // NamedGroups returns all supported groups.
1163 Span<const NamedGroup> NamedGroups();
1164
1165 // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
1166 // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns
1167 // false.
1168 bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
1169
1170 // ssl_name_to_group_id looks up the group corresponding to the |name| string of
1171 // length |len|. On success, it sets |*out_group_id| to the group ID and returns
1172 // true. Otherwise, it returns false.
1173 bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
1174
1175 // ssl_group_id_to_nid returns the NID corresponding to |group_id| or
1176 // |NID_undef| if unknown.
1177 int ssl_group_id_to_nid(uint16_t group_id);
1178
1179
1180 // Handshake messages.
1181
1182 struct SSLMessage {
1183 bool is_v2_hello;
1184 uint8_t type;
1185 CBS body;
1186 // raw is the entire serialized handshake message, including the TLS or DTLS
1187 // message header.
1188 CBS raw;
1189 };
1190
1191 // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
1192 // ChangeCipherSpec, in the longest handshake flight. Currently this is the
1193 // client's second leg in a full handshake when client certificates, NPN, and
1194 // Channel ID, are all enabled.
1195 #define SSL_MAX_HANDSHAKE_FLIGHT 7
1196
1197 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
1198 extern const uint8_t kTLS12DowngradeRandom[8];
1199 extern const uint8_t kTLS13DowngradeRandom[8];
1200 extern const uint8_t kJDK11DowngradeRandom[8];
1201
1202 // ssl_max_handshake_message_len returns the maximum number of bytes permitted
1203 // in a handshake message for |ssl|.
1204 size_t ssl_max_handshake_message_len(const SSL *ssl);
1205
1206 // tls_can_accept_handshake_data returns whether |ssl| is able to accept more
1207 // data into handshake buffer.
1208 bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
1209
1210 // tls_has_unprocessed_handshake_data returns whether there is buffered
1211 // handshake data that has not been consumed by |get_message|.
1212 bool tls_has_unprocessed_handshake_data(const SSL *ssl);
1213
1214 // tls_append_handshake_data appends |data| to the handshake buffer. It returns
1215 // true on success and false on allocation failure.
1216 bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data);
1217
1218 // dtls_has_unprocessed_handshake_data behaves like
1219 // |tls_has_unprocessed_handshake_data| for DTLS.
1220 bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
1221
1222 // tls_flush_pending_hs_data flushes any handshake plaintext data.
1223 bool tls_flush_pending_hs_data(SSL *ssl);
1224
1225 struct DTLS_OUTGOING_MESSAGE {
1226 DTLS_OUTGOING_MESSAGE() {}
1227 DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
1228 DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
1229
1230 void Clear();
1231
1232 Array<uint8_t> data;
1233 uint16_t epoch = 0;
1234 bool is_ccs = false;
1235 };
1236
1237 // dtls_clear_outgoing_messages releases all buffered outgoing messages.
1238 void dtls_clear_outgoing_messages(SSL *ssl);
1239
1240
1241 // Callbacks.
1242
1243 // ssl_do_info_callback calls |ssl|'s info callback, if set.
1244 void ssl_do_info_callback(const SSL *ssl, int type, int value);
1245
1246 // ssl_do_msg_callback calls |ssl|'s message callback, if set.
1247 void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type,
1248 Span<const uint8_t> in);
1249
1250
1251 // Transport buffers.
1252
1253 class SSLBuffer {
1254 public:
1255 SSLBuffer() {}
1256 ~SSLBuffer() { Clear(); }
1257
1258 SSLBuffer(const SSLBuffer &) = delete;
1259 SSLBuffer &operator=(const SSLBuffer &) = delete;
1260
1261 uint8_t *data() { return buf_ + offset_; }
1262 size_t size() const { return size_; }
1263 bool empty() const { return size_ == 0; }
1264 size_t cap() const { return cap_; }
1265
1266 Span<uint8_t> span() { return MakeSpan(data(), size()); }
1267
1268 Span<uint8_t> remaining() {
1269 return MakeSpan(data() + size(), cap() - size());
1270 }
1271
1272 // Clear releases the buffer.
1273 void Clear();
1274
1275 // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
1276 // that data written after |header_len| is aligned to a
1277 // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
1278 // on error.
1279 bool EnsureCap(size_t header_len, size_t new_cap);
1280
1281 // DidWrite extends the buffer by |len|. The caller must have filled in to
1282 // this point.
1283 void DidWrite(size_t len);
1284
1285 // Consume consumes |len| bytes from the front of the buffer. The memory
1286 // consumed will remain valid until the next call to |DiscardConsumed| or
1287 // |Clear|.
1288 void Consume(size_t len);
1289
1290 // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
1291 // is now empty, it releases memory used by it.
1292 void DiscardConsumed();
1293
1294 private:
1295 // buf_ is the memory allocated for this buffer.
1296 uint8_t *buf_ = nullptr;
1297 // offset_ is the offset into |buf_| which the buffer contents start at.
1298 uint16_t offset_ = 0;
1299 // size_ is the size of the buffer contents from |buf_| + |offset_|.
1300 uint16_t size_ = 0;
1301 // cap_ is how much memory beyond |buf_| + |offset_| is available.
1302 uint16_t cap_ = 0;
1303 // inline_buf_ is a static buffer for short reads.
1304 uint8_t inline_buf_[SSL3_RT_HEADER_LENGTH];
1305 // buf_allocated_ is true if |buf_| points to allocated data and must be freed
1306 // or false if it points into |inline_buf_|.
1307 bool buf_allocated_ = false;
1308 };
1309
1310 // ssl_read_buffer_extend_to extends the read buffer to the desired length. For
1311 // TLS, it reads to the end of the buffer until the buffer is |len| bytes
1312 // long. For DTLS, it reads a new packet and ignores |len|. It returns one on
1313 // success, zero on EOF, and a negative number on error.
1314 //
1315 // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
1316 // non-empty.
1317 int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
1318
1319 // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
1320 // to a record-processing function. If |ret| is a success or if the caller
1321 // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
1322 // 0.
1323 int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
1324 size_t consumed, uint8_t alert);
1325
1326 // ssl_write_buffer_flush flushes the write buffer to the transport. It returns
1327 // one on success and <= 0 on error. For DTLS, whether or not the write
1328 // succeeds, the write buffer will be cleared.
1329 int ssl_write_buffer_flush(SSL *ssl);
1330
1331
1332 // Certificate functions.
1333
1334 // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
1335 // by a TLS Certificate message. On success, it advances |cbs| and returns
1336 // true. Otherwise, it returns false and sets |*out_alert| to an alert to send
1337 // to the peer.
1338 //
1339 // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
1340 // the certificate chain and the leaf certificate's public key
1341 // respectively. Otherwise, both will be set to nullptr.
1342 //
1343 // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
1344 // SHA-256 hash of the leaf to |out_leaf_sha256|.
1345 bool ssl_parse_cert_chain(uint8_t *out_alert,
1346 UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
1347 UniquePtr<EVP_PKEY> *out_pubkey,
1348 uint8_t *out_leaf_sha256, CBS *cbs,
1349 CRYPTO_BUFFER_POOL *pool);
1350
1351 enum ssl_key_usage_t {
1352 key_usage_digital_signature = 0,
1353 key_usage_encipherment = 2,
1354 };
1355
1356 // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in|
1357 // and returns true if doesn't specify a key usage or, if it does, if it
1358 // includes |bit|. Otherwise it pushes to the error queue and returns false.
1359 OPENSSL_EXPORT bool ssl_cert_check_key_usage(const CBS *in,
1360 enum ssl_key_usage_t bit);
1361
1362 // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
1363 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
1364 // nullptr and pushes to the error queue.
1365 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
1366
1367 // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
1368 // TLS CertificateRequest message. On success, it returns a newly-allocated
1369 // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
1370 // sets |*out_alert| to an alert to send to the peer.
1371 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
1372 uint8_t *out_alert,
1373 CBS *cbs);
1374
1375 // ssl_has_client_CAs returns there are configured CAs.
1376 bool ssl_has_client_CAs(const SSL_CONFIG *cfg);
1377
1378 // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
1379 // used by a TLS CertificateRequest message. It returns true on success and
1380 // false on error.
1381 bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb);
1382
1383 // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
1384 // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
1385 // an error on the error queue.
1386 bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
1387 const CRYPTO_BUFFER *leaf);
1388
1389
1390 // TLS 1.3 key derivation.
1391
1392 // tls13_init_key_schedule initializes the handshake hash and key derivation
1393 // state, and incorporates the PSK. The cipher suite and PRF hash must have been
1394 // selected at this point. It returns true on success and false on error.
1395 bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk);
1396
1397 // tls13_init_early_key_schedule initializes the handshake hash and key
1398 // derivation state from |session| for use with 0-RTT. It returns one on success
1399 // and zero on error.
1400 bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs,
1401 const SSL_SESSION *session);
1402
1403 // tls13_advance_key_schedule incorporates |in| into the key schedule with
1404 // HKDF-Extract. It returns true on success and false on error.
1405 bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in);
1406
1407 // tls13_set_traffic_key sets the read or write traffic keys to
1408 // |traffic_secret|. The version and cipher suite are determined from |session|.
1409 // It returns true on success and false on error.
1410 bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
1411 enum evp_aead_direction_t direction,
1412 const SSL_SESSION *session,
1413 Span<const uint8_t> traffic_secret);
1414
1415 // tls13_derive_early_secret derives the early traffic secret. It returns true
1416 // on success and false on error.
1417 bool tls13_derive_early_secret(SSL_HANDSHAKE *hs);
1418
1419 // tls13_derive_handshake_secrets derives the handshake traffic secret. It
1420 // returns true on success and false on error.
1421 bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
1422
1423 // tls13_rotate_traffic_key derives the next read or write traffic secret. It
1424 // returns true on success and false on error.
1425 bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
1426
1427 // tls13_derive_application_secrets derives the initial application data traffic
1428 // and exporter secrets based on the handshake transcripts and |master_secret|.
1429 // It returns true on success and false on error.
1430 bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
1431
1432 // tls13_derive_resumption_secret derives the |resumption_secret|.
1433 bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
1434
1435 // tls13_export_keying_material provides an exporter interface to use the
1436 // |exporter_secret|.
1437 bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
1438 Span<const uint8_t> secret,
1439 Span<const char> label,
1440 Span<const uint8_t> context);
1441
1442 // tls13_finished_mac calculates the MAC of the handshake transcript to verify
1443 // the integrity of the Finished message, and stores the result in |out| and
1444 // length in |out_len|. |is_server| is true if this is for the Server Finished
1445 // and false for the Client Finished.
1446 bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
1447 bool is_server);
1448
1449 // tls13_derive_session_psk calculates the PSK for this session based on the
1450 // resumption master secret and |nonce|. It returns true on success, and false
1451 // on failure.
1452 bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
1453
1454 // tls13_write_psk_binder calculates the PSK binder value over |transcript| and
1455 // |msg|, and replaces the last bytes of |msg| with the resulting value. It
1456 // returns true on success, and false on failure. If |out_binder_len| is
1457 // non-NULL, it sets |*out_binder_len| to the length of the value computed.
1458 bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs,
1459 const SSLTranscript &transcript, Span<uint8_t> msg,
1460 size_t *out_binder_len);
1461
1462 // tls13_verify_psk_binder verifies that the handshake transcript, truncated up
1463 // to the binders has a valid signature using the value of |session|'s
1464 // resumption secret. It returns true on success, and false on failure.
1465 bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs,
1466 const SSL_SESSION *session, const SSLMessage &msg,
1467 CBS *binders);
1468
1469
1470 // Encrypted ClientHello.
1471
1472 struct ECHConfig {
1473 static constexpr bool kAllowUniquePtr = true;
1474 // raw contains the serialized ECHConfig.
1475 Array<uint8_t> raw;
1476 // The following fields alias into |raw|.
1477 Span<const uint8_t> public_key;
1478 Span<const uint8_t> public_name;
1479 Span<const uint8_t> cipher_suites;
1480 uint16_t kem_id = 0;
1481 uint8_t maximum_name_length = 0;
1482 uint8_t config_id = 0;
1483 };
1484
1485 class ECHServerConfig {
1486 public:
1487 static constexpr bool kAllowUniquePtr = true;
1488 ECHServerConfig() = default;
1489 ECHServerConfig(const ECHServerConfig &other) = delete;
1490 ECHServerConfig &operator=(ECHServerConfig &&) = delete;
1491
1492 // Init parses |ech_config| as an ECHConfig and saves a copy of |key|.
1493 // It returns true on success and false on error.
1494 bool Init(Span<const uint8_t> ech_config, const EVP_HPKE_KEY *key,
1495 bool is_retry_config);
1496
1497 // SetupContext sets up |ctx| for a new connection, given the specified
1498 // HPKE ciphersuite and encapsulated KEM key. It returns true on success and
1499 // false on error. This function may only be called on an initialized object.
1500 bool SetupContext(EVP_HPKE_CTX *ctx, uint16_t kdf_id, uint16_t aead_id,
1501 Span<const uint8_t> enc) const;
1502
1503 const ECHConfig &ech_config() const { return ech_config_; }
1504 bool is_retry_config() const { return is_retry_config_; }
1505
1506 private:
1507 ECHConfig ech_config_;
1508 ScopedEVP_HPKE_KEY key_;
1509 bool is_retry_config_ = false;
1510 };
1511
1512 enum ssl_client_hello_type_t {
1513 ssl_client_hello_unencrypted,
1514 ssl_client_hello_inner,
1515 ssl_client_hello_outer,
1516 };
1517
1518 // ECH_CLIENT_* are types for the ClientHello encrypted_client_hello extension.
1519 #define ECH_CLIENT_OUTER 0
1520 #define ECH_CLIENT_INNER 1
1521
1522 // ssl_decode_client_hello_inner recovers the full ClientHelloInner from the
1523 // EncodedClientHelloInner |encoded_client_hello_inner| by replacing its
1524 // outer_extensions extension with the referenced extensions from the
1525 // ClientHelloOuter |client_hello_outer|. If successful, it writes the recovered
1526 // ClientHelloInner to |out_client_hello_inner|. It returns true on success and
1527 // false on failure.
1528 //
1529 // This function is exported for fuzzing.
1530 OPENSSL_EXPORT bool ssl_decode_client_hello_inner(
1531 SSL *ssl, uint8_t *out_alert, Array<uint8_t> *out_client_hello_inner,
1532 Span<const uint8_t> encoded_client_hello_inner,
1533 const SSL_CLIENT_HELLO *client_hello_outer);
1534
1535 // ssl_client_hello_decrypt attempts to decrypt and decode the |payload|. It
1536 // writes the result to |*out|. |payload| must point into |client_hello_outer|.
