1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stddef.h>
6
7 #include <limits>
8 #include <vector>
9
10 #include "base/check_op.h"
11 #include "base/memory/raw_ptr.h"
12 #include "base/ranges/algorithm.h"
13 #include "base/synchronization/condition_variable.h"
14 #include "base/synchronization/lock.h"
15 #include "base/synchronization/waitable_event.h"
16 #include "base/threading/scoped_blocking_call.h"
17 #include "base/threading/thread_restrictions.h"
18 #include "base/time/time.h"
19 #include "base/time/time_override.h"
20 #include "third_party/abseil-cpp/absl/types/optional.h"
21
22 // -----------------------------------------------------------------------------
23 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
24 // support cross-process events (where one process can signal an event which
25 // others are waiting on). Because of this, we can avoid having one thread per
26 // listener in several cases.
27 //
28 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
29 // waiter is either an async wait, in which case we have a Task and the
30 // MessageLoop to run it on, or a blocking wait, in which case we have the
31 // condition variable to signal.
32 //
33 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
34 // waits can be canceled, which means grabbing the lock and removing oneself
35 // from the list.
36 //
37 // Waiting on multiple events is handled by adding a single, synchronous wait to
38 // the wait-list of many events. An event passes a pointer to itself when
39 // firing a waiter and so we can store that pointer to find out which event
40 // triggered.
41 // -----------------------------------------------------------------------------
42
43 namespace base {
44
45 // -----------------------------------------------------------------------------
46 // This is just an abstract base class for waking the two types of waiters
47 // -----------------------------------------------------------------------------
WaitableEvent(ResetPolicy reset_policy,InitialState initial_state)48 WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
49 InitialState initial_state)
50 : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
51
52 WaitableEvent::~WaitableEvent() = default;
53
Reset()54 void WaitableEvent::Reset() {
55 base::AutoLock locked(kernel_->lock_);
56 kernel_->signaled_ = false;
57 }
58
SignalImpl()59 void WaitableEvent::SignalImpl() {
60 base::AutoLock locked(kernel_->lock_);
61
62 if (kernel_->signaled_)
63 return;
64
65 if (kernel_->manual_reset_) {
66 SignalAll();
67 kernel_->signaled_ = true;
68 } else {
69 // In the case of auto reset, if no waiters were woken, we remain
70 // signaled.
71 if (!SignalOne())
72 kernel_->signaled_ = true;
73 }
74 }
75
IsSignaled()76 bool WaitableEvent::IsSignaled() {
77 base::AutoLock locked(kernel_->lock_);
78
79 const bool result = kernel_->signaled_;
80 if (result && !kernel_->manual_reset_)
81 kernel_->signaled_ = false;
82 return result;
83 }
84
85 // -----------------------------------------------------------------------------
86 // Synchronous waits
87
88 // -----------------------------------------------------------------------------
89 // This is a synchronous waiter. The thread is waiting on the given condition
90 // variable and the fired flag in this object.
91 // -----------------------------------------------------------------------------
92 class SyncWaiter : public WaitableEvent::Waiter {
93 public:
SyncWaiter()94 SyncWaiter()
95 : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
96
Fire(WaitableEvent * signaling_event)97 bool Fire(WaitableEvent* signaling_event) override {
98 base::AutoLock locked(lock_);
99
100 if (fired_)
101 return false;
102
103 fired_ = true;
104 signaling_event_ = signaling_event;
105
106 cv_.Broadcast();
107
108 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
109 // the blocking thread's stack. There is no |delete this;| in Fire. The
110 // SyncWaiter object is destroyed when it goes out of scope.
111
112 return true;
113 }
114
signaling_event() const115 WaitableEvent* signaling_event() const {
116 return signaling_event_;
117 }
118
119 // ---------------------------------------------------------------------------
120 // These waiters are always stack allocated and don't delete themselves. Thus
121 // there's no problem and the ABA tag is the same as the object pointer.
122 // ---------------------------------------------------------------------------
Compare(void * tag)123 bool Compare(void* tag) override { return this == tag; }
124
125 // ---------------------------------------------------------------------------
126 // Called with lock held.
127 // ---------------------------------------------------------------------------
fired() const128 bool fired() const {
129 return fired_;
130 }
131
132 // ---------------------------------------------------------------------------
133 // During a TimedWait, we need a way to make sure that an auto-reset
134 // WaitableEvent doesn't think that this event has been signaled between
135 // unlocking it and removing it from the wait-list. Called with lock held.
136 // ---------------------------------------------------------------------------
Disable()137 void Disable() {
138 fired_ = true;
139 }
140
lock()141 base::Lock* lock() {
142 return &lock_;
143 }
144
cv()145 base::ConditionVariable* cv() {
146 return &cv_;
147 }
148
149 private:
150 bool fired_;
151 raw_ptr<WaitableEvent> signaling_event_; // The WaitableEvent which woke us
152 base::Lock lock_;
153 base::ConditionVariable cv_;
154 };
155
TimedWaitImpl(TimeDelta wait_delta)156 bool WaitableEvent::TimedWaitImpl(TimeDelta wait_delta) {
157 kernel_->lock_.Acquire();
158 if (kernel_->signaled_) {
159 if (!kernel_->manual_reset_) {
160 // In this case we were signaled when we had no waiters. Now that
161 // someone has waited upon us, we can automatically reset.
