• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // `Time` represents an absolute point in coordinated universal time (UTC),
6 // internally represented as microseconds (s/1,000,000) since the Windows epoch
7 // (1601-01-01 00:00:00 UTC). System-dependent clock interface routines are
8 // defined in time_PLATFORM.cc. Note that values for `Time` may skew and jump
9 // around as the operating system makes adjustments to synchronize (e.g., with
10 // NTP servers). Thus, client code that uses the `Time` class must account for
11 // this.
12 //
13 // `TimeDelta` represents a duration of time, internally represented in
14 // microseconds.
15 //
16 // `TimeTicks` and `ThreadTicks` represent an abstract time that is most of the
17 // time incrementing, for use in measuring time durations. Internally, they are
18 // represented in microseconds. They cannot be converted to a human-readable
19 // time, but are guaranteed not to decrease (unlike the `Time` class). Note
20 // that `TimeTicks` may "stand still" (e.g., if the computer is suspended), and
21 // `ThreadTicks` will "stand still" whenever the thread has been de-scheduled
22 // by the operating system.
23 //
24 // All time classes are copyable, assignable, and occupy 64 bits per instance.
25 // Prefer to pass them by value, e.g.:
26 //
27 //   void MyFunction(TimeDelta arg);
28 //
29 // All time classes support `operator<<` with logging streams, e.g. `LOG(INFO)`.
30 // For human-readable formatting, use //base/i18n/time_formatting.h.
31 //
32 // Example use cases for different time classes:
33 //
34 //   Time:        Interpreting the wall-clock time provided by a remote system.
35 //                Detecting whether cached resources have expired. Providing the
36 //                user with a display of the current date and time. Determining
37 //                the amount of time between events across re-boots of the
38 //                machine.
39 //
40 //   TimeTicks:   Tracking the amount of time a task runs. Executing delayed
41 //                tasks at the right time. Computing presentation timestamps.
42 //                Synchronizing audio and video using TimeTicks as a common
43 //                reference clock (lip-sync). Measuring network round-trip
44 //                latency.
45 //
46 //   ThreadTicks: Benchmarking how long the current thread has been doing actual
47 //                work.
48 //
49 // Serialization:
50 //
51 // Use the helpers in //base/json/values_util.h when serializing `Time`
52 // or `TimeDelta` to/from `base::Value`.
53 //
54 // Otherwise:
55 //
56 // - Time: use `FromDeltaSinceWindowsEpoch()`/`ToDeltaSinceWindowsEpoch()`.
57 // - TimeDelta: use `base::Microseconds()`/`InMicroseconds()`.
58 //
59 // `TimeTicks` and `ThreadTicks` do not have a stable origin; serialization for
60 // the purpose of persistence is not supported.
61 
62 #ifndef BASE_TIME_TIME_H_
63 #define BASE_TIME_TIME_H_
64 
65 #include <stdint.h>
66 #include <time.h>
67 
68 #include <compare>
69 #include <iosfwd>
70 #include <limits>
71 #include <ostream>
72 #include <type_traits>
73 
74 #include "base/base_export.h"
75 #include "base/check.h"
76 #include "base/check_op.h"
77 #include "base/compiler_specific.h"
78 #include "base/numerics/clamped_math.h"
79 #include "build/build_config.h"
80 #include "build/chromeos_buildflags.h"
81 
82 #if BUILDFLAG(IS_FUCHSIA)
83 #include <zircon/types.h>
84 #endif
85 
86 #if BUILDFLAG(IS_APPLE)
87 #include <CoreFoundation/CoreFoundation.h>
88 #include <mach/mach_time.h>
89 // Avoid Mac system header macro leak.
90 #undef TYPE_BOOL
91 #endif
92 
93 #if BUILDFLAG(IS_ANDROID)
94 #include <jni.h>
95 #endif
96 
97 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
98 #include <unistd.h>
99 #include <sys/time.h>
100 #endif
101 
102 #if BUILDFLAG(IS_WIN)
103 #include "base/gtest_prod_util.h"
104 #include "base/win/windows_types.h"
105 
106 namespace ABI {
107 namespace Windows {
108 namespace Foundation {
109 struct DateTime;
110 struct TimeSpan;
111 }  // namespace Foundation
112 }  // namespace Windows
113 }  // namespace ABI
114 #endif
115 
116 namespace base {
117 
118 class PlatformThreadHandle;
119 class TimeDelta;
120 
121 template <typename T>
122 constexpr TimeDelta Microseconds(T n);
123 
124 namespace {
125 
126 // TODO: Replace usage of this with std::isnan() once Chromium uses C++23,
127 // where that is constexpr.
isnan(double d)128 constexpr bool isnan(double d) {
129   return d != d;
130 }
131 
132 }
133 
134 // TimeDelta ------------------------------------------------------------------
135 
136 class BASE_EXPORT TimeDelta {
137  public:
138   constexpr TimeDelta() = default;
139 
140 #if BUILDFLAG(IS_WIN)
141   static TimeDelta FromQPCValue(LONGLONG qpc_value);
142   // TODO(crbug.com/989694): Avoid base::TimeDelta factory functions
143   // based on absolute time
144   static TimeDelta FromFileTime(FILETIME ft);
145   static TimeDelta FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt);
146   static TimeDelta FromWinrtTimeSpan(ABI::Windows::Foundation::TimeSpan ts);
147 #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
148   static TimeDelta FromTimeSpec(const timespec& ts);
149 #endif
150 #if BUILDFLAG(IS_FUCHSIA)
151   static TimeDelta FromZxDuration(zx_duration_t nanos);
152 #endif
153 #if BUILDFLAG(IS_APPLE)
154   static TimeDelta FromMachTime(uint64_t mach_time);
155 #endif  // BUILDFLAG(IS_APPLE)
156 
157   // Converts an integer value representing TimeDelta to a class. This is used
158   // when deserializing a |TimeDelta| structure, using a value known to be
159   // compatible. It is not provided as a constructor because the integer type
160   // may be unclear from the perspective of a caller.
161   //
162   // DEPRECATED - Do not use in new code. http://crbug.com/634507
FromInternalValue(int64_t delta)163   static constexpr TimeDelta FromInternalValue(int64_t delta) {
164     return TimeDelta(delta);
165   }
166 
167   // Returns the maximum time delta, which should be greater than any reasonable
168   // time delta we might compare it to. If converted to double with ToDouble()
169   // it becomes an IEEE double infinity. Use FiniteMax() if you want a very
170   // large number that doesn't do this. TimeDelta math saturates at the end
171   // points so adding to TimeDelta::Max() leaves the value unchanged.
172   // Subtracting should leave the value unchanged but currently changes it
173   // TODO(https://crbug.com/869387).
174   static constexpr TimeDelta Max();
175 
176   // Returns the minimum time delta, which should be less than than any
177   // reasonable time delta we might compare it to. For more details see the
178   // comments for Max().
179   static constexpr TimeDelta Min();
180 
181   // Returns the maximum time delta which is not equivalent to infinity. Only
182   // subtracting a finite time delta from this time delta has a defined result.
183   static constexpr TimeDelta FiniteMax();
184 
185   // Returns the minimum time delta which is not equivalent to -infinity. Only
186   // adding a finite time delta to this time delta has a defined result.
187   static constexpr TimeDelta FiniteMin();
188 
189   // Returns the internal numeric value of the TimeDelta object. Please don't
190   // use this and do arithmetic on it, as it is more error prone than using the
191   // provided operators.
192   // For serializing, use FromInternalValue to reconstitute.
