• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <stddef.h>
6 
7 #include <limits>
8 #include <vector>
9 
10 #include "base/check_op.h"
11 #include "base/memory/raw_ptr.h"
12 #include "base/ranges/algorithm.h"
13 #include "base/synchronization/condition_variable.h"
14 #include "base/synchronization/lock.h"
15 #include "base/synchronization/waitable_event.h"
16 #include "base/threading/scoped_blocking_call.h"
17 #include "base/threading/thread_restrictions.h"
18 #include "base/time/time.h"
19 #include "base/time/time_override.h"
20 #include "third_party/abseil-cpp/absl/types/optional.h"
21 
22 // -----------------------------------------------------------------------------
23 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
24 // support cross-process events (where one process can signal an event which
25 // others are waiting on). Because of this, we can avoid having one thread per
26 // listener in several cases.
27 //
28 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
29 // waiter is either an async wait, in which case we have a Task and the
30 // MessageLoop to run it on, or a blocking wait, in which case we have the
31 // condition variable to signal.
32 //
33 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
34 // waits can be canceled, which means grabbing the lock and removing oneself
35 // from the list.
36 //
37 // Waiting on multiple events is handled by adding a single, synchronous wait to
38 // the wait-list of many events. An event passes a pointer to itself when
39 // firing a waiter and so we can store that pointer to find out which event
40 // triggered.
41 // -----------------------------------------------------------------------------
42 
43 namespace base {
44 
45 // -----------------------------------------------------------------------------
46 // This is just an abstract base class for waking the two types of waiters
47 // -----------------------------------------------------------------------------
WaitableEvent(ResetPolicy reset_policy,InitialState initial_state)48 WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
49                              InitialState initial_state)
50     : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
51 
52 WaitableEvent::~WaitableEvent() = default;
53 
Reset()54 void WaitableEvent::Reset() {
55   base::AutoLock locked(kernel_->lock_);
56   kernel_->signaled_ = false;
57 }
58 
SignalImpl()59 void WaitableEvent::SignalImpl() {
60   base::AutoLock locked(kernel_->lock_);
61 
62   if (kernel_->signaled_)
63     return;
64 
65   if (kernel_->manual_reset_) {
66     SignalAll();
67     kernel_->signaled_ = true;
68   } else {
69     // In the case of auto reset, if no waiters were woken, we remain
70     // signaled.
71     if (!SignalOne())
72       kernel_->signaled_ = true;
73   }
74 }
75 
IsSignaled()76 bool WaitableEvent::IsSignaled() {
77   base::AutoLock locked(kernel_->lock_);
78 
79   const bool result = kernel_->signaled_;
80   if (result && !kernel_->manual_reset_)
81     kernel_->signaled_ = false;
82   return result;
83 }
84 
85 // -----------------------------------------------------------------------------
86 // Synchronous waits
87 
88 // -----------------------------------------------------------------------------
89 // This is a synchronous waiter. The thread is waiting on the given condition
90 // variable and the fired flag in this object.
91 // -----------------------------------------------------------------------------
92 class SyncWaiter : public WaitableEvent::Waiter {
93  public:
SyncWaiter()94   SyncWaiter()
95       : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
96 
Fire(WaitableEvent * signaling_event)97   bool Fire(WaitableEvent* signaling_event) override {
98     base::AutoLock locked(lock_);
99 
100     if (fired_)
101       return false;
102 
103     fired_ = true;
104     signaling_event_ = signaling_event;
105 
106     cv_.Broadcast();
107 
108     // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
109     // the blocking thread's stack.  There is no |delete this;| in Fire.  The
110     // SyncWaiter object is destroyed when it goes out of scope.
111 
112     return true;
113   }
114 
signaling_event() const115   WaitableEvent* signaling_event() const {
116     return signaling_event_;
117   }
118 
119   // ---------------------------------------------------------------------------
120   // These waiters are always stack allocated and don't delete themselves. Thus
121   // there's no problem and the ABA tag is the same as the object pointer.
122   // ---------------------------------------------------------------------------
Compare(void * tag)123   bool Compare(void* tag) override { return this == tag; }
124 
125   // ---------------------------------------------------------------------------
126   // Called with lock held.
127   // ---------------------------------------------------------------------------
fired() const128   bool fired() const {
129     return fired_;
130   }
131 
132   // ---------------------------------------------------------------------------
133   // During a TimedWait, we need a way to make sure that an auto-reset
134   // WaitableEvent doesn't think that this event has been signaled between
135   // unlocking it and removing it from the wait-list. Called with lock held.
136   // ---------------------------------------------------------------------------
Disable()137   void Disable() {
138     fired_ = true;
139   }
140 
lock()141   base::Lock* lock() {
142     return &lock_;
143   }
144 
cv()145   base::ConditionVariable* cv() {
146     return &cv_;
147   }
148 
149  private:
150   bool fired_;
151   raw_ptr<WaitableEvent> signaling_event_;  // The WaitableEvent which woke us
152   base::Lock lock_;
153   base::ConditionVariable cv_;
154 };
155 
TimedWaitImpl(TimeDelta wait_delta)156 bool WaitableEvent::TimedWaitImpl(TimeDelta wait_delta) {
157   kernel_->lock_.Acquire();
158   if (kernel_->signaled_) {
159     if (!kernel_->manual_reset_) {
160       // In this case we were signaled when we had no waiters. Now that
161       // someone has waited upon us, we can automatically reset.