1537 // It returns true on success and false on error. On error, it sets
1538 // |*out_is_decrypt_error| to whether the failure was due to a bad ciphertext.
1539 bool ssl_client_hello_decrypt(SSL_HANDSHAKE *hs, uint8_t *out_alert,
1540 bool *out_is_decrypt_error, Array<uint8_t> *out,
1541 const SSL_CLIENT_HELLO *client_hello_outer,
1542 Span<const uint8_t> payload);
1543
1544 #define ECH_CONFIRMATION_SIGNAL_LEN 8
1545
1546 // ssl_ech_confirmation_signal_hello_offset returns the offset of the ECH
1547 // confirmation signal in a ServerHello message, including the handshake header.
1548 size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl);
1549
1550 // ssl_ech_accept_confirmation computes the server's ECH acceptance signal,
1551 // writing it to |out|. The transcript portion is the concatenation of
1552 // |transcript| with |msg|. The |ECH_CONFIRMATION_SIGNAL_LEN| bytes from
1553 // |offset| in |msg| are replaced with zeros before hashing. This function
1554 // returns true on success, and false on failure.
1555 bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out,
1556 Span<const uint8_t> client_random,
1557 const SSLTranscript &transcript, bool is_hrr,
1558 Span<const uint8_t> msg, size_t offset);
1559
1560 // ssl_is_valid_ech_public_name returns true if |public_name| is a valid ECH
1561 // public name and false otherwise. It is exported for testing.
1562 OPENSSL_EXPORT bool ssl_is_valid_ech_public_name(
1563 Span<const uint8_t> public_name);
1564
1565 // ssl_is_valid_ech_config_list returns true if |ech_config_list| is a valid
1566 // ECHConfigList structure and false otherwise.
1567 bool ssl_is_valid_ech_config_list(Span<const uint8_t> ech_config_list);
1568
1569 // ssl_select_ech_config selects an ECHConfig and associated parameters to offer
1570 // on the client and updates |hs|. It returns true on success, whether an
1571 // ECHConfig was found or not, and false on internal error. On success, the
1572 // encapsulated key is written to |out_enc| and |*out_enc_len| is set to the
1573 // number of bytes written. If the function did not select an ECHConfig, the
1574 // encapsulated key is the empty string.
1575 bool ssl_select_ech_config(SSL_HANDSHAKE *hs, Span<uint8_t> out_enc,
1576 size_t *out_enc_len);
1577
1578 // ssl_ech_extension_body_length returns the length of the body of a ClientHello
1579 // ECH extension that encrypts |in_len| bytes with |aead| and an 'enc' value of
1580 // length |enc_len|. The result does not include the four-byte extension header.
1581 size_t ssl_ech_extension_body_length(const EVP_HPKE_AEAD *aead, size_t enc_len,
1582 size_t in_len);
1583
1584 // ssl_encrypt_client_hello constructs a new ClientHelloInner, adds it to the
1585 // inner transcript, and encrypts for inclusion in the ClientHelloOuter. |enc|
1586 // is the encapsulated key to include in the extension. It returns true on
1587 // success and false on error. If not offering ECH, |enc| is ignored and the
1588 // function will compute a GREASE ECH extension if necessary, and otherwise
1589 // return success while doing nothing.
1590 //
1591 // Encrypting the ClientHelloInner incorporates all extensions in the
1592 // ClientHelloOuter, so all other state necessary for |ssl_add_client_hello|
1593 // must already be computed.
1594 bool ssl_encrypt_client_hello(SSL_HANDSHAKE *hs, Span<const uint8_t> enc);
1595
1596
1597 // Credentials.
1598
1599 enum class SSLCredentialType {
1600 kX509,
1601 kDelegated,
1602 };
1603
1604 BSSL_NAMESPACE_END
1605
1606 // SSL_CREDENTIAL is exported to C, so it must be defined outside the namespace.
1607 struct ssl_credential_st : public bssl::RefCounted<ssl_credential_st> {
1608 explicit ssl_credential_st(bssl::SSLCredentialType type);
1609 ssl_credential_st(const ssl_credential_st &) = delete;
1610 ssl_credential_st &operator=(const ssl_credential_st &) = delete;
1611
1612 // Dup returns a copy of the credential, or nullptr on error. The |ex_data|
1613 // values are not copied. This is only used on the default credential, whose
1614 // |ex_data| is inaccessible.
1615 bssl::UniquePtr<SSL_CREDENTIAL> Dup() const;
1616
1617 // ClearCertAndKey erases any certificate and private key on the credential.
1618 void ClearCertAndKey();
1619
1620 // UsesX509 returns true if the credential type uses an X.509 certificate.
1621 bool UsesX509() const;
1622
1623 // UsesPrivateKey returns true if the credential type uses an asymmetric
1624 // private key.
1625 bool UsesPrivateKey() const;
1626
1627 // IsComplete returns whether all required fields in the credential have been
1628 // filled in.
1629 bool IsComplete() const;
1630
1631 // SetLeafCert sets the leaf certificate to |leaf|, leaving the remaining
1632 // certificates unmodified. It returns true on success and false on error. If
1633 // |discard_key_on_mismatch| is true and the private key is inconsistent with
1634 // the new leaf certificate, it is silently discarded.
1635 bool SetLeafCert(bssl::UniquePtr<CRYPTO_BUFFER> leaf,
1636 bool discard_key_on_mismatch);
1637
1638 // ClearIntermediateCerts clears intermediate certificates in the certificate
1639 // chain, while preserving the leaf.
1640 void ClearIntermediateCerts();
1641
1642 // AppendIntermediateCert appends |cert| to the certificate chain. If there is
1643 // no leaf certificate configured, it leaves a placeholder null in |chain|. It
1644 // returns one on success and zero on error.
1645 bool AppendIntermediateCert(bssl::UniquePtr<CRYPTO_BUFFER> cert);
1646
1647 // type is the credential type and determines which other fields apply.
1648 bssl::SSLCredentialType type;
1649
1650 // pubkey is the cached public key of the credential. Unlike |privkey|, it is
1651 // always present and is extracted from the certificate, delegated credential,
1652 // etc.
1653 bssl::UniquePtr<EVP_PKEY> pubkey;
1654
1655 // privkey is the private key of the credential. It may be omitted in favor of
1656 // |key_method|.
1657 bssl::UniquePtr<EVP_PKEY> privkey;
1658
1659 // key_method, if non-null, is a set of callbacks to call for private key
1660 // operations.
1661 const SSL_PRIVATE_KEY_METHOD *key_method = nullptr;
1662
1663 // sigalgs, if non-empty, is the set of signature algorithms supported by the
1664 // private key in decreasing order of preference. If empty, the default list
1665 // is used.
1666 //
1667 // In delegated credentials, this field is not configurable and is instead
1668 // computed from the dc_cert_verify_algorithm field.
1669 bssl::Array<uint16_t> sigalgs;
1670
1671 // chain contains the certificate chain, with the leaf at the beginning. The
1672 // first element of |chain| may be nullptr to indicate that the leaf
1673 // certificate has not yet been set.
1674 // If |chain| != nullptr -> len(chain) >= 1
1675 // If |chain[0]| == nullptr -> len(chain) >= 2.
1676 // |chain[1..]| != nullptr
1677 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain;
1678
1679 // dc is the DelegatedCredential structure, if this is a delegated credential.
1680 bssl::UniquePtr<CRYPTO_BUFFER> dc;
1681
1682 // dc_algorithm is the signature scheme of the signature over the delegated
1683 // credential itself, made by the end-entity certificate's public key.
1684 uint16_t dc_algorithm = 0;
1685
1686 // Signed certificate timestamp list to be sent to the client, if requested
1687 bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
1688
1689 // OCSP response to be sent to the client, if requested.
1690 bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
1691
1692 CRYPTO_EX_DATA ex_data;
1693
1694 private:
1695 friend RefCounted;
1696 ~ssl_credential_st();
1697 };
1698
1699 BSSL_NAMESPACE_BEGIN
1700
1701 // ssl_get_credential_list computes |hs|'s credential list. On success, it
1702 // writes it to |*out| and returns true. Otherwise, it returns false. The
1703 // credential list may be empty, in which case this function will successfully
1704 // return an empty array.
1705 //
1706 // The pointers in the result are only valid until |hs| is next mutated.
1707 bool ssl_get_credential_list(SSL_HANDSHAKE *hs, Array<SSL_CREDENTIAL *> *out);
1708
1709
1710 // Handshake functions.
1711
1712 enum ssl_hs_wait_t {
1713 ssl_hs_error,
1714 ssl_hs_ok,
1715 ssl_hs_read_server_hello,
1716 ssl_hs_read_message,
1717 ssl_hs_flush,
1718 ssl_hs_certificate_selection_pending,
1719 ssl_hs_handoff,
1720 ssl_hs_handback,
1721 ssl_hs_x509_lookup,
1722 ssl_hs_private_key_operation,
1723 ssl_hs_pending_session,
1724 ssl_hs_pending_ticket,
1725 ssl_hs_early_return,
1726 ssl_hs_early_data_rejected,
1727 ssl_hs_read_end_of_early_data,
1728 ssl_hs_read_change_cipher_spec,
1729 ssl_hs_certificate_verify,
1730 ssl_hs_hints_ready,
1731 };
1732
1733 enum ssl_grease_index_t {
1734 ssl_grease_cipher = 0,
1735 ssl_grease_group,
1736 ssl_grease_extension1,
1737 ssl_grease_extension2,
1738 ssl_grease_version,
1739 ssl_grease_ticket_extension,
1740 ssl_grease_ech_config_id,
1741 ssl_grease_last_index = ssl_grease_ech_config_id,
1742 };
1743
1744 enum tls12_server_hs_state_t {
1745 state12_start_accept = 0,
1746 state12_read_client_hello,
1747 state12_read_client_hello_after_ech,
1748 state12_cert_callback,
1749 state12_tls13,
1750 state12_select_parameters,
1751 state12_send_server_hello,
1752 state12_send_server_certificate,
1753 state12_send_server_key_exchange,
1754 state12_send_server_hello_done,
1755 state12_read_client_certificate,
1756 state12_verify_client_certificate,
1757 state12_read_client_key_exchange,
1758 state12_read_client_certificate_verify,
1759 state12_read_change_cipher_spec,
1760 state12_process_change_cipher_spec,
1761 state12_read_next_proto,
1762 state12_read_channel_id,
1763 state12_read_client_finished,
1764 state12_send_server_finished,
1765 state12_finish_server_handshake,
1766 state12_done,
1767 };
1768
1769 enum tls13_server_hs_state_t {
1770 state13_select_parameters = 0,
1771 state13_select_session,
1772 state13_send_hello_retry_request,
1773 state13_read_second_client_hello,
1774 state13_send_server_hello,
1775 state13_send_server_certificate_verify,
1776 state13_send_server_finished,
1777 state13_send_half_rtt_ticket,
1778 state13_read_second_client_flight,
1779 state13_process_end_of_early_data,
1780 state13_read_client_encrypted_extensions,
1781 state13_read_client_certificate,
1782 state13_read_client_certificate_verify,
1783 state13_read_channel_id,
1784 state13_read_client_finished,
1785 state13_send_new_session_ticket,
1786 state13_done,
1787 };
1788
1789 // handback_t lists the points in the state machine where a handback can occur.
1790 // These are the different points at which key material is no longer needed.
1791 enum handback_t {
1792 handback_after_session_resumption = 0,
1793 handback_after_ecdhe = 1,
1794 handback_after_handshake = 2,
1795 handback_tls13 = 3,
1796 handback_max_value = handback_tls13,
1797 };
1798
1799 // SSL_HANDSHAKE_HINTS contains handshake hints for a connection. See
1800 // |SSL_request_handshake_hints| and related functions.
1801 struct SSL_HANDSHAKE_HINTS {
1802 static constexpr bool kAllowUniquePtr = true;
1803
1804 Array<uint8_t> server_random_tls12;
1805 Array<uint8_t> server_random_tls13;
1806
1807 uint16_t key_share_group_id = 0;
1808 Array<uint8_t> key_share_ciphertext;
1809 Array<uint8_t> key_share_secret;
1810
1811 uint16_t signature_algorithm = 0;
1812 Array<uint8_t> signature_input;
1813 Array<uint8_t> signature_spki;
1814 Array<uint8_t> signature;
1815
1816 Array<uint8_t> decrypted_psk;
1817 bool ignore_psk = false;
1818
1819 uint16_t cert_compression_alg_id = 0;
1820 Array<uint8_t> cert_compression_input;
1821 Array<uint8_t> cert_compression_output;
1822
1823 uint16_t ecdhe_group_id = 0;
1824 Array<uint8_t> ecdhe_public_key;
1825 Array<uint8_t> ecdhe_private_key;
1826
1827 Array<uint8_t> decrypted_ticket;
1828 bool renew_ticket = false;
1829 bool ignore_ticket = false;
1830 };
1831
1832 struct SSL_HANDSHAKE {
1833 explicit SSL_HANDSHAKE(SSL *ssl);
1834 ~SSL_HANDSHAKE();
1835 static constexpr bool kAllowUniquePtr = true;
1836
1837 // ssl is a non-owning pointer to the parent |SSL| object.
1838 SSL *ssl;
1839
1840 // config is a non-owning pointer to the handshake configuration.
1841 SSL_CONFIG *config;
1842
1843 // wait contains the operation the handshake is currently blocking on or
1844 // |ssl_hs_ok| if none.
1845 enum ssl_hs_wait_t wait = ssl_hs_ok;
1846
1847 // state is the internal state for the TLS 1.2 and below handshake. Its
1848 // values depend on |do_handshake| but the starting state is always zero.
1849 int state = 0;
1850
1851 // tls13_state is the internal state for the TLS 1.3 handshake. Its values
1852 // depend on |do_handshake| but the starting state is always zero.
1853 int tls13_state = 0;
1854
1855 // min_version is the minimum accepted protocol version, taking account both
1856 // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
1857 uint16_t min_version = 0;
1858
1859 // max_version is the maximum accepted protocol version, taking account both
1860 // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
1861 uint16_t max_version = 0;
1862
1863 private:
1864 size_t hash_len_ = 0;
1865 uint8_t secret_[SSL_MAX_MD_SIZE] = {0};
1866 uint8_t early_traffic_secret_[SSL_MAX_MD_SIZE] = {0};
1867 uint8_t client_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1868 uint8_t server_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1869 uint8_t client_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1870 uint8_t server_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1871 uint8_t expected_client_finished_[SSL_MAX_MD_SIZE] = {0};
1872
1873 public:
1874 void ResizeSecrets(size_t hash_len);
1875
1876 // GetClientHello, on the server, returns either the normal ClientHello
1877 // message or the ClientHelloInner if it has been serialized to
1878 // |ech_client_hello_buf|. This function should only be called when the
1879 // current message is a ClientHello. It returns true on success and false on
1880 // error.