193   //
194   // DEPRECATED - Do not use in new code. http://crbug.com/634507
ToInternalValue()195   constexpr int64_t ToInternalValue() const { return delta_; }
196 
197   // Returns the magnitude (absolute value) of this TimeDelta.
magnitude()198   constexpr TimeDelta magnitude() const { return TimeDelta(delta_.Abs()); }
199 
200   // Returns true if the time delta is a zero, positive or negative time delta.
is_zero()201   constexpr bool is_zero() const { return delta_ == 0; }
is_positive()202   constexpr bool is_positive() const { return delta_ > 0; }
is_negative()203   constexpr bool is_negative() const { return delta_ < 0; }
204 
205   // Returns true if the time delta is the maximum/minimum time delta.
is_max()206   constexpr bool is_max() const { return *this == Max(); }
is_min()207   constexpr bool is_min() const { return *this == Min(); }
is_inf()208   constexpr bool is_inf() const { return is_min() || is_max(); }
209 
210 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
211   struct timespec ToTimeSpec() const;
212 #endif
213 #if BUILDFLAG(IS_FUCHSIA)
214   zx_duration_t ToZxDuration() const;
215 #endif
216 #if BUILDFLAG(IS_WIN)
217   ABI::Windows::Foundation::DateTime ToWinrtDateTime() const;
218   ABI::Windows::Foundation::TimeSpan ToWinrtTimeSpan() const;
219 #endif
220 
221   // Returns the frequency in Hertz (cycles per second) that has a period of
222   // *this.
223   constexpr double ToHz() const;
224 
225   // Returns the time delta in some unit. Minimum argument values return as
226   // -inf for doubles and min type values otherwise. Maximum ones are treated as
227   // +inf for doubles and max type values otherwise. Their results will produce
228   // an is_min() or is_max() TimeDelta. The InXYZF versions return a floating
229   // point value. The InXYZ versions return a truncated value (aka rounded
230   // towards zero, std::trunc() behavior). The InXYZFloored() versions round to
231   // lesser integers (std::floor() behavior). The XYZRoundedUp() versions round
232   // up to greater integers (std::ceil() behavior). WARNING: Floating point
233   // arithmetic is such that XXX(t.InXXXF()) may not precisely equal |t|.
234   // Hence, floating point values should not be used for storage.
235   constexpr int InDays() const;
236   constexpr int InDaysFloored() const;
237   constexpr int InHours() const;
238   constexpr int InMinutes() const;
239   constexpr double InSecondsF() const;
240   constexpr int64_t InSeconds() const;
241   constexpr int64_t InSecondsFloored() const;
242   constexpr double InMillisecondsF() const;
243   constexpr int64_t InMilliseconds() const;
244   constexpr int64_t InMillisecondsRoundedUp() const;
InMicroseconds()245   constexpr int64_t InMicroseconds() const { return delta_; }
246   constexpr double InMicrosecondsF() const;
247   constexpr int64_t InNanoseconds() const;
248 
249   // Computations with other deltas.
250   constexpr TimeDelta operator+(TimeDelta other) const;
251   constexpr TimeDelta operator-(TimeDelta other) const;
252 
253   constexpr TimeDelta& operator+=(TimeDelta other) {
254     return *this = (*this + other);
255   }
256   constexpr TimeDelta& operator-=(TimeDelta other) {
257     return *this = (*this - other);
258   }
259   constexpr TimeDelta operator-() const {
260     if (!is_inf())
261       return TimeDelta(-delta_);
262     return (delta_ < 0) ? Max() : Min();
263   }
264 
265   // Computations with numeric types.
266   template <typename T>
267   constexpr TimeDelta operator*(T a) const {
268     return TimeDelta(int64_t{delta_ * a});
269   }
270   template <typename T>
271   constexpr TimeDelta operator/(T a) const {
272     return TimeDelta(int64_t{delta_ / a});
273   }
274   template <typename T>
275   constexpr TimeDelta& operator*=(T a) {
276     return *this = (*this * a);
277   }
278   template <typename T>
279   constexpr TimeDelta& operator/=(T a) {
280     return *this = (*this / a);
281   }
282 
283   // This does floating-point division. For an integer result, either call
284   // IntDiv(), or (possibly clearer) use this operator with
285   // base::Clamp{Ceil,Floor,Round}() or base::saturated_cast() (for truncation).
286   // Note that converting to double here drops precision to 53 bits.
287   constexpr double operator/(TimeDelta a) const {
288     // 0/0 and inf/inf (any combination of positive and negative) are invalid
289     // (they are almost certainly not intentional, and result in NaN, which
290     // turns into 0 if clamped to an integer; this makes introducing subtle bugs
291     // too easy).
292     CHECK(!is_zero() || !a.is_zero());
293     CHECK(!is_inf() || !a.is_inf());
294 
295     return ToDouble() / a.ToDouble();
296   }
IntDiv(TimeDelta a)297   constexpr int64_t IntDiv(TimeDelta a) const {
298     if (!is_inf() && !a.is_zero())
299       return int64_t{delta_ / a.delta_};
300 
301     // For consistency, use the same edge case CHECKs and behavior as the code
302     // above.
303     CHECK(!is_zero() || !a.is_zero());
304     CHECK(!is_inf() || !a.is_inf());
305     return ((delta_ < 0) == (a.delta_ < 0))
306                ? std::numeric_limits<int64_t>::max()
307                : std::numeric_limits<int64_t>::min();
308   }
309 
310   constexpr TimeDelta operator%(TimeDelta a) const {
311     return TimeDelta(
312         (is_inf() || a.is_zero() || a.is_inf()) ? delta_ : (delta_ % a.delta_));
313   }
314   constexpr TimeDelta& operator%=(TimeDelta other) {
315     return *this = (*this % other);
316   }
317 
318   // Comparison operators.
319   friend constexpr bool operator==(TimeDelta, TimeDelta) = default;
320   friend constexpr std::strong_ordering operator<=>(TimeDelta,
321                                                     TimeDelta) = default;
322 
323   // Returns this delta, ceiled/floored/rounded-away-from-zero to the nearest
324   // multiple of |interval|.
325   TimeDelta CeilToMultiple(TimeDelta interval) const;
326   TimeDelta FloorToMultiple(TimeDelta interval) const;
327   TimeDelta RoundToMultiple(TimeDelta interval) const;
328 
329  private:
330   // Constructs a delta given the duration in microseconds. This is private
331   // to avoid confusion by callers with an integer constructor. Use
332   // base::Seconds, base::Milliseconds, etc. instead.
TimeDelta(int64_t delta_us)333   constexpr explicit TimeDelta(int64_t delta_us) : delta_(delta_us) {}
TimeDelta(ClampedNumeric<int64_t> delta_us)334   constexpr explicit TimeDelta(ClampedNumeric<int64_t> delta_us)
335       : delta_(delta_us) {}
336 
337   // Returns a double representation of this TimeDelta's tick count.  In
338   // particular, Max()/Min() are converted to +/-infinity.
ToDouble()339   constexpr double ToDouble() const {
340     if (!is_inf())
341       return static_cast<double>(delta_);
342     return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
343                         : std::numeric_limits<double>::infinity();
344   }
345 
346   // Delta in microseconds.
347   ClampedNumeric<int64_t> delta_ = 0;
348 };
349 
350 constexpr TimeDelta TimeDelta::operator+(TimeDelta other) const {
351   if (!other.is_inf())
352     return TimeDelta(delta_ + other.delta_);
353 
354   // Additions involving two infinities are only valid if signs match.
355   CHECK(!is_inf() || (delta_ == other.delta_));
356   return other;
357 }
358 
359 constexpr TimeDelta TimeDelta::operator-(TimeDelta other) const {
360   if (!other.is_inf())
361     return TimeDelta(delta_ - other.delta_);
362 
363   // Subtractions involving two infinities are only valid if signs differ.
364   CHECK_NE(int64_t{delta_}, int64_t{other.delta_});
365   return (other.delta_ < 0) ? Max() : Min();
366 }
367 
368 template <typename T>
369 constexpr TimeDelta operator*(T a, TimeDelta td) {
370   return td * a;
371 }
372 
373 // For logging use only.
374 BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeDelta time_delta);
375 
376 // TimeBase--------------------------------------------------------------------
377 
378 // Do not reference the time_internal::TimeBase template class directly.  Please
379 // use one of the time subclasses instead, and only reference the public
380 // TimeBase members via those classes.
