1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <utility>
6
7 #include "base/files/file.h"
8 #include "base/files/file_util.h"
9 #include "base/functional/bind.h"
10 #include "base/functional/callback_helpers.h"
11 #include "base/metrics/field_trial.h"
12 #include "base/metrics/field_trial_param_associator.h"
13 #include "base/run_loop.h"
14 #include "base/strings/string_number_conversions.h"
15 #include "base/strings/string_util.h"
16 #include "base/test/metrics/histogram_tester.h"
17 #include "base/test/scoped_feature_list.h"
18 #include "base/threading/platform_thread.h"
19 #include "base/time/time.h"
20 #include "build/build_config.h"
21 #include "net/base/completion_once_callback.h"
22 #include "net/base/io_buffer.h"
23 #include "net/base/net_errors.h"
24 #include "net/base/request_priority.h"
25 #include "net/base/test_completion_callback.h"
26 #include "net/disk_cache/blockfile/backend_impl.h"
27 #include "net/disk_cache/blockfile/entry_impl.h"
28 #include "net/disk_cache/cache_util.h"
29 #include "net/disk_cache/disk_cache_test_base.h"
30 #include "net/disk_cache/disk_cache_test_util.h"
31 #include "net/disk_cache/memory/mem_entry_impl.h"
32 #include "net/disk_cache/simple/simple_backend_impl.h"
33 #include "net/disk_cache/simple/simple_entry_format.h"
34 #include "net/disk_cache/simple/simple_entry_impl.h"
35 #include "net/disk_cache/simple/simple_histogram_enums.h"
36 #include "net/disk_cache/simple/simple_synchronous_entry.h"
37 #include "net/disk_cache/simple/simple_test_util.h"
38 #include "net/disk_cache/simple/simple_util.h"
39 #include "net/test/gtest_util.h"
40 #include "testing/gmock/include/gmock/gmock.h"
41 #include "testing/gtest/include/gtest/gtest.h"
42
43 using net::test::IsError;
44 using net::test::IsOk;
45
46 using base::Time;
47 using disk_cache::EntryResult;
48 using disk_cache::EntryResultCallback;
49 using disk_cache::RangeResult;
50 using disk_cache::ScopedEntryPtr;
51
52 // Tests that can run with different types of caches.
53 class DiskCacheEntryTest : public DiskCacheTestWithCache {
54 public:
55 void InternalSyncIOBackground(disk_cache::Entry* entry);
56 void ExternalSyncIOBackground(disk_cache::Entry* entry);
57
58 protected:
59 void InternalSyncIO();
60 void InternalAsyncIO();
61 void ExternalSyncIO();
62 void ExternalAsyncIO();
63 void ReleaseBuffer(int stream_index);
64 void StreamAccess();
65 void GetKey();
66 void GetTimes(int stream_index);
67 void GrowData(int stream_index);
68 void TruncateData(int stream_index);
69 void ZeroLengthIO(int stream_index);
70 void Buffering();
71 void SizeAtCreate();
72 void SizeChanges(int stream_index);
73 void ReuseEntry(int size, int stream_index);
74 void InvalidData(int stream_index);
75 void ReadWriteDestroyBuffer(int stream_index);
76 void DoomNormalEntry();
77 void DoomEntryNextToOpenEntry();
78 void DoomedEntry(int stream_index);
79 void BasicSparseIO();
80 void HugeSparseIO();
81 void GetAvailableRangeTest();
82 void CouldBeSparse();
83 void UpdateSparseEntry();
84 void DoomSparseEntry();
85 void PartialSparseEntry();
86 void SparseInvalidArg();
87 void SparseClipEnd(int64_t max_index, bool expected_unsupported);
88 bool SimpleCacheMakeBadChecksumEntry(const std::string& key, int data_size);
89 bool SimpleCacheThirdStreamFileExists(const char* key);
90 void SyncDoomEntry(const char* key);
91 void CreateEntryWithHeaderBodyAndSideData(const std::string& key,
92 int data_size);
93 void TruncateFileFromEnd(int file_index,
94 const std::string& key,
95 int data_size,
96 int truncate_size);
97 void UseAfterBackendDestruction();
98 void CloseSparseAfterBackendDestruction();
99 void LastUsedTimePersists();
100 void TruncateBackwards();
101 void ZeroWriteBackwards();
102 void SparseOffset64Bit();
103 };
104
105 // This part of the test runs on the background thread.
InternalSyncIOBackground(disk_cache::Entry * entry)106 void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) {
107 const int kSize1 = 10;
108 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
109 CacheTestFillBuffer(buffer1->data(), kSize1, false);
110 EXPECT_EQ(0, entry->ReadData(0, 0, buffer1.get(), kSize1,
111 net::CompletionOnceCallback()));
112 base::strlcpy(buffer1->data(), "the data", kSize1);
113 EXPECT_EQ(10, entry->WriteData(0, 0, buffer1.get(), kSize1,
114 net::CompletionOnceCallback(), false));
115 memset(buffer1->data(), 0, kSize1);
116 EXPECT_EQ(10, entry->ReadData(0, 0, buffer1.get(), kSize1,
117 net::CompletionOnceCallback()));
118 EXPECT_STREQ("the data", buffer1->data());
119
120 const int kSize2 = 5000;
121 const int kSize3 = 10000;
122 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
123 auto buffer3 = base::MakeRefCounted<net::IOBufferWithSize>(kSize3);
124 memset(buffer3->data(), 0, kSize3);
125 CacheTestFillBuffer(buffer2->data(), kSize2, false);
126 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
127 EXPECT_EQ(5000, entry->WriteData(1, 1500, buffer2.get(), kSize2,
128 net::CompletionOnceCallback(), false));
129 memset(buffer2->data(), 0, kSize2);
130 EXPECT_EQ(4989, entry->ReadData(1, 1511, buffer2.get(), kSize2,
131 net::CompletionOnceCallback()));
132 EXPECT_STREQ("big data goes here", buffer2->data());
133 EXPECT_EQ(5000, entry->ReadData(1, 0, buffer2.get(), kSize2,
134 net::CompletionOnceCallback()));
135 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
136 EXPECT_EQ(1500, entry->ReadData(1, 5000, buffer2.get(), kSize2,
137 net::CompletionOnceCallback()));
138
139 EXPECT_EQ(0, entry->ReadData(1, 6500, buffer2.get(), kSize2,
140 net::CompletionOnceCallback()));
141 EXPECT_EQ(6500, entry->ReadData(1, 0, buffer3.get(), kSize3,
142 net::CompletionOnceCallback()));
143 EXPECT_EQ(8192, entry->WriteData(1, 0, buffer3.get(), 8192,
144 net::CompletionOnceCallback(), false));
145 EXPECT_EQ(8192, entry->ReadData(1, 0, buffer3.get(), kSize3,
146 net::CompletionOnceCallback()));
147 EXPECT_EQ(8192, entry->GetDataSize(1));
148
149 // We need to delete the memory buffer on this thread.
150 EXPECT_EQ(0, entry->WriteData(0, 0, nullptr, 0, net::CompletionOnceCallback(),
151 true));
152 EXPECT_EQ(0, entry->WriteData(1, 0, nullptr, 0, net::CompletionOnceCallback(),
153 true));
154 }
155
156 // We need to support synchronous IO even though it is not a supported operation
157 // from the point of view of the disk cache's public interface, because we use
158 // it internally, not just by a few tests, but as part of the implementation
159 // (see sparse_control.cc, for example).
InternalSyncIO()160 void DiskCacheEntryTest::InternalSyncIO() {
161 disk_cache::Entry* entry = nullptr;
162 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
163 ASSERT_TRUE(nullptr != entry);
164
165 // The bulk of the test runs from within the callback, on the cache thread.
166 RunTaskForTest(base::BindOnce(&DiskCacheEntryTest::InternalSyncIOBackground,
167 base::Unretained(this), entry));
168
169 entry->Doom();
170 entry->Close();
171 FlushQueueForTest();
172 EXPECT_EQ(0, cache_->GetEntryCount());
173 }
174
TEST_F(DiskCacheEntryTest,InternalSyncIO)175 TEST_F(DiskCacheEntryTest, InternalSyncIO) {
176 InitCache();
177 InternalSyncIO();
178 }
179
TEST_F(DiskCacheEntryTest,MemoryOnlyInternalSyncIO)180 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) {
181 SetMemoryOnlyMode();
182 InitCache();
183 InternalSyncIO();
184 }
185
InternalAsyncIO()186 void DiskCacheEntryTest::InternalAsyncIO() {
187 disk_cache::Entry* entry = nullptr;
188 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
189 ASSERT_TRUE(nullptr != entry);
190
191 // Avoid using internal buffers for the test. We have to write something to
192 // the entry and close it so that we flush the internal buffer to disk. After
193 // that, IO operations will be really hitting the disk. We don't care about
194 // the content, so just extending the entry is enough (all extensions zero-
195 // fill any holes).
196 EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, nullptr, 0, false));
197 EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, nullptr, 0, false));
198 entry->Close();
199 ASSERT_THAT(OpenEntry("the first key", &entry), IsOk());
200
201 MessageLoopHelper helper;
202 // Let's verify that each IO goes to the right callback object.
203 CallbackTest callback1(&helper, false);
204 CallbackTest callback2(&helper, false);
205 CallbackTest callback3(&helper, false);
206 CallbackTest callback4(&helper, false);
207 CallbackTest callback5(&helper, false);
208 CallbackTest callback6(&helper, false);
209 CallbackTest callback7(&helper, false);
210 CallbackTest callback8(&helper, false);
211 CallbackTest callback9(&helper, false);
212 CallbackTest callback10(&helper, false);
213 CallbackTest callback11(&helper, false);
214 CallbackTest callback12(&helper, false);
215 CallbackTest callback13(&helper, false);
216
217 const int kSize1 = 10;
218 const int kSize2 = 5000;
219 const int kSize3 = 10000;
220 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
221 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
222 auto buffer3 = base::MakeRefCounted<net::IOBufferWithSize>(kSize3);
223 CacheTestFillBuffer(buffer1->data(), kSize1, false);
224 CacheTestFillBuffer(buffer2->data(), kSize2, false);
225 CacheTestFillBuffer(buffer3->data(), kSize3, false);
226
227 EXPECT_EQ(0, entry->ReadData(0, 15 * 1024, buffer1.get(), kSize1,
228 base::BindOnce(&CallbackTest::Run,
229 base::Unretained(&callback1))));
230 base::strlcpy(buffer1->data(), "the data", kSize1);
231 int expected = 0;
232 int ret = entry->WriteData(
233 0, 0, buffer1.get(), kSize1,
234 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback2)), false);
235 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
236 if (net::ERR_IO_PENDING == ret)
237 expected++;
238
239 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
240 memset(buffer2->data(), 0, kSize2);
241 ret = entry->ReadData(
242 0, 0, buffer2.get(), kSize1,
243 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback3)));
244 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
245 if (net::ERR_IO_PENDING == ret)
246 expected++;
247
248 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
249 EXPECT_STREQ("the data", buffer2->data());
250
251 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
252 ret = entry->WriteData(
253 1, 1500, buffer2.get(), kSize2,
254 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback4)), true);
255 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
256 if (net::ERR_IO_PENDING == ret)
257 expected++;
258
259 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
260 memset(buffer3->data(), 0, kSize3);
261 ret = entry->ReadData(
262 1, 1511, buffer3.get(), kSize2,
263 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback5)));
264 EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret);
265 if (net::ERR_IO_PENDING == ret)
266 expected++;
267
268 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
269 EXPECT_STREQ("big data goes here", buffer3->data());
270 ret = entry->ReadData(
271 1, 0, buffer2.get(), kSize2,
272 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback6)));
273 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
274 if (net::ERR_IO_PENDING == ret)
275 expected++;
276
277 memset(buffer3->data(), 0, kSize3);
278
279 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
280 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
281 ret = entry->ReadData(
282 1, 5000, buffer2.get(), kSize2,
283 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback7)));
284 EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret);
285 if (net::ERR_IO_PENDING == ret)
286 expected++;
287
288 ret = entry->ReadData(
289 1, 0, buffer3.get(), kSize3,
290 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback9)));
291 EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret);
292 if (net::ERR_IO_PENDING == ret)
293 expected++;
294
295 ret = entry->WriteData(
296 1, 0, buffer3.get(), 8192,
297 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback10)), true);
298 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
299 if (net::ERR_IO_PENDING == ret)
300 expected++;
301
302 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
303 ret = entry->ReadData(
304 1, 0, buffer3.get(), kSize3,
305 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback11)));
306 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
307 if (net::ERR_IO_PENDING == ret)
308 expected++;
309
310 EXPECT_EQ(8192, entry->GetDataSize(1));
311
312 ret = entry->ReadData(
313 0, 0, buffer1.get(), kSize1,
314 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback12)));
315 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
316 if (net::ERR_IO_PENDING == ret)
317 expected++;
318
319 ret = entry->ReadData(
320 1, 0, buffer2.get(), kSize2,
321 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback13)));
322 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
323 if (net::ERR_IO_PENDING == ret)
324 expected++;
325
326 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
327
328 EXPECT_FALSE(helper.callback_reused_error());
329
330 entry->Doom();
331 entry->Close();
332 FlushQueueForTest();
333 EXPECT_EQ(0, cache_->GetEntryCount());
334 }
335
TEST_F(DiskCacheEntryTest,InternalAsyncIO)336 TEST_F(DiskCacheEntryTest, InternalAsyncIO) {
337 InitCache();
338 InternalAsyncIO();
339 }
340
TEST_F(DiskCacheEntryTest,MemoryOnlyInternalAsyncIO)341 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) {
342 SetMemoryOnlyMode();
343 InitCache();
344 InternalAsyncIO();
345 }
346
347 // This part of the test runs on the background thread.
ExternalSyncIOBackground(disk_cache::Entry * entry)348 void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) {
349 const int kSize1 = 17000;
350 const int kSize2 = 25000;
351 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
352 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
353 CacheTestFillBuffer(buffer1->data(), kSize1, false);
354 CacheTestFillBuffer(buffer2->data(), kSize2, false);
355 base::strlcpy(buffer1->data(), "the data", kSize1);
356 EXPECT_EQ(17000, entry->WriteData(0, 0, buffer1.get(), kSize1,
357 net::CompletionOnceCallback(), false));
358 memset(buffer1->data(), 0, kSize1);
359 EXPECT_EQ(17000, entry->ReadData(0, 0, buffer1.get(), kSize1,
360 net::CompletionOnceCallback()));
361 EXPECT_STREQ("the data", buffer1->data());
362
363 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
364 EXPECT_EQ(25000, entry->WriteData(1, 10000, buffer2.get(), kSize2,
365 net::CompletionOnceCallback(), false));
366 memset(buffer2->data(), 0, kSize2);
367 EXPECT_EQ(24989, entry->ReadData(1, 10011, buffer2.get(), kSize2,
368 net::CompletionOnceCallback()));
369 EXPECT_STREQ("big data goes here", buffer2->data());
370 EXPECT_EQ(25000, entry->ReadData(1, 0, buffer2.get(), kSize2,
371 net::CompletionOnceCallback()));
372 EXPECT_EQ(5000, entry->ReadData(1, 30000, buffer2.get(), kSize2,
373 net::CompletionOnceCallback()));
374
375 EXPECT_EQ(0, entry->ReadData(1, 35000, buffer2.get(), kSize2,
376 net::CompletionOnceCallback()));
377 EXPECT_EQ(17000, entry->ReadData(1, 0, buffer1.get(), kSize1,
378 net::CompletionOnceCallback()));
379 EXPECT_EQ(17000, entry->WriteData(1, 20000, buffer1.get(), kSize1,
380 net::CompletionOnceCallback(), false));
381 EXPECT_EQ(37000, entry->GetDataSize(1));
382
383 // We need to delete the memory buffer on this thread.
384 EXPECT_EQ(0, entry->WriteData(0, 0, nullptr, 0, net::CompletionOnceCallback(),
385 true));
386 EXPECT_EQ(0, entry->WriteData(1, 0, nullptr, 0, net::CompletionOnceCallback(),
387 true));
388 }
389
ExternalSyncIO()390 void DiskCacheEntryTest::ExternalSyncIO() {
391 disk_cache::Entry* entry;
392 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
393
394 // The bulk of the test runs from within the callback, on the cache thread.
395 RunTaskForTest(base::BindOnce(&DiskCacheEntryTest::ExternalSyncIOBackground,
396 base::Unretained(this), entry));
397
398 entry->Doom();
399 entry->Close();
400 FlushQueueForTest();
401 EXPECT_EQ(0, cache_->GetEntryCount());
402 }
403
TEST_F(DiskCacheEntryTest,ExternalSyncIO)404 TEST_F(DiskCacheEntryTest, ExternalSyncIO) {
405 InitCache();
406 ExternalSyncIO();
407 }
408
TEST_F(DiskCacheEntryTest,ExternalSyncIONoBuffer)409 TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) {
410 InitCache();
411 cache_impl_->SetFlags(disk_cache::kNoBuffering);
412 ExternalSyncIO();
413 }
414
TEST_F(DiskCacheEntryTest,MemoryOnlyExternalSyncIO)415 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) {
416 SetMemoryOnlyMode();
417 InitCache();
418 ExternalSyncIO();
419 }
420
ExternalAsyncIO()421 void DiskCacheEntryTest::ExternalAsyncIO() {
422 disk_cache::Entry* entry;
423 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
424
425 int expected = 0;
426
427 MessageLoopHelper helper;
428 // Let's verify that each IO goes to the right callback object.