1881 //
1882 // Note that fields of the returned |out_msg| and |out_client_hello| point
1883 // into a handshake-owned buffer, so their lifetimes should not exceed this
1884 // SSL_HANDSHAKE.
1885 bool GetClientHello(SSLMessage *out_msg, SSL_CLIENT_HELLO *out_client_hello);
1886
1887 Span<uint8_t> secret() { return MakeSpan(secret_, hash_len_); }
1888 Span<const uint8_t> secret() const {
1889 return MakeConstSpan(secret_, hash_len_);
1890 }
1891 Span<uint8_t> early_traffic_secret() {
1892 return MakeSpan(early_traffic_secret_, hash_len_);
1893 }
1894 Span<uint8_t> client_handshake_secret() {
1895 return MakeSpan(client_handshake_secret_, hash_len_);
1896 }
1897 Span<uint8_t> server_handshake_secret() {
1898 return MakeSpan(server_handshake_secret_, hash_len_);
1899 }
1900 Span<uint8_t> client_traffic_secret_0() {
1901 return MakeSpan(client_traffic_secret_0_, hash_len_);
1902 }
1903 Span<uint8_t> server_traffic_secret_0() {
1904 return MakeSpan(server_traffic_secret_0_, hash_len_);
1905 }
1906 Span<uint8_t> expected_client_finished() {
1907 return MakeSpan(expected_client_finished_, hash_len_);
1908 }
1909
1910 union {
1911 // sent is a bitset where the bits correspond to elements of kExtensions
1912 // in extensions.cc. Each bit is set if that extension was sent in a
1913 // ClientHello. It's not used by servers.
1914 uint32_t sent = 0;
1915 // received is a bitset, like |sent|, but is used by servers to record
1916 // which extensions were received from a client.
1917 uint32_t received;
1918 } extensions;
1919
1920 // inner_extensions_sent, on clients that offer ECH, is |extensions.sent| for
1921 // the ClientHelloInner.
1922 uint32_t inner_extensions_sent = 0;
1923
1924 // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
1925 UniquePtr<ERR_SAVE_STATE> error;
1926
1927 // key_shares are the current key exchange instances. The second is only used
1928 // as a client if we believe that we should offer two key shares in a
1929 // ClientHello.
1930 UniquePtr<SSLKeyShare> key_shares[2];
1931
1932 // transcript is the current handshake transcript.
1933 SSLTranscript transcript;
1934
1935 // inner_transcript, on the client, is the handshake transcript for the
1936 // ClientHelloInner handshake. It is moved to |transcript| if the server
1937 // accepts ECH.
1938 SSLTranscript inner_transcript;
1939
1940 // inner_client_random is the ClientHello random value used with
1941 // ClientHelloInner.
1942 uint8_t inner_client_random[SSL3_RANDOM_SIZE] = {0};
1943
1944 // cookie is the value of the cookie in HelloRetryRequest, or empty if none
1945 // was received.
1946 Array<uint8_t> cookie;
1947
1948 // dtls_cookie is the value of the cookie in DTLS HelloVerifyRequest. If
1949 // empty, either none was received or HelloVerifyRequest contained an empty
1950 // cookie.
1951 Array<uint8_t> dtls_cookie;
1952
1953 // ech_client_outer contains the outer ECH extension to send in the
1954 // ClientHello, excluding the header and type byte.
1955 Array<uint8_t> ech_client_outer;
1956
1957 // ech_retry_configs, on the client, contains the retry configs from the
1958 // server as a serialized ECHConfigList.
1959 Array<uint8_t> ech_retry_configs;
1960
1961 // ech_client_hello_buf, on the server, contains the bytes of the
1962 // reconstructed ClientHelloInner message.
1963 Array<uint8_t> ech_client_hello_buf;
1964
1965 // key_share_bytes is the key_share extension that the client should send.
1966 Array<uint8_t> key_share_bytes;
1967
1968 // key_share_ciphertext, for servers, is encapsulated shared secret to be sent
1969 // to the client in the TLS 1.3 key_share extension.
1970 Array<uint8_t> key_share_ciphertext;
1971
1972 // peer_sigalgs are the signature algorithms that the peer supports. These are
1973 // taken from the contents of the signature algorithms extension for a server
1974 // or from the CertificateRequest for a client.
1975 Array<uint16_t> peer_sigalgs;
1976
1977 // peer_supported_group_list contains the supported group IDs advertised by
1978 // the peer. This is only set on the server's end. The server does not
1979 // advertise this extension to the client.
1980 Array<uint16_t> peer_supported_group_list;
1981
1982 // peer_delegated_credential_sigalgs are the signature algorithms the peer
1983 // supports with delegated credentials, or empty if the peer does not support
1984 // delegated credentials.
1985 Array<uint16_t> peer_delegated_credential_sigalgs;
1986
1987 // peer_key is the peer's ECDH key for a TLS 1.2 client.
1988 Array<uint8_t> peer_key;
1989
1990 // extension_permutation is the permutation to apply to ClientHello
1991 // extensions. It maps indices into the |kExtensions| table into other
1992 // indices.
1993 Array<uint8_t> extension_permutation;
1994
1995 // cert_compression_alg_id, for a server, contains the negotiated certificate
1996 // compression algorithm for this client. It is only valid if
1997 // |cert_compression_negotiated| is true.
1998 uint16_t cert_compression_alg_id;
1999
2000 // ech_hpke_ctx is the HPKE context used in ECH. On the server, it is
2001 // initialized if |ech_status| is |ssl_ech_accepted|. On the client, it is
2002 // initialized if |selected_ech_config| is not nullptr.
2003 ScopedEVP_HPKE_CTX ech_hpke_ctx;
2004
2005 // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
2006 // parameters. It has client and server randoms prepended for signing
2007 // convenience.
2008 Array<uint8_t> server_params;
2009
2010 // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
2011 // server when using a TLS 1.2 PSK key exchange.
2012 UniquePtr<char> peer_psk_identity_hint;
2013
2014 // ca_names, on the client, contains the list of CAs received in a
2015 // CertificateRequest message.
2016 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
2017
2018 // cached_x509_ca_names contains a cache of parsed versions of the elements of
2019 // |ca_names|. This pointer is left non-owning so only
2020 // |ssl_crypto_x509_method| needs to link against crypto/x509.
2021 STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
2022
2023 // certificate_types, on the client, contains the set of certificate types
2024 // received in a CertificateRequest message.
2025 Array<uint8_t> certificate_types;
2026
2027 // credential is the credential we are using for the handshake.
2028 UniquePtr<SSL_CREDENTIAL> credential;
2029
2030 // peer_pubkey is the public key parsed from the peer's leaf certificate.
2031 UniquePtr<EVP_PKEY> peer_pubkey;
2032
2033 // new_session is the new mutable session being established by the current
2034 // handshake. It should not be cached.
2035 UniquePtr<SSL_SESSION> new_session;
2036
2037 // early_session is the session corresponding to the current 0-RTT state on
2038 // the client if |in_early_data| is true.
2039 UniquePtr<SSL_SESSION> early_session;
2040
2041 // ssl_ech_keys, for servers, is the set of ECH keys to use with this
2042 // handshake. This is copied from |SSL_CTX| to ensure consistent behavior as
2043 // |SSL_CTX| rotates keys.
2044 UniquePtr<SSL_ECH_KEYS> ech_keys;
2045
2046 // selected_ech_config, for clients, is the ECHConfig the client uses to offer
2047 // ECH, or nullptr if ECH is not being offered. If non-NULL, |ech_hpke_ctx|
2048 // will be initialized.
2049 UniquePtr<ECHConfig> selected_ech_config;
2050
2051 // new_cipher is the cipher being negotiated in this handshake.
2052 const SSL_CIPHER *new_cipher = nullptr;
2053
2054 // key_block is the record-layer key block for TLS 1.2 and earlier.
2055 Array<uint8_t> key_block;
2056
2057 // hints contains the handshake hints for this connection. If
2058 // |hints_requested| is true, this field is non-null and contains the pending
2059 // hints to filled as the predicted handshake progresses. Otherwise, this
2060 // field, if non-null, contains hints configured by the caller and will
2061 // influence the handshake on match.
2062 UniquePtr<SSL_HANDSHAKE_HINTS> hints;
2063
2064 // ech_is_inner, on the server, indicates whether the ClientHello contained an
2065 // inner ECH extension.
2066 bool ech_is_inner : 1;
2067
2068 // ech_authenticated_reject, on the client, indicates whether an ECH rejection
2069 // handshake has been authenticated.
2070 bool ech_authenticated_reject : 1;
2071
2072 // scts_requested is true if the SCT extension is in the ClientHello.
2073 bool scts_requested : 1;
2074
2075 // handshake_finalized is true once the handshake has completed, at which
2076 // point accessors should use the established state.
2077 bool handshake_finalized : 1;
2078
2079 // accept_psk_mode stores whether the client's PSK mode is compatible with our
2080 // preferences.
2081 bool accept_psk_mode : 1;
2082
2083 // cert_request is true if a client certificate was requested.
2084 bool cert_request : 1;
2085
2086 // certificate_status_expected is true if OCSP stapling was negotiated and the
2087 // server is expected to send a CertificateStatus message. (This is used on
2088 // both the client and server sides.)
2089 bool certificate_status_expected : 1;
2090
2091 // ocsp_stapling_requested is true if a client requested OCSP stapling.
2092 bool ocsp_stapling_requested : 1;
2093
2094 // should_ack_sni is used by a server and indicates that the SNI extension
2095 // should be echoed in the ServerHello.
2096 bool should_ack_sni : 1;
2097
2098 // in_false_start is true if there is a pending client handshake in False
2099 // Start. The client may write data at this point.
2100 bool in_false_start : 1;
2101
2102 // in_early_data is true if there is a pending handshake that has progressed
2103 // enough to send and receive early data.
2104 bool in_early_data : 1;
2105
2106 // early_data_offered is true if the client sent the early_data extension.
2107 bool early_data_offered : 1;
2108
2109 // can_early_read is true if application data may be read at this point in the
2110 // handshake.
2111 bool can_early_read : 1;
2112
2113 // can_early_write is true if application data may be written at this point in
2114 // the handshake.
2115 bool can_early_write : 1;
2116
2117 // next_proto_neg_seen is one of NPN was negotiated.
2118 bool next_proto_neg_seen : 1;
2119
2120 // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
2121 // or received.
2122 bool ticket_expected : 1;
2123
2124 // extended_master_secret is true if the extended master secret extension is
2125 // negotiated in this handshake.
2126 bool extended_master_secret : 1;
2127
2128 // pending_private_key_op is true if there is a pending private key operation
2129 // in progress.
2130 bool pending_private_key_op : 1;
2131
2132 // handback indicates that a server should pause the handshake after
2133 // finishing operations that require private key material, in such a way that
2134 // |SSL_get_error| returns |SSL_ERROR_HANDBACK|. It is set by
2135 // |SSL_apply_handoff|.
2136 bool handback : 1;
2137
2138 // hints_requested indicates the caller has requested handshake hints. Only
2139 // the first round-trip of the handshake will complete, after which the
2140 // |hints| structure can be serialized.
2141 bool hints_requested : 1;
2142
2143 // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid.
2144 bool cert_compression_negotiated : 1;
2145
2146 // apply_jdk11_workaround is true if the peer is probably a JDK 11 client
2147 // which implemented TLS 1.3 incorrectly.
2148 bool apply_jdk11_workaround : 1;
2149
2150 // can_release_private_key is true if the private key will no longer be used
2151 // in this handshake.
2152 bool can_release_private_key : 1;
2153
2154 // channel_id_negotiated is true if Channel ID should be used in this
2155 // handshake.
2156 bool channel_id_negotiated : 1;
2157
2158 // client_version is the value sent or received in the ClientHello version.
2159 uint16_t client_version = 0;
2160
2161 // early_data_read is the amount of early data that has been read by the
2162 // record layer.
2163 uint16_t early_data_read = 0;
2164
2165 // early_data_written is the amount of early data that has been written by the
2166 // record layer.
2167 uint16_t early_data_written = 0;
2168
2169 // signature_algorithm is the signature algorithm to be used in signing with
2170 // the selected credential, or zero if not applicable or not yet selected.
2171 uint16_t signature_algorithm = 0;
2172
2173 // ech_config_id is the ECH config sent by the client.
2174 uint8_t ech_config_id = 0;
2175
2176 // session_id is the session ID in the ClientHello.
2177 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
2178 uint8_t session_id_len = 0;
2179
2180 // grease_seed is the entropy for GREASE values.
2181 uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
2182 };
2183
2184 // kMaxTickets is the maximum number of tickets to send immediately after the
2185 // handshake. We use a one-byte ticket nonce, and there is no point in sending
2186 // so many tickets.
2187 constexpr size_t kMaxTickets = 16;
2188
2189 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
2190
2191 // ssl_check_message_type checks if |msg| has type |type|. If so it returns
2192 // one. Otherwise, it sends an alert and returns zero.
2193 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
2194
2195 // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
2196 // on error. It sets |out_early_return| to one if we've completed the handshake
2197 // early.
2198 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
2199
2200 // The following are implementations of |do_handshake| for the client and
2201 // server.
2202 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
2203 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
2204 enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
2205 enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
2206
2207 // The following functions return human-readable representations of the TLS
2208 // handshake states for debugging.
2209 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
2210 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
2211 const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
2212 const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
2213
2214 // tls13_add_key_update queues a KeyUpdate message on |ssl|. The
2215 // |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or
2216 // |SSL_KEY_UPDATE_NOT_REQUESTED|.
2217 bool tls13_add_key_update(SSL *ssl, int update_requested);
2218
2219 // tls13_post_handshake processes a post-handshake message. It returns true on
2220 // success and false on failure.
2221 bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
2222
2223 bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2224 bool allow_anonymous);
2225 bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
2226
2227 // tls13_process_finished processes |msg| as a Finished message from the
2228 // peer. If |use_saved_value| is true, the verify_data is compared against
2229 // |hs->expected_client_finished| rather than computed fresh.
2230 bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2231 bool use_saved_value);
2232
2233 bool tls13_add_certificate(SSL_HANDSHAKE *hs);
2234
2235 // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
2236 // handshake. If it returns |ssl_private_key_retry|, it should be called again
2237 // to retry when the signing operation is completed.