381 namespace time_internal {
382 
383 // Provides value storage and comparison/math operations common to all time
384 // classes. Each subclass provides for strong type-checking to ensure
385 // semantically meaningful comparison/math of time values from the same clock
386 // source or timeline.
387 template<class TimeClass>
388 class TimeBase {
389  public:
390   static constexpr int64_t kHoursPerDay = 24;
391   static constexpr int64_t kSecondsPerMinute = 60;
392   static constexpr int64_t kMinutesPerHour = 60;
393   static constexpr int64_t kSecondsPerHour =
394       kSecondsPerMinute * kMinutesPerHour;
395   static constexpr int64_t kMillisecondsPerSecond = 1000;
396   static constexpr int64_t kMillisecondsPerDay =
397       kMillisecondsPerSecond * kSecondsPerHour * kHoursPerDay;
398   static constexpr int64_t kMicrosecondsPerMillisecond = 1000;
399   static constexpr int64_t kMicrosecondsPerSecond =
400       kMicrosecondsPerMillisecond * kMillisecondsPerSecond;
401   static constexpr int64_t kMicrosecondsPerMinute =
402       kMicrosecondsPerSecond * kSecondsPerMinute;
403   static constexpr int64_t kMicrosecondsPerHour =
404       kMicrosecondsPerMinute * kMinutesPerHour;
405   static constexpr int64_t kMicrosecondsPerDay =
406       kMicrosecondsPerHour * kHoursPerDay;
407   static constexpr int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
408   static constexpr int64_t kNanosecondsPerMicrosecond = 1000;
409   static constexpr int64_t kNanosecondsPerSecond =
410       kNanosecondsPerMicrosecond * kMicrosecondsPerSecond;
411 
412   // TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
413   //
414   // Warning: Be careful when writing code that performs math on time values,
415   // since it's possible to produce a valid "zero" result that should not be
416   // interpreted as a "null" value. If you find yourself using this method or
417   // the zero-arg default constructor, please consider using an optional to
418   // express the null state.
419   //
420   // Returns true if this object has not been initialized (probably).
is_null()421   constexpr bool is_null() const { return us_ == 0; }
422 
423   // Returns true if this object represents the maximum/minimum time.
is_max()424   constexpr bool is_max() const { return *this == Max(); }
is_min()425   constexpr bool is_min() const { return *this == Min(); }
is_inf()426   constexpr bool is_inf() const { return is_min() || is_max(); }
427 
428   // Returns the maximum/minimum times, which should be greater/less than than
429   // any reasonable time with which we might compare it.
Max()430   static constexpr TimeClass Max() {
431     return TimeClass(std::numeric_limits<int64_t>::max());
432   }
433 
Min()434   static constexpr TimeClass Min() {
435     return TimeClass(std::numeric_limits<int64_t>::min());
436   }
437 
438   // For legacy serialization only. When serializing to `base::Value`, prefer
439   // the helpers from //base/json/values_util.h instead. Otherwise, use
440   // `Time::ToDeltaSinceWindowsEpoch()` for `Time` and
441   // `TimeDelta::InMicroseconds()` for `TimeDelta`. See http://crbug.com/634507.
ToInternalValue()442   constexpr int64_t ToInternalValue() const { return us_; }
443 
444   // The amount of time since the origin (or "zero") point. This is a syntactic
445   // convenience to aid in code readability, mainly for debugging/testing use
446   // cases.
447   //
448   // Warning: While the Time subclass has a fixed origin point, the origin for
449   // the other subclasses can vary each time the application is restarted.
450   constexpr TimeDelta since_origin() const;
451 
452   // Compute the difference between two times.
453 #if !defined(__aarch64__) && BUILDFLAG(IS_ANDROID)
454   NOINLINE  // https://crbug.com/1369775
455 #endif
456   constexpr TimeDelta operator-(const TimeBase<TimeClass>& other) const;
457 
458   // Return a new time modified by some delta.
459   constexpr TimeClass operator+(TimeDelta delta) const;
460   constexpr TimeClass operator-(TimeDelta delta) const;
461 
462   // Modify by some time delta.
463   constexpr TimeClass& operator+=(TimeDelta delta) {
464     return static_cast<TimeClass&>(*this = (*this + delta));
465   }
466   constexpr TimeClass& operator-=(TimeDelta delta) {
467     return static_cast<TimeClass&>(*this = (*this - delta));
468   }
469 
470   // Comparison operators
471   friend constexpr bool operator==(const TimeBase&, const TimeBase&) = default;
472   friend constexpr std::strong_ordering operator<=>(const TimeBase&,
473                                                     const TimeBase&) = default;
474 
475  protected:
TimeBase(int64_t us)476   constexpr explicit TimeBase(int64_t us) : us_(us) {}
477 
478   // Time value in a microsecond timebase.
479   ClampedNumeric<int64_t> us_;
480 };
481 
482 #if BUILDFLAG(IS_WIN)
483 #if defined(ARCH_CPU_ARM64)
484 // TSCTicksPerSecond is not supported on Windows on Arm systems because the
485 // cycle-counting methods use the actual CPU cycle count, and not a consistent
486 // incrementing counter.
487 #else
488 // Returns true if the CPU support constant rate TSC.
489 [[nodiscard]] BASE_EXPORT bool HasConstantRateTSC();
490 
491 // Returns the frequency of the TSC in ticks per second, or 0 if it hasn't
492 // been measured yet. Needs to be guarded with a call to HasConstantRateTSC().
493 [[nodiscard]] BASE_EXPORT double TSCTicksPerSecond();
494 #endif
495 #endif  // BUILDFLAG(IS_WIN)
496 
497 }  // namespace time_internal
498 
499 template <class TimeClass>
500 inline constexpr TimeClass operator+(TimeDelta delta, TimeClass t) {
501   return t + delta;
502 }
503 
504 // Time -----------------------------------------------------------------------
505 
506 // Represents a wall clock time in UTC. Values are not guaranteed to be
507 // monotonically non-decreasing and are subject to large amounts of skew.
508 // Time is stored internally as microseconds since the Windows epoch (1601).
509 class BASE_EXPORT Time : public time_internal::TimeBase<Time> {
510  public:
511   // Offset of UNIX epoch (1970-01-01 00:00:00 UTC) from Windows FILETIME epoch
512   // (1601-01-01 00:00:00 UTC), in microseconds. This value is derived from the
513   // following: ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the number
514   // of leap year days between 1601 and 1970: (1970-1601)/4 excluding 1700,
515   // 1800, and 1900.
516   static constexpr int64_t kTimeTToMicrosecondsOffset =
517       INT64_C(11644473600000000);
518 
519 #if BUILDFLAG(IS_WIN)
520   // To avoid overflow in QPC to Microseconds calculations, since we multiply
521   // by kMicrosecondsPerSecond, then the QPC value should not exceed
522   // (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply.
523   static constexpr int64_t kQPCOverflowThreshold = INT64_C(0x8637BD05AF7);
524 #endif
525 
526 // kExplodedMinYear and kExplodedMaxYear define the platform-specific limits
527 // for values passed to FromUTCExploded() and FromLocalExploded(). Those
528 // functions will return false if passed values outside these limits. The limits
529 // are inclusive, meaning that the API should support all dates within a given
530 // limit year.
531 //
532 // WARNING: These are not the same limits for the inverse functionality,
533 // UTCExplode() and LocalExplode(). See method comments for further details.
534 #if BUILDFLAG(IS_WIN)
535   static constexpr int kExplodedMinYear = 1601;
536   static constexpr int kExplodedMaxYear = 30827;
537 #elif BUILDFLAG(IS_IOS) && !__LP64__
538   static constexpr int kExplodedMinYear = std::numeric_limits<int>::min();
539   static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
540 #elif BUILDFLAG(IS_APPLE)
541   static constexpr int kExplodedMinYear = 1902;
542   static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
543 #elif BUILDFLAG(IS_ANDROID)
544   // Though we use 64-bit time APIs on both 32 and 64 bit Android, some OS
545   // versions like KitKat (ARM but not x86 emulator) can't handle some early
546   // dates (e.g. before 1170). So we set min conservatively here.