162 kernel_->signaled_ = false;
163 }
164
165 kernel_->lock_.Release();
166 return true;
167 }
168
169 SyncWaiter sw;
170 if (only_used_while_idle_) {
171 sw.cv()->declare_only_used_while_idle();
172 }
173 sw.lock()->Acquire();
174
175 Enqueue(&sw);
176 kernel_->lock_.Release();
177 // We are violating locking order here by holding the SyncWaiter lock but not
178 // the WaitableEvent lock. However, this is safe because we don't lock |lock_|
179 // again before unlocking it.
180
181 // TimeTicks takes care of overflow but we special case is_max() nonetheless
182 // to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
183 // the increment step of the for loop if the condition variable returns
184 // early). Ref: https://crbug.com/910524#c7
185 const TimeTicks end_time =
186 wait_delta.is_max() ? TimeTicks::Max()
187 : subtle::TimeTicksNowIgnoringOverride() + wait_delta;
188 for (TimeDelta remaining = wait_delta; remaining.is_positive() && !sw.fired();
189 remaining = end_time.is_max()
190 ? TimeDelta::Max()
191 : end_time - subtle::TimeTicksNowIgnoringOverride()) {
192 if (end_time.is_max())
193 sw.cv()->Wait();
194 else
195 sw.cv()->TimedWait(remaining);
196 }
197
198 // Get the SyncWaiter signaled state before releasing the lock.
199 const bool return_value = sw.fired();
200
201 // We can't acquire |lock_| before releasing the SyncWaiter lock (because of
202 // locking order), however, in between the two a signal could be fired and
203 // |sw| would accept it, however we will still return false, so the signal
204 // would be lost on an auto-reset WaitableEvent. Thus we call Disable which
205 // makes sw::Fire return false.
206 sw.Disable();
207 sw.lock()->Release();
208
209 // This is a bug that has been enshrined in the interface of WaitableEvent
210 // now: |Dequeue| is called even when |sw.fired()| is true, even though it'll
211 // always return false in that case. However, taking the lock ensures that
212 // |Signal| has completed before we return and means that a WaitableEvent can
213 // synchronise its own destruction.
214 kernel_->lock_.Acquire();
215 kernel_->Dequeue(&sw, &sw);
216 kernel_->lock_.Release();
217
218 return return_value;
219 }
220
221 // -----------------------------------------------------------------------------
222 // Synchronous waiting on multiple objects.
223
224 static bool // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)225 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
226 const std::pair<WaitableEvent*, unsigned> &b) {
227 return a.first < b.first;
228 }
229
230 // static
231 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
WaitMany(WaitableEvent ** raw_waitables,size_t count)232 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
233 size_t count) NO_THREAD_SAFETY_ANALYSIS {
234 DCHECK(count) << "Cannot wait on no events";
235 internal::ScopedBlockingCallWithBaseSyncPrimitives scoped_blocking_call(
236 FROM_HERE, BlockingType::MAY_BLOCK);
237 // We need to acquire the locks in a globally consistent order. Thus we sort
238 // the array of waitables by address. We actually sort a pairs so that we can
239 // map back to the original index values later.
240 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
241 waitables.reserve(count);
242 for (size_t i = 0; i < count; ++i)
243 waitables.push_back(std::make_pair(raw_waitables[i], i));
244
245 DCHECK_EQ(count, waitables.size());
246
247 ranges::sort(waitables, cmp_fst_addr);
248
249 // The set of waitables must be distinct. Since we have just sorted by
250 // address, we can check this cheaply by comparing pairs of consecutive
251 // elements.
252 for (size_t i = 0; i < waitables.size() - 1; ++i) {
253 DCHECK(waitables[i].first != waitables[i+1].first);
254 }
255
256 SyncWaiter sw;
257
258 const size_t r = EnqueueMany(&waitables[0], count, &sw);
259 if (r < count) {
260 // One of the events is already signaled. The SyncWaiter has not been
261 // enqueued anywhere.
262 return waitables[r].second;
263 }
264
265 // At this point, we hold the locks on all the WaitableEvents and we have
266 // enqueued our waiter in them all.
267 sw.lock()->Acquire();
268 // Release the WaitableEvent locks in the reverse order
269 for (size_t i = 0; i < count; ++i) {
270 waitables[count - (1 + i)].first->kernel_->lock_.Release();
271 }
272
273 for (;;) {
274 if (sw.fired())
275 break;
276
277 sw.cv()->Wait();
278 }
279 sw.lock()->Release();
280
281 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
282 WaitableEvent *const signaled_event = sw.signaling_event();
283 // This will store the index of the raw_waitables which fired.