2238 enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
2239
2240 bool tls13_add_finished(SSL_HANDSHAKE *hs);
2241 bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
2242 bssl::UniquePtr<SSL_SESSION> tls13_create_session_with_ticket(SSL *ssl,
2243 CBS *body);
2244
2245 // ssl_setup_extension_permutation computes a ClientHello extension permutation
2246 // for |hs|, if applicable. It returns true on success and false on error.
2247 bool ssl_setup_extension_permutation(SSL_HANDSHAKE *hs);
2248
2249 // ssl_setup_key_shares computes client key shares and saves them in |hs|. It
2250 // returns true on success and false on failure. If |override_group_id| is zero,
2251 // it offers the default groups, including GREASE. If it is non-zero, it offers
2252 // a single key share of the specified group.
2253 bool ssl_setup_key_shares(SSL_HANDSHAKE *hs, uint16_t override_group_id);
2254
2255 bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
2256 Array<uint8_t> *out_secret,
2257 uint8_t *out_alert, CBS *contents);
2258 bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
2259 Span<const uint8_t> *out_peer_key,
2260 uint8_t *out_alert,
2261 const SSL_CLIENT_HELLO *client_hello);
2262 bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2263
2264 bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
2265 uint8_t *out_alert,
2266 CBS *contents);
2267 bool ssl_ext_pre_shared_key_parse_clienthello(
2268 SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
2269 uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert,
2270 const SSL_CLIENT_HELLO *client_hello, CBS *contents);
2271 bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2272
2273 // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
2274 // returns whether it's valid.
2275 bool ssl_is_sct_list_valid(const CBS *contents);
2276
2277 // ssl_write_client_hello_without_extensions writes a ClientHello to |out|,
2278 // up to the extensions field. |type| determines the type of ClientHello to
2279 // write. If |omit_session_id| is true, the session ID is empty.
2280 bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
2281 CBB *cbb,
2282 ssl_client_hello_type_t type,
2283 bool empty_session_id);
2284
2285 // ssl_add_client_hello constructs a ClientHello and adds it to the outgoing
2286 // flight. It returns true on success and false on error.
2287 bool ssl_add_client_hello(SSL_HANDSHAKE *hs);
2288
2289 struct ParsedServerHello {
2290 CBS raw;
2291 uint16_t legacy_version = 0;
2292 CBS random;
2293 CBS session_id;
2294 uint16_t cipher_suite = 0;
2295 uint8_t compression_method = 0;
2296 CBS extensions;
2297 };
2298
2299 // ssl_parse_server_hello parses |msg| as a ServerHello. On success, it writes
2300 // the result to |*out| and returns true. Otherwise, it returns false and sets
2301 // |*out_alert| to an alert to send to the peer.
2302 bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
2303 const SSLMessage &msg);
2304
2305 enum ssl_cert_verify_context_t {
2306 ssl_cert_verify_server,
2307 ssl_cert_verify_client,
2308 ssl_cert_verify_channel_id,
2309 };
2310
2311 // tls13_get_cert_verify_signature_input generates the message to be signed for
2312 // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
2313 // type of signature. It sets |*out| to a newly allocated buffer containing the
2314 // result. This function returns true on success and false on failure.
2315 bool tls13_get_cert_verify_signature_input(
2316 SSL_HANDSHAKE *hs, Array<uint8_t> *out,
2317 enum ssl_cert_verify_context_t cert_verify_context);
2318
2319 // ssl_is_valid_alpn_list returns whether |in| is a valid ALPN protocol list.
2320 bool ssl_is_valid_alpn_list(Span<const uint8_t> in);
2321
2322 // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
2323 // selection for |hs->ssl|'s client preferences.
2324 bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs,
2325 Span<const uint8_t> protocol);
2326
2327 // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
2328 // true on successful negotiation or if nothing was negotiated. It returns false
2329 // and sets |*out_alert| to an alert on error.
2330 bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2331 const SSL_CLIENT_HELLO *client_hello);
2332
2333 // ssl_get_local_application_settings looks up the configured ALPS value for
2334 // |protocol|. If found, it sets |*out_settings| to the value and returns true.
2335 // Otherwise, it returns false.
2336 bool ssl_get_local_application_settings(const SSL_HANDSHAKE *hs,
2337 Span<const uint8_t> *out_settings,
2338 Span<const uint8_t> protocol);
2339
2340 // ssl_negotiate_alps negotiates the ALPS extension, if applicable. It returns
2341 // true on successful negotiation or if nothing was negotiated. It returns false
2342 // and sets |*out_alert| to an alert on error.
2343 bool ssl_negotiate_alps(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2344 const SSL_CLIENT_HELLO *client_hello);
2345
2346 struct SSLExtension {
2347 SSLExtension(uint16_t type_arg, bool allowed_arg = true)
2348 : type(type_arg), allowed(allowed_arg), present(false) {
2349 CBS_init(&data, nullptr, 0);
2350 }
2351
2352 uint16_t type;
2353 bool allowed;
2354 bool present;
2355 CBS data;
2356 };
2357
2358 // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
2359 // it. It writes the parsed extensions to pointers in |extensions|. On success,
2360 // it fills in the |present| and |data| fields and returns true. Otherwise, it
2361 // sets |*out_alert| to an alert to send and returns false. Unknown extensions
2362 // are rejected unless |ignore_unknown| is true.
2363 bool ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
2364 std::initializer_list<SSLExtension *> extensions,
2365 bool ignore_unknown);
2366
2367 // ssl_verify_peer_cert verifies the peer certificate for |hs|.
2368 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
2369 // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a
2370 // session.
2371 enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs,
2372 bool send_alert);
2373
2374 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
2375
2376 // ssl_send_finished adds a Finished message to the current flight of messages.
2377 // It returns true on success and false on error.
2378 bool ssl_send_finished(SSL_HANDSHAKE *hs);
2379
2380 // ssl_send_tls12_certificate adds a TLS 1.2 Certificate message to the current
2381 // flight of messages. It returns true on success and false on error.
2382 bool ssl_send_tls12_certificate(SSL_HANDSHAKE *hs);
2383
2384 // ssl_handshake_session returns the |SSL_SESSION| corresponding to the current
2385 // handshake. Note, in TLS 1.2 resumptions, this session is immutable.
2386 const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs);
2387
2388 // ssl_done_writing_client_hello is called after the last ClientHello is written
2389 // by |hs|. It releases some memory that is no longer needed.
2390 void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs);
2391
2392
2393 // SSLKEYLOGFILE functions.
2394
2395 // ssl_log_secret logs |secret| with label |label|, if logging is enabled for
2396 // |ssl|. It returns true on success and false on failure.
2397 bool ssl_log_secret(const SSL *ssl, const char *label,
2398 Span<const uint8_t> secret);
2399
2400
2401 // ClientHello functions.
2402
2403 // ssl_client_hello_init parses |body| as a ClientHello message, excluding the
2404 // message header, and writes the result to |*out|. It returns true on success
2405 // and false on error. This function is exported for testing.
2406 OPENSSL_EXPORT bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out,
2407 Span<const uint8_t> body);
2408
2409 bool ssl_parse_client_hello_with_trailing_data(const SSL *ssl, CBS *cbs,
2410 SSL_CLIENT_HELLO *out);
2411
2412 bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
2413 CBS *out, uint16_t extension_type);
2414
2415 bool ssl_client_cipher_list_contains_cipher(
2416 const SSL_CLIENT_HELLO *client_hello, uint16_t id);
2417
2418
2419 // GREASE.
2420
2421 // ssl_get_grease_value returns a GREASE value for |hs|. For a given
2422 // connection, the values for each index will be deterministic. This allows the
2423 // same ClientHello be sent twice for a HelloRetryRequest or the same group be
2424 // advertised in both supported_groups and key_shares.
2425 uint16_t ssl_get_grease_value(const SSL_HANDSHAKE *hs,
2426 enum ssl_grease_index_t index);
2427
2428
2429 // Signature algorithms.
2430
2431 // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
2432 // algorithms and saves them on |hs|. It returns true on success and false on
2433 // error.
2434 bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
2435
2436 // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
2437 // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
2438 // success and false if |pkey| may not be used at those versions.
2439 bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
2440
2441 // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
2442 // with |cred| based on the peer's preferences and the algorithms supported. It
2443 // returns true on success and false on error.
2444 bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs,
2445 const SSL_CREDENTIAL *cred, uint16_t *out);
2446
2447 // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
2448 // peer signature to |out|. It returns true on success and false on error.
2449 bool tls12_add_verify_sigalgs(const SSL_HANDSHAKE *hs, CBB *out);
2450
2451 // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
2452 // signature. It returns true on success and false on error, setting
2453 // |*out_alert| to an alert to send.
2454 bool tls12_check_peer_sigalg(const SSL_HANDSHAKE *hs, uint8_t *out_alert,
2455 uint16_t sigalg);
2456
2457
2458 // Underdocumented functions.
2459 //
2460 // Functions below here haven't been touched up and may be underdocumented.
2461
2462 #define TLSEXT_CHANNEL_ID_SIZE 128
2463
2464 // From RFC 4492, used in encoding the curve type in ECParameters
2465 #define NAMED_CURVE_TYPE 3
2466
2467 struct CERT {
2468 static constexpr bool kAllowUniquePtr = true;
2469
2470 explicit CERT(const SSL_X509_METHOD *x509_method);
2471 ~CERT();
2472
2473 bool is_valid() const { return default_credential != nullptr; }
2474
2475 // credentials is the list of credentials to select between. Elements of this
2476 // array immutable.
2477 GrowableArray<UniquePtr<SSL_CREDENTIAL>> credentials;
2478
2479 // default_credential is the credential configured by the legacy,
2480 // non-credential-based APIs. If IsComplete() returns true, it is appended to
2481 // the list of credentials.
2482 UniquePtr<SSL_CREDENTIAL> default_credential;
2483
2484 // x509_method contains pointers to functions that might deal with |X509|
2485 // compatibility, or might be a no-op, depending on the application.
2486 const SSL_X509_METHOD *x509_method = nullptr;
2487
2488 // x509_chain may contain a parsed copy of |chain[1..]| from the default
2489 // credential. This is only used as a cache in order to implement “get0”
2490 // functions that return a non-owning pointer to the certificate chain.
2491 STACK_OF(X509) *x509_chain = nullptr;
2492
2493 // x509_leaf may contain a parsed copy of the first element of |chain| from
2494 // the default credential. This is only used as a cache in order to implement
2495 // “get0” functions that return a non-owning pointer to the certificate chain.
2496 X509 *x509_leaf = nullptr;
2497
2498 // x509_stash contains the last |X509| object append to the default
2499 // credential's chain. This is a workaround for some third-party code that
2500 // continue to use an |X509| object even after passing ownership with an
2501 // “add0” function.
2502 X509 *x509_stash = nullptr;
2503
2504 // Certificate setup callback: if set is called whenever a
2505 // certificate may be required (client or server). the callback
2506 // can then examine any appropriate parameters and setup any
2507 // certificates required. This allows advanced applications
2508 // to select certificates on the fly: for example based on
2509 // supported signature algorithms or curves.
2510 int (*cert_cb)(SSL *ssl, void *arg) = nullptr;
2511 void *cert_cb_arg = nullptr;
2512
2513 // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
2514 // store is used instead.
2515 X509_STORE *verify_store = nullptr;
2516
2517 // sid_ctx partitions the session space within a shared session cache or
2518 // ticket key. Only sessions with a matching value will be accepted.
2519 uint8_t sid_ctx_length = 0;
2520 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
2521 };
2522
2523 // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
2524 struct SSL_PROTOCOL_METHOD {
2525 bool is_dtls;
2526 bool (*ssl_new)(SSL *ssl);
2527 void (*ssl_free)(SSL *ssl);
2528 // get_message sets |*out| to the current handshake message and returns true
2529 // if one has been received. It returns false if more input is needed.
2530 bool (*get_message)(const SSL *ssl, SSLMessage *out);
2531 // next_message is called to release the current handshake message.
2532 void (*next_message)(SSL *ssl);
2533 // has_unprocessed_handshake_data returns whether there is buffered
2534 // handshake data that has not been consumed by |get_message|.
2535 bool (*has_unprocessed_handshake_data)(const SSL *ssl);
2536 // Use the |ssl_open_handshake| wrapper.
2537 ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
2538 uint8_t *out_alert, Span<uint8_t> in);
2539 // Use the |ssl_open_change_cipher_spec| wrapper.
2540 ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
2541 uint8_t *out_alert,
2542 Span<uint8_t> in);
2543 // Use the |ssl_open_app_data| wrapper.
2544 ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
2545 size_t *out_consumed, uint8_t *out_alert,
2546 Span<uint8_t> in);
2547 // write_app_data encrypts and writes |in| as application data. On success, it
2548 // returns one and sets |*out_bytes_written| to the number of bytes of |in|
2549 // written. Otherwise, it returns <= 0 and sets |*out_needs_handshake| to
2550 // whether the operation failed because the caller needs to drive the
2551 // handshake.
2552 int (*write_app_data)(SSL *ssl, bool *out_needs_handshake,
2553 size_t *out_bytes_written, Span<const uint8_t> in);
2554 int (*dispatch_alert)(SSL *ssl);
2555 // init_message begins a new handshake message of type |type|. |cbb| is the
2556 // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
2557 // the caller should write to. It returns true on success and false on error.
2558 bool (*init_message)(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2559 // finish_message finishes a handshake message. It sets |*out_msg| to the
2560 // serialized message. It returns true on success and false on error.
2561 bool (*finish_message)(const SSL *ssl, CBB *cbb,
2562 bssl::Array<uint8_t> *out_msg);
2563 // add_message adds a handshake message to the pending flight. It returns
2564 // true on success and false on error.
2565 bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
2566 // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
2567 // flight. It returns true on success and false on error.
2568 bool (*add_change_cipher_spec)(SSL *ssl);
2569 // flush_flight flushes the pending flight to the transport. It returns one on
2570 // success and <= 0 on error.
2571 int (*flush_flight)(SSL *ssl);
2572 // on_handshake_complete is called when the handshake is complete.
2573 void (*on_handshake_complete)(SSL *ssl);
2574 // set_read_state sets |ssl|'s read cipher state and level to |aead_ctx| and
2575 // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2576 // is the original secret. This function returns true on success and false on
2577 // error.
2578 bool (*set_read_state)(SSL *ssl, ssl_encryption_level_t level,
2579 UniquePtr<SSLAEADContext> aead_ctx,
2580 Span<const uint8_t> secret_for_quic);
2581 // set_write_state sets |ssl|'s write cipher state and level to |aead_ctx| and
2582 // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2583 // is the original secret. This function returns true on success and false on
2584 // error.
2585 bool (*set_write_state)(SSL *ssl, ssl_encryption_level_t level,
2586 UniquePtr<SSLAEADContext> aead_ctx,
2587 Span<const uint8_t> secret_for_quic);
2588 };
2589
2590 // The following wrappers call |open_*| but handle |read_shutdown| correctly.
