• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/rand_util.h"
6 
7 #include <stddef.h>
8 #include <stdint.h>
9 
10 #include <algorithm>
11 #include <cmath>
12 #include <limits>
13 #include <memory>
14 #include <vector>
15 
16 #include "base/logging.h"
17 #include "base/time/time.h"
18 #include "testing/gtest/include/gtest/gtest.h"
19 
20 namespace base {
21 
22 namespace {
23 
24 const int kIntMin = std::numeric_limits<int>::min();
25 const int kIntMax = std::numeric_limits<int>::max();
26 
27 }  // namespace
28 
TEST(RandUtilTest,RandInt)29 TEST(RandUtilTest, RandInt) {
30   EXPECT_EQ(base::RandInt(0, 0), 0);
31   EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin);
32   EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax);
33 
34   // Check that the DCHECKS in RandInt() don't fire due to internal overflow.
35   // There was a 50% chance of that happening, so calling it 40 times means
36   // the chances of this passing by accident are tiny (9e-13).
37   for (int i = 0; i < 40; ++i)
38     base::RandInt(kIntMin, kIntMax);
39 }
40 
TEST(RandUtilTest,RandDouble)41 TEST(RandUtilTest, RandDouble) {
42   // Force 64-bit precision, making sure we're not in a 80-bit FPU register.
43   volatile double number = base::RandDouble();
44   EXPECT_GT(1.0, number);
45   EXPECT_LE(0.0, number);
46 }
47 
TEST(RandUtilTest,RandFloat)48 TEST(RandUtilTest, RandFloat) {
49   // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
50   volatile float number = base::RandFloat();
51   EXPECT_GT(1.f, number);
52   EXPECT_LE(0.f, number);
53 }
54 
TEST(RandUtilTest,RandTimeDelta)55 TEST(RandUtilTest, RandTimeDelta) {
56   {
57     const auto delta =
58         base::RandTimeDelta(-base::Seconds(2), -base::Seconds(1));
59     EXPECT_GE(delta, -base::Seconds(2));
60     EXPECT_LT(delta, -base::Seconds(1));
61   }
62 
63   {
64     const auto delta = base::RandTimeDelta(-base::Seconds(2), base::Seconds(2));
65     EXPECT_GE(delta, -base::Seconds(2));
66     EXPECT_LT(delta, base::Seconds(2));
67   }
68 
69   {
70     const auto delta = base::RandTimeDelta(base::Seconds(1), base::Seconds(2));
71     EXPECT_GE(delta, base::Seconds(1));
72     EXPECT_LT(delta, base::Seconds(2));
73   }
74 }
75 
TEST(RandUtilTest,RandTimeDeltaUpTo)76 TEST(RandUtilTest, RandTimeDeltaUpTo) {
77   const auto delta = base::RandTimeDeltaUpTo(base::Seconds(2));
78   EXPECT_FALSE(delta.is_negative());
79   EXPECT_LT(delta, base::Seconds(2));
80 }
81 
TEST(RandUtilTest,BitsToOpenEndedUnitInterval)82 TEST(RandUtilTest, BitsToOpenEndedUnitInterval) {
83   // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
84   volatile double all_zeros = BitsToOpenEndedUnitInterval(0x0);
85   EXPECT_EQ(0.0, all_zeros);
86 
87   // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
88   volatile double smallest_nonzero = BitsToOpenEndedUnitInterval(0x1);
89   EXPECT_LT(0.0, smallest_nonzero);
90 
91   for (uint64_t i = 0x2; i < 0x10; ++i) {
92     // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
93     volatile double number = BitsToOpenEndedUnitInterval(i);
94     EXPECT_EQ(i * smallest_nonzero, number);
95   }
96 
97   // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
98   volatile double all_ones = BitsToOpenEndedUnitInterval(UINT64_MAX);
99   EXPECT_GT(1.0, all_ones);
100 }
101 
TEST(RandUtilTest,BitsToOpenEndedUnitIntervalF)102 TEST(RandUtilTest, BitsToOpenEndedUnitIntervalF) {
103   // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
104   volatile float all_zeros = BitsToOpenEndedUnitIntervalF(0x0);
105   EXPECT_EQ(0.f, all_zeros);
106 
107   // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
108   volatile float smallest_nonzero = BitsToOpenEndedUnitIntervalF(0x1);
109   EXPECT_LT(0.f, smallest_nonzero);
110 
111   for (uint64_t i = 0x2; i < 0x10; ++i) {
112     // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
113     volatile float number = BitsToOpenEndedUnitIntervalF(i);
114     EXPECT_EQ(i * smallest_nonzero, number);
115   }
116 
117   // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
118   volatile float all_ones = BitsToOpenEndedUnitIntervalF(UINT64_MAX);
119   EXPECT_GT(1.f, all_ones);
120 }
121 
TEST(RandUtilTest,RandBytes)122 TEST(RandUtilTest, RandBytes) {
123   const size_t buffer_size = 50;
124   char buffer[buffer_size];
125   memset(buffer, 0, buffer_size);
126   base::RandBytes(buffer, buffer_size);
127   std::sort(buffer, buffer + buffer_size);
128   // Probability of occurrence of less than 25 unique bytes in 50 random bytes
129   // is below 10^-25.