429 CallbackTest callback1(&helper, false);
430 CallbackTest callback2(&helper, false);
431 CallbackTest callback3(&helper, false);
432 CallbackTest callback4(&helper, false);
433 CallbackTest callback5(&helper, false);
434 CallbackTest callback6(&helper, false);
435 CallbackTest callback7(&helper, false);
436 CallbackTest callback8(&helper, false);
437 CallbackTest callback9(&helper, false);
438
439 const int kSize1 = 17000;
440 const int kSize2 = 25000;
441 const int kSize3 = 25000;
442 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
443 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
444 auto buffer3 = base::MakeRefCounted<net::IOBufferWithSize>(kSize3);
445 CacheTestFillBuffer(buffer1->data(), kSize1, false);
446 CacheTestFillBuffer(buffer2->data(), kSize2, false);
447 CacheTestFillBuffer(buffer3->data(), kSize3, false);
448 base::strlcpy(buffer1->data(), "the data", kSize1);
449 int ret = entry->WriteData(
450 0, 0, buffer1.get(), kSize1,
451 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback1)), false);
452 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
453 if (net::ERR_IO_PENDING == ret)
454 expected++;
455
456 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
457
458 memset(buffer2->data(), 0, kSize1);
459 ret = entry->ReadData(
460 0, 0, buffer2.get(), kSize1,
461 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback2)));
462 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
463 if (net::ERR_IO_PENDING == ret)
464 expected++;
465
466 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
467 EXPECT_STREQ("the data", buffer2->data());
468
469 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
470 ret = entry->WriteData(
471 1, 10000, buffer2.get(), kSize2,
472 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback3)), false);
473 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
474 if (net::ERR_IO_PENDING == ret)
475 expected++;
476
477 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
478
479 memset(buffer3->data(), 0, kSize3);
480 ret = entry->ReadData(
481 1, 10011, buffer3.get(), kSize3,
482 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback4)));
483 EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret);
484 if (net::ERR_IO_PENDING == ret)
485 expected++;
486
487 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
488 EXPECT_STREQ("big data goes here", buffer3->data());
489 ret = entry->ReadData(
490 1, 0, buffer2.get(), kSize2,
491 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback5)));
492 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
493 if (net::ERR_IO_PENDING == ret)
494 expected++;
495
496 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
497 memset(buffer3->data(), 0, kSize3);
498 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 10000));
499 ret = entry->ReadData(
500 1, 30000, buffer2.get(), kSize2,
501 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback6)));
502 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
503 if (net::ERR_IO_PENDING == ret)
504 expected++;
505
506 ret = entry->ReadData(
507 1, 35000, buffer2.get(), kSize2,
508 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback7)));
509 EXPECT_TRUE(0 == ret || net::ERR_IO_PENDING == ret);
510 if (net::ERR_IO_PENDING == ret)
511 expected++;
512
513 ret = entry->ReadData(
514 1, 0, buffer1.get(), kSize1,
515 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback8)));
516 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
517 if (net::ERR_IO_PENDING == ret)
518 expected++;
519 ret = entry->WriteData(
520 1, 20000, buffer3.get(), kSize1,
521 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback9)), false);
522 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
523 if (net::ERR_IO_PENDING == ret)
524 expected++;
525
526 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
527 EXPECT_EQ(37000, entry->GetDataSize(1));
528
529 EXPECT_FALSE(helper.callback_reused_error());
530
531 entry->Doom();
532 entry->Close();
533 FlushQueueForTest();
534 EXPECT_EQ(0, cache_->GetEntryCount());
535 }
536
TEST_F(DiskCacheEntryTest,ExternalAsyncIO)537 TEST_F(DiskCacheEntryTest, ExternalAsyncIO) {
538 InitCache();
539 ExternalAsyncIO();
540 }
541
542 // TODO(http://crbug.com/497101): This test is flaky.
543 #if BUILDFLAG(IS_IOS)
544 #define MAYBE_ExternalAsyncIONoBuffer DISABLED_ExternalAsyncIONoBuffer
545 #else
546 #define MAYBE_ExternalAsyncIONoBuffer ExternalAsyncIONoBuffer
547 #endif
TEST_F(DiskCacheEntryTest,MAYBE_ExternalAsyncIONoBuffer)548 TEST_F(DiskCacheEntryTest, MAYBE_ExternalAsyncIONoBuffer) {
549 InitCache();
550 cache_impl_->SetFlags(disk_cache::kNoBuffering);
551 ExternalAsyncIO();
552 }
553
TEST_F(DiskCacheEntryTest,MemoryOnlyExternalAsyncIO)554 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) {
555 SetMemoryOnlyMode();
556 InitCache();
557 ExternalAsyncIO();
558 }
559
560 // Tests that IOBuffers are not referenced after IO completes.
ReleaseBuffer(int stream_index)561 void DiskCacheEntryTest::ReleaseBuffer(int stream_index) {
562 disk_cache::Entry* entry = nullptr;
563 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
564 ASSERT_TRUE(nullptr != entry);
565
566 const int kBufferSize = 1024;
567 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
568 CacheTestFillBuffer(buffer->data(), kBufferSize, false);
569
570 net::ReleaseBufferCompletionCallback cb(buffer.get());
571 int rv = entry->WriteData(
572 stream_index, 0, buffer.get(), kBufferSize, cb.callback(), false);
573 EXPECT_EQ(kBufferSize, cb.GetResult(rv));
574 entry->Close();
575 }
576
TEST_F(DiskCacheEntryTest,ReleaseBuffer)577 TEST_F(DiskCacheEntryTest, ReleaseBuffer) {
578 InitCache();
579 cache_impl_->SetFlags(disk_cache::kNoBuffering);
580 ReleaseBuffer(0);
581 }
582
TEST_F(DiskCacheEntryTest,MemoryOnlyReleaseBuffer)583 TEST_F(DiskCacheEntryTest, MemoryOnlyReleaseBuffer) {
584 SetMemoryOnlyMode();
585 InitCache();
586 ReleaseBuffer(0);
587 }
588
StreamAccess()589 void DiskCacheEntryTest::StreamAccess() {
590 disk_cache::Entry* entry = nullptr;
591 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
592 ASSERT_TRUE(nullptr != entry);
593
594 const int kBufferSize = 1024;
595 const int kNumStreams = 3;
596 scoped_refptr<net::IOBuffer> reference_buffers[kNumStreams];
597 for (auto& reference_buffer : reference_buffers) {
598 reference_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
599 CacheTestFillBuffer(reference_buffer->data(), kBufferSize, false);
600 }
601 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
602 for (int i = 0; i < kNumStreams; i++) {
603 EXPECT_EQ(
604 kBufferSize,
605 WriteData(entry, i, 0, reference_buffers[i].get(), kBufferSize, false));
606 memset(buffer1->data(), 0, kBufferSize);
607 EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer1.get(), kBufferSize));
608 EXPECT_EQ(
609 0, memcmp(reference_buffers[i]->data(), buffer1->data(), kBufferSize));
610 }
611 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
612 ReadData(entry, kNumStreams, 0, buffer1.get(), kBufferSize));
613 entry->Close();
614
615 // Open the entry and read it in chunks, including a read past the end.
616 ASSERT_THAT(OpenEntry("the first key", &entry), IsOk());
617 ASSERT_TRUE(nullptr != entry);
618 const int kReadBufferSize = 600;
619 const int kFinalReadSize = kBufferSize - kReadBufferSize;
620 static_assert(kFinalReadSize < kReadBufferSize,
621 "should be exactly two reads");
622 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kReadBufferSize);
623 for (int i = 0; i < kNumStreams; i++) {
624 memset(buffer2->data(), 0, kReadBufferSize);
625 EXPECT_EQ(kReadBufferSize,
626 ReadData(entry, i, 0, buffer2.get(), kReadBufferSize));
627 EXPECT_EQ(
628 0,
629 memcmp(reference_buffers[i]->data(), buffer2->data(), kReadBufferSize));
630
631 memset(buffer2->data(), 0, kReadBufferSize);
632 EXPECT_EQ(
633 kFinalReadSize,
634 ReadData(entry, i, kReadBufferSize, buffer2.get(), kReadBufferSize));
635 EXPECT_EQ(0,
636 memcmp(reference_buffers[i]->data() + kReadBufferSize,
637 buffer2->data(),
638 kFinalReadSize));
639 }
640
641 entry->Close();
642 }
643
TEST_F(DiskCacheEntryTest,StreamAccess)644 TEST_F(DiskCacheEntryTest, StreamAccess) {
645 InitCache();
646 StreamAccess();
647 }
648
TEST_F(DiskCacheEntryTest,MemoryOnlyStreamAccess)649 TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) {
650 SetMemoryOnlyMode();
651 InitCache();
652 StreamAccess();
653 }
654
GetKey()655 void DiskCacheEntryTest::GetKey() {
656 std::string key("the first key");
657 disk_cache::Entry* entry;
658 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
659 EXPECT_EQ(key, entry->GetKey()) << "short key";
660 entry->Close();
661
662 int seed = static_cast<int>(Time::Now().ToInternalValue());
663 srand(seed);
664 char key_buffer[20000];
665
666 CacheTestFillBuffer(key_buffer, 3000, true);
667 key_buffer[1000] = '\0';
668
669 key = key_buffer;
670 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
671 EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key";
672 entry->Close();
673
674 key_buffer[1000] = 'p';
675 key_buffer[3000] = '\0';
676 key = key_buffer;
677 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
678 EXPECT_TRUE(key == entry->GetKey()) << "medium size key";
679 entry->Close();
680
681 CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true);
682 key_buffer[19999] = '\0';
683
684 key = key_buffer;
685 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
686 EXPECT_TRUE(key == entry->GetKey()) << "long key";
687 entry->Close();
688
689 CacheTestFillBuffer(key_buffer, 0x4000, true);
690 key_buffer[0x4000] = '\0';
691
692 key = key_buffer;
693 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
694 EXPECT_TRUE(key == entry->GetKey()) << "16KB key";
695 entry->Close();
696 }
697
TEST_F(DiskCacheEntryTest,GetKey)698 TEST_F(DiskCacheEntryTest, GetKey) {
699 InitCache();
700 GetKey();
701 }
702
TEST_F(DiskCacheEntryTest,MemoryOnlyGetKey)703 TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) {
704 SetMemoryOnlyMode();
705 InitCache();
706 GetKey();
707 }
708
GetTimes(int stream_index)709 void DiskCacheEntryTest::GetTimes(int stream_index) {
710 std::string key("the first key");
711 disk_cache::Entry* entry;
712
713 Time t1 = Time::Now();
714 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
715 EXPECT_TRUE(entry->GetLastModified() >= t1);
716 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
717
718 AddDelay();
719 Time t2 = Time::Now();
720 EXPECT_TRUE(t2 > t1);
721 EXPECT_EQ(0, WriteData(entry, stream_index, 200, nullptr, 0, false));
722 if (type_ == net::APP_CACHE) {
723 EXPECT_TRUE(entry->GetLastModified() < t2);
724 } else {
725 EXPECT_TRUE(entry->GetLastModified() >= t2);
726 }
727 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
728
729 AddDelay();
730 Time t3 = Time::Now();
731 EXPECT_TRUE(t3 > t2);
732 const int kSize = 200;
733 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
734 EXPECT_EQ(kSize, ReadData(entry, stream_index, 0, buffer.get(), kSize));
735 if (type_ == net::APP_CACHE) {
736 EXPECT_TRUE(entry->GetLastUsed() < t2);
737 EXPECT_TRUE(entry->GetLastModified() < t2);
738 } else if (type_ == net::SHADER_CACHE) {
739 EXPECT_TRUE(entry->GetLastUsed() < t3);
740 EXPECT_TRUE(entry->GetLastModified() < t3);
741 } else {
742 EXPECT_TRUE(entry->GetLastUsed() >= t3);
743 EXPECT_TRUE(entry->GetLastModified() < t3);
744 }
745 entry->Close();
746 }
747
TEST_F(DiskCacheEntryTest,GetTimes)748 TEST_F(DiskCacheEntryTest, GetTimes) {
749 InitCache();
750 GetTimes(0);
751 }
752
TEST_F(DiskCacheEntryTest,MemoryOnlyGetTimes)753 TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) {
754 SetMemoryOnlyMode();
755 InitCache();
756 GetTimes(0);
757 }
758
TEST_F(DiskCacheEntryTest,AppCacheGetTimes)759 TEST_F(DiskCacheEntryTest, AppCacheGetTimes) {
760 SetCacheType(net::APP_CACHE);
761 InitCache();
762 GetTimes(0);
763 }
764
TEST_F(DiskCacheEntryTest,ShaderCacheGetTimes)765 TEST_F(DiskCacheEntryTest, ShaderCacheGetTimes) {
766 SetCacheType(net::SHADER_CACHE);
767 InitCache();
768 GetTimes(0);
769 }
770
GrowData(int stream_index)771 void DiskCacheEntryTest::GrowData(int stream_index) {
772 std::string key1("the first key");
773 disk_cache::Entry* entry;
774 ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
775
776 const int kSize = 20000;
777 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
778 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
779 CacheTestFillBuffer(buffer1->data(), kSize, false);
780 memset(buffer2->data(), 0, kSize);
781
782 base::strlcpy(buffer1->data(), "the data", kSize);
783 EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
784 EXPECT_EQ(10, ReadData(entry, stream_index, 0, buffer2.get(), 10));
785 EXPECT_STREQ("the data", buffer2->data());
786 EXPECT_EQ(10, entry->GetDataSize(stream_index));
787
788 EXPECT_EQ(2000,
789 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
790 EXPECT_EQ(2000, entry->GetDataSize(stream_index));
791 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
792 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
793
794 EXPECT_EQ(20000,
795 WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
796 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
797 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
798 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
799 entry->Close();
800
801 memset(buffer2->data(), 0, kSize);
802 std::string key2("Second key");
803 ASSERT_THAT(CreateEntry(key2, &entry), IsOk());
804 EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
805 EXPECT_EQ(10, entry->GetDataSize(stream_index));
806 entry->Close();
807
808 // Go from an internal address to a bigger block size.
809 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
810 EXPECT_EQ(2000,
811 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
812 EXPECT_EQ(2000, entry->GetDataSize(stream_index));
813 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
814 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
815 entry->Close();
816 memset(buffer2->data(), 0, kSize);
817
818 // Go from an internal address to an external one.
819 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
820 EXPECT_EQ(20000,
821 WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
822 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
823 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
824 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
825 entry->Close();
826
827 // Double check the size from disk.
828 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
829 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
830
831 // Now extend the entry without actual data.
832 EXPECT_EQ(0, WriteData(entry, stream_index, 45500, buffer1.get(), 0, false));
833 entry->Close();
834
835 // And check again from disk.
836 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
837 EXPECT_EQ(45500, entry->GetDataSize(stream_index));
838 entry->Close();
839 }
840
TEST_F(DiskCacheEntryTest,GrowData)841 TEST_F(DiskCacheEntryTest, GrowData) {
842 InitCache();
843 GrowData(0);
844 }
845
TEST_F(DiskCacheEntryTest,GrowDataNoBuffer)846 TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) {
847 InitCache();
848 cache_impl_->SetFlags(disk_cache::kNoBuffering);
849 GrowData(0);
850 }
851
TEST_F(DiskCacheEntryTest,MemoryOnlyGrowData)852 TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) {
853 SetMemoryOnlyMode();
854 InitCache();
855 GrowData(0);
856 }
857
TruncateData(int stream_index)858 void DiskCacheEntryTest::TruncateData(int stream_index) {
859 std::string key("the first key");
860 disk_cache::Entry* entry;
861 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
862
863 const int kSize1 = 20000;
864 const int kSize2 = 20000;
865 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
866 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
867
868 CacheTestFillBuffer(buffer1->data(), kSize1, false);
869 memset(buffer2->data(), 0, kSize2);
870
871 // Simple truncation:
872 EXPECT_EQ(200, WriteData(entry, stream_index, 0, buffer1.get(), 200, false));
873 EXPECT_EQ(200, entry->GetDataSize(stream_index));
874 EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, false));
875 EXPECT_EQ(200, entry->GetDataSize(stream_index));
876 EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, true));
877 EXPECT_EQ(100, entry->GetDataSize(stream_index));
878 EXPECT_EQ(0, WriteData(entry, stream_index, 50, buffer1.get(), 0, true));
879 EXPECT_EQ(50, entry->GetDataSize(stream_index));
880 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
881 EXPECT_EQ(0, entry->GetDataSize(stream_index));
882 entry->Close();
883 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
884
885 // Go to an external file.
886 EXPECT_EQ(20000,
887 WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
888 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
889 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), 20000));
890 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000));
891 memset(buffer2->data(), 0, kSize2);
892
893 // External file truncation
894 EXPECT_EQ(18000,
895 WriteData(entry, stream_index, 0, buffer1.get(), 18000, false));
896 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
897 EXPECT_EQ(18000,
898 WriteData(entry, stream_index, 0, buffer1.get(), 18000, true));
899 EXPECT_EQ(18000, entry->GetDataSize(stream_index));
900 EXPECT_EQ(0, WriteData(entry, stream_index, 17500, buffer1.get(), 0, true));
901 EXPECT_EQ(17500, entry->GetDataSize(stream_index));
902
903 // And back to an internal block.
904 EXPECT_EQ(600,
905 WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
906 EXPECT_EQ(1600, entry->GetDataSize(stream_index));
907 EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer2.get(), 600));
908 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600));
909 EXPECT_EQ(1000, ReadData(entry, stream_index, 0, buffer2.get(), 1000));
910 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000))
911 << "Preserves previous data";
912
913 // Go from external file to zero length.
914 EXPECT_EQ(20000,
915 WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
916 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
917 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
918 EXPECT_EQ(0, entry->GetDataSize(stream_index));
919
920 entry->Close();
921 }
922
TEST_F(DiskCacheEntryTest,TruncateData)923 TEST_F(DiskCacheEntryTest, TruncateData) {
924 InitCache();
925 TruncateData(0);
926 }
927
TEST_F(DiskCacheEntryTest,TruncateDataNoBuffer)928 TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) {
929 InitCache();
930 cache_impl_->SetFlags(disk_cache::kNoBuffering);
931 TruncateData(0);
932 }
933
TEST_F(DiskCacheEntryTest,MemoryOnlyTruncateData)934 TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) {
935 SetMemoryOnlyMode();
936 InitCache();
937 TruncateData(0);
938 }
939
ZeroLengthIO(int stream_index)940 void DiskCacheEntryTest::ZeroLengthIO(int stream_index) {
941 std::string key("the first key");
942 disk_cache::Entry* entry;
943 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
944
945 EXPECT_EQ(0, ReadData(entry, stream_index, 0, nullptr, 0));
946 EXPECT_EQ(0, WriteData(entry, stream_index, 0, nullptr, 0, false));
947
948 // This write should extend the entry.
949 EXPECT_EQ(0, WriteData(entry, stream_index, 1000, nullptr, 0, false));
950 EXPECT_EQ(0, ReadData(entry, stream_index, 500, nullptr, 0));
951 EXPECT_EQ(0, ReadData(entry, stream_index, 2000, nullptr, 0));
952 EXPECT_EQ(1000, entry->GetDataSize(stream_index));
953
954 EXPECT_EQ(0, WriteData(entry, stream_index, 100000, nullptr, 0, true));
955 EXPECT_EQ(0, ReadData(entry, stream_index, 50000, nullptr, 0));
956 EXPECT_EQ(100000, entry->GetDataSize(stream_index));
957
958 // Let's verify the actual content.