2591
2592 // ssl_open_handshake processes a record from |in| for reading a handshake
2593 // message.
2594 ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
2595 uint8_t *out_alert, Span<uint8_t> in);
2596
2597 // ssl_open_change_cipher_spec processes a record from |in| for reading a
2598 // ChangeCipherSpec.
2599 ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2600 uint8_t *out_alert,
2601 Span<uint8_t> in);
2602
2603 // ssl_open_app_data processes a record from |in| for reading application data.
2604 // On success, it returns |ssl_open_record_success| and sets |*out| to the
2605 // input. If it encounters a post-handshake message, it returns
2606 // |ssl_open_record_discard|. The caller should then retry, after processing any
2607 // messages received with |get_message|.
2608 ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
2609 size_t *out_consumed, uint8_t *out_alert,
2610 Span<uint8_t> in);
2611
2612 struct SSL_X509_METHOD {
2613 // check_client_CA_list returns one if |names| is a good list of X.509
2614 // distinguished names and zero otherwise. This is used to ensure that we can
2615 // reject unparsable values at handshake time when using crypto/x509.
2616 bool (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
2617
2618 // cert_clear frees and NULLs all X509 certificate-related state.
2619 void (*cert_clear)(CERT *cert);
2620 // cert_free frees all X509-related state.
2621 void (*cert_free)(CERT *cert);
2622 // cert_flush_cached_chain drops any cached |X509|-based certificate chain
2623 // from |cert|.
2624 // cert_dup duplicates any needed fields from |cert| to |new_cert|.
2625 void (*cert_dup)(CERT *new_cert, const CERT *cert);
2626 void (*cert_flush_cached_chain)(CERT *cert);
2627 // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
2628 // from |cert|.
2629 void (*cert_flush_cached_leaf)(CERT *cert);
2630
2631 // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
2632 // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
2633 // true on success or false on error.
2634 bool (*session_cache_objects)(SSL_SESSION *session);
2635 // session_dup duplicates any needed fields from |session| to |new_session|.
2636 // It returns true on success or false on error.
2637 bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
2638 // session_clear frees any X509-related state from |session|.
2639 void (*session_clear)(SSL_SESSION *session);
2640 // session_verify_cert_chain verifies the certificate chain in |session|,
2641 // sets |session->verify_result| and returns true on success or false on
2642 // error.
2643 bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl,
2644 uint8_t *out_alert);
2645
2646 // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
2647 void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs);
2648 // ssl_new does any necessary initialisation of |hs|. It returns true on
2649 // success or false on error.
2650 bool (*ssl_new)(SSL_HANDSHAKE *hs);
2651 // ssl_free frees anything created by |ssl_new|.
2652 void (*ssl_config_free)(SSL_CONFIG *cfg);
2653 // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
2654 void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg);
2655 // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
2656 // necessary. On success, it updates |ssl|'s certificate configuration as
2657 // needed and returns true. Otherwise, it returns false.
2658 bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs);
2659 // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on
2660 // success or false on error.
2661 bool (*ssl_ctx_new)(SSL_CTX *ctx);
2662 // ssl_ctx_free frees anything created by |ssl_ctx_new|.
2663 void (*ssl_ctx_free)(SSL_CTX *ctx);
2664 // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
2665 void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
2666 };
2667
2668 // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
2669 // crypto/x509.
2670 extern const SSL_X509_METHOD ssl_crypto_x509_method;
2671
2672 // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
2673 // crypto/x509.
2674 extern const SSL_X509_METHOD ssl_noop_x509_method;
2675
2676 struct TicketKey {
2677 static constexpr bool kAllowUniquePtr = true;
2678
2679 uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0};
2680 uint8_t hmac_key[16] = {0};
2681 uint8_t aes_key[16] = {0};
2682 // next_rotation_tv_sec is the time (in seconds from the epoch) when the
2683 // current key should be superseded by a new key, or the time when a previous
2684 // key should be dropped. If zero, then the key should not be automatically
2685 // rotated.
2686 uint64_t next_rotation_tv_sec = 0;
2687 };
2688
2689 struct CertCompressionAlg {
2690 static constexpr bool kAllowUniquePtr = true;
2691
2692 ssl_cert_compression_func_t compress = nullptr;
2693 ssl_cert_decompression_func_t decompress = nullptr;
2694 uint16_t alg_id = 0;
2695 };
2696
2697 BSSL_NAMESPACE_END
2698
2699 DEFINE_LHASH_OF(SSL_SESSION)
2700
2701 BSSL_NAMESPACE_BEGIN
2702
2703 // An ssl_shutdown_t describes the shutdown state of one end of the connection,
2704 // whether it is alive or has been shutdown via close_notify or fatal alert.
2705 enum ssl_shutdown_t {
2706 ssl_shutdown_none = 0,
2707 ssl_shutdown_close_notify = 1,
2708 ssl_shutdown_error = 2,
2709 };
2710
2711 enum ssl_ech_status_t {
2712 // ssl_ech_none indicates ECH was not offered, or we have not gotten far
2713 // enough in the handshake to determine the status.
2714 ssl_ech_none,
2715 // ssl_ech_accepted indicates the server accepted ECH.
2716 ssl_ech_accepted,
2717 // ssl_ech_rejected indicates the server was offered ECH but rejected it.
2718 ssl_ech_rejected,
2719 };
2720
2721 struct SSL3_STATE {
2722 static constexpr bool kAllowUniquePtr = true;
2723
2724 SSL3_STATE();
2725 ~SSL3_STATE();
2726
2727 uint64_t read_sequence = 0;
2728 uint64_t write_sequence = 0;
2729
2730 uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
2731 uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
2732
2733 // read_buffer holds data from the transport to be processed.
2734 SSLBuffer read_buffer;
2735 // write_buffer holds data to be written to the transport.
2736 SSLBuffer write_buffer;
2737
2738 // pending_app_data is the unconsumed application data. It points into
2739 // |read_buffer|.
2740 Span<uint8_t> pending_app_data;
2741
2742 // unreported_bytes_written is the number of bytes successfully written to the
2743 // transport, but not yet reported to the caller. The next |SSL_write| will
2744 // skip this many bytes from the input. This is used if
2745 // |SSL_MODE_ENABLE_PARTIAL_WRITE| is disabled, in which case |SSL_write| only
2746 // reports bytes written when the full caller input is written.
2747 size_t unreported_bytes_written = 0;
2748
2749 // pending_write, if |has_pending_write| is true, is the caller-supplied data
2750 // corresponding to the current pending write. This is used to check the
2751 // caller retried with a compatible buffer.
2752 Span<const uint8_t> pending_write;
2753
2754 // pending_write_type, if |has_pending_write| is true, is the record type
2755 // for the current pending write.
2756 //
2757 // TODO(davidben): Remove this when alerts are moved out of this write path.
2758 uint8_t pending_write_type = 0;
2759
2760 // read_shutdown is the shutdown state for the read half of the connection.
2761 enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
2762
2763 // write_shutdown is the shutdown state for the write half of the connection.
2764 enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
2765
2766 // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
2767 // the receive half of the connection.
2768 UniquePtr<ERR_SAVE_STATE> read_error;
2769
2770 int total_renegotiations = 0;
2771
2772 // This holds a variable that indicates what we were doing when a 0 or -1 is
2773 // returned. This is needed for non-blocking IO so we know what request
2774 // needs re-doing when in SSL_accept or SSL_connect
2775 int rwstate = SSL_ERROR_NONE;
2776
2777 enum ssl_encryption_level_t read_level = ssl_encryption_initial;
2778 enum ssl_encryption_level_t write_level = ssl_encryption_initial;
2779
2780 // early_data_skipped is the amount of early data that has been skipped by the
2781 // record layer.
2782 uint16_t early_data_skipped = 0;
2783
2784 // empty_record_count is the number of consecutive empty records received.
2785 uint8_t empty_record_count = 0;
2786
2787 // warning_alert_count is the number of consecutive warning alerts
2788 // received.
2789 uint8_t warning_alert_count = 0;
2790
2791 // key_update_count is the number of consecutive KeyUpdates received.
2792 uint8_t key_update_count = 0;
2793
2794 // ech_status indicates whether ECH was accepted by the server.
2795 ssl_ech_status_t ech_status = ssl_ech_none;
2796
2797 // skip_early_data instructs the record layer to skip unexpected early data
2798 // messages when 0RTT is rejected.
2799 bool skip_early_data : 1;
2800
2801 // have_version is true if the connection's final version is known. Otherwise
2802 // the version has not been negotiated yet.
2803 bool have_version : 1;
2804
2805 // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
2806 // and future messages should use the record layer.
2807 bool v2_hello_done : 1;
2808
2809 // is_v2_hello is true if the current handshake message was derived from a
2810 // V2ClientHello rather than received from the peer directly.
2811 bool is_v2_hello : 1;
2812
2813 // has_message is true if the current handshake message has been returned
2814 // at least once by |get_message| and false otherwise.
2815 bool has_message : 1;
2816
2817 // initial_handshake_complete is true if the initial handshake has
2818 // completed.
2819 bool initial_handshake_complete : 1;
2820
2821 // session_reused indicates whether a session was resumed.
2822 bool session_reused : 1;
2823
2824 bool send_connection_binding : 1;
2825
2826 // channel_id_valid is true if, on the server, the client has negotiated a
2827 // Channel ID and the |channel_id| field is filled in.
2828 bool channel_id_valid : 1;
2829
2830 // key_update_pending is true if we have a KeyUpdate acknowledgment
2831 // outstanding.
2832 bool key_update_pending : 1;
2833
2834 // early_data_accepted is true if early data was accepted by the server.
2835 bool early_data_accepted : 1;
2836
2837 // alert_dispatch is true there is an alert in |send_alert| to be sent.
2838 bool alert_dispatch : 1;
2839
2840 // renegotiate_pending is whether the read half of the channel is blocked on a
2841 // HelloRequest.
2842 bool renegotiate_pending : 1;
2843
2844 // used_hello_retry_request is whether the handshake used a TLS 1.3
2845 // HelloRetryRequest message.
2846 bool used_hello_retry_request : 1;
2847
2848 // was_key_usage_invalid is whether the handshake succeeded despite using a
2849 // TLS mode which was incompatible with the leaf certificate's keyUsage
2850 // extension.
2851 bool was_key_usage_invalid : 1;
2852
2853 // hs_buf is the buffer of handshake data to process.
2854 UniquePtr<BUF_MEM> hs_buf;
2855
2856 // pending_hs_data contains the pending handshake data that has not yet
2857 // been encrypted to |pending_flight|. This allows packing the handshake into
2858 // fewer records.
2859 UniquePtr<BUF_MEM> pending_hs_data;
2860
2861 // pending_flight is the pending outgoing flight. This is used to flush each
2862 // handshake flight in a single write. |write_buffer| must be written out
2863 // before this data.
2864 UniquePtr<BUF_MEM> pending_flight;
2865
2866 // pending_flight_offset is the number of bytes of |pending_flight| which have
2867 // been successfully written.
2868 uint32_t pending_flight_offset = 0;
2869
2870 // ticket_age_skew is the difference, in seconds, between the client-sent
2871 // ticket age and the server-computed value in TLS 1.3 server connections
2872 // which resumed a session.
2873 int32_t ticket_age_skew = 0;
2874
2875 // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected.
2876 enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown;
2877
2878 // aead_read_ctx is the current read cipher state.
2879 UniquePtr<SSLAEADContext> aead_read_ctx;
2880
2881 // aead_write_ctx is the current write cipher state.
2882 UniquePtr<SSLAEADContext> aead_write_ctx;
2883
2884 // hs is the handshake state for the current handshake or NULL if there isn't
2885 // one.
2886 UniquePtr<SSL_HANDSHAKE> hs;
2887
2888 uint8_t write_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2889 uint8_t read_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2890 uint8_t exporter_secret[SSL_MAX_MD_SIZE] = {0};
2891 uint8_t write_traffic_secret_len = 0;
2892 uint8_t read_traffic_secret_len = 0;
2893 uint8_t exporter_secret_len = 0;
2894
2895 // Connection binding to prevent renegotiation attacks
2896 uint8_t previous_client_finished[12] = {0};
2897 uint8_t previous_client_finished_len = 0;
2898 uint8_t previous_server_finished_len = 0;
2899 uint8_t previous_server_finished[12] = {0};
2900
2901 uint8_t send_alert[2] = {0};
2902
2903 // established_session is the session established by the connection. This
2904 // session is only filled upon the completion of the handshake and is
2905 // immutable.
2906 UniquePtr<SSL_SESSION> established_session;
2907
2908 // Next protocol negotiation. For the client, this is the protocol that we
2909 // sent in NextProtocol and is set when handling ServerHello extensions.
2910 //
2911 // For a server, this is the client's selected_protocol from NextProtocol and
2912 // is set when handling the NextProtocol message, before the Finished
2913 // message.
2914 Array<uint8_t> next_proto_negotiated;
2915
2916 // ALPN information
2917 // (we are in the process of transitioning from NPN to ALPN.)
2918
2919 // In a server these point to the selected ALPN protocol after the
2920 // ClientHello has been processed. In a client these contain the protocol
2921 // that the server selected once the ServerHello has been processed.
2922 Array<uint8_t> alpn_selected;
2923
2924 // hostname, on the server, is the value of the SNI extension.
2925 UniquePtr<char> hostname;
2926
2927 // For a server:
2928 // If |channel_id_valid| is true, then this contains the
2929 // verified Channel ID from the client: a P256 point, (x,y), where
2930 // each are big-endian values.
2931 uint8_t channel_id[64] = {0};
2932
2933 // Contains the QUIC transport params received by the peer.
2934 Array<uint8_t> peer_quic_transport_params;
2935
2936 // srtp_profile is the selected SRTP protection profile for
2937 // DTLS-SRTP.
2938 const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr;
2939 };
2940
2941 // lengths of messages
2942 #define DTLS1_RT_HEADER_LENGTH 13
2943
2944 #define DTLS1_HM_HEADER_LENGTH 12
2945
2946 #define DTLS1_CCS_HEADER_LENGTH 1
2947
2948 #define DTLS1_AL_HEADER_LENGTH 2
2949
2950 struct hm_header_st {
2951 uint8_t type;
2952 uint32_t msg_len;
2953 uint16_t seq;
2954 uint32_t frag_off;
2955 uint32_t frag_len;
2956 };
2957
2958 // An hm_fragment is an incoming DTLS message, possibly not yet assembled.