547   static constexpr int kExplodedMinYear = 1902;
548   static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
549 #else
550   static constexpr int kExplodedMinYear =
551       (sizeof(time_t) == 4 ? 1902 : std::numeric_limits<int>::min());
552   static constexpr int kExplodedMaxYear =
553       (sizeof(time_t) == 4 ? 2037 : std::numeric_limits<int>::max());
554 #endif
555 
556   // Represents an exploded time. This is kind of like the Win32 SYSTEMTIME
557   // structure or the Unix "struct tm" with a few additions and changes to
558   // prevent errors.
559   //
560   // This structure always represents dates in the Gregorian calendar and always
561   // encodes day_of_week as Sunday==0, Monday==1, .., Saturday==6. This means
562   // that base::Time::LocalExplode and base::Time::FromLocalExploded only
563   // respect the current local time zone in the conversion and do *not* use a
564   // calendar or day-of-week encoding from the current locale.
565   //
566   // NOTE: Generally, you should prefer the functions in
567   // base/i18n/time_formatting.h (in particular,
568   // `UnlocalizedTimeFormatWithPattern()`) over trying to create a formatted
569   // time string from this object.
570   struct BASE_EXPORT Exploded {
571     int year;          // Four digit year "2007"
572     int month;         // 1-based month (values 1 = January, etc.)
573     int day_of_week;   // 0-based day of week (0 = Sunday, etc.)
574     int day_of_month;  // 1-based day of month (1-31)
575     int hour;          // Hour within the current day (0-23)
576     int minute;        // Minute within the current hour (0-59)
577     int second;        // Second within the current minute (0-59 plus leap
578                        //   seconds which may take it up to 60).
579     int millisecond;   // Milliseconds within the current second (0-999)
580 
581     // A cursory test for whether the data members are within their
582     // respective ranges. A 'true' return value does not guarantee the
583     // Exploded value can be successfully converted to a Time value.
584     bool HasValidValues() const;
585   };
586 
587   // TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
588   //
589   // Warning: Be careful when writing code that performs math on time values,
590   // since it's possible to produce a valid "zero" result that should not be
591   // interpreted as a "null" value. If you find yourself using this constructor
592   // or the is_null() method, please consider using an optional to express the
593   // null state.
594   //
595   // Contains the NULL time. Use Time::Now() to get the current time.
Time()596   constexpr Time() : TimeBase(0) {}
597 
598   // Returns the time for epoch in Unix-like system (Jan 1, 1970).
UnixEpoch()599   static constexpr Time UnixEpoch() { return Time(kTimeTToMicrosecondsOffset); }
600 
601   // Returns the current time. Watch out, the system might adjust its clock
602   // in which case time will actually go backwards. We don't guarantee that
603   // times are increasing, or that two calls to Now() won't be the same.
604   static Time Now();
605 
606   // Returns the current time. Same as Now() except that this function always
607   // uses system time so that there are no discrepancies between the returned
608   // time and system time even on virtual environments including our test bot.
609   // For timing sensitive unittests, this function should be used.
610   static Time NowFromSystemTime();
611 
612   // Converts to/from TimeDeltas relative to the Windows epoch (1601-01-01
613   // 00:00:00 UTC).
614   //
615   // For serialization, when handling `base::Value`, prefer the helpers in
616   // //base/json/values_util.h instead. Otherwise, use these methods for
617   // opaque serialization and deserialization, e.g.
618   //
619   //   // Serialization:
620   //   base::Time last_updated = ...;
621   //   SaveToDatabase(last_updated.ToDeltaSinceWindowsEpoch().InMicroseconds());
622   //
623   //   // Deserialization:
624   //   base::Time last_updated = base::Time::FromDeltaSinceWindowsEpoch(
625   //       base::Microseconds(LoadFromDatabase()));
626   //
627   // Do not use `FromInternalValue()` or `ToInternalValue()` for this purpose.
FromDeltaSinceWindowsEpoch(TimeDelta delta)628   static constexpr Time FromDeltaSinceWindowsEpoch(TimeDelta delta) {
629     return Time(delta.InMicroseconds());
630   }
631 
ToDeltaSinceWindowsEpoch()632   constexpr TimeDelta ToDeltaSinceWindowsEpoch() const {
633     return Microseconds(us_);
634   }
635 
636   // Converts to/from time_t in UTC and a Time class.
637   static constexpr Time FromTimeT(time_t tt);
638   constexpr time_t ToTimeT() const;
639 
640   // Converts time to/from a number of seconds since the Unix epoch (Jan 1,
641   // 1970).
642   //
643   // TODO(crbug.com/1495550): Add integral versions and use them.
644   // TODO(crbug.com/1495554): Add ...PreservingNull() versions; see comments in
645   // the implementation of FromSecondsSinceUnixEpoch().
646   static constexpr Time FromSecondsSinceUnixEpoch(double dt);
647   constexpr double InSecondsFSinceUnixEpoch() const;
648 
649 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
650   // Converts the timespec structure to time. MacOS X 10.8.3 (and tentatively,
651   // earlier versions) will have the |ts|'s tv_nsec component zeroed out,
652   // having a 1 second resolution, which agrees with
653   // https://developer.apple.com/legacy/library/#technotes/tn/tn1150.html#HFSPlusDates.
654   static constexpr Time FromTimeSpec(const timespec& ts);
655 #endif
656 
657   // Converts to/from a number of milliseconds since the Unix epoch.
658   // TODO(crbug.com/1495554): Add ...PreservingNull() versions; see comments in
659   // the implementation of FromMillisecondsSinceUnixEpoch().
660   static constexpr Time FromMillisecondsSinceUnixEpoch(int64_t dt);
661   static constexpr Time FromMillisecondsSinceUnixEpoch(double dt);
662   // Explicitly forward calls with smaller integral types to the int64_t
663   // version; otherwise such calls would need to manually cast their args to
664   // int64_t, since the compiler isn't sure whether to promote to int64_t or
665   // double.
666   template <typename T,
667             typename = std::enable_if_t<
668                 std::is_integral_v<T> && !std::is_same_v<T, int64_t> &&
669                 (sizeof(T) < sizeof(int64_t) ||
670                  (sizeof(T) == sizeof(int64_t) && std::is_signed_v<T>))>>
FromMillisecondsSinceUnixEpoch(T ms_since_epoch)671   static constexpr Time FromMillisecondsSinceUnixEpoch(T ms_since_epoch) {
672     return FromMillisecondsSinceUnixEpoch(int64_t{ms_since_epoch});
673   }
674   constexpr int64_t InMillisecondsSinceUnixEpoch() const;
675   // Don't use InMillisecondsFSinceUnixEpoch() in new code, since it contains a
676   // subtle hack (only exactly 1601-01-01 00:00 UTC is represented as 1970-01-01
677   // 00:00 UTC), and that is not appropriate for general use. Try to use
678   // InMillisecondsFSinceUnixEpochIgnoringNull() unless you have a very good
679   // reason to use InMillisecondsFSinceUnixEpoch().
680   //
681   // TODO(crbug.com/1495554): Rename the no-suffix version to
682   // "...PreservingNull()" and remove the suffix from the other version, to
683   // guide people to the preferable API.