162       kernel_->signaled_ = false;
163     }
164 
165     kernel_->lock_.Release();
166     return true;
167   }
168 
169   SyncWaiter sw;
170   if (only_used_while_idle_) {
171     sw.cv()->declare_only_used_while_idle();
172   }
173   sw.lock()->Acquire();
174 
175   Enqueue(&sw);
176   kernel_->lock_.Release();
177   // We are violating locking order here by holding the SyncWaiter lock but not
178   // the WaitableEvent lock. However, this is safe because we don't lock |lock_|
179   // again before unlocking it.
180 
181   // TimeTicks takes care of overflow but we special case is_max() nonetheless
182   // to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
183   // the increment step of the for loop if the condition variable returns
184   // early). Ref: https://crbug.com/910524#c7
185   const TimeTicks end_time =
186       wait_delta.is_max() ? TimeTicks::Max()
187                           : subtle::TimeTicksNowIgnoringOverride() + wait_delta;
188   for (TimeDelta remaining = wait_delta; remaining.is_positive() && !sw.fired();
189        remaining = end_time.is_max()
190                        ? TimeDelta::Max()
191                        : end_time - subtle::TimeTicksNowIgnoringOverride()) {
192     if (end_time.is_max())
193       sw.cv()->Wait();
194     else
195       sw.cv()->TimedWait(remaining);
196   }
197 
198   // Get the SyncWaiter signaled state before releasing the lock.
199   const bool return_value = sw.fired();
200 
201   // We can't acquire |lock_| before releasing the SyncWaiter lock (because of
202   // locking order), however, in between the two a signal could be fired and
203   // |sw| would accept it, however we will still return false, so the signal
204   // would be lost on an auto-reset WaitableEvent. Thus we call Disable which
205   // makes sw::Fire return false.
206   sw.Disable();
207   sw.lock()->Release();
208 
209   // This is a bug that has been enshrined in the interface of WaitableEvent
210   // now: |Dequeue| is called even when |sw.fired()| is true, even though it'll
211   // always return false in that case. However, taking the lock ensures that
212   // |Signal| has completed before we return and means that a WaitableEvent can
213   // synchronise its own destruction.
214   kernel_->lock_.Acquire();
215   kernel_->Dequeue(&sw, &sw);
216   kernel_->lock_.Release();
217 
218   return return_value;
219 }
220 
221 // -----------------------------------------------------------------------------
222 // Synchronous waiting on multiple objects.
223 
224 static bool  // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)225 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
226              const std::pair<WaitableEvent*, unsigned> &b) {
227   return a.first < b.first;
228 }
229 
230 // static
231 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
WaitMany(WaitableEvent ** raw_waitables,size_t count)232 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
233                                size_t count) NO_THREAD_SAFETY_ANALYSIS {
234   DCHECK(count) << "Cannot wait on no events";
235   internal::ScopedBlockingCallWithBaseSyncPrimitives scoped_blocking_call(
236       FROM_HERE, BlockingType::MAY_BLOCK);
237   // We need to acquire the locks in a globally consistent order. Thus we sort
238   // the array of waitables by address. We actually sort a pairs so that we can
239   // map back to the original index values later.
240   std::vector<std::pair<WaitableEvent*, size_t> > waitables;
241   waitables.reserve(count);
242   for (size_t i = 0; i < count; ++i)
243     waitables.push_back(std::make_pair(raw_waitables[i], i));
244 
245   DCHECK_EQ(count, waitables.size());
246 
247   ranges::sort(waitables, cmp_fst_addr);
248 
249   // The set of waitables must be distinct. Since we have just sorted by
250   // address, we can check this cheaply by comparing pairs of consecutive
251   // elements.
252   for (size_t i = 0; i < waitables.size() - 1; ++i) {
253     DCHECK(waitables[i].first != waitables[i+1].first);
254   }
255 
256   SyncWaiter sw;
257 
258   const size_t r = EnqueueMany(&waitables[0], count, &sw);
259   if (r < count) {
260     // One of the events is already signaled. The SyncWaiter has not been
261     // enqueued anywhere.
262     return waitables[r].second;
263   }
264 
265   // At this point, we hold the locks on all the WaitableEvents and we have
266   // enqueued our waiter in them all.
267   sw.lock()->Acquire();
268     // Release the WaitableEvent locks in the reverse order
269     for (size_t i = 0; i < count; ++i) {
270       waitables[count - (1 + i)].first->kernel_->lock_.Release();
271     }
272 
273     for (;;) {
274       if (sw.fired())
275         break;
276 
277       sw.cv()->Wait();
278     }
279   sw.lock()->Release();
280 
281   // The address of the WaitableEvent which fired is stored in the SyncWaiter.
282   WaitableEvent *const signaled_event = sw.signaling_event();
283   // This will store the index of the raw_waitables which fired.