959 const int kSize = 20;
960 const char zeros[kSize] = {};
961 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
962
963 CacheTestFillBuffer(buffer->data(), kSize, false);
964 EXPECT_EQ(kSize, ReadData(entry, stream_index, 500, buffer.get(), kSize));
965 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
966
967 CacheTestFillBuffer(buffer->data(), kSize, false);
968 EXPECT_EQ(kSize, ReadData(entry, stream_index, 5000, buffer.get(), kSize));
969 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
970
971 CacheTestFillBuffer(buffer->data(), kSize, false);
972 EXPECT_EQ(kSize, ReadData(entry, stream_index, 50000, buffer.get(), kSize));
973 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
974
975 entry->Close();
976 }
977
TEST_F(DiskCacheEntryTest,ZeroLengthIO)978 TEST_F(DiskCacheEntryTest, ZeroLengthIO) {
979 InitCache();
980 ZeroLengthIO(0);
981 }
982
TEST_F(DiskCacheEntryTest,ZeroLengthIONoBuffer)983 TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) {
984 InitCache();
985 cache_impl_->SetFlags(disk_cache::kNoBuffering);
986 ZeroLengthIO(0);
987 }
988
TEST_F(DiskCacheEntryTest,MemoryOnlyZeroLengthIO)989 TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) {
990 SetMemoryOnlyMode();
991 InitCache();
992 ZeroLengthIO(0);
993 }
994
995 // Tests that we handle the content correctly when buffering, a feature of the
996 // standard cache that permits fast responses to certain reads.
Buffering()997 void DiskCacheEntryTest::Buffering() {
998 std::string key("the first key");
999 disk_cache::Entry* entry;
1000 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1001
1002 const int kSize = 200;
1003 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1004 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1005 CacheTestFillBuffer(buffer1->data(), kSize, true);
1006 CacheTestFillBuffer(buffer2->data(), kSize, true);
1007
1008 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
1009 entry->Close();
1010
1011 // Write a little more and read what we wrote before.
1012 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1013 EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1.get(), kSize, false));
1014 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
1015 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1016
1017 // Now go to an external file.
1018 EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1.get(), kSize, false));
1019 entry->Close();
1020
1021 // Write something else and verify old data.
1022 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1023 EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1.get(), kSize, false));
1024 CacheTestFillBuffer(buffer2->data(), kSize, true);
1025 EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2.get(), kSize));
1026 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1027 CacheTestFillBuffer(buffer2->data(), kSize, true);
1028 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
1029 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1030 CacheTestFillBuffer(buffer2->data(), kSize, true);
1031 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
1032 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1033
1034 // Extend the file some more.
1035 EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1.get(), kSize, false));
1036 entry->Close();
1037
1038 // And now make sure that we can deal with data in both places (ram/disk).
1039 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1040 EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1.get(), kSize, false));
1041
1042 // We should not overwrite the data at 18000 with this.
1043 EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1.get(), kSize, false));
1044 CacheTestFillBuffer(buffer2->data(), kSize, true);
1045 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
1046 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1047 CacheTestFillBuffer(buffer2->data(), kSize, true);
1048 EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2.get(), kSize));
1049 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1050
1051 EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1.get(), kSize, false));
1052 CacheTestFillBuffer(buffer2->data(), kSize, true);
1053 EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2.get(), kSize));
1054 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
1055
1056 CacheTestFillBuffer(buffer2->data(), kSize, true);
1057 EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2.get(), kSize));
1058 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
1059
1060 // Extend the file again and read before without closing the entry.
1061 EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, false));
1062 EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1.get(), kSize, false));
1063 CacheTestFillBuffer(buffer2->data(), kSize, true);
1064 EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2.get(), kSize));
1065 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1066 CacheTestFillBuffer(buffer2->data(), kSize, true);
1067 EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2.get(), kSize));
1068 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1069
1070 entry->Close();
1071 }
1072
TEST_F(DiskCacheEntryTest,Buffering)1073 TEST_F(DiskCacheEntryTest, Buffering) {
1074 InitCache();
1075 Buffering();
1076 }
1077
TEST_F(DiskCacheEntryTest,BufferingNoBuffer)1078 TEST_F(DiskCacheEntryTest, BufferingNoBuffer) {
1079 InitCache();
1080 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1081 Buffering();
1082 }
1083
1084 // Checks that entries are zero length when created.
SizeAtCreate()1085 void DiskCacheEntryTest::SizeAtCreate() {
1086 const char key[] = "the first key";
1087 disk_cache::Entry* entry;
1088 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1089
1090 const int kNumStreams = 3;
1091 for (int i = 0; i < kNumStreams; ++i)
1092 EXPECT_EQ(0, entry->GetDataSize(i));
1093 entry->Close();
1094 }
1095
TEST_F(DiskCacheEntryTest,SizeAtCreate)1096 TEST_F(DiskCacheEntryTest, SizeAtCreate) {
1097 InitCache();
1098 SizeAtCreate();
1099 }
1100
TEST_F(DiskCacheEntryTest,MemoryOnlySizeAtCreate)1101 TEST_F(DiskCacheEntryTest, MemoryOnlySizeAtCreate) {
1102 SetMemoryOnlyMode();
1103 InitCache();
1104 SizeAtCreate();
1105 }
1106
1107 // Some extra tests to make sure that buffering works properly when changing
1108 // the entry size.
SizeChanges(int stream_index)1109 void DiskCacheEntryTest::SizeChanges(int stream_index) {
1110 std::string key("the first key");
1111 disk_cache::Entry* entry;
1112 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1113
1114 const int kSize = 200;
1115 const char zeros[kSize] = {};
1116 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1117 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1118 CacheTestFillBuffer(buffer1->data(), kSize, true);
1119 CacheTestFillBuffer(buffer2->data(), kSize, true);
1120
1121 EXPECT_EQ(kSize,
1122 WriteData(entry, stream_index, 0, buffer1.get(), kSize, true));
1123 EXPECT_EQ(kSize,
1124 WriteData(entry, stream_index, 17000, buffer1.get(), kSize, true));
1125 EXPECT_EQ(kSize,
1126 WriteData(entry, stream_index, 23000, buffer1.get(), kSize, true));
1127 entry->Close();
1128
1129 // Extend the file and read between the old size and the new write.
1130 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1131 EXPECT_EQ(23000 + kSize, entry->GetDataSize(stream_index));
1132 EXPECT_EQ(kSize,
1133 WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
1134 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
1135 EXPECT_EQ(kSize, ReadData(entry, stream_index, 24000, buffer2.get(), kSize));
1136 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize));
1137
1138 // Read at the end of the old file size.
1139 EXPECT_EQ(
1140 kSize,
1141 ReadData(entry, stream_index, 23000 + kSize - 35, buffer2.get(), kSize));
1142 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35));
1143
1144 // Read slightly before the last write.
1145 CacheTestFillBuffer(buffer2->data(), kSize, true);
1146 EXPECT_EQ(kSize, ReadData(entry, stream_index, 24900, buffer2.get(), kSize));
1147 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1148 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1149
1150 // Extend the entry a little more.
1151 EXPECT_EQ(kSize,
1152 WriteData(entry, stream_index, 26000, buffer1.get(), kSize, true));
1153 EXPECT_EQ(26000 + kSize, entry->GetDataSize(stream_index));
1154 CacheTestFillBuffer(buffer2->data(), kSize, true);
1155 EXPECT_EQ(kSize, ReadData(entry, stream_index, 25900, buffer2.get(), kSize));
1156 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1157 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1158
1159 // And now reduce the size.
1160 EXPECT_EQ(kSize,
1161 WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
1162 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
1163 EXPECT_EQ(
1164 28,
1165 ReadData(entry, stream_index, 25000 + kSize - 28, buffer2.get(), kSize));
1166 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28));
1167
1168 // Reduce the size with a buffer that is not extending the size.
1169 EXPECT_EQ(kSize,
1170 WriteData(entry, stream_index, 24000, buffer1.get(), kSize, false));
1171 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
1172 EXPECT_EQ(kSize,
1173 WriteData(entry, stream_index, 24500, buffer1.get(), kSize, true));
1174 EXPECT_EQ(24500 + kSize, entry->GetDataSize(stream_index));
1175 EXPECT_EQ(kSize, ReadData(entry, stream_index, 23900, buffer2.get(), kSize));
1176 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1177 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1178
1179 // And now reduce the size below the old size.
1180 EXPECT_EQ(kSize,
1181 WriteData(entry, stream_index, 19000, buffer1.get(), kSize, true));
1182 EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
1183 EXPECT_EQ(kSize, ReadData(entry, stream_index, 18900, buffer2.get(), kSize));
1184 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1185 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1186
1187 // Verify that the actual file is truncated.
1188 entry->Close();
1189 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1190 EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
1191
1192 // Extend the newly opened file with a zero length write, expect zero fill.
1193 EXPECT_EQ(
1194 0,
1195 WriteData(entry, stream_index, 20000 + kSize, buffer1.get(), 0, false));
1196 EXPECT_EQ(kSize,
1197 ReadData(entry, stream_index, 19000 + kSize, buffer1.get(), kSize));
1198 EXPECT_EQ(0, memcmp(buffer1->data(), zeros, kSize));
1199
1200 entry->Close();
1201 }
1202
TEST_F(DiskCacheEntryTest,SizeChanges)1203 TEST_F(DiskCacheEntryTest, SizeChanges) {
1204 InitCache();
1205 SizeChanges(1);
1206 }
1207
TEST_F(DiskCacheEntryTest,SizeChangesNoBuffer)1208 TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) {
1209 InitCache();
1210 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1211 SizeChanges(1);
1212 }
1213
1214 // Write more than the total cache capacity but to a single entry. |size| is the
1215 // amount of bytes to write each time.
ReuseEntry(int size,int stream_index)1216 void DiskCacheEntryTest::ReuseEntry(int size, int stream_index) {
1217 std::string key1("the first key");
1218 disk_cache::Entry* entry;
1219 ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
1220
1221 entry->Close();
1222 std::string key2("the second key");
1223 ASSERT_THAT(CreateEntry(key2, &entry), IsOk());
1224
1225 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(size);
1226 CacheTestFillBuffer(buffer->data(), size, false);
1227
1228 for (int i = 0; i < 15; i++) {
1229 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer.get(), 0, true));
1230 EXPECT_EQ(size,
1231 WriteData(entry, stream_index, 0, buffer.get(), size, false));
1232 entry->Close();
1233 ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
1234 }
1235
1236 entry->Close();
1237 ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry";
1238 entry->Close();
1239 }
1240
TEST_F(DiskCacheEntryTest,ReuseExternalEntry)1241 TEST_F(DiskCacheEntryTest, ReuseExternalEntry) {
1242 SetMaxSize(200 * 1024);
1243 InitCache();
1244 ReuseEntry(20 * 1024, 0);
1245 }
1246
TEST_F(DiskCacheEntryTest,MemoryOnlyReuseExternalEntry)1247 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) {
1248 SetMemoryOnlyMode();
1249 SetMaxSize(200 * 1024);
1250 InitCache();
1251 ReuseEntry(20 * 1024, 0);
1252 }
1253
TEST_F(DiskCacheEntryTest,ReuseInternalEntry)1254 TEST_F(DiskCacheEntryTest, ReuseInternalEntry) {
1255 SetMaxSize(100 * 1024);
1256 InitCache();
1257 ReuseEntry(10 * 1024, 0);
1258 }
1259
TEST_F(DiskCacheEntryTest,MemoryOnlyReuseInternalEntry)1260 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) {
1261 SetMemoryOnlyMode();
1262 SetMaxSize(100 * 1024);
1263 InitCache();
1264 ReuseEntry(10 * 1024, 0);
1265 }
1266
1267 // Reading somewhere that was not written should return zeros.
InvalidData(int stream_index)1268 void DiskCacheEntryTest::InvalidData(int stream_index) {
1269 std::string key("the first key");
1270 disk_cache::Entry* entry;
1271 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1272
1273 const int kSize1 = 20000;
1274 const int kSize2 = 20000;
1275 const int kSize3 = 20000;
1276 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
1277 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
1278 auto buffer3 = base::MakeRefCounted<net::IOBufferWithSize>(kSize3);
1279
1280 CacheTestFillBuffer(buffer1->data(), kSize1, false);
1281 memset(buffer2->data(), 0, kSize2);
1282
1283 // Simple data grow:
1284 EXPECT_EQ(200,
1285 WriteData(entry, stream_index, 400, buffer1.get(), 200, false));
1286 EXPECT_EQ(600, entry->GetDataSize(stream_index));
1287 EXPECT_EQ(100, ReadData(entry, stream_index, 300, buffer3.get(), 100));
1288 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1289 entry->Close();
1290 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1291
1292 // The entry is now on disk. Load it and extend it.
1293 EXPECT_EQ(200,
1294 WriteData(entry, stream_index, 800, buffer1.get(), 200, false));
1295 EXPECT_EQ(1000, entry->GetDataSize(stream_index));
1296 EXPECT_EQ(100, ReadData(entry, stream_index, 700, buffer3.get(), 100));
1297 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1298 entry->Close();
1299 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1300
1301 // This time using truncate.
1302 EXPECT_EQ(200,
1303 WriteData(entry, stream_index, 1800, buffer1.get(), 200, true));
1304 EXPECT_EQ(2000, entry->GetDataSize(stream_index));
1305 EXPECT_EQ(100, ReadData(entry, stream_index, 1500, buffer3.get(), 100));
1306 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1307
1308 // Go to an external file.
1309 EXPECT_EQ(200,
1310 WriteData(entry, stream_index, 19800, buffer1.get(), 200, false));
1311 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
1312 EXPECT_EQ(4000, ReadData(entry, stream_index, 14000, buffer3.get(), 4000));
1313 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000));
1314
1315 // And back to an internal block.
1316 EXPECT_EQ(600,
1317 WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
1318 EXPECT_EQ(1600, entry->GetDataSize(stream_index));
1319 EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer3.get(), 600));
1320 EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600));
1321
1322 // Extend it again.
1323 EXPECT_EQ(600,
1324 WriteData(entry, stream_index, 2000, buffer1.get(), 600, false));
1325 EXPECT_EQ(2600, entry->GetDataSize(stream_index));
1326 EXPECT_EQ(200, ReadData(entry, stream_index, 1800, buffer3.get(), 200));
1327 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
1328
1329 // And again (with truncation flag).
1330 EXPECT_EQ(600,
1331 WriteData(entry, stream_index, 3000, buffer1.get(), 600, true));
1332 EXPECT_EQ(3600, entry->GetDataSize(stream_index));
1333 EXPECT_EQ(200, ReadData(entry, stream_index, 2800, buffer3.get(), 200));
1334 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
1335
1336 entry->Close();
1337 }
1338
TEST_F(DiskCacheEntryTest,InvalidData)1339 TEST_F(DiskCacheEntryTest, InvalidData) {
1340 InitCache();
1341 InvalidData(0);
1342 }
1343
TEST_F(DiskCacheEntryTest,InvalidDataNoBuffer)1344 TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) {
1345 InitCache();
1346 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1347 InvalidData(0);
1348 }
1349
TEST_F(DiskCacheEntryTest,MemoryOnlyInvalidData)1350 TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) {
1351 SetMemoryOnlyMode();
1352 InitCache();
1353 InvalidData(0);
1354 }
1355
1356 // Tests that the cache preserves the buffer of an IO operation.
ReadWriteDestroyBuffer(int stream_index)1357 void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index) {
1358 std::string key("the first key");
1359 disk_cache::Entry* entry;
1360 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1361
1362 const int kSize = 200;
1363 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1364 CacheTestFillBuffer(buffer->data(), kSize, false);
1365
1366 net::TestCompletionCallback cb;
1367 EXPECT_EQ(net::ERR_IO_PENDING,
1368 entry->WriteData(
1369 stream_index, 0, buffer.get(), kSize, cb.callback(), false));
1370
1371 // Release our reference to the buffer.
1372 buffer = nullptr;
1373 EXPECT_EQ(kSize, cb.WaitForResult());
1374
1375 // And now test with a Read().
1376 buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1377 CacheTestFillBuffer(buffer->data(), kSize, false);
1378
1379 EXPECT_EQ(
1380 net::ERR_IO_PENDING,
1381 entry->ReadData(stream_index, 0, buffer.get(), kSize, cb.callback()));
1382 buffer = nullptr;
1383 EXPECT_EQ(kSize, cb.WaitForResult());
1384
1385 entry->Close();
1386 }
1387
TEST_F(DiskCacheEntryTest,ReadWriteDestroyBuffer)1388 TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) {
1389 InitCache();
1390 ReadWriteDestroyBuffer(0);
1391 }
1392
DoomNormalEntry()1393 void DiskCacheEntryTest::DoomNormalEntry() {
1394 std::string key("the first key");
1395 disk_cache::Entry* entry;
1396 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1397 entry->Doom();
1398 entry->Close();
1399
1400 const int kSize = 20000;
1401 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1402 CacheTestFillBuffer(buffer->data(), kSize, true);
1403 buffer->data()[19999] = '\0';
1404
1405 key = buffer->data();
1406 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1407 EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer.get(), kSize, false));
1408 EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer.get(), kSize, false));
1409 entry->Doom();
1410 entry->Close();
1411
1412 FlushQueueForTest();
1413 EXPECT_EQ(0, cache_->GetEntryCount());
1414 }
1415
TEST_F(DiskCacheEntryTest,DoomEntry)1416 TEST_F(DiskCacheEntryTest, DoomEntry) {
1417 InitCache();
1418 DoomNormalEntry();
1419 }
1420
TEST_F(DiskCacheEntryTest,MemoryOnlyDoomEntry)1421 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) {
1422 SetMemoryOnlyMode();
1423 InitCache();
1424 DoomNormalEntry();
1425 }
1426
1427 // Tests dooming an entry that's linked to an open entry.
DoomEntryNextToOpenEntry()1428 void DiskCacheEntryTest::DoomEntryNextToOpenEntry() {
1429 disk_cache::Entry* entry1;
1430 disk_cache::Entry* entry2;
1431 ASSERT_THAT(CreateEntry("fixed", &entry1), IsOk());
1432 entry1->Close();
1433 ASSERT_THAT(CreateEntry("foo", &entry1), IsOk());
1434 entry1->Close();
1435 ASSERT_THAT(CreateEntry("bar", &entry1), IsOk());
1436 entry1->Close();
1437
1438 ASSERT_THAT(OpenEntry("foo", &entry1), IsOk());
1439 ASSERT_THAT(OpenEntry("bar", &entry2), IsOk());
1440 entry2->Doom();
1441 entry2->Close();
1442
1443 ASSERT_THAT(OpenEntry("foo", &entry2), IsOk());
1444 entry2->Doom();
1445 entry2->Close();
1446 entry1->Close();
1447
1448 ASSERT_THAT(OpenEntry("fixed", &entry1), IsOk());
1449 entry1->Close();
1450 }
1451
TEST_F(DiskCacheEntryTest,DoomEntryNextToOpenEntry)1452 TEST_F(DiskCacheEntryTest, DoomEntryNextToOpenEntry) {
1453 InitCache();
1454 DoomEntryNextToOpenEntry();
1455 }
1456
TEST_F(DiskCacheEntryTest,NewEvictionDoomEntryNextToOpenEntry)1457 TEST_F(DiskCacheEntryTest, NewEvictionDoomEntryNextToOpenEntry) {
1458 SetNewEviction();
1459 InitCache();
1460 DoomEntryNextToOpenEntry();
1461 }
1462
TEST_F(DiskCacheEntryTest,AppCacheDoomEntryNextToOpenEntry)1463 TEST_F(DiskCacheEntryTest, AppCacheDoomEntryNextToOpenEntry) {
1464 SetCacheType(net::APP_CACHE);
1465 InitCache();
1466 DoomEntryNextToOpenEntry();
1467 }
1468
1469 // Verify that basic operations work as expected with doomed entries.