684   constexpr double InMillisecondsFSinceUnixEpoch() const;
685   constexpr double InMillisecondsFSinceUnixEpochIgnoringNull() const;
686 
687 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
688   static Time FromTimeVal(struct timeval t);
689   struct timeval ToTimeVal() const;
690 #endif
691 
692 #if BUILDFLAG(IS_FUCHSIA)
693   static Time FromZxTime(zx_time_t time);
694   zx_time_t ToZxTime() const;
695 #endif
696 
697 #if BUILDFLAG(IS_APPLE)
698   static Time FromCFAbsoluteTime(CFAbsoluteTime t);
699   CFAbsoluteTime ToCFAbsoluteTime() const;
700 #if defined(__OBJC__)
701   static Time FromNSDate(NSDate* date);
702   NSDate* ToNSDate() const;
703 #endif
704 #endif
705 
706 #if BUILDFLAG(IS_WIN)
707   static Time FromFileTime(FILETIME ft);
708   FILETIME ToFileTime() const;
709 
710   // The minimum time of a low resolution timer.  This is basically a windows
711   // constant of ~15.6ms.  While it does vary on some older OS versions, we'll
712   // treat it as static across all windows versions.
713   static const int kMinLowResolutionThresholdMs = 16;
714 
715   // Enable or disable Windows high resolution timer.
716   static void EnableHighResolutionTimer(bool enable);
717 
718   // Activates or deactivates the high resolution timer based on the |activate|
719   // flag.  If the HighResolutionTimer is not Enabled (see
720   // EnableHighResolutionTimer), this function will return false.  Otherwise
721   // returns true.  Each successful activate call must be paired with a
722   // subsequent deactivate call.
723   // All callers to activate the high resolution timer must eventually call
724   // this function to deactivate the high resolution timer.
725   static bool ActivateHighResolutionTimer(bool activate);
726 
727   // Returns true if the high resolution timer is both enabled and activated.
728   // This is provided for testing only, and is not tracked in a thread-safe
729   // way.
730   static bool IsHighResolutionTimerInUse();
731 
732   // The following two functions are used to report the fraction of elapsed time
733   // that the high resolution timer is activated.
734   // ResetHighResolutionTimerUsage() resets the cumulative usage and starts the
735   // measurement interval and GetHighResolutionTimerUsage() returns the
736   // percentage of time since the reset that the high resolution timer was
737   // activated.
738   // ResetHighResolutionTimerUsage() must be called at least once before calling
739   // GetHighResolutionTimerUsage(); otherwise the usage result would be
740   // undefined.
741   static void ResetHighResolutionTimerUsage();
742   static double GetHighResolutionTimerUsage();
743 #endif  // BUILDFLAG(IS_WIN)
744 
745   // Converts an exploded structure representing either the local time or UTC
746   // into a Time class. Returns false on a failure when, for example, a day of
747   // month is set to 31 on a 28-30 day month. Returns Time(0) on overflow.
748   // FromLocalExploded respects the current time zone but does not attempt to
749   // use the calendar or day-of-week encoding from the current locale - see the
750   // comments on Exploded for more information.
FromUTCExploded(const Exploded & exploded,Time * time)751   [[nodiscard]] static bool FromUTCExploded(const Exploded& exploded,
752                                             Time* time) {
753     return FromExploded(false, exploded, time);
754   }
FromLocalExploded(const Exploded & exploded,Time * time)755   [[nodiscard]] static bool FromLocalExploded(const Exploded& exploded,
756                                               Time* time) {
757     return FromExploded(true, exploded, time);
758   }
759 
760   // Converts a string representation of time to a Time object.
761   // An example of a time string which is converted is as below:-
762   // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
763   // in the input string, FromString assumes local time and FromUTCString
764   // assumes UTC. A timezone that cannot be parsed (e.g. "UTC" which is not
765   // specified in RFC822) is treated as if the timezone is not specified.
766   //
767   // WARNING: the underlying converter is very permissive. For example: it is
768   // not checked whether a given day of the week matches the date; Feb 29
769   // silently becomes Mar 1 in non-leap years; under certain conditions, whole
770   // English sentences may be parsed successfully and yield unexpected results.
771   //
772   // TODO(iyengar) Move the FromString/FromTimeT/ToTimeT/FromFileTime to
773   // a new time converter class.
FromString(const char * time_string,Time * parsed_time)774   [[nodiscard]] static bool FromString(const char* time_string,
775                                        Time* parsed_time) {
776     return FromStringInternal(time_string, true, parsed_time);
777   }
FromUTCString(const char * time_string,Time * parsed_time)778   [[nodiscard]] static bool FromUTCString(const char* time_string,
779                                           Time* parsed_time) {
780     return FromStringInternal(time_string, false, parsed_time);
781   }
782 
783   // Fills the given |exploded| structure with either the local time or UTC from
784   // this Time instance. If the conversion cannot be made, the output will be
785   // assigned invalid values. Use Exploded::HasValidValues() to confirm a
786   // successful conversion.
787   //
788   // Y10K compliance: This method will successfully convert all Times that
789   // represent dates on/after the start of the year 1601 and on/before the start
790   // of the year 30828. Some platforms might convert over a wider input range.
791   // LocalExplode respects the current time zone but does not attempt to use the
792   // calendar or day-of-week encoding from the current locale - see the comments
793   // on Exploded for more information.
UTCExplode(Exploded * exploded)794   void UTCExplode(Exploded* exploded) const { Explode(false, exploded); }
LocalExplode(Exploded * exploded)795   void LocalExplode(Exploded* exploded) const { Explode(true, exploded); }
796 
797   // The following two functions round down the time to the nearest day in
798   // either UTC or local time. It will represent midnight on that day.
UTCMidnight()799   Time UTCMidnight() const { return Midnight(false); }
LocalMidnight()800   Time LocalMidnight() const { return Midnight(true); }
801 
802   // For legacy deserialization only. Converts an integer value representing
803   // Time to a class. This may be used when deserializing a |Time| structure,
804   // using a value known to be compatible. It is not provided as a constructor
805   // because the integer type may be unclear from the perspective of a caller.
806   //
807   // DEPRECATED - Do not use in new code. When deserializing from `base::Value`,
808   // prefer the helpers from //base/json/values_util.h instead.
809   // Otherwise, use `Time::FromDeltaSinceWindowsEpoch()` for `Time` and
810   // `Microseconds()` for `TimeDelta`. http://crbug.com/634507
FromInternalValue(int64_t us)811   static constexpr Time FromInternalValue(int64_t us) { return Time(us); }
812 
813  private:
814   friend class time_internal::TimeBase<Time>;
815 
Time(int64_t microseconds_since_win_epoch)816   constexpr explicit Time(int64_t microseconds_since_win_epoch)
817       : TimeBase(microseconds_since_win_epoch) {}
818 
819   // Explodes the given time to either local time |is_local = true| or UTC
820   // |is_local = false|.
821   void Explode(bool is_local, Exploded* exploded) const;
822 
823   // Unexplodes a given time assuming the source is either local time
824   // |is_local = true| or UTC |is_local = false|. Function returns false on
825   // failure and sets |time| to Time(0). Otherwise returns true and sets |time|
826   // to non-exploded time.
827   [[nodiscard]] static bool FromExploded(bool is_local,
828                                          const Exploded& exploded,
829                                          Time* time);
830 
831   // Some platforms use the ICU library to provide To/FromExploded, when their
832   // native library implementations are insufficient in some way.
833   static void ExplodeUsingIcu(int64_t millis_since_unix_epoch,
834                               bool is_local,
835                               Exploded* exploded);
836   [[nodiscard]] static bool FromExplodedUsingIcu(
837       bool is_local,
838       const Exploded& exploded,
839       int64_t* millis_since_unix_epoch);
840 
841   // Rounds down the time to the nearest day in either local time
842   // |is_local = true| or UTC |is_local = false|.
843   Time Midnight(bool is_local) const;
844 
845   // Converts a string representation of time to a Time object.
846   // An example of a time string which is converted is as below:-
847   // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
848   // in the input string, local time |is_local = true| or
849   // UTC |is_local = false| is assumed. A timezone that cannot be parsed
850   // (e.g. "UTC" which is not specified in RFC822) is treated as if the
851   // timezone is not specified.
852   [[nodiscard]] static bool FromStringInternal(const char* time_string,
853                                                bool is_local,
854                                                Time* parsed_time);
855 
856   // Comparison does not consider |day_of_week| when doing the operation.