130   EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
131 }
132 
133 // Verify that calling base::RandBytes with an empty buffer doesn't fail.
TEST(RandUtilTest,RandBytes0)134 TEST(RandUtilTest, RandBytes0) {
135   base::RandBytes(nullptr, 0);
136 }
137 
TEST(RandUtilTest,RandBytesAsVector)138 TEST(RandUtilTest, RandBytesAsVector) {
139   std::vector<uint8_t> random_vec = base::RandBytesAsVector(0);
140   EXPECT_TRUE(random_vec.empty());
141   random_vec = base::RandBytesAsVector(1);
142   EXPECT_EQ(1U, random_vec.size());
143   random_vec = base::RandBytesAsVector(145);
144   EXPECT_EQ(145U, random_vec.size());
145   char accumulator = 0;
146   for (auto i : random_vec) {
147     accumulator |= i;
148   }
149   // In theory this test can fail, but it won't before the universe dies of
150   // heat death.
151   EXPECT_NE(0, accumulator);
152 }
153 
TEST(RandUtilTest,RandBytesAsString)154 TEST(RandUtilTest, RandBytesAsString) {
155   std::string random_string = base::RandBytesAsString(1);
156   EXPECT_EQ(1U, random_string.size());
157   random_string = base::RandBytesAsString(145);
158   EXPECT_EQ(145U, random_string.size());
159   char accumulator = 0;
160   for (auto i : random_string)
161     accumulator |= i;
162   // In theory this test can fail, but it won't before the universe dies of
163   // heat death.
164   EXPECT_NE(0, accumulator);
165 }
166 
167 // Make sure that it is still appropriate to use RandGenerator in conjunction
168 // with std::random_shuffle().
TEST(RandUtilTest,RandGeneratorForRandomShuffle)169 TEST(RandUtilTest, RandGeneratorForRandomShuffle) {
170   EXPECT_EQ(base::RandGenerator(1), 0U);
171   EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
172             std::numeric_limits<int64_t>::max());
173 }
174 
TEST(RandUtilTest,RandGeneratorIsUniform)175 TEST(RandUtilTest, RandGeneratorIsUniform) {
176   // Verify that RandGenerator has a uniform distribution. This is a
177   // regression test that consistently failed when RandGenerator was
178   // implemented this way:
179   //
180   //   return base::RandUint64() % max;
181   //
182   // A degenerate case for such an implementation is e.g. a top of
183   // range that is 2/3rds of the way to MAX_UINT64, in which case the
184   // bottom half of the range would be twice as likely to occur as the
185   // top half. A bit of calculus care of jar@ shows that the largest
186   // measurable delta is when the top of the range is 3/4ths of the
187   // way, so that's what we use in the test.
188   constexpr uint64_t kTopOfRange =
189       (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL;
190   constexpr double kExpectedAverage = static_cast<double>(kTopOfRange / 2);
191   constexpr double kAllowedVariance = kExpectedAverage / 50.0;  // +/- 2%
192   constexpr int kMinAttempts = 1000;
193   constexpr int kMaxAttempts = 1000000;
194 
195   double cumulative_average = 0.0;
196   int count = 0;
197   while (count < kMaxAttempts) {
198     uint64_t value = base::RandGenerator(kTopOfRange);
199     cumulative_average = (count * cumulative_average + value) / (count + 1);
200 
201     // Don't quit too quickly for things to start converging, or we may have
202     // a false positive.