DoomedEntry(int stream_index)1470 void DiskCacheEntryTest::DoomedEntry(int stream_index) {
1471 std::string key("the first key");
1472 disk_cache::Entry* entry;
1473 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1474 entry->Doom();
1475
1476 FlushQueueForTest();
1477 EXPECT_EQ(0, cache_->GetEntryCount());
1478 Time initial = Time::Now();
1479 AddDelay();
1480
1481 const int kSize1 = 2000;
1482 const int kSize2 = 2000;
1483 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
1484 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
1485 CacheTestFillBuffer(buffer1->data(), kSize1, false);
1486 memset(buffer2->data(), 0, kSize2);
1487
1488 EXPECT_EQ(2000,
1489 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
1490 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
1491 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1));
1492 EXPECT_EQ(key, entry->GetKey());
1493 EXPECT_TRUE(initial < entry->GetLastModified());
1494 EXPECT_TRUE(initial < entry->GetLastUsed());
1495
1496 entry->Close();
1497 }
1498
TEST_F(DiskCacheEntryTest,DoomedEntry)1499 TEST_F(DiskCacheEntryTest, DoomedEntry) {
1500 InitCache();
1501 DoomedEntry(0);
1502 }
1503
TEST_F(DiskCacheEntryTest,MemoryOnlyDoomedEntry)1504 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) {
1505 SetMemoryOnlyMode();
1506 InitCache();
1507 DoomedEntry(0);
1508 }
1509
1510 // Tests that we discard entries if the data is missing.
TEST_F(DiskCacheEntryTest,MissingData)1511 TEST_F(DiskCacheEntryTest, MissingData) {
1512 InitCache();
1513
1514 std::string key("the first key");
1515 disk_cache::Entry* entry;
1516 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1517
1518 // Write to an external file.
1519 const int kSize = 20000;
1520 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1521 CacheTestFillBuffer(buffer->data(), kSize, false);
1522 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
1523 entry->Close();
1524 FlushQueueForTest();
1525
1526 disk_cache::Addr address(0x80000001);
1527 base::FilePath name = cache_impl_->GetFileName(address);
1528 EXPECT_TRUE(base::DeleteFile(name));
1529
1530 // Attempt to read the data.
1531 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1532 EXPECT_EQ(net::ERR_FILE_NOT_FOUND,
1533 ReadData(entry, 0, 0, buffer.get(), kSize));
1534 entry->Close();
1535
1536 // The entry should be gone.
1537 ASSERT_NE(net::OK, OpenEntry(key, &entry));
1538 }
1539
1540 // Test that child entries in a memory cache backend are not visible from
1541 // enumerations.
TEST_F(DiskCacheEntryTest,MemoryOnlyEnumerationWithSparseEntries)1542 TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) {
1543 SetMemoryOnlyMode();
1544 InitCache();
1545
1546 const int kSize = 4096;
1547 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1548 CacheTestFillBuffer(buf->data(), kSize, false);
1549
1550 std::string key("the first key");
1551 disk_cache::Entry* parent_entry;
1552 ASSERT_THAT(CreateEntry(key, &parent_entry), IsOk());
1553
1554 // Writes to the parent entry.
1555 EXPECT_EQ(kSize, parent_entry->WriteSparseData(
1556 0, buf.get(), kSize, net::CompletionOnceCallback()));
1557
1558 // This write creates a child entry and writes to it.
1559 EXPECT_EQ(kSize, parent_entry->WriteSparseData(
1560 8192, buf.get(), kSize, net::CompletionOnceCallback()));
1561
1562 parent_entry->Close();
1563
1564 // Perform the enumerations.
1565 std::unique_ptr<TestIterator> iter = CreateIterator();
1566 disk_cache::Entry* entry = nullptr;
1567 int count = 0;
1568 while (iter->OpenNextEntry(&entry) == net::OK) {
1569 ASSERT_TRUE(entry != nullptr);
1570 ++count;
1571 disk_cache::MemEntryImpl* mem_entry =
1572 reinterpret_cast<disk_cache::MemEntryImpl*>(entry);
1573 EXPECT_EQ(disk_cache::MemEntryImpl::EntryType::kParent, mem_entry->type());
1574 mem_entry->Close();
1575 }
1576 EXPECT_EQ(1, count);
1577 }
1578
1579 // Writes |buf_1| to offset and reads it back as |buf_2|.
VerifySparseIO(disk_cache::Entry * entry,int64_t offset,net::IOBuffer * buf_1,int size,net::IOBuffer * buf_2)1580 void VerifySparseIO(disk_cache::Entry* entry,
1581 int64_t offset,
1582 net::IOBuffer* buf_1,
1583 int size,
1584 net::IOBuffer* buf_2) {
1585 net::TestCompletionCallback cb;
1586
1587 memset(buf_2->data(), 0, size);
1588 int ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
1589 EXPECT_EQ(0, cb.GetResult(ret));
1590
1591 ret = entry->WriteSparseData(offset, buf_1, size, cb.callback());
1592 EXPECT_EQ(size, cb.GetResult(ret));
1593
1594 ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
1595 EXPECT_EQ(size, cb.GetResult(ret));
1596
1597 EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size));
1598 }
1599
1600 // Reads |size| bytes from |entry| at |offset| and verifies that they are the
1601 // same as the content of the provided |buffer|.
VerifyContentSparseIO(disk_cache::Entry * entry,int64_t offset,char * buffer,int size)1602 void VerifyContentSparseIO(disk_cache::Entry* entry,
1603 int64_t offset,
1604 char* buffer,
1605 int size) {
1606 net::TestCompletionCallback cb;
1607
1608 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(size);
1609 memset(buf_1->data(), 0, size);
1610 int ret = entry->ReadSparseData(offset, buf_1.get(), size, cb.callback());
1611 EXPECT_EQ(size, cb.GetResult(ret));
1612 EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size));
1613 }
1614
BasicSparseIO()1615 void DiskCacheEntryTest::BasicSparseIO() {
1616 std::string key("the first key");
1617 disk_cache::Entry* entry;
1618 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1619
1620 const int kSize = 2048;
1621 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1622 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1623 CacheTestFillBuffer(buf_1->data(), kSize, false);
1624
1625 // Write at offset 0.
1626 VerifySparseIO(entry, 0, buf_1.get(), kSize, buf_2.get());
1627
1628 // Write at offset 0x400000 (4 MB).
1629 VerifySparseIO(entry, 0x400000, buf_1.get(), kSize, buf_2.get());
1630
1631 // Write at offset 0x800000000 (32 GB).
1632 VerifySparseIO(entry, 0x800000000LL, buf_1.get(), kSize, buf_2.get());
1633
1634 entry->Close();
1635
1636 // Check everything again.
1637 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1638 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
1639 VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize);
1640 VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize);
1641 entry->Close();
1642 }
1643
TEST_F(DiskCacheEntryTest,BasicSparseIO)1644 TEST_F(DiskCacheEntryTest, BasicSparseIO) {
1645 InitCache();
1646 BasicSparseIO();
1647 }
1648
TEST_F(DiskCacheEntryTest,MemoryOnlyBasicSparseIO)1649 TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) {
1650 SetMemoryOnlyMode();
1651 InitCache();
1652 BasicSparseIO();
1653 }
1654
HugeSparseIO()1655 void DiskCacheEntryTest::HugeSparseIO() {
1656 std::string key("the first key");
1657 disk_cache::Entry* entry;
1658 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1659
1660 // Write 1.2 MB so that we cover multiple entries.
1661 const int kSize = 1200 * 1024;
1662 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1663 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1664 CacheTestFillBuffer(buf_1->data(), kSize, false);
1665
1666 // Write at offset 0x20F0000 (33 MB - 64 KB).
1667 VerifySparseIO(entry, 0x20F0000, buf_1.get(), kSize, buf_2.get());
1668 entry->Close();
1669
1670 // Check it again.
1671 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1672 VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize);
1673 entry->Close();
1674 }
1675
TEST_F(DiskCacheEntryTest,HugeSparseIO)1676 TEST_F(DiskCacheEntryTest, HugeSparseIO) {
1677 InitCache();
1678 HugeSparseIO();
1679 }
1680
TEST_F(DiskCacheEntryTest,MemoryOnlyHugeSparseIO)1681 TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) {
1682 SetMemoryOnlyMode();
1683 InitCache();
1684 HugeSparseIO();
1685 }
1686
GetAvailableRangeTest()1687 void DiskCacheEntryTest::GetAvailableRangeTest() {
1688 std::string key("the first key");
1689 disk_cache::Entry* entry;
1690 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1691
1692 const int kSize = 16 * 1024;
1693 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1694 CacheTestFillBuffer(buf->data(), kSize, false);
1695
1696 // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
1697 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
1698 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf.get(), kSize));
1699
1700 // We stop at the first empty block.
1701 TestRangeResultCompletionCallback cb;
1702 RangeResult result = cb.GetResult(
1703 entry->GetAvailableRange(0x20F0000, kSize * 2, cb.callback()));
1704 EXPECT_EQ(net::OK, result.net_error);
1705 EXPECT_EQ(kSize, result.available_len);
1706 EXPECT_EQ(0x20F0000, result.start);
1707
1708 result = cb.GetResult(entry->GetAvailableRange(0, kSize, cb.callback()));
1709 EXPECT_EQ(net::OK, result.net_error);
1710 EXPECT_EQ(0, result.available_len);
1711
1712 result = cb.GetResult(
1713 entry->GetAvailableRange(0x20F0000 - kSize, kSize, cb.callback()));
1714 EXPECT_EQ(net::OK, result.net_error);
1715 EXPECT_EQ(0, result.available_len);
1716
1717 result = cb.GetResult(entry->GetAvailableRange(0, 0x2100000, cb.callback()));
1718 EXPECT_EQ(net::OK, result.net_error);
1719 EXPECT_EQ(kSize, result.available_len);
1720 EXPECT_EQ(0x20F0000, result.start);
1721
1722 // We should be able to Read based on the results of GetAvailableRange.
1723 net::TestCompletionCallback read_cb;
1724 result =
1725 cb.GetResult(entry->GetAvailableRange(0x2100000, kSize, cb.callback()));
1726 EXPECT_EQ(net::OK, result.net_error);
1727 EXPECT_EQ(0, result.available_len);
1728 int rv =
1729 entry->ReadSparseData(result.start, buf.get(), kSize, read_cb.callback());
1730 EXPECT_EQ(0, read_cb.GetResult(rv));
1731
1732 result =
1733 cb.GetResult(entry->GetAvailableRange(0x20F2000, kSize, cb.callback()));
1734 EXPECT_EQ(net::OK, result.net_error);
1735 EXPECT_EQ(0x2000, result.available_len);
1736 EXPECT_EQ(0x20F2000, result.start);
1737 EXPECT_EQ(0x2000, ReadSparseData(entry, result.start, buf.get(), kSize));
1738
1739 // Make sure that we respect the |len| argument.
1740 result = cb.GetResult(
1741 entry->GetAvailableRange(0x20F0001 - kSize, kSize, cb.callback()));
1742 EXPECT_EQ(net::OK, result.net_error);
1743 EXPECT_EQ(1, result.available_len);
1744 EXPECT_EQ(0x20F0000, result.start);
1745
1746 // Use very small ranges. Write at offset 50.
1747 const int kTinyLen = 10;
1748 EXPECT_EQ(kTinyLen, WriteSparseData(entry, 50, buf.get(), kTinyLen));
1749
1750 result = cb.GetResult(
1751 entry->GetAvailableRange(kTinyLen * 2, kTinyLen, cb.callback()));
1752 EXPECT_EQ(net::OK, result.net_error);
1753 EXPECT_EQ(0, result.available_len);
1754 EXPECT_EQ(kTinyLen * 2, result.start);
1755
1756 // Get a huge range with maximum boundary
1757 result = cb.GetResult(entry->GetAvailableRange(
1758 0x2100000, std::numeric_limits<int32_t>::max(), cb.callback()));
1759 EXPECT_EQ(net::OK, result.net_error);
1760 EXPECT_EQ(0, result.available_len);
1761
1762 entry->Close();
1763 }
1764
TEST_F(DiskCacheEntryTest,GetAvailableRange)1765 TEST_F(DiskCacheEntryTest, GetAvailableRange) {
1766 InitCache();
1767 GetAvailableRangeTest();
1768 }
1769
TEST_F(DiskCacheEntryTest,MemoryOnlyGetAvailableRange)1770 TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) {
1771 SetMemoryOnlyMode();
1772 InitCache();
1773 GetAvailableRangeTest();
1774 }
1775
TEST_F(DiskCacheEntryTest,GetAvailableRangeBlockFileDiscontinuous)1776 TEST_F(DiskCacheEntryTest, GetAvailableRangeBlockFileDiscontinuous) {
1777 // crbug.com/791056 --- blockfile problem when there is a sub-KiB write before
1778 // a bunch of full 1KiB blocks, and a GetAvailableRange is issued to which
1779 // both are a potentially relevant.
1780 InitCache();
1781
1782 std::string key("the first key");
1783 disk_cache::Entry* entry;
1784 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1785
1786 auto buf_2k = base::MakeRefCounted<net::IOBufferWithSize>(2 * 1024);
1787 CacheTestFillBuffer(buf_2k->data(), 2 * 1024, false);
1788
1789 const int kSmallSize = 612; // sub-1k
1790 auto buf_small = base::MakeRefCounted<net::IOBufferWithSize>(kSmallSize);
1791 CacheTestFillBuffer(buf_small->data(), kSmallSize, false);
1792
1793 // Sets some bits for blocks representing 1K ranges [1024, 3072),
1794 // which will be relevant for the next GetAvailableRange call.
1795 EXPECT_EQ(2 * 1024, WriteSparseData(entry, /* offset = */ 1024, buf_2k.get(),
1796 /* size = */ 2 * 1024));
1797
1798 // Now record a partial write from start of the first kb.
1799 EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0,
1800 buf_small.get(), kSmallSize));
1801
1802 // Try to query a range starting from that block 0.
1803 // The cache tracks: [0, 612) [1024, 3072).
1804 // The request is for: [812, 2059) so response should be [1024, 2059), which
1805 // has length = 1035. Previously this return a negative number for rv.
1806 TestRangeResultCompletionCallback cb;
1807 RangeResult result =
1808 cb.GetResult(entry->GetAvailableRange(812, 1247, cb.callback()));
1809 EXPECT_EQ(net::OK, result.net_error);
1810 EXPECT_EQ(1035, result.available_len);
1811 EXPECT_EQ(1024, result.start);
1812
1813 // Now query [512, 1536). This matches both [512, 612) and [1024, 1536),
1814 // so this should return [512, 612).
1815 result = cb.GetResult(entry->GetAvailableRange(512, 1024, cb.callback()));
1816 EXPECT_EQ(net::OK, result.net_error);
1817 EXPECT_EQ(100, result.available_len);
1818 EXPECT_EQ(512, result.start);
1819
1820 // Now query next portion, [612, 1636). This now just should produce
1821 // [1024, 1636)
1822 result = cb.GetResult(entry->GetAvailableRange(612, 1024, cb.callback()));
1823 EXPECT_EQ(net::OK, result.net_error);
1824 EXPECT_EQ(612, result.available_len);
1825 EXPECT_EQ(1024, result.start);
1826
1827 // Do a continuous small write, this one at [3072, 3684).
1828 // This means the cache tracks [1024, 3072) via bitmaps and [3072, 3684)
1829 // as the last write.
1830 EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 3072,
1831 buf_small.get(), kSmallSize));
1832
1833 // Query [2048, 4096). Should get [2048, 3684)
1834 result = cb.GetResult(entry->GetAvailableRange(2048, 2048, cb.callback()));
1835 EXPECT_EQ(net::OK, result.net_error);
1836 EXPECT_EQ(1636, result.available_len);
1837 EXPECT_EQ(2048, result.start);
1838
1839 // Now write at [4096, 4708). Since only one sub-kb thing is tracked, this
1840 // now tracks [1024, 3072) via bitmaps and [4096, 4708) as the last write.
1841 EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 4096,
1842 buf_small.get(), kSmallSize));
1843
1844 // Query [2048, 4096). Should get [2048, 3072)
1845 result = cb.GetResult(entry->GetAvailableRange(2048, 2048, cb.callback()));
1846 EXPECT_EQ(net::OK, result.net_error);
1847 EXPECT_EQ(1024, result.available_len);
1848 EXPECT_EQ(2048, result.start);
1849
1850 // Query 2K more after that: [3072, 5120). Should get [4096, 4708)
1851 result = cb.GetResult(entry->GetAvailableRange(3072, 2048, cb.callback()));
1852 EXPECT_EQ(net::OK, result.net_error);
1853 EXPECT_EQ(612, result.available_len);
1854 EXPECT_EQ(4096, result.start);
1855
1856 // Also double-check that offsets within later children are correctly
1857 // computed.
1858 EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0x200400,
1859 buf_small.get(), kSmallSize));
1860 result =
1861 cb.GetResult(entry->GetAvailableRange(0x100000, 0x200000, cb.callback()));
1862 EXPECT_EQ(net::OK, result.net_error);
1863 EXPECT_EQ(kSmallSize, result.available_len);
1864 EXPECT_EQ(0x200400, result.start);
1865
1866 entry->Close();
1867 }
1868
1869 // Tests that non-sequential writes that are not aligned with the minimum sparse
1870 // data granularity (1024 bytes) do in fact result in dropped data.
TEST_F(DiskCacheEntryTest,SparseWriteDropped)1871 TEST_F(DiskCacheEntryTest, SparseWriteDropped) {
1872 InitCache();
1873 std::string key("the first key");
1874 disk_cache::Entry* entry;
1875 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1876
1877 const int kSize = 180;
1878 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1879 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1880 CacheTestFillBuffer(buf_1->data(), kSize, false);
1881
1882 // Do small writes (180 bytes) that get increasingly close to a 1024-byte
1883 // boundary. All data should be dropped until a boundary is crossed, at which
1884 // point the data after the boundary is saved (at least for a while).