857   [[nodiscard]] static bool ExplodedMostlyEquals(const Exploded& lhs,
858                                                  const Exploded& rhs);
859 
860   // Converts the provided time in milliseconds since the Unix epoch (1970) to a
861   // Time object, avoiding overflows.
862   [[nodiscard]] static bool FromMillisecondsSinceUnixEpoch(
863       int64_t unix_milliseconds,
864       Time* time);
865 
866   // Returns the milliseconds since the Unix epoch (1970), rounding the
867   // microseconds towards -infinity.
868   int64_t ToRoundedDownMillisecondsSinceUnixEpoch() const;
869 };
870 
871 // Factory methods that return a TimeDelta of the given unit.
872 // WARNING: Floating point arithmetic is such that XXX(t.InXXXF()) may not
873 // precisely equal |t|. Hence, floating point values should not be used for
874 // storage.
875 
876 template <typename T>
Days(T n)877 constexpr TimeDelta Days(T n) {
878   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
879                                       Time::kMicrosecondsPerDay);
880 }
881 template <typename T>
Hours(T n)882 constexpr TimeDelta Hours(T n) {
883   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
884                                       Time::kMicrosecondsPerHour);
885 }
886 template <typename T>
Minutes(T n)887 constexpr TimeDelta Minutes(T n) {
888   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
889                                       Time::kMicrosecondsPerMinute);
890 }
891 template <typename T>
Seconds(T n)892 constexpr TimeDelta Seconds(T n) {
893   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
894                                       Time::kMicrosecondsPerSecond);
895 }
896 template <typename T>
Milliseconds(T n)897 constexpr TimeDelta Milliseconds(T n) {
898   return TimeDelta::FromInternalValue(MakeClampedNum(n) *
899                                       Time::kMicrosecondsPerMillisecond);
900 }
901 template <typename T>
Microseconds(T n)902 constexpr TimeDelta Microseconds(T n) {
903   return TimeDelta::FromInternalValue(MakeClampedNum(n));
904 }
905 template <typename T>
Nanoseconds(T n)906 constexpr TimeDelta Nanoseconds(T n) {
907   return TimeDelta::FromInternalValue(MakeClampedNum(n) /
908                                       Time::kNanosecondsPerMicrosecond);
909 }
910 template <typename T>
Hertz(T n)911 constexpr TimeDelta Hertz(T n) {
912   return n ? TimeDelta::FromInternalValue(Time::kMicrosecondsPerSecond /
913                                           MakeClampedNum(n))
914            : TimeDelta::Max();
915 }
916 
917 // TimeDelta functions that must appear below the declarations of Time/TimeDelta
918 
ToHz()919 constexpr double TimeDelta::ToHz() const {
920   return Seconds(1) / *this;
921 }
922 
InDays()923 constexpr int TimeDelta::InDays() const {
924   if (!is_inf()) {
925     return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
926   }
927   return (delta_ < 0) ? std::numeric_limits<int>::min()
928                       : std::numeric_limits<int>::max();
929 }
930 
InDaysFloored()931 constexpr int TimeDelta::InDaysFloored() const {
932   if (!is_inf()) {
933     const int result = delta_ / Time::kMicrosecondsPerDay;
934     // Convert |result| from truncating to flooring.
935     return (result * Time::kMicrosecondsPerDay > delta_) ? (result - 1)
936                                                          : result;
937   }
938   return (delta_ < 0) ? std::numeric_limits<int>::min()
939                       : std::numeric_limits<int>::max();
940 }
941 
InHours()942 constexpr int TimeDelta::InHours() const {
943   // saturated_cast<> is necessary since very large (but still less than
944   // min/max) deltas would result in overflow.
945   return saturated_cast<int>(delta_ / Time::kMicrosecondsPerHour);
946 }
947 
InMinutes()948 constexpr int TimeDelta::InMinutes() const {
949   // saturated_cast<> is necessary since very large (but still less than
950   // min/max) deltas would result in overflow.
951   return saturated_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
952 }
953 
InSecondsF()954 constexpr double TimeDelta::InSecondsF() const {
955   if (!is_inf())
956     return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
957   return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
958                       : std::numeric_limits<double>::infinity();
959 }
960 
InSeconds()961 constexpr int64_t TimeDelta::InSeconds() const {
962   return is_inf() ? delta_ : (delta_ / Time::kMicrosecondsPerSecond);
963 }
964 
InSecondsFloored()965 constexpr int64_t TimeDelta::InSecondsFloored() const {
966   if (!is_inf()) {
967     const int64_t result = delta_ / Time::kMicrosecondsPerSecond;
968     // Convert |result| from truncating to flooring.
969     return (result * Time::kMicrosecondsPerSecond > delta_) ? (result - 1)
970                                                             : result;
971   }
972   return delta_;
973 }
974 
InMillisecondsF()975 constexpr double TimeDelta::InMillisecondsF() const {
976   if (!is_inf()) {
977     return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
978   }
979   return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
980                       : std::numeric_limits<double>::infinity();
981 }
982 
InMilliseconds()983 constexpr int64_t TimeDelta::InMilliseconds() const {
984   if (!is_inf()) {
985     return delta_ / Time::kMicrosecondsPerMillisecond;
986   }
987   return (delta_ < 0) ? std::numeric_limits<int64_t>::min()
988                       : std::numeric_limits<int64_t>::max();
989 }
990 
InMillisecondsRoundedUp()991 constexpr int64_t TimeDelta::InMillisecondsRoundedUp() const {
992   if (!is_inf()) {
993     const int64_t result = delta_ / Time::kMicrosecondsPerMillisecond;
994     // Convert |result| from truncating to ceiling.
995     return (delta_ > result * Time::kMicrosecondsPerMillisecond) ? (result + 1)
996                                                                  : result;
997   }
998   return delta_;
999 }
1000 
InMicrosecondsF()1001 constexpr double TimeDelta::InMicrosecondsF() const {
1002   if (!is_inf()) {
1003     return static_cast<double>(delta_);
1004   }
1005   return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
1006                       : std::numeric_limits<double>::infinity();
1007 }
1008 
InNanoseconds()1009 constexpr int64_t TimeDelta::InNanoseconds() const {
1010   return base::ClampMul(delta_, Time::kNanosecondsPerMicrosecond);
1011 }
1012 
1013 // static
Max()1014 constexpr TimeDelta TimeDelta::Max() {
1015   return TimeDelta(std::numeric_limits<int64_t>::max());
1016 }
1017 
1018 // static
Min()1019 constexpr TimeDelta TimeDelta::Min() {
1020   return TimeDelta(std::numeric_limits<int64_t>::min());
1021 }
1022 
1023 // static
FiniteMax()1024 constexpr TimeDelta TimeDelta::FiniteMax() {
1025   return TimeDelta(std::numeric_limits<int64_t>::max() - 1);
1026 }
1027 
1028 // static
FiniteMin()1029 constexpr TimeDelta TimeDelta::FiniteMin() {
1030   return TimeDelta(std::numeric_limits<int64_t>::min() + 1);
1031 }
1032 
1033 // TimeBase functions that must appear below the declarations of Time/TimeDelta
1034 namespace time_internal {
1035 
1036 template <class TimeClass>
since_origin()1037 constexpr TimeDelta TimeBase<TimeClass>::since_origin() const {
1038   return Microseconds(us_);
1039 }
1040 
1041 template <class TimeClass>
1042 constexpr TimeDelta TimeBase<TimeClass>::operator-(
1043     const TimeBase<TimeClass>& other) const {
1044   return Microseconds(us_ - other.us_);
1045 }
1046 
1047 template <class TimeClass>
1048 constexpr TimeClass TimeBase<TimeClass>::operator+(TimeDelta delta) const {
1049   return TimeClass((Microseconds(us_) + delta).InMicroseconds());
1050 }
1051 
1052 template <class TimeClass>
1053 constexpr TimeClass TimeBase<TimeClass>::operator-(TimeDelta delta) const {
1054   return TimeClass((Microseconds(us_) - delta).InMicroseconds());
1055 }
1056 
1057 }  // namespace time_internal
1058 
1059 // Time functions that must appear below the declarations of Time/TimeDelta
1060 
1061 // static
FromTimeT(time_t tt)1062 constexpr Time Time::FromTimeT(time_t tt) {
1063   if (tt == 0)
1064     return Time();  // Preserve 0 so we can tell it doesn't exist.