203     if (count > kMinAttempts &&
204         kExpectedAverage - kAllowedVariance < cumulative_average &&
205         cumulative_average < kExpectedAverage + kAllowedVariance) {
206       break;
207     }
208 
209     ++count;
210   }
211 
212   ASSERT_LT(count, kMaxAttempts) << "Expected average was " << kExpectedAverage
213                                  << ", average ended at " << cumulative_average;
214 }
215 
TEST(RandUtilTest,RandUint64ProducesBothValuesOfAllBits)216 TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
217   // This tests to see that our underlying random generator is good
218   // enough, for some value of good enough.
219   uint64_t kAllZeros = 0ULL;
220   uint64_t kAllOnes = ~kAllZeros;
221   uint64_t found_ones = kAllZeros;
222   uint64_t found_zeros = kAllOnes;
223 
224   for (size_t i = 0; i < 1000; ++i) {
225     uint64_t value = base::RandUint64();
226     found_ones |= value;
227     found_zeros &= value;
228 
229     if (found_zeros == kAllZeros && found_ones == kAllOnes)
230       return;
231   }
232 
233   FAIL() << "Didn't achieve all bit values in maximum number of tries.";
234 }
235 
TEST(RandUtilTest,RandBytesLonger)236 TEST(RandUtilTest, RandBytesLonger) {
237   // Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we
238   // handle longer requests than that.
239   std::string random_string0 = base::RandBytesAsString(255);
240   EXPECT_EQ(255u, random_string0.size());
241   std::string random_string1 = base::RandBytesAsString(1023);
242   EXPECT_EQ(1023u, random_string1.size());
243   std::string random_string2 = base::RandBytesAsString(4097);
244   EXPECT_EQ(4097u, random_string2.size());
245 }
246 
247 // Benchmark test for RandBytes().  Disabled since it's intentionally slow and
248 // does not test anything that isn't already tested by the existing RandBytes()
249 // tests.
TEST(RandUtilTest,DISABLED_RandBytesPerf)250 TEST(RandUtilTest, DISABLED_RandBytesPerf) {
251   // Benchmark the performance of |kTestIterations| of RandBytes() using a
252   // buffer size of |kTestBufferSize|.
253   const int kTestIterations = 10;
254   const size_t kTestBufferSize = 1 * 1024 * 1024;
255 
256   std::unique_ptr<uint8_t[]> buffer(new uint8_t[kTestBufferSize]);
257   const base::TimeTicks now = base::TimeTicks::Now();
258   for (int i = 0; i < kTestIterations; ++i)
259     base::RandBytes(buffer.get(), kTestBufferSize);
260   const base::TimeTicks end = base::TimeTicks::Now();
261 
262   LOG(INFO) << "RandBytes(" << kTestBufferSize
263             << ") took: " << (end - now).InMicroseconds() << "µs";
264 }
265 
TEST(RandUtilTest,InsecureRandomGeneratorProducesBothValuesOfAllBits)266 TEST(RandUtilTest, InsecureRandomGeneratorProducesBothValuesOfAllBits) {
267   // This tests to see that our underlying random generator is good
268   // enough, for some value of good enough.
269   uint64_t kAllZeros = 0ULL;
270   uint64_t kAllOnes = ~kAllZeros;
271   uint64_t found_ones = kAllZeros;
272   uint64_t found_zeros = kAllOnes;
273 
274   InsecureRandomGenerator generator;
275 
276   for (size_t i = 0; i < 1000; ++i) {
277     uint64_t value = generator.RandUint64();
278     found_ones |= value;
279     found_zeros &= value;
280 
281     if (found_zeros == kAllZeros && found_ones == kAllOnes)
282       return;
283   }
284 
285   FAIL() << "Didn't achieve all bit values in maximum number of tries.";
286 }
287 
288 namespace {
289 
290 constexpr double kXp1Percent = -2.33;
291 constexpr double kXp99Percent = 2.33;
292 
ChiSquaredCriticalValue(double nu,double x_p)293 double ChiSquaredCriticalValue(double nu, double x_p) {
294   // From "The Art Of Computer Programming" (TAOCP), Volume 2, Section 3.3.1,
295   // Table 1. This is the asymptotic value for nu > 30, up to O(1 / sqrt(nu)).