284   size_t signaled_index = 0;
285 
286   // Take the locks of each WaitableEvent in turn (except the signaled one) and
287   // remove our SyncWaiter from the wait-list
288   for (size_t i = 0; i < count; ++i) {
289     if (raw_waitables[i] != signaled_event) {
290       raw_waitables[i]->kernel_->lock_.Acquire();
291         // There's no possible ABA issue with the address of the SyncWaiter here
292         // because it lives on the stack. Thus the tag value is just the pointer
293         // value again.
294         raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
295       raw_waitables[i]->kernel_->lock_.Release();
296     } else {
297       // By taking this lock here we ensure that |Signal| has completed by the
298       // time we return, because |Signal| holds this lock. This matches the
299       // behaviour of |Wait| and |TimedWait|.
300       raw_waitables[i]->kernel_->lock_.Acquire();
301       raw_waitables[i]->kernel_->lock_.Release();
302       signaled_index = i;
303     }
304   }
305 
306   return signaled_index;
307 }
308 
309 // -----------------------------------------------------------------------------
310 // If return value == count:
311 //   The locks of the WaitableEvents have been taken in order and the Waiter has
312 //   been enqueued in the wait-list of each. None of the WaitableEvents are
313 //   currently signaled
314 // else:
315 //   None of the WaitableEvent locks are held. The Waiter has not been enqueued
316 //   in any of them and the return value is the index of the WaitableEvent which
317 //   was signaled with the lowest input index from the original WaitMany call.
318 // -----------------------------------------------------------------------------
319 // static
320 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)321 size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
322                                   size_t count,
323                                   Waiter* waiter) NO_THREAD_SAFETY_ANALYSIS {
324   size_t winner = count;
325   size_t winner_index = count;
326   for (size_t i = 0; i < count; ++i) {
327     auto& kernel = waitables[i].first->kernel_;
328     kernel->lock_.Acquire();
329     if (kernel->signaled_ && waitables[i].second < winner) {
330       winner = waitables[i].second;
331       winner_index = i;
332     }
333   }
334 
335   // No events signaled. All locks acquired. Enqueue the Waiter on all of them
336   // and return.
337   if (winner == count) {
338     for (size_t i = 0; i < count; ++i)
339       waitables[i].first->Enqueue(waiter);
340     return count;
341   }
342 
343   // Unlock in reverse order and possibly clear the chosen winner's signal
344   // before returning its index.
345   for (auto* w = waitables + count - 1; w >= waitables; --w) {
346     auto& kernel = w->first->kernel_;
347     if (w->second == winner) {
348       if (!kernel->manual_reset_)
349         kernel->signaled_ = false;
350     }
351     kernel->lock_.Release();
352   }
353 
354   return winner_index;
355 }
356 
357 // -----------------------------------------------------------------------------
358 
359 
360 // -----------------------------------------------------------------------------
361 // Private functions...
362 
WaitableEventKernel(ResetPolicy reset_policy,InitialState initial_state)363 WaitableEvent::WaitableEventKernel::WaitableEventKernel(
364     ResetPolicy reset_policy,
365     InitialState initial_state)
366     : manual_reset_(reset_policy == ResetPolicy::MANUAL),
367       signaled_(initial_state == InitialState::SIGNALED) {}
368 
369 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
370 
371 // -----------------------------------------------------------------------------
372 // Wake all waiting waiters. Called with lock held.
373 // -----------------------------------------------------------------------------
SignalAll()374 bool WaitableEvent::SignalAll() {
375   bool signaled_at_least_one = false;
376 
377   for (auto* i : kernel_->waiters_) {
378     if (i->Fire(this))
379       signaled_at_least_one = true;
380   }
381 
382   kernel_->waiters_.clear();
383   return signaled_at_least_one;
384 }
385 
386 // ---------------------------------------------------------------------------
387 // Try to wake a single waiter. Return true if one was woken. Called with lock
388 // held.
389 // ---------------------------------------------------------------------------
SignalOne()390 bool WaitableEvent::SignalOne() {
391   for (;;) {
392     if (kernel_->waiters_.empty())
393       return false;
394 
395     const bool r = (*kernel_->waiters_.begin())->Fire(this);
396     kernel_->waiters_.pop_front();
397     if (r)
398       return true;
399   }
400 }
401 
402 // -----------------------------------------------------------------------------
403 // Add a waiter to the list of those waiting. Called with lock held.
404 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)405 void WaitableEvent::Enqueue(Waiter* waiter) {
406   kernel_->waiters_.push_back(waiter);
407 }
408 
409 // -----------------------------------------------------------------------------
410 // Remove a waiter from the list of those waiting. Return true if the waiter was
411 // actually removed. Called with lock held.
412 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)413 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
414   for (auto i = waiters_.begin(); i != waiters_.end(); ++i) {
415     if (*i == waiter && (*i)->Compare(tag)) {
416       waiters_.erase(i);
417       return true;
418     }
419   }
420 
421   return false;
422 }
423 
424 // -----------------------------------------------------------------------------
425 
426 }  // namespace base
427