1065   return (tt == std::numeric_limits<time_t>::max())
1066              ? Max()
1067              : (UnixEpoch() + Seconds(tt));
1068 }
1069 
ToTimeT()1070 constexpr time_t Time::ToTimeT() const {
1071   if (is_null()) {
1072     return 0;  // Preserve 0 so we can tell it doesn't exist.
1073   }
1074   if (!is_inf()) {
1075     return saturated_cast<time_t>((*this - UnixEpoch()).InSecondsFloored());
1076   }
1077   return (us_ < 0) ? std::numeric_limits<time_t>::min()
1078                    : std::numeric_limits<time_t>::max();
1079 }
1080 
1081 // static
FromSecondsSinceUnixEpoch(double dt)1082 constexpr Time Time::FromSecondsSinceUnixEpoch(double dt) {
1083   // Preserve 0.
1084   //
1085   // TODO(crbug.com/1495554): This is an unfortunate artifact of WebKit using 0
1086   // to mean "no time". Add a "...PreservingNull()" version that does this,
1087   // convert the minimum necessary set of callers to use it, and remove the zero
1088   // check here.
1089   return (dt == 0 || isnan(dt)) ? Time() : (UnixEpoch() + Seconds(dt));
1090 }
1091 
InSecondsFSinceUnixEpoch()1092 constexpr double Time::InSecondsFSinceUnixEpoch() const {
1093   // Preserve 0.
1094   if (is_null()) {
1095     return 0;
1096   }
1097   if (!is_inf()) {
1098     return (*this - UnixEpoch()).InSecondsF();
1099   }
1100   return (us_ < 0) ? -std::numeric_limits<double>::infinity()
1101                    : std::numeric_limits<double>::infinity();
1102 }
1103 
1104 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
1105 // static
FromTimeSpec(const timespec & ts)1106 constexpr Time Time::FromTimeSpec(const timespec& ts) {
1107   return FromSecondsSinceUnixEpoch(ts.tv_sec + static_cast<double>(ts.tv_nsec) /
1108                                                    kNanosecondsPerSecond);
1109 }
1110 #endif
1111 
1112 // static
FromMillisecondsSinceUnixEpoch(int64_t dt)1113 constexpr Time Time::FromMillisecondsSinceUnixEpoch(int64_t dt) {
1114   // TODO(crbug.com/1495554): The lack of zero-preservation here doesn't match
1115   // InMillisecondsSinceUnixEpoch(), which is dangerous since it means
1116   // round-trips are not necessarily idempotent. Add "...PreservingNull()"
1117   // versions that explicitly check for zeros, convert the minimum necessary set
1118   // of callers to use them, and remove the null-check in
1119   // InMillisecondsSinceUnixEpoch().
1120   return UnixEpoch() + Milliseconds(dt);
1121 }
1122 
1123 // static
FromMillisecondsSinceUnixEpoch(double dt)1124 constexpr Time Time::FromMillisecondsSinceUnixEpoch(double dt) {
1125   return isnan(dt) ? Time() : (UnixEpoch() + Milliseconds(dt));
1126 }
1127 
InMillisecondsSinceUnixEpoch()1128 constexpr int64_t Time::InMillisecondsSinceUnixEpoch() const {
1129   // Preserve 0.
1130   if (is_null()) {
1131     return 0;
1132   }
1133   if (!is_inf()) {
1134     return (*this - UnixEpoch()).InMilliseconds();
1135   }
1136   return (us_ < 0) ? std::numeric_limits<int64_t>::min()
1137                    : std::numeric_limits<int64_t>::max();
1138 }
1139 
InMillisecondsFSinceUnixEpoch()1140 constexpr double Time::InMillisecondsFSinceUnixEpoch() const {
1141   // Preserve 0.
1142   return is_null() ? 0 : InMillisecondsFSinceUnixEpochIgnoringNull();
1143 }
1144 
InMillisecondsFSinceUnixEpochIgnoringNull()1145 constexpr double Time::InMillisecondsFSinceUnixEpochIgnoringNull() const {
1146   // Preserve max and min without offset to prevent over/underflow.
1147   if (!is_inf()) {
1148     return (*this - UnixEpoch()).InMillisecondsF();
1149   }
1150   return (us_ < 0) ? -std::numeric_limits<double>::infinity()
1151                    : std::numeric_limits<double>::infinity();
1152 }
1153 
1154 // For logging use only.
1155 BASE_EXPORT std::ostream& operator<<(std::ostream& os, Time time);
1156 
1157 // TimeTicks ------------------------------------------------------------------
1158 
1159 // Represents monotonically non-decreasing clock time.
1160 class BASE_EXPORT TimeTicks : public time_internal::TimeBase<TimeTicks> {
1161  public:
1162   // The underlying clock used to generate new TimeTicks.
1163   enum class Clock {
1164     FUCHSIA_ZX_CLOCK_MONOTONIC,
1165     LINUX_CLOCK_MONOTONIC,
1166     IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME,
1167     MAC_MACH_ABSOLUTE_TIME,
1168     WIN_QPC,
1169     WIN_ROLLOVER_PROTECTED_TIME_GET_TIME
1170   };
1171 
TimeTicks()1172   constexpr TimeTicks() : TimeBase(0) {}
1173 
1174   // Platform-dependent tick count representing "right now." When
1175   // IsHighResolution() returns false, the resolution of the clock could be
1176   // as coarse as ~15.6ms. Otherwise, the resolution should be no worse than one
1177   // microsecond.
1178   static TimeTicks Now();
1179 
1180   // Returns true if the high resolution clock is working on this system and
1181   // Now() will return high resolution values. Note that, on systems where the
1182   // high resolution clock works but is deemed inefficient, the low resolution
1183   // clock will be used instead.
1184   [[nodiscard]] static bool IsHighResolution();
1185 
1186   // Returns true if TimeTicks is consistent across processes, meaning that
1187   // timestamps taken on different processes can be safely compared with one
1188   // another. (Note that, even on platforms where this returns true, time values
1189   // from different threads that are within one tick of each other must be
1190   // considered to have an ambiguous ordering.)
1191   [[nodiscard]] static bool IsConsistentAcrossProcesses();
1192 
1193 #if BUILDFLAG(IS_FUCHSIA)
1194   // Converts between TimeTicks and an ZX_CLOCK_MONOTONIC zx_time_t value.
1195   static TimeTicks FromZxTime(zx_time_t nanos_since_boot);
1196   zx_time_t ToZxTime() const;
1197 #endif
1198 
1199 #if BUILDFLAG(IS_WIN)
1200   // Translates an absolute QPC timestamp into a TimeTicks value. The returned
1201   // value has the same origin as Now(). Do NOT attempt to use this if
1202   // IsHighResolution() returns false.
1203   static TimeTicks FromQPCValue(LONGLONG qpc_value);
1204 #endif
1205 
1206 #if BUILDFLAG(IS_APPLE)
1207   static TimeTicks FromMachAbsoluteTime(uint64_t mach_absolute_time);
1208 
1209   // Sets the current Mach timebase to `timebase`. Returns the old timebase.
1210   static mach_timebase_info_data_t SetMachTimebaseInfoForTesting(
1211       mach_timebase_info_data_t timebase);
1212 
1213 #endif  // BUILDFLAG(IS_APPLE)
1214 
1215 #if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS_ASH)
1216   // Converts to TimeTicks the value obtained from SystemClock.uptimeMillis().
1217   // Note: this conversion may be non-monotonic in relation to previously
1218   // obtained TimeTicks::Now() values because of the truncation (to
1219   // milliseconds) performed by uptimeMillis().