296   return nu + sqrt(2. * nu) * x_p + 2. / 3. * (x_p * x_p) - 2. / 3.;
297 }
298 
ExtractBits(uint64_t value,int from_bit,int num_bits)299 int ExtractBits(uint64_t value, int from_bit, int num_bits) {
300   return (value >> from_bit) & ((1 << num_bits) - 1);
301 }
302 
303 // Performs a Chi-Squared test on a subset of |num_bits| extracted starting from
304 // |from_bit| in the generated value.
305 //
306 // See TAOCP, Volume 2, Section 3.3.1, and
307 // https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test for details.
308 //
309 // This is only one of the many, many random number generator test we could do,
310 // but they are cumbersome, as they are typically very slow, and expected to
311 // fail from time to time, due to their probabilistic nature.
312 //
313 // The generator we use has however been vetted with the BigCrush test suite
314 // from Marsaglia, so this should suffice as a smoke test that our
315 // implementation is wrong.
ChiSquaredTest(InsecureRandomGenerator & gen,size_t n,int from_bit,int num_bits)316 bool ChiSquaredTest(InsecureRandomGenerator& gen,
317                     size_t n,
318                     int from_bit,
319                     int num_bits) {
320   const int range = 1 << num_bits;
321   CHECK_EQ(static_cast<int>(n % range), 0) << "Makes computations simpler";
322   std::vector<size_t> samples(range, 0);
323 
324   // Count how many samples pf each value are found. All buckets should be
325   // almost equal if the generator is suitably uniformly random.
326   for (size_t i = 0; i < n; i++) {
327     int sample = ExtractBits(gen.RandUint64(), from_bit, num_bits);
328     samples[sample] += 1;
329   }
330 
331   // Compute the Chi-Squared statistic, which is:
332   // \Sum_{k=0}^{range-1} \frac{(count - expected)^2}{expected}
333   double chi_squared = 0.;
334   double expected_count = n / range;
335   for (size_t sample_count : samples) {
336     double deviation = sample_count - expected_count;
337     chi_squared += (deviation * deviation) / expected_count;
338   }
339 
340   // The generator should produce numbers that are not too far of (chi_squared
341   // lower than a given quantile), but not too close to the ideal distribution
342   // either (chi_squared is too low).
343   //
344   // See The Art Of Computer Programming, Volume 2, Section 3.3.1 for details.
345   return chi_squared > ChiSquaredCriticalValue(range - 1, kXp1Percent) &&
346          chi_squared < ChiSquaredCriticalValue(range - 1, kXp99Percent);
347 }
348 
349 }  // namespace
350 
TEST(RandUtilTest,InsecureRandomGeneratorChiSquared)351 TEST(RandUtilTest, InsecureRandomGeneratorChiSquared) {
352   constexpr int kIterations = 50;
353 
354   // Specifically test the low bits, which are usually weaker in random number
355   // generators. We don't use them for the 32 bit number generation, but let's
356   // make sure they are still suitable.
357   for (int start_bit : {1, 2, 3, 8, 12, 20, 32, 48, 54}) {
358     int pass_count = 0;
359     for (int i = 0; i < kIterations; i++) {
360       size_t samples = 1 << 16;
361       InsecureRandomGenerator gen;
362       // Fix the seed to make the test non-flaky.
363       gen.ReseedForTesting(kIterations + 1);
364       bool pass = ChiSquaredTest(gen, samples, start_bit, 8);
365       pass_count += pass;
366     }
367 
368     // We exclude 1% on each side, so we expect 98% of tests to pass, meaning 98
369     // * kIterations / 100. However this is asymptotic, so add a bit of leeway.
370     int expected_pass_count = (kIterations * 98) / 100;
371     EXPECT_GE(pass_count, expected_pass_count - ((kIterations * 2) / 100))
372         << "For start_bit = " << start_bit;
373   }
374 }
375 
TEST(RandUtilTest,InsecureRandomGeneratorRandDouble)376 TEST(RandUtilTest, InsecureRandomGeneratorRandDouble) {
377   InsecureRandomGenerator gen;
378 
379   for (int i = 0; i < 1000; i++) {
380     volatile double x = gen.RandDouble();
381     EXPECT_GE(x, 0.);
382     EXPECT_LT(x, 1.);
383   }
384 }
385 }  // namespace base
386