1885 int offset = 1024 - 500;
1886 int rv = 0;
1887 net::TestCompletionCallback cb;
1888 TestRangeResultCompletionCallback range_cb;
1889 RangeResult result;
1890 for (int i = 0; i < 5; i++) {
1891 // Check result of last GetAvailableRange.
1892 EXPECT_EQ(0, result.available_len);
1893
1894 rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback());
1895 EXPECT_EQ(kSize, cb.GetResult(rv));
1896
1897 result = range_cb.GetResult(
1898 entry->GetAvailableRange(offset - 100, kSize, range_cb.callback()));
1899 EXPECT_EQ(net::OK, result.net_error);
1900 EXPECT_EQ(0, result.available_len);
1901
1902 result = range_cb.GetResult(
1903 entry->GetAvailableRange(offset, kSize, range_cb.callback()));
1904 if (!result.available_len) {
1905 rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
1906 EXPECT_EQ(0, cb.GetResult(rv));
1907 }
1908 offset += 1024 * i + 100;
1909 }
1910
1911 // The last write started 100 bytes below a bundary, so there should be 80
1912 // bytes after the boundary.
1913 EXPECT_EQ(80, result.available_len);
1914 EXPECT_EQ(1024 * 7, result.start);
1915 rv = entry->ReadSparseData(result.start, buf_2.get(), kSize, cb.callback());
1916 EXPECT_EQ(80, cb.GetResult(rv));
1917 EXPECT_EQ(0, memcmp(buf_1.get()->data() + 100, buf_2.get()->data(), 80));
1918
1919 // And even that part is dropped when another write changes the offset.
1920 offset = result.start;
1921 rv = entry->WriteSparseData(0, buf_1.get(), kSize, cb.callback());
1922 EXPECT_EQ(kSize, cb.GetResult(rv));
1923
1924 result = range_cb.GetResult(
1925 entry->GetAvailableRange(offset, kSize, range_cb.callback()));
1926 EXPECT_EQ(net::OK, result.net_error);
1927 EXPECT_EQ(0, result.available_len);
1928 entry->Close();
1929 }
1930
1931 // Tests that small sequential writes are not dropped.
TEST_F(DiskCacheEntryTest,SparseSquentialWriteNotDropped)1932 TEST_F(DiskCacheEntryTest, SparseSquentialWriteNotDropped) {
1933 InitCache();
1934 std::string key("the first key");
1935 disk_cache::Entry* entry;
1936 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1937
1938 const int kSize = 180;
1939 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1940 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1941 CacheTestFillBuffer(buf_1->data(), kSize, false);
1942
1943 // Any starting offset is fine as long as it is 1024-bytes aligned.
1944 int rv = 0;
1945 RangeResult result;
1946 net::TestCompletionCallback cb;
1947 TestRangeResultCompletionCallback range_cb;
1948 int64_t offset = 1024 * 11;
1949 for (; offset < 20000; offset += kSize) {
1950 rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback());
1951 EXPECT_EQ(kSize, cb.GetResult(rv));
1952
1953 result = range_cb.GetResult(
1954 entry->GetAvailableRange(offset, kSize, range_cb.callback()));
1955 EXPECT_EQ(net::OK, result.net_error);
1956 EXPECT_EQ(kSize, result.available_len);
1957 EXPECT_EQ(offset, result.start);
1958
1959 rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
1960 EXPECT_EQ(kSize, cb.GetResult(rv));
1961 EXPECT_EQ(0, memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize));
1962 }
1963
1964 entry->Close();
1965 FlushQueueForTest();
1966
1967 // Verify again the last write made.
1968 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1969 offset -= kSize;
1970 result = range_cb.GetResult(
1971 entry->GetAvailableRange(offset, kSize, range_cb.callback()));
1972 EXPECT_EQ(net::OK, result.net_error);
1973 EXPECT_EQ(kSize, result.available_len);
1974 EXPECT_EQ(offset, result.start);
1975
1976 rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
1977 EXPECT_EQ(kSize, cb.GetResult(rv));
1978 EXPECT_EQ(0, memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize));
1979
1980 entry->Close();
1981 }
1982
CouldBeSparse()1983 void DiskCacheEntryTest::CouldBeSparse() {
1984 std::string key("the first key");
1985 disk_cache::Entry* entry;
1986 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
1987
1988 const int kSize = 16 * 1024;
1989 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
1990 CacheTestFillBuffer(buf->data(), kSize, false);
1991
1992 // Write at offset 0x20F0000 (33 MB - 64 KB).
1993 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
1994
1995 EXPECT_TRUE(entry->CouldBeSparse());
1996 entry->Close();
1997
1998 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
1999 EXPECT_TRUE(entry->CouldBeSparse());
2000 entry->Close();
2001
2002 // Now verify a regular entry.
2003 key.assign("another key");
2004 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2005 EXPECT_FALSE(entry->CouldBeSparse());
2006
2007 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf.get(), kSize, false));
2008 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf.get(), kSize, false));
2009 EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf.get(), kSize, false));
2010
2011 EXPECT_FALSE(entry->CouldBeSparse());
2012 entry->Close();
2013
2014 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2015 EXPECT_FALSE(entry->CouldBeSparse());
2016 entry->Close();
2017 }
2018
TEST_F(DiskCacheEntryTest,CouldBeSparse)2019 TEST_F(DiskCacheEntryTest, CouldBeSparse) {
2020 InitCache();
2021 CouldBeSparse();
2022 }
2023
TEST_F(DiskCacheEntryTest,MemoryCouldBeSparse)2024 TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) {
2025 SetMemoryOnlyMode();
2026 InitCache();
2027 CouldBeSparse();
2028 }
2029
TEST_F(DiskCacheEntryTest,MemoryOnlyMisalignedSparseIO)2030 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) {
2031 SetMemoryOnlyMode();
2032 InitCache();
2033
2034 const int kSize = 8192;
2035 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2036 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2037 CacheTestFillBuffer(buf_1->data(), kSize, false);
2038
2039 std::string key("the first key");
2040 disk_cache::Entry* entry;
2041 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2042
2043 // This loop writes back to back starting from offset 0 and 9000.
2044 for (int i = 0; i < kSize; i += 1024) {
2045 scoped_refptr<net::WrappedIOBuffer> buf_3 =
2046 base::MakeRefCounted<net::WrappedIOBuffer>(buf_1->data() + i,
2047 kSize - i);
2048 VerifySparseIO(entry, i, buf_3.get(), 1024, buf_2.get());
2049 VerifySparseIO(entry, 9000 + i, buf_3.get(), 1024, buf_2.get());
2050 }
2051
2052 // Make sure we have data written.
2053 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
2054 VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize);
2055
2056 // This tests a large write that spans 3 entries from a misaligned offset.
2057 VerifySparseIO(entry, 20481, buf_1.get(), 8192, buf_2.get());
2058
2059 entry->Close();
2060 }
2061
TEST_F(DiskCacheEntryTest,MemoryOnlyMisalignedGetAvailableRange)2062 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) {
2063 SetMemoryOnlyMode();
2064 InitCache();
2065
2066 const int kSize = 8192;
2067 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2068 CacheTestFillBuffer(buf->data(), kSize, false);
2069
2070 disk_cache::Entry* entry;
2071 std::string key("the first key");
2072 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2073
2074 // Writes in the middle of an entry.
2075 EXPECT_EQ(1024, entry->WriteSparseData(0, buf.get(), 1024,
2076 net::CompletionOnceCallback()));
2077 EXPECT_EQ(1024, entry->WriteSparseData(5120, buf.get(), 1024,
2078 net::CompletionOnceCallback()));
2079 EXPECT_EQ(1024, entry->WriteSparseData(10000, buf.get(), 1024,
2080 net::CompletionOnceCallback()));
2081
2082 // Writes in the middle of an entry and spans 2 child entries.
2083 EXPECT_EQ(8192, entry->WriteSparseData(50000, buf.get(), 8192,
2084 net::CompletionOnceCallback()));
2085
2086 TestRangeResultCompletionCallback cb;
2087 // Test that we stop at a discontinuous child at the second block.
2088 RangeResult result =
2089 cb.GetResult(entry->GetAvailableRange(0, 10000, cb.callback()));
2090 EXPECT_EQ(net::OK, result.net_error);
2091 EXPECT_EQ(1024, result.available_len);
2092 EXPECT_EQ(0, result.start);
2093
2094 // Test that number of bytes is reported correctly when we start from the
2095 // middle of a filled region.
2096 result = cb.GetResult(entry->GetAvailableRange(512, 10000, cb.callback()));
2097 EXPECT_EQ(net::OK, result.net_error);
2098 EXPECT_EQ(512, result.available_len);
2099 EXPECT_EQ(512, result.start);
2100
2101 // Test that we found bytes in the child of next block.
2102 result = cb.GetResult(entry->GetAvailableRange(1024, 10000, cb.callback()));
2103 EXPECT_EQ(net::OK, result.net_error);
2104 EXPECT_EQ(1024, result.available_len);
2105 EXPECT_EQ(5120, result.start);
2106
2107 // Test that the desired length is respected. It starts within a filled
2108 // region.
2109 result = cb.GetResult(entry->GetAvailableRange(5500, 512, cb.callback()));
2110 EXPECT_EQ(net::OK, result.net_error);
2111 EXPECT_EQ(512, result.available_len);
2112 EXPECT_EQ(5500, result.start);
2113
2114 // Test that the desired length is respected. It starts before a filled
2115 // region.
2116 result = cb.GetResult(entry->GetAvailableRange(5000, 620, cb.callback()));
2117 EXPECT_EQ(net::OK, result.net_error);
2118 EXPECT_EQ(500, result.available_len);
2119 EXPECT_EQ(5120, result.start);
2120
2121 // Test that multiple blocks are scanned.
2122 result = cb.GetResult(entry->GetAvailableRange(40000, 20000, cb.callback()));
2123 EXPECT_EQ(net::OK, result.net_error);
2124 EXPECT_EQ(8192, result.available_len);
2125 EXPECT_EQ(50000, result.start);
2126
2127 entry->Close();
2128 }
2129
UpdateSparseEntry()2130 void DiskCacheEntryTest::UpdateSparseEntry() {
2131 std::string key("the first key");
2132 disk_cache::Entry* entry1;
2133 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
2134
2135 const int kSize = 2048;
2136 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2137 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2138 CacheTestFillBuffer(buf_1->data(), kSize, false);
2139
2140 // Write at offset 0.
2141 VerifySparseIO(entry1, 0, buf_1.get(), kSize, buf_2.get());
2142 entry1->Close();
2143
2144 // Write at offset 2048.
2145 ASSERT_THAT(OpenEntry(key, &entry1), IsOk());
2146 VerifySparseIO(entry1, 2048, buf_1.get(), kSize, buf_2.get());
2147
2148 disk_cache::Entry* entry2;
2149 ASSERT_THAT(CreateEntry("the second key", &entry2), IsOk());
2150
2151 entry1->Close();
2152 entry2->Close();
2153 FlushQueueForTest();
2154 if (memory_only_ || simple_cache_mode_)
2155 EXPECT_EQ(2, cache_->GetEntryCount());
2156 else
2157 EXPECT_EQ(3, cache_->GetEntryCount());
2158 }
2159
TEST_F(DiskCacheEntryTest,UpdateSparseEntry)2160 TEST_F(DiskCacheEntryTest, UpdateSparseEntry) {
2161 InitCache();
2162 UpdateSparseEntry();
2163 }
2164
TEST_F(DiskCacheEntryTest,MemoryOnlyUpdateSparseEntry)2165 TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) {
2166 SetMemoryOnlyMode();
2167 InitCache();
2168 UpdateSparseEntry();
2169 }
2170
DoomSparseEntry()2171 void DiskCacheEntryTest::DoomSparseEntry() {
2172 std::string key1("the first key");
2173 std::string key2("the second key");
2174 disk_cache::Entry *entry1, *entry2;
2175 ASSERT_THAT(CreateEntry(key1, &entry1), IsOk());
2176 ASSERT_THAT(CreateEntry(key2, &entry2), IsOk());
2177
2178 const int kSize = 4 * 1024;
2179 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2180 CacheTestFillBuffer(buf->data(), kSize, false);
2181
2182 int64_t offset = 1024;
2183 // Write to a bunch of ranges.
2184 for (int i = 0; i < 12; i++) {
2185 EXPECT_EQ(kSize, WriteSparseData(entry1, offset, buf.get(), kSize));
2186 // Keep the second map under the default size.
2187 if (i < 9)
2188 EXPECT_EQ(kSize, WriteSparseData(entry2, offset, buf.get(), kSize));
2189
2190 offset *= 4;
2191 }
2192
2193 if (memory_only_ || simple_cache_mode_)
2194 EXPECT_EQ(2, cache_->GetEntryCount());
2195 else
2196 EXPECT_EQ(15, cache_->GetEntryCount());
2197
2198 // Doom the first entry while it's still open.
2199 entry1->Doom();
2200 entry1->Close();
2201 entry2->Close();
2202
2203 // Doom the second entry after it's fully saved.
2204 EXPECT_THAT(DoomEntry(key2), IsOk());
2205
2206 // Make sure we do all needed work. This may fail for entry2 if between Close
2207 // and DoomEntry the system decides to remove all traces of the file from the
2208 // system cache so we don't see that there is pending IO.
2209 base::RunLoop().RunUntilIdle();
2210
2211 if (memory_only_) {
2212 EXPECT_EQ(0, cache_->GetEntryCount());
2213 } else {
2214 if (5 == cache_->GetEntryCount()) {
2215 // Most likely we are waiting for the result of reading the sparse info
2216 // (it's always async on Posix so it is easy to miss). Unfortunately we
2217 // don't have any signal to watch for so we can only wait.
2218 base::PlatformThread::Sleep(base::Milliseconds(500));
2219 base::RunLoop().RunUntilIdle();
2220 }
2221 EXPECT_EQ(0, cache_->GetEntryCount());
2222 }
2223 }
2224
TEST_F(DiskCacheEntryTest,DoomSparseEntry)2225 TEST_F(DiskCacheEntryTest, DoomSparseEntry) {
2226 UseCurrentThread();
2227 InitCache();
2228 DoomSparseEntry();
2229 }
2230
TEST_F(DiskCacheEntryTest,MemoryOnlyDoomSparseEntry)2231 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) {
2232 SetMemoryOnlyMode();
2233 InitCache();
2234 DoomSparseEntry();
2235 }
2236
2237 // A TestCompletionCallback wrapper that deletes the cache from within the
2238 // callback. The way TestCompletionCallback works means that all tasks (even
2239 // new ones) are executed by the message loop before returning to the caller so
2240 // the only way to simulate a race is to execute what we want on the callback.
2241 class SparseTestCompletionCallback: public net::TestCompletionCallback {
2242 public:
SparseTestCompletionCallback(std::unique_ptr<disk_cache::Backend> cache)2243 explicit SparseTestCompletionCallback(
2244 std::unique_ptr<disk_cache::Backend> cache)
2245 : cache_(std::move(cache)) {}
2246
2247 SparseTestCompletionCallback(const SparseTestCompletionCallback&) = delete;
2248 SparseTestCompletionCallback& operator=(const SparseTestCompletionCallback&) =
2249 delete;
2250
2251 private:
SetResult(int result)2252 void SetResult(int result) override {
2253 cache_.reset();
2254 TestCompletionCallback::SetResult(result);
2255 }
2256
2257 std::unique_ptr<disk_cache::Backend> cache_;
2258 };
2259
2260 // Tests that we don't crash when the backend is deleted while we are working
2261 // deleting the sub-entries of a sparse entry.
TEST_F(DiskCacheEntryTest,DoomSparseEntry2)2262 TEST_F(DiskCacheEntryTest, DoomSparseEntry2) {
2263 UseCurrentThread();
2264 InitCache();
2265 std::string key("the key");
2266 disk_cache::Entry* entry;
2267 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2268
2269 const int kSize = 4 * 1024;
2270 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2271 CacheTestFillBuffer(buf->data(), kSize, false);
2272
2273 int64_t offset = 1024;
2274 // Write to a bunch of ranges.
2275 for (int i = 0; i < 12; i++) {
2276 EXPECT_EQ(kSize, entry->WriteSparseData(offset, buf.get(), kSize,
2277 net::CompletionOnceCallback()));
2278 offset *= 4;
2279 }
2280 EXPECT_EQ(9, cache_->GetEntryCount());
2281
2282 entry->Close();
2283 disk_cache::Backend* cache = cache_.get();
2284 SparseTestCompletionCallback cb(TakeCache());
2285 int rv = cache->DoomEntry(key, net::HIGHEST, cb.callback());
2286 EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING));
2287 EXPECT_THAT(cb.WaitForResult(), IsOk());
2288 }
2289
PartialSparseEntry()2290 void DiskCacheEntryTest::PartialSparseEntry() {
2291 std::string key("the first key");
2292 disk_cache::Entry* entry;
2293 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2294
2295 // We should be able to deal with IO that is not aligned to the block size
2296 // of a sparse entry, at least to write a big range without leaving holes.
2297 const int kSize = 4 * 1024;
2298 const int kSmallSize = 128;
2299 auto buf1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2300 CacheTestFillBuffer(buf1->data(), kSize, false);
2301
2302 // The first write is just to extend the entry. The third write occupies
2303 // a 1KB block partially, it may not be written internally depending on the
2304 // implementation.
2305 EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1.get(), kSize));
2306 EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1.get(), kSize));
2307 EXPECT_EQ(kSmallSize,
2308 WriteSparseData(entry, 1080321, buf1.get(), kSmallSize));
2309 entry->Close();
2310 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2311
2312 auto buf2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2313 memset(buf2->data(), 0, kSize);
2314 EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2.get(), kSize));
2315
2316 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
2317 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
2318 EXPECT_EQ(0, ReadSparseData(entry, 0, buf2.get(), kSize));
2319
2320 // This read should not change anything.