1220   static TimeTicks FromUptimeMillis(int64_t uptime_millis_value);
1221 
1222 #endif  // BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS_ASH)
1223 
1224 #if BUILDFLAG(IS_ANDROID)
1225   // Converts to TimeTicks the value obtained from System.nanoTime(). This
1226   // conversion will be monotonic in relation to previously obtained
1227   // TimeTicks::Now() values as the clocks are based on the same posix monotonic
1228   // clock, with nanoTime() potentially providing higher resolution.
1229   static TimeTicks FromJavaNanoTime(int64_t nano_time_value);
1230 
1231   // Truncates the TimeTicks value to the precision of SystemClock#uptimeMillis.
1232   // Note that the clocks already share the same monotonic clock source.
1233   jlong ToUptimeMillis() const;
1234 
1235   // Returns the TimeTicks value as microseconds in the timebase of
1236   // SystemClock#uptimeMillis.
1237   // Note that the clocks already share the same monotonic clock source.
1238   //
1239   // System.nanoTime() may be used to get sub-millisecond precision in Java code
1240   // and may be compared against this value as the two share the same clock
1241   // source (though be sure to convert nanos to micros).
1242   jlong ToUptimeMicros() const;
1243 
1244 #endif  // BUILDFLAG(IS_ANDROID)
1245 
1246   // Get an estimate of the TimeTick value at the time of the UnixEpoch. Because
1247   // Time and TimeTicks respond differently to user-set time and NTP
1248   // adjustments, this number is only an estimate. Nevertheless, this can be
1249   // useful when you need to relate the value of TimeTicks to a real time and
1250   // date. Note: Upon first invocation, this function takes a snapshot of the
1251   // realtime clock to establish a reference point.  This function will return
1252   // the same value for the duration of the application, but will be different
1253   // in future application runs.
1254   static TimeTicks UnixEpoch();
1255 
1256   static void SetSharedUnixEpoch(TimeTicks);
1257 
1258   // Returns |this| snapped to the next tick, given a |tick_phase| and
1259   // repeating |tick_interval| in both directions. |this| may be before,
1260   // after, or equal to the |tick_phase|.
1261   TimeTicks SnappedToNextTick(TimeTicks tick_phase,
1262                               TimeDelta tick_interval) const;
1263 
1264   // Returns an enum indicating the underlying clock being used to generate
1265   // TimeTicks timestamps. This function should only be used for debugging and
1266   // logging purposes.
1267   static Clock GetClock();
1268 
1269   // Converts an integer value representing TimeTicks to a class. This may be
1270   // used when deserializing a |TimeTicks| structure, using a value known to be
1271   // compatible. It is not provided as a constructor because the integer type
1272   // may be unclear from the perspective of a caller.
1273   //
1274   // DEPRECATED - Do not use in new code. For deserializing TimeTicks values,
1275   // prefer TimeTicks + TimeDelta(); however, be aware that the origin is not
1276   // fixed and may vary. Serializing for persistence is strongly discouraged.
1277   // http://crbug.com/634507
FromInternalValue(int64_t us)1278   static constexpr TimeTicks FromInternalValue(int64_t us) {
1279     return TimeTicks(us);
1280   }
1281 
1282  protected:
1283 #if BUILDFLAG(IS_WIN)
1284   typedef DWORD (*TickFunctionType)(void);
1285   static TickFunctionType SetMockTickFunction(TickFunctionType ticker);
1286 #endif
1287 
1288  private:
1289   friend class time_internal::TimeBase<TimeTicks>;
1290 
1291   // Please use Now() to create a new object. This is for internal use
1292   // and testing.
TimeTicks(int64_t us)1293   constexpr explicit TimeTicks(int64_t us) : TimeBase(us) {}
1294 };
1295 
1296 // For logging use only.
1297 BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks);
1298 
1299 // LiveTicks ------------------------------------------------------------------
1300 
1301 // Behaves similarly to `TimeTicks` (a monotonically non-decreasing clock time)
1302 // with the main difference being that `LiveTicks` is guaranteed not to advance
1303 // while the system is suspended.
1304 class BASE_EXPORT LiveTicks : public time_internal::TimeBase<LiveTicks> {
1305  public:
LiveTicks()1306   constexpr LiveTicks() : TimeBase(0) {}
1307   static LiveTicks Now();
1308 
1309  private:
1310   friend class time_internal::TimeBase<LiveTicks>;
1311 
1312   // Please use Now() to create a new object. This is for internal use
1313   // and testing.
LiveTicks(int64_t us)1314   constexpr explicit LiveTicks(int64_t us) : TimeBase(us) {}
1315 };
1316 
1317 // ThreadTicks ----------------------------------------------------------------
1318 
1319 // Represents a clock, specific to a particular thread, than runs only while the
1320 // thread is running.
1321 class BASE_EXPORT ThreadTicks : public time_internal::TimeBase<ThreadTicks> {
1322  public:
ThreadTicks()1323   constexpr ThreadTicks() : TimeBase(0) {}
1324 
1325   // Returns true if ThreadTicks::Now() is supported on this system.
IsSupported()1326   [[nodiscard]] static bool IsSupported() {
1327 #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
1328     BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA)
1329     return true;
1330 #elif BUILDFLAG(IS_WIN)
1331     return IsSupportedWin();
1332 #else
1333     return false;
1334 #endif
1335   }
1336 
1337   // Waits until the initialization is completed. Needs to be guarded with a
1338   // call to IsSupported().
WaitUntilInitialized()1339   static void WaitUntilInitialized() {
1340 #if BUILDFLAG(IS_WIN)
1341     WaitUntilInitializedWin();
1342 #endif
1343   }
1344 
1345   // Returns thread-specific CPU-time on systems that support this feature.
1346   // Needs to be guarded with a call to IsSupported(). Use this timer
1347   // to (approximately) measure how much time the calling thread spent doing
1348   // actual work vs. being de-scheduled. May return bogus results if the thread
1349   // migrates to another CPU between two calls. Returns an empty ThreadTicks
1350   // object until the initialization is completed. If a clock reading is
1351   // absolutely needed, call WaitUntilInitialized() before this method.
1352   static ThreadTicks Now();
1353 
1354 #if BUILDFLAG(IS_WIN)
1355   // Similar to Now() above except this returns thread-specific CPU time for an
1356   // arbitrary thread. All comments for Now() method above apply apply to this
1357   // method as well.
1358   static ThreadTicks GetForThread(const PlatformThreadHandle& thread_handle);
1359 #endif
1360 
1361   // Converts an integer value representing ThreadTicks to a class. This may be
1362   // used when deserializing a |ThreadTicks| structure, using a value known to
1363   // be compatible. It is not provided as a constructor because the integer type
1364   // may be unclear from the perspective of a caller.
1365   //
1366   // DEPRECATED - Do not use in new code. For deserializing ThreadTicks values,
1367   // prefer ThreadTicks + TimeDelta(); however, be aware that the origin is not
1368   // fixed and may vary. Serializing for persistence is strongly
1369   // discouraged. http://crbug.com/634507
FromInternalValue(int64_t us)1370   static constexpr ThreadTicks FromInternalValue(int64_t us) {
1371     return ThreadTicks(us);
1372   }
1373 
1374  private:
1375   friend class time_internal::TimeBase<ThreadTicks>;
1376 
1377   // Please use Now() or GetForThread() to create a new object. This is for
1378   // internal use and testing.
ThreadTicks(int64_t us)1379   constexpr explicit ThreadTicks(int64_t us) : TimeBase(us) {}
1380 
1381 #if BUILDFLAG(IS_WIN)
1382   [[nodiscard]] static bool IsSupportedWin();
1383   static void WaitUntilInitializedWin();
1384 #endif
1385 };
1386 
1387 // For logging use only.
1388 BASE_EXPORT std::ostream& operator<<(std::ostream& os, ThreadTicks time_ticks);
1389 
1390 }  // namespace base
1391 
1392 #endif  // BASE_TIME_TIME_H_
1393