284 size_t signaled_index = 0;
285
286 // Take the locks of each WaitableEvent in turn (except the signaled one) and
287 // remove our SyncWaiter from the wait-list
288 for (size_t i = 0; i < count; ++i) {
289 if (raw_waitables[i] != signaled_event) {
290 raw_waitables[i]->kernel_->lock_.Acquire();
291 // There's no possible ABA issue with the address of the SyncWaiter here
292 // because it lives on the stack. Thus the tag value is just the pointer
293 // value again.
294 raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
295 raw_waitables[i]->kernel_->lock_.Release();
296 } else {
297 // By taking this lock here we ensure that |Signal| has completed by the
298 // time we return, because |Signal| holds this lock. This matches the
299 // behaviour of |Wait| and |TimedWait|.
300 raw_waitables[i]->kernel_->lock_.Acquire();
301 raw_waitables[i]->kernel_->lock_.Release();
302 signaled_index = i;
303 }
304 }
305
306 return signaled_index;
307 }
308
309 // -----------------------------------------------------------------------------
310 // If return value == count:
311 // The locks of the WaitableEvents have been taken in order and the Waiter has
312 // been enqueued in the wait-list of each. None of the WaitableEvents are
313 // currently signaled
314 // else:
315 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
316 // in any of them and the return value is the index of the WaitableEvent which
317 // was signaled with the lowest input index from the original WaitMany call.
318 // -----------------------------------------------------------------------------
319 // static
320 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)321 size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
322 size_t count,
323 Waiter* waiter) NO_THREAD_SAFETY_ANALYSIS {
324 size_t winner = count;
325 size_t winner_index = count;
326 for (size_t i = 0; i < count; ++i) {
327 auto& kernel = waitables[i].first->kernel_;
328 kernel->lock_.Acquire();
329 if (kernel->signaled_ && waitables[i].second < winner) {
330 winner = waitables[i].second;
331 winner_index = i;
332 }
333 }
334
335 // No events signaled. All locks acquired. Enqueue the Waiter on all of them
336 // and return.
337 if (winner == count) {
338 for (size_t i = 0; i < count; ++i)
339 waitables[i].first->Enqueue(waiter);
340 return count;
341 }
342
343 // Unlock in reverse order and possibly clear the chosen winner's signal
344 // before returning its index.
345 for (auto* w = waitables + count - 1; w >= waitables; --w) {
346 auto& kernel = w->first->kernel_;
347 if (w->second == winner) {
348 if (!kernel->manual_reset_)
349 kernel->signaled_ = false;
350 }
351 kernel->lock_.Release();
352 }
353
354 return winner_index;
355 }
356
357 // -----------------------------------------------------------------------------
358
359
360 // -----------------------------------------------------------------------------
361 // Private functions...
362
WaitableEventKernel(ResetPolicy reset_policy,InitialState initial_state)363 WaitableEvent::WaitableEventKernel::WaitableEventKernel(
364 ResetPolicy reset_policy,
365 InitialState initial_state)
366 : manual_reset_(reset_policy == ResetPolicy::MANUAL),
367 signaled_(initial_state == InitialState::SIGNALED) {}
368
369 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
370
371 // -----------------------------------------------------------------------------
372 // Wake all waiting waiters. Called with lock held.
373 // -----------------------------------------------------------------------------
SignalAll()374 bool WaitableEvent::SignalAll() {
375 bool signaled_at_least_one = false;
376
377 for (auto* i : kernel_->waiters_) {
378 if (i->Fire(this))
379 signaled_at_least_one = true;
380 }
381
382 kernel_->waiters_.clear();
383 return signaled_at_least_one;
384 }
385
386 // ---------------------------------------------------------------------------
387 // Try to wake a single waiter. Return true if one was woken. Called with lock
388 // held.
389 // ---------------------------------------------------------------------------
SignalOne()390 bool WaitableEvent::SignalOne() {
391 for (;;) {
392 if (kernel_->waiters_.empty())
393 return false;
394
395 const bool r = (*kernel_->waiters_.begin())->Fire(this);
396 kernel_->waiters_.pop_front();
397 if (r)
398 return true;
399 }
400 }
401
402 // -----------------------------------------------------------------------------
403 // Add a waiter to the list of those waiting. Called with lock held.
404 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)405 void WaitableEvent::Enqueue(Waiter* waiter) {
406 kernel_->waiters_.push_back(waiter);
407 }
408
409 // -----------------------------------------------------------------------------
410 // Remove a waiter from the list of those waiting. Return true if the waiter was
411 // actually removed. Called with lock held.
412 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)413 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
414 for (auto i = waiters_.begin(); i != waiters_.end(); ++i) {
415 if (*i == waiter && (*i)->Compare(tag)) {
416 waiters_.erase(i);
417 return true;
418 }
419 }
420
421 return false;
422 }
423
424 // -----------------------------------------------------------------------------
425
426 } // namespace base
427