2321 if (memory_only_ || simple_cache_mode_)
2322 EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2.get(), kSize));
2323 else
2324 EXPECT_EQ(0, ReadSparseData(entry, 24000, buf2.get(), kSize));
2325
2326 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
2327 EXPECT_EQ(0, ReadSparseData(entry, 99, buf2.get(), kSize));
2328
2329 TestRangeResultCompletionCallback cb;
2330 RangeResult result;
2331 if (memory_only_ || simple_cache_mode_) {
2332 result = cb.GetResult(entry->GetAvailableRange(0, 600, cb.callback()));
2333 EXPECT_EQ(net::OK, result.net_error);
2334 EXPECT_EQ(100, result.available_len);
2335 EXPECT_EQ(500, result.start);
2336 } else {
2337 result = cb.GetResult(entry->GetAvailableRange(0, 2048, cb.callback()));
2338 EXPECT_EQ(net::OK, result.net_error);
2339 EXPECT_EQ(1024, result.available_len);
2340 EXPECT_EQ(1024, result.start);
2341 }
2342 result = cb.GetResult(entry->GetAvailableRange(kSize, kSize, cb.callback()));
2343 EXPECT_EQ(net::OK, result.net_error);
2344 EXPECT_EQ(500, result.available_len);
2345 EXPECT_EQ(kSize, result.start);
2346 result =
2347 cb.GetResult(entry->GetAvailableRange(20 * 1024, 10000, cb.callback()));
2348 EXPECT_EQ(net::OK, result.net_error);
2349 if (memory_only_ || simple_cache_mode_)
2350 EXPECT_EQ(3616, result.available_len);
2351 else
2352 EXPECT_EQ(3072, result.available_len);
2353
2354 EXPECT_EQ(20 * 1024, result.start);
2355
2356 // 1. Query before a filled 1KB block.
2357 // 2. Query within a filled 1KB block.
2358 // 3. Query beyond a filled 1KB block.
2359 if (memory_only_ || simple_cache_mode_) {
2360 result =
2361 cb.GetResult(entry->GetAvailableRange(19400, kSize, cb.callback()));
2362 EXPECT_EQ(net::OK, result.net_error);
2363 EXPECT_EQ(3496, result.available_len);
2364 EXPECT_EQ(20000, result.start);
2365 } else {
2366 result =
2367 cb.GetResult(entry->GetAvailableRange(19400, kSize, cb.callback()));
2368 EXPECT_EQ(net::OK, result.net_error);
2369 EXPECT_EQ(3016, result.available_len);
2370 EXPECT_EQ(20480, result.start);
2371 }
2372 result = cb.GetResult(entry->GetAvailableRange(3073, kSize, cb.callback()));
2373 EXPECT_EQ(net::OK, result.net_error);
2374 EXPECT_EQ(1523, result.available_len);
2375 EXPECT_EQ(3073, result.start);
2376 result = cb.GetResult(entry->GetAvailableRange(4600, kSize, cb.callback()));
2377 EXPECT_EQ(net::OK, result.net_error);
2378 EXPECT_EQ(0, result.available_len);
2379 EXPECT_EQ(4600, result.start);
2380
2381 // Now make another write and verify that there is no hole in between.
2382 EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1.get(), kSize));
2383 result = cb.GetResult(entry->GetAvailableRange(1024, 10000, cb.callback()));
2384 EXPECT_EQ(net::OK, result.net_error);
2385 EXPECT_EQ(7 * 1024 + 500, result.available_len);
2386 EXPECT_EQ(1024, result.start);
2387 EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2.get(), kSize));
2388 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
2389 EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500));
2390
2391 entry->Close();
2392 }
2393
TEST_F(DiskCacheEntryTest,PartialSparseEntry)2394 TEST_F(DiskCacheEntryTest, PartialSparseEntry) {
2395 InitCache();
2396 PartialSparseEntry();
2397 }
2398
TEST_F(DiskCacheEntryTest,MemoryPartialSparseEntry)2399 TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) {
2400 SetMemoryOnlyMode();
2401 InitCache();
2402 PartialSparseEntry();
2403 }
2404
SparseInvalidArg()2405 void DiskCacheEntryTest::SparseInvalidArg() {
2406 std::string key("key");
2407 disk_cache::Entry* entry = nullptr;
2408 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2409
2410 const int kSize = 2048;
2411 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2412 CacheTestFillBuffer(buf->data(), kSize, false);
2413
2414 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2415 WriteSparseData(entry, -1, buf.get(), kSize));
2416 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2417 WriteSparseData(entry, 0, buf.get(), -1));
2418
2419 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2420 ReadSparseData(entry, -1, buf.get(), kSize));
2421 EXPECT_EQ(net::ERR_INVALID_ARGUMENT, ReadSparseData(entry, 0, buf.get(), -1));
2422
2423 int64_t start_out;
2424 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2425 GetAvailableRange(entry, -1, kSize, &start_out));
2426 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
2427 GetAvailableRange(entry, 0, -1, &start_out));
2428
2429 int rv = WriteSparseData(
2430 entry, std::numeric_limits<int64_t>::max() - kSize + 1, buf.get(), kSize);
2431 // Blockfile rejects anything over 64GiB with
2432 // net::ERR_CACHE_OPERATION_NOT_SUPPORTED, which is also OK here, as it's not
2433 // an overflow or something else nonsensical.
2434 EXPECT_TRUE(rv == net::ERR_INVALID_ARGUMENT ||
2435 rv == net::ERR_CACHE_OPERATION_NOT_SUPPORTED);
2436
2437 entry->Close();
2438 }
2439
TEST_F(DiskCacheEntryTest,SparseInvalidArg)2440 TEST_F(DiskCacheEntryTest, SparseInvalidArg) {
2441 InitCache();
2442 SparseInvalidArg();
2443 }
2444
TEST_F(DiskCacheEntryTest,MemoryOnlySparseInvalidArg)2445 TEST_F(DiskCacheEntryTest, MemoryOnlySparseInvalidArg) {
2446 SetMemoryOnlyMode();
2447 InitCache();
2448 SparseInvalidArg();
2449 }
2450
TEST_F(DiskCacheEntryTest,SimpleSparseInvalidArg)2451 TEST_F(DiskCacheEntryTest, SimpleSparseInvalidArg) {
2452 SetSimpleCacheMode();
2453 InitCache();
2454 SparseInvalidArg();
2455 }
2456
SparseClipEnd(int64_t max_index,bool expect_unsupported)2457 void DiskCacheEntryTest::SparseClipEnd(int64_t max_index,
2458 bool expect_unsupported) {
2459 std::string key("key");
2460 disk_cache::Entry* entry = nullptr;
2461 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2462
2463 const int kSize = 1024;
2464 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2465 CacheTestFillBuffer(buf->data(), kSize, false);
2466
2467 auto read_buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize * 2);
2468 CacheTestFillBuffer(read_buf->data(), kSize * 2, false);
2469
2470 const int64_t kOffset = max_index - kSize;
2471 int rv = WriteSparseData(entry, kOffset, buf.get(), kSize);
2472 EXPECT_EQ(
2473 rv, expect_unsupported ? net::ERR_CACHE_OPERATION_NOT_SUPPORTED : kSize);
2474
2475 // Try to read further than offset range, should get clipped (if supported).
2476 rv = ReadSparseData(entry, kOffset, read_buf.get(), kSize * 2);
2477 if (expect_unsupported) {
2478 EXPECT_EQ(rv, net::ERR_CACHE_OPERATION_NOT_SUPPORTED);
2479 } else {
2480 EXPECT_EQ(kSize, rv);
2481 EXPECT_EQ(0, memcmp(buf->data(), read_buf->data(), kSize));
2482 }
2483
2484 TestRangeResultCompletionCallback cb;
2485 RangeResult result = cb.GetResult(
2486 entry->GetAvailableRange(kOffset - kSize, kSize * 3, cb.callback()));
2487 if (expect_unsupported) {
2488 // GetAvailableRange just returns nothing found, not an error.
2489 EXPECT_EQ(net::OK, result.net_error);
2490 EXPECT_EQ(result.available_len, 0);
2491 } else {
2492 EXPECT_EQ(net::OK, result.net_error);
2493 EXPECT_EQ(kSize, result.available_len);
2494 EXPECT_EQ(kOffset, result.start);
2495 }
2496
2497 entry->Close();
2498 }
2499
TEST_F(DiskCacheEntryTest,SparseClipEnd)2500 TEST_F(DiskCacheEntryTest, SparseClipEnd) {
2501 InitCache();
2502
2503 // Blockfile refuses to deal with sparse indices over 64GiB.
2504 SparseClipEnd(std::numeric_limits<int64_t>::max(),
2505 /*expected_unsupported=*/true);
2506 }
2507
TEST_F(DiskCacheEntryTest,SparseClipEnd2)2508 TEST_F(DiskCacheEntryTest, SparseClipEnd2) {
2509 InitCache();
2510
2511 const int64_t kLimit = 64ll * 1024 * 1024 * 1024;
2512 // Separate test for blockfile for indices right at the edge of its address
2513 // space limit. kLimit must match kMaxEndOffset in sparse_control.cc
2514 SparseClipEnd(kLimit, /*expected_unsupported=*/false);
2515
2516 // Test with things after kLimit, too, which isn't an issue for backends
2517 // supporting the entire 64-bit offset range.
2518 std::string key("key2");
2519 disk_cache::Entry* entry = nullptr;
2520 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2521
2522 const int kSize = 1024;
2523 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2524 CacheTestFillBuffer(buf->data(), kSize, false);
2525
2526 // Try to write after --- fails.
2527 int rv = WriteSparseData(entry, kLimit, buf.get(), kSize);
2528 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv);
2529
2530 // Similarly for read.
2531 rv = ReadSparseData(entry, kLimit, buf.get(), kSize);
2532 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv);
2533
2534 // GetAvailableRange just returns nothing.
2535 TestRangeResultCompletionCallback cb;
2536 RangeResult result =
2537 cb.GetResult(entry->GetAvailableRange(kLimit, kSize * 3, cb.callback()));
2538 EXPECT_EQ(net::OK, result.net_error);
2539 EXPECT_EQ(0, result.available_len);
2540 entry->Close();
2541 }
2542
TEST_F(DiskCacheEntryTest,MemoryOnlySparseClipEnd)2543 TEST_F(DiskCacheEntryTest, MemoryOnlySparseClipEnd) {
2544 SetMemoryOnlyMode();
2545 InitCache();
2546 SparseClipEnd(std::numeric_limits<int64_t>::max(),
2547 /* expected_unsupported = */ false);
2548 }
2549
TEST_F(DiskCacheEntryTest,SimpleSparseClipEnd)2550 TEST_F(DiskCacheEntryTest, SimpleSparseClipEnd) {
2551 SetSimpleCacheMode();
2552 InitCache();
2553 SparseClipEnd(std::numeric_limits<int64_t>::max(),
2554 /* expected_unsupported = */ false);
2555 }
2556
2557 // Tests that corrupt sparse children are removed automatically.
TEST_F(DiskCacheEntryTest,CleanupSparseEntry)2558 TEST_F(DiskCacheEntryTest, CleanupSparseEntry) {
2559 InitCache();
2560 std::string key("the first key");
2561 disk_cache::Entry* entry;
2562 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2563
2564 const int kSize = 4 * 1024;
2565 auto buf1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2566 CacheTestFillBuffer(buf1->data(), kSize, false);
2567
2568 const int k1Meg = 1024 * 1024;
2569 EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1.get(), kSize));
2570 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
2571 EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
2572 entry->Close();
2573 EXPECT_EQ(4, cache_->GetEntryCount());
2574
2575 std::unique_ptr<TestIterator> iter = CreateIterator();
2576 int count = 0;
2577 std::string child_keys[2];
2578 while (iter->OpenNextEntry(&entry) == net::OK) {
2579 ASSERT_TRUE(entry != nullptr);
2580 // Writing to an entry will alter the LRU list and invalidate the iterator.
2581 if (entry->GetKey() != key && count < 2)
2582 child_keys[count++] = entry->GetKey();
2583 entry->Close();
2584 }
2585 for (const auto& child_key : child_keys) {
2586 ASSERT_THAT(OpenEntry(child_key, &entry), IsOk());
2587 // Overwrite the header's magic and signature.
2588 EXPECT_EQ(12, WriteData(entry, 2, 0, buf1.get(), 12, false));
2589 entry->Close();
2590 }
2591
2592 EXPECT_EQ(4, cache_->GetEntryCount());
2593 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2594
2595 // Two children should be gone. One while reading and one while writing.
2596 EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
2597 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1.get(), kSize));
2598 EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
2599
2600 // We never touched this one.
2601 EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1.get(), kSize));
2602 entry->Close();
2603
2604 // We re-created one of the corrupt children.
2605 EXPECT_EQ(3, cache_->GetEntryCount());
2606 }
2607
TEST_F(DiskCacheEntryTest,CancelSparseIO)2608 TEST_F(DiskCacheEntryTest, CancelSparseIO) {
2609 UseCurrentThread();
2610 InitCache();
2611 std::string key("the first key");
2612 disk_cache::Entry* entry;
2613 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2614
2615 const int kSize = 40 * 1024;
2616 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
2617 CacheTestFillBuffer(buf->data(), kSize, false);
2618
2619 // This will open and write two "real" entries.
2620 net::TestCompletionCallback cb1, cb2, cb3, cb4;
2621 int rv = entry->WriteSparseData(
2622 1024 * 1024 - 4096, buf.get(), kSize, cb1.callback());
2623 EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING));
2624
2625 TestRangeResultCompletionCallback cb5;
2626 RangeResult result =
2627 cb5.GetResult(entry->GetAvailableRange(0, kSize, cb5.callback()));
2628 if (!cb1.have_result()) {
2629 // We may or may not have finished writing to the entry. If we have not,
2630 // we cannot start another operation at this time.
2631 EXPECT_THAT(rv, IsError(net::ERR_CACHE_OPERATION_NOT_SUPPORTED));
2632 }
2633
2634 // We cancel the pending operation, and register multiple notifications.
2635 entry->CancelSparseIO();
2636 EXPECT_THAT(entry->ReadyForSparseIO(cb2.callback()),
2637 IsError(net::ERR_IO_PENDING));
2638 EXPECT_THAT(entry->ReadyForSparseIO(cb3.callback()),
2639 IsError(net::ERR_IO_PENDING));
2640 entry->CancelSparseIO(); // Should be a no op at this point.
2641 EXPECT_THAT(entry->ReadyForSparseIO(cb4.callback()),
2642 IsError(net::ERR_IO_PENDING));
2643
2644 if (!cb1.have_result()) {
2645 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
2646 entry->ReadSparseData(result.start, buf.get(), kSize,
2647 net::CompletionOnceCallback()));
2648 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
2649 entry->WriteSparseData(result.start, buf.get(), kSize,
2650 net::CompletionOnceCallback()));
2651 }
2652
2653 // Now see if we receive all notifications. Note that we should not be able
2654 // to write everything (unless the timing of the system is really weird).
2655 rv = cb1.WaitForResult();
2656 EXPECT_TRUE(rv == 4096 || rv == kSize);
2657 EXPECT_THAT(cb2.WaitForResult(), IsOk());
2658 EXPECT_THAT(cb3.WaitForResult(), IsOk());
2659 EXPECT_THAT(cb4.WaitForResult(), IsOk());
2660
2661 result = cb5.GetResult(
2662 entry->GetAvailableRange(result.start, kSize, cb5.callback()));
2663 EXPECT_EQ(net::OK, result.net_error);
2664 EXPECT_EQ(0, result.available_len);
2665 entry->Close();
2666 }
2667
2668 // Tests that we perform sanity checks on an entry's key. Note that there are
2669 // other tests that exercise sanity checks by using saved corrupt files.
TEST_F(DiskCacheEntryTest,KeySanityCheck)2670 TEST_F(DiskCacheEntryTest, KeySanityCheck) {
2671 UseCurrentThread();
2672 InitCache();
2673 std::string key("the first key");
2674 disk_cache::Entry* entry;
2675 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2676
2677 disk_cache::EntryImpl* entry_impl =
2678 static_cast<disk_cache::EntryImpl*>(entry);
2679 disk_cache::EntryStore* store = entry_impl->entry()->Data();
2680
2681 // We have reserved space for a short key (one block), let's say that the key
2682 // takes more than one block, and remove the NULLs after the actual key.
2683 store->key_len = 800;
2684 memset(store->key + key.size(), 'k', sizeof(store->key) - key.size());
2685 entry_impl->entry()->set_modified();
2686 entry->Close();
2687
2688 // We have a corrupt entry. Now reload it. We should NOT read beyond the
2689 // allocated buffer here.
2690 ASSERT_NE(net::OK, OpenEntry(key, &entry));
2691 DisableIntegrityCheck();
2692 }
2693
TEST_F(DiskCacheEntryTest,KeySanityCheck2)2694 TEST_F(DiskCacheEntryTest, KeySanityCheck2) {
2695 UseCurrentThread();
2696 InitCache();
2697 std::string key("the first key");
2698 disk_cache::Entry* entry;
2699 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2700
2701 disk_cache::EntryImpl* entry_impl =
2702 static_cast<disk_cache::EntryImpl*>(entry);
2703 disk_cache::EntryStore* store = entry_impl->entry()->Data();
2704
2705 // Fill in the rest of inline key store with non-nulls. Unlike in
2706 // KeySanityCheck, this does not change the length to identify it as
2707 // stored under |long_key|.
2708 memset(store->key + key.size(), 'k', sizeof(store->key) - key.size());
2709 entry_impl->entry()->set_modified();
2710 entry->Close();
2711
2712 // We have a corrupt entry. Now reload it. We should NOT read beyond the
2713 // allocated buffer here.
2714 ASSERT_NE(net::OK, OpenEntry(key, &entry));
2715 DisableIntegrityCheck();
2716 }
2717
TEST_F(DiskCacheEntryTest,KeySanityCheck3)2718 TEST_F(DiskCacheEntryTest, KeySanityCheck3) {
2719 const size_t kVeryLong = 40 * 1024;
2720 UseCurrentThread();
2721 InitCache();
2722 std::string key(kVeryLong, 'a');
2723 disk_cache::Entry* entry;
2724 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
2725
2726 disk_cache::EntryImpl* entry_impl =
2727 static_cast<disk_cache::EntryImpl*>(entry);
2728 disk_cache::EntryStore* store = entry_impl->entry()->Data();
2729
2730 // Test meaningful when using long keys; and also want this to be
2731 // an external file to avoid needing to duplicate offset math here.
2732 disk_cache::Addr key_addr(store->long_key);
2733 ASSERT_TRUE(key_addr.is_initialized());
2734 ASSERT_TRUE(key_addr.is_separate_file());
2735
2736 // Close the entry before messing up its files.
2737 entry->Close();
2738
2739 // Mess up the terminating null in the external key file.
2740 auto key_file =
2741 base::MakeRefCounted<disk_cache::File>(true /* want sync ops*/);
2742 ASSERT_TRUE(key_file->Init(cache_impl_->GetFileName(key_addr)));
2743
2744 ASSERT_TRUE(key_file->Write("b", 1u, kVeryLong));
2745 key_file = nullptr;
2746
2747 // This case gets graceful recovery.
2748 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2749
2750 // Make sure the key object isn't messed up.