2959 struct hm_fragment {
2960 static constexpr bool kAllowUniquePtr = true;
2961
2962 hm_fragment() {}
2963 hm_fragment(const hm_fragment &) = delete;
2964 hm_fragment &operator=(const hm_fragment &) = delete;
2965
2966 ~hm_fragment();
2967
2968 // type is the type of the message.
2969 uint8_t type = 0;
2970 // seq is the sequence number of this message.
2971 uint16_t seq = 0;
2972 // msg_len is the length of the message body.
2973 uint32_t msg_len = 0;
2974 // data is a pointer to the message, including message header. It has length
2975 // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
2976 uint8_t *data = nullptr;
2977 // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
2978 // the message have been received. It is NULL if the message is complete.
2979 uint8_t *reassembly = nullptr;
2980 };
2981
2982 struct OPENSSL_timeval {
2983 uint64_t tv_sec;
2984 uint32_t tv_usec;
2985 };
2986
2987 struct DTLS1_STATE {
2988 static constexpr bool kAllowUniquePtr = true;
2989
2990 DTLS1_STATE();
2991 ~DTLS1_STATE();
2992
2993 // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
2994 // the peer in this epoch.
2995 bool has_change_cipher_spec : 1;
2996
2997 // outgoing_messages_complete is true if |outgoing_messages| has been
2998 // completed by an attempt to flush it. Future calls to |add_message| and
2999 // |add_change_cipher_spec| will start a new flight.
3000 bool outgoing_messages_complete : 1;
3001
3002 // flight_has_reply is true if the current outgoing flight is complete and has
3003 // processed at least one message. This is used to detect whether we or the
3004 // peer sent the final flight.
3005 bool flight_has_reply : 1;
3006
3007 // The current data and handshake epoch. This is initially undefined, and
3008 // starts at zero once the initial handshake is completed.
3009 uint16_t r_epoch = 0;
3010 uint16_t w_epoch = 0;
3011
3012 // records being received in the current epoch
3013 DTLS1_BITMAP bitmap;
3014
3015 uint16_t handshake_write_seq = 0;
3016 uint16_t handshake_read_seq = 0;
3017
3018 // save last sequence number for retransmissions
3019 uint64_t last_write_sequence = 0;
3020 UniquePtr<SSLAEADContext> last_aead_write_ctx;
3021
3022 // incoming_messages is a ring buffer of incoming handshake messages that have
3023 // yet to be processed. The front of the ring buffer is message number
3024 // |handshake_read_seq|, at position |handshake_read_seq| %
3025 // |SSL_MAX_HANDSHAKE_FLIGHT|.
3026 UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
3027
3028 // outgoing_messages is the queue of outgoing messages from the last handshake
3029 // flight.
3030 DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
3031 uint8_t outgoing_messages_len = 0;
3032
3033 // outgoing_written is the number of outgoing messages that have been
3034 // written.
3035 uint8_t outgoing_written = 0;
3036 // outgoing_offset is the number of bytes of the next outgoing message have
3037 // been written.
3038 uint32_t outgoing_offset = 0;
3039
3040 unsigned mtu = 0; // max DTLS packet size
3041
3042 // num_timeouts is the number of times the retransmit timer has fired since
3043 // the last time it was reset.
3044 unsigned num_timeouts = 0;
3045
3046 // Indicates when the last handshake msg or heartbeat sent will
3047 // timeout.
3048 struct OPENSSL_timeval next_timeout = {0, 0};
3049
3050 // timeout_duration_ms is the timeout duration in milliseconds.
3051 unsigned timeout_duration_ms = 0;
3052 };
3053
3054 // An ALPSConfig is a pair of ALPN protocol and settings value to use with ALPS.
3055 struct ALPSConfig {
3056 Array<uint8_t> protocol;
3057 Array<uint8_t> settings;
3058 };
3059
3060 // SSL_CONFIG contains configuration bits that can be shed after the handshake
3061 // completes. Objects of this type are not shared; they are unique to a
3062 // particular |SSL|.
3063 //
3064 // See SSL_shed_handshake_config() for more about the conditions under which
3065 // configuration can be shed.
3066 struct SSL_CONFIG {
3067 static constexpr bool kAllowUniquePtr = true;
3068
3069 explicit SSL_CONFIG(SSL *ssl_arg);
3070 ~SSL_CONFIG();
3071
3072 // ssl is a non-owning pointer to the parent |SSL| object.
3073 SSL *const ssl = nullptr;
3074
3075 // conf_max_version is the maximum acceptable version configured by
3076 // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS
3077 // and is further constrained by |SSL_OP_NO_*|.
3078 uint16_t conf_max_version = 0;
3079
3080 // conf_min_version is the minimum acceptable version configured by
3081 // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS
3082 // and is further constrained by |SSL_OP_NO_*|.
3083 uint16_t conf_min_version = 0;
3084
3085 X509_VERIFY_PARAM *param = nullptr;
3086
3087 // crypto
3088 UniquePtr<SSLCipherPreferenceList> cipher_list;
3089
3090 // This is used to hold the local certificate used (i.e. the server
3091 // certificate for a server or the client certificate for a client).
3092 UniquePtr<CERT> cert;
3093
3094 int (*verify_callback)(int ok,
3095 X509_STORE_CTX *ctx) =
3096 nullptr; // fail if callback returns 0
3097
3098 enum ssl_verify_result_t (*custom_verify_callback)(
3099 SSL *ssl, uint8_t *out_alert) = nullptr;
3100 // Server-only: psk_identity_hint is the identity hint to send in
3101 // PSK-based key exchanges.
3102 UniquePtr<char> psk_identity_hint;
3103
3104 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3105 unsigned max_identity_len, uint8_t *psk,
3106 unsigned max_psk_len) = nullptr;
3107 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3108 unsigned max_psk_len) = nullptr;
3109
3110 // for server side, keep the list of CA_dn we can use
3111 UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3112
3113 // cached_x509_client_CA is a cache of parsed versions of the elements of
3114 // |client_CA|.
3115 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3116
3117 Array<uint16_t> supported_group_list; // our list
3118
3119 // channel_id_private is the client's Channel ID private key, or null if
3120 // Channel ID should not be offered on this connection.
3121 UniquePtr<EVP_PKEY> channel_id_private;
3122
3123 // For a client, this contains the list of supported protocols in wire
3124 // format.
3125 Array<uint8_t> alpn_client_proto_list;
3126
3127 // alps_configs contains the list of supported protocols to use with ALPS,
3128 // along with their corresponding ALPS values.
3129 GrowableArray<ALPSConfig> alps_configs;
3130
3131 // Contains the QUIC transport params that this endpoint will send.
3132 Array<uint8_t> quic_transport_params;
3133
3134 // Contains the context used to decide whether to accept early data in QUIC.
3135 Array<uint8_t> quic_early_data_context;
3136
3137 // verify_sigalgs, if not empty, is the set of signature algorithms
3138 // accepted from the peer in decreasing order of preference.
3139 Array<uint16_t> verify_sigalgs;
3140
3141 // srtp_profiles is the list of configured SRTP protection profiles for
3142 // DTLS-SRTP.
3143 UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3144
3145 // client_ech_config_list, if not empty, is a serialized ECHConfigList
3146 // structure for the client to use when negotiating ECH.
3147 Array<uint8_t> client_ech_config_list;
3148
3149 // tls13_cipher_policy limits the set of ciphers that can be selected when
3150 // negotiating a TLS 1.3 connection.
3151 enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none;
3152
3153 // verify_mode is a bitmask of |SSL_VERIFY_*| values.
3154 uint8_t verify_mode = SSL_VERIFY_NONE;
3155
3156 // ech_grease_enabled controls whether ECH GREASE may be sent in the
3157 // ClientHello.
3158 bool ech_grease_enabled : 1;
3159
3160 // Enable signed certificate time stamps. Currently client only.
3161 bool signed_cert_timestamps_enabled : 1;
3162
3163 // ocsp_stapling_enabled is only used by client connections and indicates
3164 // whether OCSP stapling will be requested.
3165 bool ocsp_stapling_enabled : 1;
3166
3167 // channel_id_enabled is copied from the |SSL_CTX|. For a server, it means
3168 // that we'll accept Channel IDs from clients. It is ignored on the client.
3169 bool channel_id_enabled : 1;
3170
3171 // If enforce_rsa_key_usage is true, the handshake will fail if the
3172 // keyUsage extension is present and incompatible with the TLS usage.
3173 // This field is not read until after certificate verification.
3174 bool enforce_rsa_key_usage : 1;
3175
3176 // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3177 // hash of the peer's certificate and then discard it to save memory and
3178 // session space. Only effective on the server side.
3179 bool retain_only_sha256_of_client_certs : 1;
3180
3181 // handoff indicates that a server should stop after receiving the
3182 // ClientHello and pause the handshake in such a way that |SSL_get_error|
3183 // returns |SSL_ERROR_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
3184 // element of the same name and may be cleared if the handoff is declined.
3185 bool handoff : 1;
3186
3187 // shed_handshake_config indicates that the handshake config (this object!)
3188 // should be freed after the handshake completes.
3189 bool shed_handshake_config : 1;
3190
3191 // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a
3192 // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806.
3193 bool jdk11_workaround : 1;
3194
3195 // QUIC drafts up to and including 32 used a different TLS extension
3196 // codepoint to convey QUIC's transport parameters.
3197 bool quic_use_legacy_codepoint : 1;
3198
3199 // permute_extensions is whether to permute extensions when sending messages.
3200 bool permute_extensions : 1;
3201
3202 // aes_hw_override if set indicates we should override checking for aes
3203 // hardware support, and use the value in aes_hw_override_value instead.
3204 bool aes_hw_override : 1;
3205
3206 // aes_hw_override_value is used for testing to indicate the support or lack
3207 // of support for AES hw. The value is only considered if |aes_hw_override| is
3208 // true.
3209 bool aes_hw_override_value : 1;
3210
3211 // alps_use_new_codepoint if set indicates we use new ALPS extension codepoint
3212 // to negotiate and convey application settings.
3213 bool alps_use_new_codepoint : 1;
3214
3215 // check_client_certificate_type indicates whether the client, in TLS 1.2 and
3216 // below, will check its certificate against the server's requested
3217 // certificate types.
3218 bool check_client_certificate_type : 1;
3219
3220 // check_ecdsa_curve indicates whether the server, in TLS 1.2 and below, will
3221 // check its certificate against the client's supported ECDSA curves.
3222 bool check_ecdsa_curve : 1;
3223 };
3224
3225 // From RFC 8446, used in determining PSK modes.
3226 #define SSL_PSK_DHE_KE 0x1
3227
3228 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
3229 // data that will be accepted. This value should be slightly below
3230 // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
3231 static const size_t kMaxEarlyDataAccepted = 14336;
3232
3233 UniquePtr<CERT> ssl_cert_dup(CERT *cert);
3234 bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
3235 bool ssl_is_key_type_supported(int key_type);
3236 // ssl_compare_public_and_private_key returns true if |pubkey| is the public
3237 // counterpart to |privkey|. Otherwise it returns false and pushes a helpful
3238 // message on the error queue.
3239 bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
3240 const EVP_PKEY *privkey);
3241 bool ssl_get_new_session(SSL_HANDSHAKE *hs);
3242 bool ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out,
3243 const SSL_SESSION *session);
3244 bool ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
3245
3246 // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
3247 // error.
3248 UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
3249
3250 // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table
3251 // keyed on session IDs.
3252 uint32_t ssl_hash_session_id(Span<const uint8_t> session_id);
3253
3254 // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
3255 // the parsed data.
3256 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse(
3257 CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool);
3258
3259 // ssl_session_serialize writes |in| to |cbb| as if it were serialising a
3260 // session for Session-ID resumption. It returns true on success and false on
3261 // error.
3262 OPENSSL_EXPORT bool ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
3263
3264 // ssl_session_is_context_valid returns whether |session|'s session ID context
3265 // matches the one set on |hs|.
3266 bool ssl_session_is_context_valid(const SSL_HANDSHAKE *hs,
3267 const SSL_SESSION *session);
3268
3269 // ssl_session_is_time_valid returns true if |session| is still valid and false
3270 // if it has expired.
3271 bool ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
3272
3273 // ssl_session_is_resumable returns whether |session| is resumable for |hs|.
3274 bool ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
3275 const SSL_SESSION *session);
3276
3277 // ssl_session_protocol_version returns the protocol version associated with
3278 // |session|. Note that despite the name, this is not the same as
3279 // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
3280 uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
3281
3282 // ssl_session_get_digest returns the digest used in |session|.
3283 const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
3284
3285 void ssl_set_session(SSL *ssl, SSL_SESSION *session);
3286
3287 // ssl_get_prev_session looks up the previous session based on |client_hello|.
3288 // On success, it sets |*out_session| to the session or nullptr if none was
3289 // found. If the session could not be looked up synchronously, it returns
3290 // |ssl_hs_pending_session| and should be called again. If a ticket could not be
3291 // decrypted immediately it returns |ssl_hs_pending_ticket| and should also
3292 // be called again. Otherwise, it returns |ssl_hs_error|.
3293 enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs,
3294 UniquePtr<SSL_SESSION> *out_session,
3295 bool *out_tickets_supported,
3296 bool *out_renew_ticket,
3297 const SSL_CLIENT_HELLO *client_hello);
3298
3299 // The following flags determine which parts of the session are duplicated.
3300 #define SSL_SESSION_DUP_AUTH_ONLY 0x0
3301 #define SSL_SESSION_INCLUDE_TICKET 0x1
3302 #define SSL_SESSION_INCLUDE_NONAUTH 0x2
3303 #define SSL_SESSION_DUP_ALL \
3304 (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
3305
3306 // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
3307 // fields in |session| or nullptr on error. The new session is non-resumable and
3308 // must be explicitly marked resumable once it has been filled in.
3309 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
3310 int dup_flags);
3311
3312 // ssl_session_rebase_time updates |session|'s start time to the current time,
3313 // adjusting the timeout so the expiration time is unchanged.
3314 void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
3315
3316 // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
3317 // |session|'s timeout to |timeout| (measured from the current time). The
3318 // renewal is clamped to the session's auth_timeout.