2751 EXPECT_EQ(kVeryLong, strlen(entry->GetKey().data()));
2752 entry->Close();
2753 }
2754
TEST_F(DiskCacheEntryTest,SimpleCacheInternalAsyncIO)2755 TEST_F(DiskCacheEntryTest, SimpleCacheInternalAsyncIO) {
2756 SetSimpleCacheMode();
2757 InitCache();
2758 InternalAsyncIO();
2759 }
2760
TEST_F(DiskCacheEntryTest,SimpleCacheExternalAsyncIO)2761 TEST_F(DiskCacheEntryTest, SimpleCacheExternalAsyncIO) {
2762 SetSimpleCacheMode();
2763 InitCache();
2764 ExternalAsyncIO();
2765 }
2766
TEST_F(DiskCacheEntryTest,SimpleCacheReleaseBuffer)2767 TEST_F(DiskCacheEntryTest, SimpleCacheReleaseBuffer) {
2768 SetSimpleCacheMode();
2769 InitCache();
2770 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2771 EXPECT_THAT(DoomAllEntries(), IsOk());
2772 ReleaseBuffer(i);
2773 }
2774 }
2775
TEST_F(DiskCacheEntryTest,SimpleCacheStreamAccess)2776 TEST_F(DiskCacheEntryTest, SimpleCacheStreamAccess) {
2777 SetSimpleCacheMode();
2778 InitCache();
2779 StreamAccess();
2780 }
2781
TEST_F(DiskCacheEntryTest,SimpleCacheGetKey)2782 TEST_F(DiskCacheEntryTest, SimpleCacheGetKey) {
2783 SetSimpleCacheMode();
2784 InitCache();
2785 GetKey();
2786 }
2787
TEST_F(DiskCacheEntryTest,SimpleCacheGetTimes)2788 TEST_F(DiskCacheEntryTest, SimpleCacheGetTimes) {
2789 SetSimpleCacheMode();
2790 InitCache();
2791 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2792 EXPECT_THAT(DoomAllEntries(), IsOk());
2793 GetTimes(i);
2794 }
2795 }
2796
TEST_F(DiskCacheEntryTest,SimpleCacheGrowData)2797 TEST_F(DiskCacheEntryTest, SimpleCacheGrowData) {
2798 SetSimpleCacheMode();
2799 InitCache();
2800 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2801 EXPECT_THAT(DoomAllEntries(), IsOk());
2802 GrowData(i);
2803 }
2804 }
2805
TEST_F(DiskCacheEntryTest,SimpleCacheTruncateData)2806 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateData) {
2807 SetSimpleCacheMode();
2808 InitCache();
2809 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2810 EXPECT_THAT(DoomAllEntries(), IsOk());
2811 TruncateData(i);
2812 }
2813 }
2814
TEST_F(DiskCacheEntryTest,SimpleCacheZeroLengthIO)2815 TEST_F(DiskCacheEntryTest, SimpleCacheZeroLengthIO) {
2816 SetSimpleCacheMode();
2817 InitCache();
2818 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2819 EXPECT_THAT(DoomAllEntries(), IsOk());
2820 ZeroLengthIO(i);
2821 }
2822 }
2823
TEST_F(DiskCacheEntryTest,SimpleCacheSizeAtCreate)2824 TEST_F(DiskCacheEntryTest, SimpleCacheSizeAtCreate) {
2825 SetSimpleCacheMode();
2826 InitCache();
2827 SizeAtCreate();
2828 }
2829
TEST_F(DiskCacheEntryTest,SimpleCacheReuseExternalEntry)2830 TEST_F(DiskCacheEntryTest, SimpleCacheReuseExternalEntry) {
2831 SetSimpleCacheMode();
2832 SetMaxSize(200 * 1024);
2833 InitCache();
2834 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2835 EXPECT_THAT(DoomAllEntries(), IsOk());
2836 ReuseEntry(20 * 1024, i);
2837 }
2838 }
2839
TEST_F(DiskCacheEntryTest,SimpleCacheReuseInternalEntry)2840 TEST_F(DiskCacheEntryTest, SimpleCacheReuseInternalEntry) {
2841 SetSimpleCacheMode();
2842 SetMaxSize(100 * 1024);
2843 InitCache();
2844 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2845 EXPECT_THAT(DoomAllEntries(), IsOk());
2846 ReuseEntry(10 * 1024, i);
2847 }
2848 }
2849
TEST_F(DiskCacheEntryTest,SimpleCacheGiantEntry)2850 TEST_F(DiskCacheEntryTest, SimpleCacheGiantEntry) {
2851 const int kBufSize = 32 * 1024;
2852 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufSize);
2853 CacheTestFillBuffer(buffer->data(), kBufSize, false);
2854
2855 // Make sure SimpleCache can write up to 5MiB entry even with a 20MiB cache
2856 // size that Android WebView uses at the time of this test's writing.
2857 SetSimpleCacheMode();
2858 SetMaxSize(20 * 1024 * 1024);
2859 InitCache();
2860
2861 {
2862 std::string key1("the first key");
2863 disk_cache::Entry* entry1 = nullptr;
2864 ASSERT_THAT(CreateEntry(key1, &entry1), IsOk());
2865
2866 const int kSize1 = 5 * 1024 * 1024;
2867 EXPECT_EQ(kBufSize, WriteData(entry1, 1 /* stream */, kSize1 - kBufSize,
2868 buffer.get(), kBufSize, true /* truncate */));
2869 entry1->Close();
2870 }
2871
2872 // ... but not bigger than that.
2873 {
2874 std::string key2("the second key");
2875 disk_cache::Entry* entry2 = nullptr;
2876 ASSERT_THAT(CreateEntry(key2, &entry2), IsOk());
2877
2878 const int kSize2 = 5 * 1024 * 1024 + 1;
2879 EXPECT_EQ(net::ERR_FAILED,
2880 WriteData(entry2, 1 /* stream */, kSize2 - kBufSize, buffer.get(),
2881 kBufSize, true /* truncate */));
2882 entry2->Close();
2883 }
2884 }
2885
TEST_F(DiskCacheEntryTest,SimpleCacheSizeChanges)2886 TEST_F(DiskCacheEntryTest, SimpleCacheSizeChanges) {
2887 SetSimpleCacheMode();
2888 InitCache();
2889 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2890 EXPECT_THAT(DoomAllEntries(), IsOk());
2891 SizeChanges(i);
2892 }
2893 }
2894
TEST_F(DiskCacheEntryTest,SimpleCacheInvalidData)2895 TEST_F(DiskCacheEntryTest, SimpleCacheInvalidData) {
2896 SetSimpleCacheMode();
2897 InitCache();
2898 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2899 EXPECT_THAT(DoomAllEntries(), IsOk());
2900 InvalidData(i);
2901 }
2902 }
2903
TEST_F(DiskCacheEntryTest,SimpleCacheReadWriteDestroyBuffer)2904 TEST_F(DiskCacheEntryTest, SimpleCacheReadWriteDestroyBuffer) {
2905 // Proving that the test works well with optimistic operations enabled is
2906 // subtle, instead run only in APP_CACHE mode to disable optimistic
2907 // operations. Stream 0 always uses optimistic operations, so the test is not
2908 // run on stream 0.
2909 SetCacheType(net::APP_CACHE);
2910 SetSimpleCacheMode();
2911 InitCache();
2912 for (int i = 1; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2913 EXPECT_THAT(DoomAllEntries(), IsOk());
2914 ReadWriteDestroyBuffer(i);
2915 }
2916 }
2917
TEST_F(DiskCacheEntryTest,SimpleCacheDoomEntry)2918 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntry) {
2919 SetSimpleCacheMode();
2920 InitCache();
2921 DoomNormalEntry();
2922 }
2923
TEST_F(DiskCacheEntryTest,SimpleCacheDoomEntryNextToOpenEntry)2924 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntryNextToOpenEntry) {
2925 SetSimpleCacheMode();
2926 InitCache();
2927 DoomEntryNextToOpenEntry();
2928 }
2929
TEST_F(DiskCacheEntryTest,SimpleCacheDoomedEntry)2930 TEST_F(DiskCacheEntryTest, SimpleCacheDoomedEntry) {
2931 SetSimpleCacheMode();
2932 InitCache();
2933 // Stream 2 is excluded because the implementation does not support writing to
2934 // it on a doomed entry, if it was previously lazily omitted.
2935 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount - 1; ++i) {
2936 EXPECT_THAT(DoomAllEntries(), IsOk());
2937 DoomedEntry(i);
2938 }
2939 }
2940
2941 // Creates an entry with corrupted last byte in stream 0.
2942 // Requires SimpleCacheMode.
SimpleCacheMakeBadChecksumEntry(const std::string & key,int data_size)2943 bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string& key,
2944 int data_size) {
2945 disk_cache::Entry* entry = nullptr;
2946
2947 if (CreateEntry(key, &entry) != net::OK || !entry) {
2948 LOG(ERROR) << "Could not create entry";
2949 return false;
2950 }
2951
2952 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(data_size);
2953 memset(buffer->data(), 'A', data_size);
2954
2955 EXPECT_EQ(data_size, WriteData(entry, 1, 0, buffer.get(), data_size, false));
2956 entry->Close();
2957 entry = nullptr;
2958
2959 // Corrupt the last byte of the data.
2960 base::FilePath entry_file0_path = cache_path_.AppendASCII(
2961 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
2962 base::File entry_file0(entry_file0_path,
2963 base::File::FLAG_WRITE | base::File::FLAG_OPEN);
2964 if (!entry_file0.IsValid())
2965 return false;
2966
2967 int64_t file_offset =
2968 sizeof(disk_cache::SimpleFileHeader) + key.size() + data_size - 2;
2969 EXPECT_EQ(1, entry_file0.Write(file_offset, "X", 1));
2970 return true;
2971 }
2972
TEST_F(DiskCacheEntryTest,SimpleCacheBadChecksum)2973 TEST_F(DiskCacheEntryTest, SimpleCacheBadChecksum) {
2974 SetSimpleCacheMode();
2975 InitCache();
2976
2977 const char key[] = "the first key";
2978 const int kLargeSize = 50000;
2979 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, kLargeSize));
2980
2981 disk_cache::Entry* entry = nullptr;
2982
2983 // Open the entry. Can't spot the checksum that quickly with it so
2984 // huge.
2985 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
2986 ScopedEntryPtr entry_closer(entry);
2987
2988 EXPECT_GE(kLargeSize, entry->GetDataSize(1));
2989 auto read_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kLargeSize);
2990 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
2991 ReadData(entry, 1, 0, read_buffer.get(), kLargeSize));
2992 }
2993
2994 // Tests that an entry that has had an IO error occur can still be Doomed().
TEST_F(DiskCacheEntryTest,SimpleCacheErrorThenDoom)2995 TEST_F(DiskCacheEntryTest, SimpleCacheErrorThenDoom) {
2996 SetSimpleCacheMode();
2997 InitCache();
2998
2999 const char key[] = "the first key";
3000 const int kLargeSize = 50000;
3001 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, kLargeSize));
3002
3003 disk_cache::Entry* entry = nullptr;
3004
3005 // Open the entry, forcing an IO error.
3006 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
3007 ScopedEntryPtr entry_closer(entry);
3008
3009 EXPECT_GE(kLargeSize, entry->GetDataSize(1));
3010 auto read_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kLargeSize);
3011 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
3012 ReadData(entry, 1, 0, read_buffer.get(), kLargeSize));
3013 entry->Doom(); // Should not crash.
3014 }
3015
TEST_F(DiskCacheEntryTest,SimpleCacheCreateAfterDiskLayerDoom)3016 TEST_F(DiskCacheEntryTest, SimpleCacheCreateAfterDiskLayerDoom) {
3017 // Code coverage for what happens when a queued create runs after failure
3018 // was noticed at SimpleSynchronousEntry layer.
3019 SetSimpleCacheMode();
3020 // Disable optimistic ops so we can block on CreateEntry and start
3021 // WriteData off with an empty op queue.
3022 SetCacheType(net::APP_CACHE);
3023 InitCache();
3024
3025 const char key[] = "the key";
3026 const int kSize1 = 10;
3027 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3028 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3029
3030 disk_cache::Entry* entry = nullptr;
3031 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3032 ASSERT_TRUE(entry != nullptr);
3033
3034 // Make an empty _1 file, to cause a stream 2 write to fail.
3035 base::FilePath entry_file1_path = cache_path_.AppendASCII(
3036 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 1));
3037 base::File entry_file1(entry_file1_path,
3038 base::File::FLAG_WRITE | base::File::FLAG_CREATE);
3039 ASSERT_TRUE(entry_file1.IsValid());
3040
3041 entry->WriteData(2, 0, buffer1.get(), kSize1, net::CompletionOnceCallback(),
3042 /* truncate= */ true);
3043 entry->Close();
3044
3045 // At this point we have put WriteData & Close on the queue, and WriteData
3046 // started, but we haven't given the event loop control so the failure
3047 // hasn't been reported and handled here, so the entry is still active
3048 // for the key. Queue up another create for same key, and run through the
3049 // events.
3050 disk_cache::Entry* entry2 = nullptr;
3051 ASSERT_EQ(net::ERR_FAILED, CreateEntry(key, &entry2));
3052 ASSERT_TRUE(entry2 == nullptr);
3053
3054 EXPECT_EQ(0, cache_->GetEntryCount());
3055
3056 // Should be able to create properly next time, though.
3057 disk_cache::Entry* entry3 = nullptr;
3058 ASSERT_EQ(net::OK, CreateEntry(key, &entry3));
3059 ASSERT_TRUE(entry3 != nullptr);
3060 entry3->Close();
3061 }
3062
TEST_F(DiskCacheEntryTest,SimpleCacheQueuedOpenOnDoomedEntry)3063 TEST_F(DiskCacheEntryTest, SimpleCacheQueuedOpenOnDoomedEntry) {
3064 // This tests the following sequence of ops:
3065 // A = Create(K);
3066 // Close(A);
3067 // B = Open(K);
3068 // Doom(K);
3069 // Close(B);
3070 //
3071 // ... where the execution of the Open sits on the queue all the way till
3072 // Doom. This now succeeds, as the doom is merely queued at time of Open,
3073 // rather than completed.
3074
3075 SetSimpleCacheMode();
3076 // Disable optimistic ops so we can block on CreateEntry and start
3077 // WriteData off with an empty op queue.
3078 SetCacheType(net::APP_CACHE);
3079 InitCache();
3080
3081 const char key[] = "the key";
3082
3083 disk_cache::Entry* entry = nullptr;
3084 ASSERT_EQ(net::OK, CreateEntry(key, &entry)); // event loop!
3085 ASSERT_TRUE(entry != nullptr);
3086
3087 entry->Close();
3088
3089 // Done via cache_ -> no event loop.
3090 TestEntryResultCompletionCallback cb;
3091 EntryResult result = cache_->OpenEntry(key, net::HIGHEST, cb.callback());
3092 ASSERT_EQ(net::ERR_IO_PENDING, result.net_error());
3093
3094 net::TestCompletionCallback cb2;
3095 cache_->DoomEntry(key, net::HIGHEST, cb2.callback());
3096 // Now event loop.
3097 result = cb.WaitForResult();
3098 EXPECT_EQ(net::OK, result.net_error());
3099 result.ReleaseEntry()->Close();
3100
3101 EXPECT_EQ(net::OK, cb2.WaitForResult());
3102 EXPECT_EQ(0, cache_->GetEntryCount());
3103 }
3104
TEST_F(DiskCacheEntryTest,SimpleCacheDoomErrorRace)3105 TEST_F(DiskCacheEntryTest, SimpleCacheDoomErrorRace) {
3106 // Code coverage for a doom racing with a doom induced by a failure.
3107 SetSimpleCacheMode();
3108 // Disable optimistic ops so we can block on CreateEntry and start
3109 // WriteData off with an empty op queue.
3110 SetCacheType(net::APP_CACHE);
3111 InitCache();
3112
3113 const char kKey[] = "the first key";
3114 const int kSize1 = 10;
3115 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3116 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3117
3118 disk_cache::Entry* entry = nullptr;
3119 ASSERT_EQ(net::OK, CreateEntry(kKey, &entry));
3120 ASSERT_TRUE(entry != nullptr);
3121
3122 // Now an empty _1 file, to cause a stream 2 write to fail.
3123 base::FilePath entry_file1_path = cache_path_.AppendASCII(
3124 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(kKey, 1));
3125 base::File entry_file1(entry_file1_path,
3126 base::File::FLAG_WRITE | base::File::FLAG_CREATE);
3127 ASSERT_TRUE(entry_file1.IsValid());
3128
3129 entry->WriteData(2, 0, buffer1.get(), kSize1, net::CompletionOnceCallback(),
3130 /* truncate= */ true);
3131
3132 net::TestCompletionCallback cb;
3133 cache_->DoomEntry(kKey, net::HIGHEST, cb.callback());
3134 entry->Close();
3135 EXPECT_EQ(0, cb.WaitForResult());
3136 }
3137
TruncatePath(const base::FilePath & file_path,int64_t length)3138 bool TruncatePath(const base::FilePath& file_path, int64_t length) {
3139 base::File file(file_path, base::File::FLAG_WRITE | base::File::FLAG_OPEN);
3140 if (!file.IsValid())
3141 return false;
3142 return file.SetLength(length);
3143 }
3144
TEST_F(DiskCacheEntryTest,SimpleCacheNoEOF)3145 TEST_F(DiskCacheEntryTest, SimpleCacheNoEOF) {
3146 SetSimpleCacheMode();
3147 InitCache();
3148
3149 const std::string key("the first key");
3150
3151 disk_cache::Entry* entry = nullptr;
3152 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
3153 disk_cache::Entry* null = nullptr;
3154 EXPECT_NE(null, entry);
3155 entry->Close();
3156 entry = nullptr;
3157
3158 // Force the entry to flush to disk, so subsequent platform file operations
3159 // succed.
3160 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
3161 entry->Close();
3162 entry = nullptr;
3163
3164 // Truncate the file such that the length isn't sufficient to have an EOF
3165 // record.
3166 int kTruncationBytes = -static_cast<int>(sizeof(disk_cache::SimpleFileEOF));
3167 const base::FilePath entry_path = cache_path_.AppendASCII(
3168 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
3169 const int64_t invalid_size = disk_cache::simple_util::GetFileSizeFromDataSize(
3170 key.size(), kTruncationBytes);
3171 EXPECT_TRUE(TruncatePath(entry_path, invalid_size));
3172 EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED));
3173 DisableIntegrityCheck();
3174 }
3175
TEST_F(DiskCacheEntryTest,SimpleCacheNonOptimisticOperationsBasic)3176 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsBasic) {
3177 // Test sequence:
3178 // Create, Write, Read, Close.