3319 void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
3320 uint32_t timeout);
3321
3322 void ssl_update_cache(SSL *ssl);
3323
3324 void ssl_send_alert(SSL *ssl, int level, int desc);
3325 int ssl_send_alert_impl(SSL *ssl, int level, int desc);
3326 bool tls_get_message(const SSL *ssl, SSLMessage *out);
3327 ssl_open_record_t tls_open_handshake(SSL *ssl, size_t *out_consumed,
3328 uint8_t *out_alert, Span<uint8_t> in);
3329 void tls_next_message(SSL *ssl);
3330
3331 int tls_dispatch_alert(SSL *ssl);
3332 ssl_open_record_t tls_open_app_data(SSL *ssl, Span<uint8_t> *out,
3333 size_t *out_consumed, uint8_t *out_alert,
3334 Span<uint8_t> in);
3335 ssl_open_record_t tls_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3336 uint8_t *out_alert,
3337 Span<uint8_t> in);
3338 int tls_write_app_data(SSL *ssl, bool *out_needs_handshake,
3339 size_t *out_bytes_written, Span<const uint8_t> in);
3340
3341 bool tls_new(SSL *ssl);
3342 void tls_free(SSL *ssl);
3343
3344 bool tls_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3345 bool tls_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3346 bool tls_add_message(SSL *ssl, Array<uint8_t> msg);
3347 bool tls_add_change_cipher_spec(SSL *ssl);
3348 int tls_flush_flight(SSL *ssl);
3349
3350 bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3351 bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3352 bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
3353 bool dtls1_add_change_cipher_spec(SSL *ssl);
3354 int dtls1_flush_flight(SSL *ssl);
3355
3356 // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
3357 // the pending flight. It returns true on success and false on error.
3358 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
3359
3360 // ssl_hash_message incorporates |msg| into the handshake hash. It returns true
3361 // on success and false on allocation failure.
3362 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3363
3364 ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
3365 size_t *out_consumed, uint8_t *out_alert,
3366 Span<uint8_t> in);
3367 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3368 uint8_t *out_alert,
3369 Span<uint8_t> in);
3370
3371 int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
3372 size_t *out_bytes_written, Span<const uint8_t> in);
3373
3374 // dtls1_write_record sends a record. It returns one on success and <= 0 on
3375 // error.
3376 int dtls1_write_record(SSL *ssl, int type, Span<const uint8_t> in,
3377 enum dtls1_use_epoch_t use_epoch);
3378
3379 int dtls1_retransmit_outgoing_messages(SSL *ssl);
3380 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
3381 CBS *out_body);
3382 bool dtls1_check_timeout_num(SSL *ssl);
3383
3384 void dtls1_start_timer(SSL *ssl);
3385 void dtls1_stop_timer(SSL *ssl);
3386 bool dtls1_is_timer_expired(SSL *ssl);
3387 unsigned int dtls1_min_mtu(void);
3388
3389 bool dtls1_new(SSL *ssl);
3390 void dtls1_free(SSL *ssl);
3391
3392 bool dtls1_get_message(const SSL *ssl, SSLMessage *out);
3393 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
3394 uint8_t *out_alert, Span<uint8_t> in);
3395 void dtls1_next_message(SSL *ssl);
3396 int dtls1_dispatch_alert(SSL *ssl);
3397
3398 // tls1_configure_aead configures either the read or write direction AEAD (as
3399 // determined by |direction|) using the keys generated by the TLS KDF. The
3400 // |key_block_cache| argument is used to store the generated key block, if
3401 // empty. Otherwise it's assumed that the key block is already contained within
3402 // it. It returns true on success or false on error.
3403 bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
3404 Array<uint8_t> *key_block_cache,
3405 const SSL_SESSION *session,
3406 Span<const uint8_t> iv_override);
3407
3408 bool tls1_change_cipher_state(SSL_HANDSHAKE *hs,
3409 evp_aead_direction_t direction);
3410 int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
3411 Span<const uint8_t> premaster);
3412
3413 // tls1_get_grouplist returns the locally-configured group preference list.
3414 Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl);
3415
3416 // tls1_check_group_id returns whether |group_id| is consistent with locally-
3417 // configured group preferences.
3418 bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id);
3419
3420 // tls1_get_shared_group sets |*out_group_id| to the first preferred shared
3421 // group between client and server preferences and returns true. If none may be
3422 // found, it returns false.
3423 bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
3424
3425 // ssl_add_clienthello_tlsext writes ClientHello extensions to |out| for |type|.
3426 // It returns true on success and false on failure. The |header_len| argument is
3427 // the length of the ClientHello written so far and is used to compute the
3428 // padding length. (It does not include the record header or handshake headers.)
3429 //
3430 // If |type| is |ssl_client_hello_inner|, this function also writes the
3431 // compressed extensions to |out_encoded|. Otherwise, |out_encoded| should be
3432 // nullptr.
3433 //
3434 // On success, the function sets |*out_needs_psk_binder| to whether the last
3435 // ClientHello extension was the pre_shared_key extension and needs a PSK binder
3436 // filled in. The caller should then update |out| and, if applicable,
3437 // |out_encoded| with the binder after completing the whole message.
3438 bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, CBB *out_encoded,
3439 bool *out_needs_psk_binder,
3440 ssl_client_hello_type_t type,
3441 size_t header_len);
3442
3443 bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
3444 bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
3445 const SSL_CLIENT_HELLO *client_hello);
3446 bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, const CBS *extensions);
3447
3448 #define tlsext_tick_md EVP_sha256
3449
3450 // ssl_process_ticket processes a session ticket from the client. It returns
3451 // one of:
3452 // |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
3453 // |*out_renew_ticket| is set to whether the ticket should be renewed.
3454 // |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
3455 // fresh ticket should be sent, but the given ticket cannot be used.
3456 // |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
3457 // Retry later.
3458 // |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
3459 enum ssl_ticket_aead_result_t ssl_process_ticket(
3460 SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session,
3461 bool *out_renew_ticket, Span<const uint8_t> ticket,
3462 Span<const uint8_t> session_id);
3463
3464 // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
3465 // the signature. If the key is valid, it saves the Channel ID and returns true.
3466 // Otherwise, it returns false.
3467 bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3468
3469 // tls1_write_channel_id generates a Channel ID message and puts the output in
3470 // |cbb|. |ssl->channel_id_private| must already be set before calling. This
3471 // function returns true on success and false on error.
3472 bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
3473
3474 // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
3475 // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
3476 // true on success and false on failure.
3477 bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
3478
3479 // tls1_record_handshake_hashes_for_channel_id records the current handshake
3480 // hashes in |hs->new_session| so that Channel ID resumptions can sign that
3481 // data.
3482 bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
3483
3484 // ssl_can_write returns whether |ssl| is allowed to write.
3485 bool ssl_can_write(const SSL *ssl);
3486
3487 // ssl_can_read returns wheter |ssl| is allowed to read.
3488 bool ssl_can_read(const SSL *ssl);
3489
3490 void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
3491 void ssl_ctx_get_current_time(const SSL_CTX *ctx,
3492 struct OPENSSL_timeval *out_clock);
3493
3494 // ssl_reset_error_state resets state for |SSL_get_error|.
3495 void ssl_reset_error_state(SSL *ssl);
3496
3497 // ssl_set_read_error sets |ssl|'s read half into an error state, saving the
3498 // current state of the error queue.
3499 void ssl_set_read_error(SSL *ssl);
3500
3501 BSSL_NAMESPACE_END
3502
3503
3504 // Opaque C types.
3505 //
3506 // The following types are exported to C code as public typedefs, so they must
3507 // be defined outside of the namespace.
3508
3509 // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
3510 // structure to support the legacy version-locked methods.
3511 struct ssl_method_st {
3512 // version, if non-zero, is the only protocol version acceptable to an
3513 // SSL_CTX initialized from this method.
3514 uint16_t version;
3515 // method is the underlying SSL_PROTOCOL_METHOD that initializes the
3516 // SSL_CTX.
3517 const bssl::SSL_PROTOCOL_METHOD *method;
3518 // x509_method contains pointers to functions that might deal with |X509|
3519 // compatibility, or might be a no-op, depending on the application.
3520 const bssl::SSL_X509_METHOD *x509_method;
3521 };
3522
3523 struct ssl_ctx_st : public bssl::RefCounted<ssl_ctx_st> {
3524 explicit ssl_ctx_st(const SSL_METHOD *ssl_method);
3525 ssl_ctx_st(const ssl_ctx_st &) = delete;
3526 ssl_ctx_st &operator=(const ssl_ctx_st &) = delete;
3527
3528 const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3529 const bssl::SSL_X509_METHOD *x509_method = nullptr;
3530
3531 // lock is used to protect various operations on this object.
3532 CRYPTO_MUTEX lock;
3533
3534 // conf_max_version is the maximum acceptable protocol version configured by
3535 // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
3536 // and is further constrainted by |SSL_OP_NO_*|.
3537 uint16_t conf_max_version = 0;
3538
3539 // conf_min_version is the minimum acceptable protocol version configured by
3540 // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
3541 // and is further constrainted by |SSL_OP_NO_*|.
3542 uint16_t conf_min_version = 0;
3543
3544 // num_tickets is the number of tickets to send immediately after the TLS 1.3
3545 // handshake. TLS 1.3 recommends single-use tickets so, by default, issue two
3546 /// in case the client makes several connections before getting a renewal.
3547 uint8_t num_tickets = 2;
3548
3549 // quic_method is the method table corresponding to the QUIC hooks.
3550 const SSL_QUIC_METHOD *quic_method = nullptr;
3551
3552 bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list;
3553
3554 X509_STORE *cert_store = nullptr;
3555 LHASH_OF(SSL_SESSION) *sessions = nullptr;
3556 // Most session-ids that will be cached, default is
3557 // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
3558 unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3559 SSL_SESSION *session_cache_head = nullptr;
3560 SSL_SESSION *session_cache_tail = nullptr;
3561
3562 // handshakes_since_cache_flush is the number of successful handshakes since
3563 // the last cache flush.
3564 int handshakes_since_cache_flush = 0;
3565
3566 // This can have one of 2 values, ored together,
3567 // SSL_SESS_CACHE_CLIENT,
3568 // SSL_SESS_CACHE_SERVER,
3569 // Default is SSL_SESSION_CACHE_SERVER, which means only
3570 // SSL_accept which cache SSL_SESSIONS.
3571 int session_cache_mode = SSL_SESS_CACHE_SERVER;
3572
3573 // session_timeout is the default lifetime for new sessions in TLS 1.2 and
3574 // earlier, in seconds.
3575 uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3576
3577 // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
3578 // 1.3, in seconds.
3579 uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT;
3580
3581 // If this callback is not null, it will be called each time a session id is
3582 // added to the cache. If this function returns 1, it means that the
3583 // callback will do a SSL_SESSION_free() when it has finished using it.
3584 // Otherwise, on 0, it means the callback has finished with it. If
3585 // remove_session_cb is not null, it will be called when a session-id is
3586 // removed from the cache. After the call, OpenSSL will SSL_SESSION_free()
3587 // it.
3588 int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr;
3589 void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr;
3590 SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
3591 int *copy) = nullptr;
3592
3593 // if defined, these override the X509_verify_cert() calls
3594 int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr;
3595 void *app_verify_arg = nullptr;
3596
3597 ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
3598 uint8_t *out_alert) = nullptr;
3599
3600 // Default password callback.
3601 pem_password_cb *default_passwd_callback = nullptr;
3602
3603 // Default password callback user data.
3604 void *default_passwd_callback_userdata = nullptr;
3605
3606 // get client cert callback
3607 int (*client_cert_cb)(SSL *ssl, X509 **out_x509,
3608 EVP_PKEY **out_pkey) = nullptr;
3609
3610 CRYPTO_EX_DATA ex_data;
3611
3612 // Default values used when no per-SSL value is defined follow
3613
3614 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3615
3616 // what we put in client cert requests
3617 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3618
3619 // cached_x509_client_CA is a cache of parsed versions of the elements of
3620 // |client_CA|.
3621 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3622
3623
3624 // Default values to use in SSL structures follow (these are copied by
3625 // SSL_new)
3626
3627 uint32_t options = 0;
3628 // Disable the auto-chaining feature by default. wpa_supplicant relies on this
3629 // feature, but require callers opt into it.
3630 uint32_t mode = SSL_MODE_NO_AUTO_CHAIN;
3631 uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3632
3633 bssl::UniquePtr<bssl::CERT> cert;
3634
3635 // callback that allows applications to peek at protocol messages
3636 void (*msg_callback)(int is_write, int version, int content_type,
3637 const void *buf, size_t len, SSL *ssl,
3638 void *arg) = nullptr;
3639 void *msg_callback_arg = nullptr;
3640
3641 int verify_mode = SSL_VERIFY_NONE;
3642 int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) =
3643 nullptr; // called 'verify_callback' in the SSL
3644
3645 X509_VERIFY_PARAM *param = nullptr;
3646
3647 // select_certificate_cb is called before most ClientHello processing and
3648 // before the decision whether to resume a session is made. See
3649 // |ssl_select_cert_result_t| for details of the return values.
3650 ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) =
3651 nullptr;
3652
3653 // dos_protection_cb is called once the resumption decision for a ClientHello
3654 // has been made. It returns one to continue the handshake or zero to
3655 // abort.
3656 int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr;
3657
3658 // Controls whether to verify certificates when resuming connections. They
3659 // were already verified when the connection was first made, so the default is
3660 // false. For now, this is only respected on clients, not servers.
3661 bool reverify_on_resume = false;
3662
3663 // Maximum amount of data to send in one fragment. actual record size can be
3664 // more than this due to padding and MAC overheads.
3665 uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3666
3667 // TLS extensions servername callback
3668 int (*servername_callback)(SSL *, int *, void *) = nullptr;
3669 void *servername_arg = nullptr;
3670
3671 // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the
3672 // first handshake and |ticket_key_prev| may be NULL at any time.
3673 // Automatically generated ticket keys are rotated as needed at handshake
3674 // time. Hence, all access must be synchronized through |lock|.
3675 bssl::UniquePtr<bssl::TicketKey> ticket_key_current;
3676 bssl::UniquePtr<bssl::TicketKey> ticket_key_prev;
3677
3678 // Callback to support customisation of ticket key setting
3679 int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
3680 EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr;
3681
3682 // Server-only: psk_identity_hint is the default identity hint to send in
3683 // PSK-based key exchanges.
3684 bssl::UniquePtr<char> psk_identity_hint;
3685
3686 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3687 unsigned max_identity_len, uint8_t *psk,
3688 unsigned max_psk_len) = nullptr;
3689 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3690 unsigned max_psk_len) = nullptr;
3691
3692
3693 // Next protocol negotiation information
3694 // (for experimental NPN extension).
3695
3696 // For a server, this contains a callback function by which the set of
3697 // advertised protocols can be provided.
3698 int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
3699 unsigned *out_len, void *arg) = nullptr;
3700 void *next_protos_advertised_cb_arg = nullptr;
3701 // For a client, this contains a callback function that selects the
3702 // next protocol from the list provided by the server.
3703 int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
3704 const uint8_t *in, unsigned in_len,
3705 void *arg) = nullptr;
3706 void *next_proto_select_cb_arg = nullptr;
3707
3708 // ALPN information
3709 // (we are in the process of transitioning from NPN to ALPN.)
3710
3711 // For a server, this contains a callback function that allows the
3712 // server to select the protocol for the connection.
3713 // out: on successful return, this must point to the raw protocol
3714 // name (without the length prefix).
3715 // outlen: on successful return, this contains the length of |*out|.
3716 // in: points to the client's list of supported protocols in
3717 // wire-format.
3718 // inlen: the length of |in|.
3719 int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
3720 const uint8_t *in, unsigned in_len,
3721 void *arg) = nullptr;
3722 void *alpn_select_cb_arg = nullptr;
3723
3724 // For a client, this contains the list of supported protocols in wire
3725 // format.
3726 bssl::Array<uint8_t> alpn_client_proto_list;
3727
3728 // SRTP profiles we are willing to do from RFC 5764
3729 bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3730
3731 // Defined compression algorithms for certificates.
3732 bssl::GrowableArray<bssl::CertCompressionAlg> cert_compression_algs;
3733
3734 // Supported group values inherited by SSL structure
3735 bssl::Array<uint16_t> supported_group_list;
3736
3737 // channel_id_private is the client's Channel ID private key, or null if
3738 // Channel ID should not be offered on this connection.
3739 bssl::UniquePtr<EVP_PKEY> channel_id_private;
3740
3741 // ech_keys contains the server's list of ECHConfig values and associated
3742 // private keys. This list may be swapped out at any time, so all access must
3743 // be synchronized through |lock|.
3744 bssl::UniquePtr<SSL_ECH_KEYS> ech_keys;
3745
3746 // keylog_callback, if not NULL, is the key logging callback. See
3747 // |SSL_CTX_set_keylog_callback|.
3748 void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr;
3749
3750 // current_time_cb, if not NULL, is the function to use to get the current
3751 // time. It sets |*out_clock| to the current time. The |ssl| argument is
3752 // always NULL. See |SSL_CTX_set_current_time_cb|.
3753 void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr;
3754
3755 // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
3756 // memory.
3757 CRYPTO_BUFFER_POOL *pool = nullptr;
3758
3759 // ticket_aead_method contains function pointers for opening and sealing
3760 // session tickets.
3761 const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr;
3762
3763 // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL
3764 // compatibility.
3765 int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr;
3766 void *legacy_ocsp_callback_arg = nullptr;
3767
3768 // tls13_cipher_policy limits the set of ciphers that can be selected when
3769 // negotiating a TLS 1.3 connection.
3770 enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none;
3771
3772 // verify_sigalgs, if not empty, is the set of signature algorithms
3773 // accepted from the peer in decreasing order of preference.
3774 bssl::Array<uint16_t> verify_sigalgs;
3775
3776 // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3777 // hash of the peer's certificate and then discard it to save memory and
3778 // session space. Only effective on the server side.
3779 bool retain_only_sha256_of_client_certs : 1;
3780
3781 // quiet_shutdown is true if the connection should not send a close_notify on
3782 // shutdown.
3783 bool quiet_shutdown : 1;
3784
3785 // ocsp_stapling_enabled is only used by client connections and indicates
3786 // whether OCSP stapling will be requested.
3787 bool ocsp_stapling_enabled : 1;
3788
3789 // If true, a client will request certificate timestamps.
3790 bool signed_cert_timestamps_enabled : 1;
3791
3792 // channel_id_enabled is whether Channel ID is enabled. For a server, means
3793 // that we'll accept Channel IDs from clients. For a client, means that we'll
3794 // advertise support.
3795 bool channel_id_enabled : 1;
3796
3797 // grease_enabled is whether GREASE (RFC 8701) is enabled.
3798 bool grease_enabled : 1;
3799
3800 // permute_extensions is whether to permute extensions when sending messages.
3801 bool permute_extensions : 1;
3802
3803 // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
3804 // protocols from the peer.
3805 bool allow_unknown_alpn_protos : 1;
3806
3807 // false_start_allowed_without_alpn is whether False Start (if
3808 // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
3809 bool false_start_allowed_without_alpn : 1;
3810
3811 // handoff indicates that a server should stop after receiving the
3812 // ClientHello and pause the handshake in such a way that |SSL_get_error|
3813 // returns |SSL_ERROR_HANDOFF|.
3814 bool handoff : 1;
3815
3816 // If enable_early_data is true, early data can be sent and accepted.
3817 bool enable_early_data : 1;
3818
3819 // aes_hw_override if set indicates we should override checking for AES
3820 // hardware support, and use the value in aes_hw_override_value instead.
3821 bool aes_hw_override : 1;
3822
3823 // aes_hw_override_value is used for testing to indicate the support or lack
3824 // of support for AES hardware. The value is only considered if
3825 // |aes_hw_override| is true.
3826 bool aes_hw_override_value : 1;
3827
3828 private:
3829 friend RefCounted;
3830 ~ssl_ctx_st();
3831 };
3832
3833 struct ssl_st {
3834 explicit ssl_st(SSL_CTX *ctx_arg);
3835 ssl_st(const ssl_st &) = delete;
3836 ssl_st &operator=(const ssl_st &) = delete;
3837 ~ssl_st();
3838
3839 // method is the method table corresponding to the current protocol (DTLS or
3840 // TLS).
3841 const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3842
3843 // config is a container for handshake configuration. Accesses to this field
3844 // should check for nullptr, since configuration may be shed after the
3845 // handshake completes. (If you have the |SSL_HANDSHAKE| object at hand, use
3846 // that instead, and skip the null check.)
3847 bssl::UniquePtr<bssl::SSL_CONFIG> config;
3848
3849 // version is the protocol version.
3850 uint16_t version = 0;
3851
3852 uint16_t max_send_fragment = 0;
3853
3854 // There are 2 BIO's even though they are normally both the same. This is so
3855 // data can be read and written to different handlers
3856
3857 bssl::UniquePtr<BIO> rbio; // used by SSL_read
3858 bssl::UniquePtr<BIO> wbio; // used by SSL_write
3859
3860 // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
3861 // Otherwise, it returns a value corresponding to what operation is needed to
3862 // progress.
3863 bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr;
3864
3865 bssl::SSL3_STATE *s3 = nullptr; // TLS variables
3866 bssl::DTLS1_STATE *d1 = nullptr; // DTLS variables
3867
3868 // callback that allows applications to peek at protocol messages
3869 void (*msg_callback)(int write_p, int version, int content_type,
3870 const void *buf, size_t len, SSL *ssl,
3871 void *arg) = nullptr;
3872 void *msg_callback_arg = nullptr;
3873
3874 // session info
3875
3876 // initial_timeout_duration_ms is the default DTLS timeout duration in
3877 // milliseconds. It's used to initialize the timer any time it's restarted.
3878 //
3879 // RFC 6347 states that implementations SHOULD use an initial timer value of 1
3880 // second.
3881 unsigned initial_timeout_duration_ms = 1000;
3882
3883 // session is the configured session to be offered by the client. This session
3884 // is immutable.
3885 bssl::UniquePtr<SSL_SESSION> session;
3886
3887 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3888
3889 bssl::UniquePtr<SSL_CTX> ctx;
3890
3891 // session_ctx is the |SSL_CTX| used for the session cache and related
3892 // settings.
3893 bssl::UniquePtr<SSL_CTX> session_ctx;
3894
3895 // extra application data
3896 CRYPTO_EX_DATA ex_data;
3897
3898 uint32_t options = 0; // protocol behaviour
3899 uint32_t mode = 0; // API behaviour
3900 uint32_t max_cert_list = 0;
3901 bssl::UniquePtr<char> hostname;
3902
3903 // quic_method is the method table corresponding to the QUIC hooks.
3904 const SSL_QUIC_METHOD *quic_method = nullptr;
3905
3906 // renegotiate_mode controls how peer renegotiation attempts are handled.
3907 ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never;
3908
3909 // server is true iff the this SSL* is the server half. Note: before the SSL*
3910 // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
3911 // the side is not determined. In this state, server is always false.
3912 bool server : 1;
3913
3914 // quiet_shutdown is true if the connection should not send a close_notify on
3915 // shutdown.
3916 bool quiet_shutdown : 1;
3917
3918 // If enable_early_data is true, early data can be sent and accepted.
3919 bool enable_early_data : 1;
3920 };
3921
3922 struct ssl_session_st : public bssl::RefCounted<ssl_session_st> {
3923 explicit ssl_session_st(const bssl::SSL_X509_METHOD *method);
3924 ssl_session_st(const ssl_session_st &) = delete;
3925 ssl_session_st &operator=(const ssl_session_st &) = delete;
3926
3927 // ssl_version is the (D)TLS version that established the session.
3928 uint16_t ssl_version = 0;
3929
3930 // group_id is the ID of the ECDH group used to establish this session or zero
3931 // if not applicable or unknown.
3932 uint16_t group_id = 0;
3933
3934 // peer_signature_algorithm is the signature algorithm used to authenticate
3935 // the peer, or zero if not applicable or unknown.
3936 uint16_t peer_signature_algorithm = 0;
3937
3938 // secret, in TLS 1.2 and below, is the master secret associated with the
3939 // session. In TLS 1.3 and up, it is the resumption PSK for sessions handed to
3940 // the caller, but it stores the resumption secret when stored on |SSL|
3941 // objects.
3942 uint8_t secret_length = 0;
3943 uint8_t secret[SSL_MAX_MASTER_KEY_LENGTH] = {0};
3944
3945 // session_id - valid?
3946 uint8_t session_id_length = 0;
3947 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
3948 // this is used to determine whether the session is being reused in
3949 // the appropriate context. It is up to the application to set this,
3950 // via SSL_new
3951 uint8_t sid_ctx_length = 0;
3952 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
3953
3954 bssl::UniquePtr<char> psk_identity;
3955
3956 // certs contains the certificate chain from the peer, starting with the leaf
3957 // certificate.
3958 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs;
3959
3960 const bssl::SSL_X509_METHOD *x509_method = nullptr;
3961
3962 // x509_peer is the peer's certificate.
3963 X509 *x509_peer = nullptr;
3964
3965 // x509_chain is the certificate chain sent by the peer. NOTE: for historical
3966 // reasons, when a client (so the peer is a server), the chain includes
3967 // |peer|, but when a server it does not.
3968 STACK_OF(X509) *x509_chain = nullptr;
3969
3970 // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that
3971 // omits the leaf certificate. This exists because OpenSSL, historically,
3972 // didn't include the leaf certificate in the chain for a server, but did for
3973 // a client. The |x509_chain| always includes it and, if an API call requires
3974 // a chain without, it is stored here.
3975 STACK_OF(X509) *x509_chain_without_leaf = nullptr;
3976
3977 // verify_result is the result of certificate verification in the case of
3978 // non-fatal certificate errors.
3979 long verify_result = X509_V_ERR_INVALID_CALL;
3980
3981 // timeout is the lifetime of the session in seconds, measured from |time|.
3982 // This is renewable up to |auth_timeout|.
3983 uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3984
3985 // auth_timeout is the non-renewable lifetime of the session in seconds,
3986 // measured from |time|.
3987 uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3988
3989 // time is the time the session was issued, measured in seconds from the UNIX
3990 // epoch.
3991 uint64_t time = 0;
3992
3993 const SSL_CIPHER *cipher = nullptr;
3994
3995 CRYPTO_EX_DATA ex_data; // application specific data
3996
3997 // These are used to make removal of session-ids more efficient and to
3998 // implement a maximum cache size.
3999 SSL_SESSION *prev = nullptr, *next = nullptr;
4000
4001 bssl::Array<uint8_t> ticket;
4002
4003 bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
4004
4005 // The OCSP response that came with the session.
4006 bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
4007
4008 // peer_sha256 contains the SHA-256 hash of the peer's certificate if
4009 // |peer_sha256_valid| is true.
4010 uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0};
4011
4012 // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or
4013 // SHA-2, depending on TLS version) for the original, full handshake that
4014 // created a session. This is used by Channel IDs during resumption.
4015 uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0};
4016 uint8_t original_handshake_hash_len = 0;
4017
4018 uint32_t ticket_lifetime_hint = 0; // Session lifetime hint in seconds
4019
4020 uint32_t ticket_age_add = 0;
4021
4022 // ticket_max_early_data is the maximum amount of data allowed to be sent as
4023 // early data. If zero, 0-RTT is disallowed.
4024 uint32_t ticket_max_early_data = 0;
4025
4026 // early_alpn is the ALPN protocol from the initial handshake. This is only
4027 // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT
4028 // resumptions. For the current connection's ALPN protocol, see
4029 // |alpn_selected| on |SSL3_STATE|.
4030 bssl::Array<uint8_t> early_alpn;
4031
4032 // local_application_settings, if |has_application_settings| is true, is the
4033 // local ALPS value for this connection.
4034 bssl::Array<uint8_t> local_application_settings;
4035
4036 // peer_application_settings, if |has_application_settings| is true, is the
4037 // peer ALPS value for this connection.
4038 bssl::Array<uint8_t> peer_application_settings;
4039
4040 // extended_master_secret is whether the master secret in this session was
4041 // generated using EMS and thus isn't vulnerable to the Triple Handshake
4042 // attack.
4043 bool extended_master_secret : 1;
4044
4045 // peer_sha256_valid is whether |peer_sha256| is valid.
4046 bool peer_sha256_valid : 1; // Non-zero if peer_sha256 is valid
4047
4048 // not_resumable is used to indicate that session resumption is disallowed.
4049 bool not_resumable : 1;
4050
4051 // ticket_age_add_valid is whether |ticket_age_add| is valid.
4052 bool ticket_age_add_valid : 1;
4053
4054 // is_server is whether this session was created by a server.
4055 bool is_server : 1;
4056
4057 // is_quic indicates whether this session was created using QUIC.
4058 bool is_quic : 1;
4059
4060 // has_application_settings indicates whether ALPS was negotiated in this
4061 // session.
4062 bool has_application_settings : 1;
4063
4064 // quic_early_data_context is used to determine whether early data must be
4065 // rejected when performing a QUIC handshake.
4066 bssl::Array<uint8_t> quic_early_data_context;
4067
4068 private:
4069 friend RefCounted;
4070 ~ssl_session_st();
4071 };
4072
4073 struct ssl_ech_keys_st : public bssl::RefCounted<ssl_ech_keys_st> {
4074 ssl_ech_keys_st() : RefCounted(CheckSubClass()) {}
4075
4076 bssl::GrowableArray<bssl::UniquePtr<bssl::ECHServerConfig>> configs;
4077
4078 private:
4079 friend RefCounted;
4080 ~ssl_ech_keys_st() = default;
4081 };
4082
4083 #endif // OPENSSL_HEADER_SSL_INTERNAL_H
4084