3179 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
3180 SetSimpleCacheMode();
3181 InitCache();
3182 disk_cache::Entry* const null_entry = nullptr;
3183
3184 disk_cache::Entry* entry = nullptr;
3185 EXPECT_THAT(CreateEntry("my key", &entry), IsOk());
3186 ASSERT_NE(null_entry, entry);
3187 ScopedEntryPtr entry_closer(entry);
3188
3189 const int kBufferSize = 10;
3190 scoped_refptr<net::IOBufferWithSize> write_buffer =
3191 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3192 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
3193 EXPECT_EQ(
3194 write_buffer->size(),
3195 WriteData(entry, 1, 0, write_buffer.get(), write_buffer->size(), false));
3196
3197 scoped_refptr<net::IOBufferWithSize> read_buffer =
3198 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3199 EXPECT_EQ(read_buffer->size(),
3200 ReadData(entry, 1, 0, read_buffer.get(), read_buffer->size()));
3201 }
3202
TEST_F(DiskCacheEntryTest,SimpleCacheNonOptimisticOperationsDontBlock)3203 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsDontBlock) {
3204 // Test sequence:
3205 // Create, Write, Close.
3206 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
3207 SetSimpleCacheMode();
3208 InitCache();
3209 disk_cache::Entry* const null_entry = nullptr;
3210
3211 MessageLoopHelper helper;
3212 CallbackTest create_callback(&helper, false);
3213
3214 int expected_callback_runs = 0;
3215 const int kBufferSize = 10;
3216 scoped_refptr<net::IOBufferWithSize> write_buffer =
3217 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3218
3219 disk_cache::Entry* entry = nullptr;
3220 EXPECT_THAT(CreateEntry("my key", &entry), IsOk());
3221 ASSERT_NE(null_entry, entry);
3222 ScopedEntryPtr entry_closer(entry);
3223
3224 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
3225 CallbackTest write_callback(&helper, false);
3226 int ret = entry->WriteData(
3227 1, 0, write_buffer.get(), write_buffer->size(),
3228 base::BindOnce(&CallbackTest::Run, base::Unretained(&write_callback)),
3229 false);
3230 ASSERT_THAT(ret, IsError(net::ERR_IO_PENDING));
3231 helper.WaitUntilCacheIoFinished(++expected_callback_runs);
3232 }
3233
TEST_F(DiskCacheEntryTest,SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting)3234 TEST_F(DiskCacheEntryTest,
3235 SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting) {
3236 // Test sequence:
3237 // Create, Write, Read, Close.
3238 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
3239 SetSimpleCacheMode();
3240 InitCache();
3241 disk_cache::Entry* const null_entry = nullptr;
3242 MessageLoopHelper helper;
3243
3244 disk_cache::Entry* entry = nullptr;
3245 // Note that |entry| is only set once CreateEntry() completed which is why we
3246 // have to wait (i.e. use the helper CreateEntry() function).
3247 EXPECT_THAT(CreateEntry("my key", &entry), IsOk());
3248 ASSERT_NE(null_entry, entry);
3249 ScopedEntryPtr entry_closer(entry);
3250
3251 const int kBufferSize = 10;
3252 scoped_refptr<net::IOBufferWithSize> write_buffer =
3253 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3254 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
3255 CallbackTest write_callback(&helper, false);
3256 int ret = entry->WriteData(
3257 1, 0, write_buffer.get(), write_buffer->size(),
3258 base::BindOnce(&CallbackTest::Run, base::Unretained(&write_callback)),
3259 false);
3260 EXPECT_THAT(ret, IsError(net::ERR_IO_PENDING));
3261 int expected_callback_runs = 1;
3262
3263 scoped_refptr<net::IOBufferWithSize> read_buffer =
3264 base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3265 CallbackTest read_callback(&helper, false);
3266 ret = entry->ReadData(
3267 1, 0, read_buffer.get(), read_buffer->size(),
3268 base::BindOnce(&CallbackTest::Run, base::Unretained(&read_callback)));
3269 EXPECT_THAT(ret, IsError(net::ERR_IO_PENDING));
3270 ++expected_callback_runs;
3271
3272 helper.WaitUntilCacheIoFinished(expected_callback_runs);
3273 ASSERT_EQ(read_buffer->size(), write_buffer->size());
3274 EXPECT_EQ(
3275 0,
3276 memcmp(read_buffer->data(), write_buffer->data(), read_buffer->size()));
3277 }
3278
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic)3279 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic) {
3280 // Test sequence:
3281 // Create, Write, Read, Write, Read, Close.
3282 SetSimpleCacheMode();
3283 InitCache();
3284 disk_cache::Entry* null = nullptr;
3285 const char key[] = "the first key";
3286
3287 MessageLoopHelper helper;
3288 CallbackTest callback1(&helper, false);
3289 CallbackTest callback2(&helper, false);
3290 CallbackTest callback3(&helper, false);
3291 CallbackTest callback4(&helper, false);
3292 CallbackTest callback5(&helper, false);
3293
3294 int expected = 0;
3295 const int kSize1 = 10;
3296 const int kSize2 = 20;
3297 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3298 auto buffer1_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3299 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
3300 auto buffer2_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize2);
3301 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3302 CacheTestFillBuffer(buffer2->data(), kSize2, false);
3303
3304 // Create is optimistic, must return OK.
3305 EntryResult result =
3306 cache_->CreateEntry(key, net::HIGHEST,
3307 base::BindOnce(&CallbackTest::RunWithEntry,
3308 base::Unretained(&callback1)));
3309 ASSERT_EQ(net::OK, result.net_error());
3310 disk_cache::Entry* entry = result.ReleaseEntry();
3311 ASSERT_NE(null, entry);
3312 ScopedEntryPtr entry_closer(entry);
3313
3314 // This write may or may not be optimistic (it depends if the previous
3315 // optimistic create already finished by the time we call the write here).
3316 int ret = entry->WriteData(
3317 1, 0, buffer1.get(), kSize1,
3318 base::BindOnce(&CallbackTest::Run, base::Unretained(&callback2)), false);
3319 EXPECT_TRUE(kSize1 == ret || net::ERR_IO_PENDING == ret);
3320 if (net::ERR_IO_PENDING == ret)
3321 expected++;
3322
3323 // This Read must not be optimistic, since we don't support that yet.
3324 EXPECT_EQ(net::ERR_IO_PENDING,
3325 entry->ReadData(1, 0, buffer1_read.get(), kSize1,
3326 base::BindOnce(&CallbackTest::Run,
3327 base::Unretained(&callback3))));
3328 expected++;
3329 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
3330 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
3331
3332 // At this point after waiting, the pending operations queue on the entry
3333 // should be empty, so the next Write operation must run as optimistic.
3334 EXPECT_EQ(kSize2,
3335 entry->WriteData(1, 0, buffer2.get(), kSize2,
3336 base::BindOnce(&CallbackTest::Run,
3337 base::Unretained(&callback4)),
3338 false));
3339
3340 // Lets do another read so we block until both the write and the read
3341 // operation finishes and we can then test for HasOneRef() below.
3342 EXPECT_EQ(net::ERR_IO_PENDING,
3343 entry->ReadData(1, 0, buffer2_read.get(), kSize2,
3344 base::BindOnce(&CallbackTest::Run,
3345 base::Unretained(&callback5))));
3346 expected++;
3347
3348 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
3349 EXPECT_EQ(0, memcmp(buffer2->data(), buffer2_read->data(), kSize2));
3350
3351 // Check that we are not leaking.
3352 EXPECT_NE(entry, null);
3353 EXPECT_TRUE(
3354 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3355 }
3356
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic2)3357 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic2) {
3358 // Test sequence:
3359 // Create, Open, Close, Close.
3360 SetSimpleCacheMode();
3361 InitCache();
3362 const char key[] = "the first key";
3363
3364 MessageLoopHelper helper;
3365 CallbackTest callback1(&helper, false);
3366 CallbackTest callback2(&helper, false);
3367
3368 EntryResult result =
3369 cache_->CreateEntry(key, net::HIGHEST,
3370 base::BindOnce(&CallbackTest::RunWithEntry,
3371 base::Unretained(&callback1)));
3372 ASSERT_EQ(net::OK, result.net_error());
3373 disk_cache::Entry* entry = result.ReleaseEntry();
3374 ASSERT_NE(nullptr, entry);
3375 ScopedEntryPtr entry_closer(entry);
3376
3377 EntryResult result2 =
3378 cache_->OpenEntry(key, net::HIGHEST,
3379 base::BindOnce(&CallbackTest::RunWithEntry,
3380 base::Unretained(&callback2)));
3381 ASSERT_EQ(net::ERR_IO_PENDING, result2.net_error());
3382 ASSERT_TRUE(helper.WaitUntilCacheIoFinished(1));
3383 result2 = callback2.ReleaseLastEntryResult();
3384 EXPECT_EQ(net::OK, result2.net_error());
3385 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3386 EXPECT_NE(nullptr, entry2);
3387 EXPECT_EQ(entry, entry2);
3388
3389 // We have to call close twice, since we called create and open above.
3390 // (the other closes is from |entry_closer|).
3391 entry->Close();
3392
3393 // Check that we are not leaking.
3394 EXPECT_TRUE(
3395 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3396 }
3397
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic3)3398 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic3) {
3399 // Test sequence:
3400 // Create, Close, Open, Close.
3401 SetSimpleCacheMode();
3402 InitCache();
3403 const char key[] = "the first key";
3404
3405 EntryResult result =
3406 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3407 ASSERT_EQ(net::OK, result.net_error());
3408 disk_cache::Entry* entry = result.ReleaseEntry();
3409 ASSERT_NE(nullptr, entry);
3410 entry->Close();
3411
3412 TestEntryResultCompletionCallback cb;
3413 EntryResult result2 = cache_->OpenEntry(key, net::HIGHEST, cb.callback());
3414 ASSERT_EQ(net::ERR_IO_PENDING, result2.net_error());
3415 result2 = cb.WaitForResult();
3416 ASSERT_THAT(result2.net_error(), IsOk());
3417 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3418 ScopedEntryPtr entry_closer(entry2);
3419
3420 EXPECT_NE(nullptr, entry2);
3421 EXPECT_EQ(entry, entry2);
3422
3423 // Check that we are not leaking.
3424 EXPECT_TRUE(
3425 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
3426 }
3427
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic4)3428 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic4) {
3429 // Test sequence:
3430 // Create, Close, Write, Open, Open, Close, Write, Read, Close.
3431 SetSimpleCacheMode();
3432 InitCache();
3433 const char key[] = "the first key";
3434
3435 net::TestCompletionCallback cb;
3436 const int kSize1 = 10;
3437 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3438 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3439
3440 EntryResult result =
3441 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3442 ASSERT_EQ(net::OK, result.net_error());
3443 disk_cache::Entry* entry = result.ReleaseEntry();
3444 ASSERT_NE(nullptr, entry);
3445 entry->Close();
3446
3447 // Lets do a Write so we block until both the Close and the Write
3448 // operation finishes. Write must fail since we are writing in a closed entry.
3449 EXPECT_EQ(
3450 net::ERR_IO_PENDING,
3451 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
3452 EXPECT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsError(net::ERR_FAILED));
3453
3454 // Finish running the pending tasks so that we fully complete the close
3455 // operation and destroy the entry object.
3456 base::RunLoop().RunUntilIdle();
3457
3458 // At this point the |entry| must have been destroyed, and called
3459 // RemoveSelfFromBackend().
3460 TestEntryResultCompletionCallback cb2;
3461 EntryResult result2 = cache_->OpenEntry(key, net::HIGHEST, cb2.callback());
3462 ASSERT_EQ(net::ERR_IO_PENDING, result2.net_error());
3463 result2 = cb2.WaitForResult();
3464 ASSERT_THAT(result2.net_error(), IsOk());
3465 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3466 EXPECT_NE(nullptr, entry2);
3467
3468 EntryResult result3 = cache_->OpenEntry(key, net::HIGHEST, cb2.callback());
3469 ASSERT_EQ(net::ERR_IO_PENDING, result3.net_error());
3470 result3 = cb2.WaitForResult();
3471 ASSERT_THAT(result3.net_error(), IsOk());
3472 disk_cache::Entry* entry3 = result3.ReleaseEntry();
3473 EXPECT_NE(nullptr, entry3);
3474 EXPECT_EQ(entry2, entry3);
3475 entry3->Close();
3476
3477 // The previous Close doesn't actually closes the entry since we opened it
3478 // twice, so the next Write operation must succeed and it must be able to
3479 // perform it optimistically, since there is no operation running on this
3480 // entry.
3481 EXPECT_EQ(kSize1, entry2->WriteData(1, 0, buffer1.get(), kSize1,
3482 net::CompletionOnceCallback(), false));
3483
3484 // Lets do another read so we block until both the write and the read
3485 // operation finishes and we can then test for HasOneRef() below.
3486 EXPECT_EQ(net::ERR_IO_PENDING,
3487 entry2->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
3488 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3489
3490 // Check that we are not leaking.
3491 EXPECT_TRUE(
3492 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
3493 entry2->Close();
3494 }
3495
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic5)3496 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic5) {
3497 // Test sequence:
3498 // Create, Doom, Write, Read, Close.
3499 SetSimpleCacheMode();
3500 InitCache();
3501 const char key[] = "the first key";
3502
3503 net::TestCompletionCallback cb;
3504 const int kSize1 = 10;
3505 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3506 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3507
3508 EntryResult result =
3509 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3510 ASSERT_EQ(net::OK, result.net_error());
3511 disk_cache::Entry* entry = result.ReleaseEntry();
3512 ASSERT_NE(nullptr, entry);
3513 ScopedEntryPtr entry_closer(entry);
3514 entry->Doom();
3515
3516 EXPECT_EQ(
3517 net::ERR_IO_PENDING,
3518 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
3519 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3520
3521 EXPECT_EQ(net::ERR_IO_PENDING,
3522 entry->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
3523 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3524
3525 // Check that we are not leaking.
3526 EXPECT_TRUE(
3527 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3528 }
3529
TEST_F(DiskCacheEntryTest,SimpleCacheOptimistic6)3530 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic6) {
3531 // Test sequence:
3532 // Create, Write, Doom, Doom, Read, Doom, Close.
3533 SetSimpleCacheMode();
3534 InitCache();
3535 const char key[] = "the first key";
3536
3537 net::TestCompletionCallback cb;
3538 const int kSize1 = 10;
3539 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3540 auto buffer1_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3541 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3542
3543 EntryResult result =
3544 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3545 ASSERT_EQ(net::OK, result.net_error());
3546 disk_cache::Entry* entry = result.ReleaseEntry();
3547 EXPECT_NE(nullptr, entry);
3548 ScopedEntryPtr entry_closer(entry);
3549
3550 EXPECT_EQ(
3551 net::ERR_IO_PENDING,
3552 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
3553 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3554
3555 entry->Doom();
3556 entry->Doom();
3557
3558 // This Read must not be optimistic, since we don't support that yet.
3559 EXPECT_EQ(net::ERR_IO_PENDING,
3560 entry->ReadData(1, 0, buffer1_read.get(), kSize1, cb.callback()));
3561 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3562 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
3563
3564 entry->Doom();
3565 }
3566
3567 // Confirm that IO buffers are not referenced by the Simple Cache after a write
3568 // completes.
TEST_F(DiskCacheEntryTest,SimpleCacheOptimisticWriteReleases)3569 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticWriteReleases) {
3570 SetSimpleCacheMode();
3571 InitCache();
3572
3573 const char key[] = "the first key";
3574
3575 // First, an optimistic create.
3576 EntryResult result =
3577 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3578 ASSERT_EQ(net::OK, result.net_error());
3579 disk_cache::Entry* entry = result.ReleaseEntry();
3580 ASSERT_TRUE(entry);
3581 ScopedEntryPtr entry_closer(entry);
3582
3583 const int kWriteSize = 512;
3584 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kWriteSize);
3585 EXPECT_TRUE(buffer1->HasOneRef());
3586 CacheTestFillBuffer(buffer1->data(), kWriteSize, false);
3587
3588 // An optimistic write happens only when there is an empty queue of pending
3589 // operations. To ensure the queue is empty, we issue a write and wait until
3590 // it completes.
3591 EXPECT_EQ(kWriteSize,
3592 WriteData(entry, 1, 0, buffer1.get(), kWriteSize, false));
3593 EXPECT_TRUE(buffer1->HasOneRef());
3594
3595 // Finally, we should perform an optimistic write and confirm that all
3596 // references to the IO buffer have been released.
3597 EXPECT_EQ(kWriteSize, entry->WriteData(1, 0, buffer1.get(), kWriteSize,
3598 net::CompletionOnceCallback(), false));
3599 EXPECT_TRUE(buffer1->HasOneRef());
3600 }
3601
TEST_F(DiskCacheEntryTest,SimpleCacheCreateDoomRace)3602 TEST_F(DiskCacheEntryTest, SimpleCacheCreateDoomRace) {
3603 // Test sequence:
3604 // Create, Doom, Write, Close, Check files are not on disk anymore.
3605 SetSimpleCacheMode();
3606 InitCache();
3607 const char key[] = "the first key";
3608
3609 net::TestCompletionCallback cb;
3610 const int kSize1 = 10;
3611 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize1);
3612 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3613
3614 EntryResult result =
3615 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3616 ASSERT_EQ(net::OK, result.net_error());
3617 disk_cache::Entry* entry = result.ReleaseEntry();
3618 EXPECT_NE(nullptr, entry);
3619
3620 EXPECT_THAT(cache_->DoomEntry(key, net::HIGHEST, cb.callback()),
3621 IsError(net::ERR_IO_PENDING));
3622 EXPECT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsOk());
3623
3624 EXPECT_EQ(
3625 kSize1,
3626 entry->WriteData(0, 0, buffer1.get(), kSize1, cb.callback(), false));
3627
3628 entry->Close();
3629
3630 // Finish running the pending tasks so that we fully complete the close
3631 // operation and destroy the entry object.
3632 base::RunLoop().RunUntilIdle();
3633
3634 for (int i = 0; i < disk_cache::kSimpleEntryNormalFileCount; ++i) {
3635 base::FilePath entry_file_path = cache_path_.AppendASCII(
3636 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, i));
3637 base::File::Info info;
3638 EXPECT_FALSE(base::GetFileInfo(entry_file_path, &info));
3639 }
3640 }
3641
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateRace)3642 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateRace) {
3643 // This test runs as APP_CACHE to make operations more synchronous. Test
3644 // sequence:
3645 // Create, Doom, Create.
3646 SetCacheType(net::APP_CACHE);
3647 SetSimpleCacheMode();
3648 InitCache();
3649 const char key[] = "the first key";
3650
3651 TestEntryResultCompletionCallback create_callback;
3652
3653 EntryResult result1 = create_callback.GetResult(
3654 cache_->CreateEntry(key, net::HIGHEST, create_callback.callback()));
3655 ASSERT_EQ(net::OK, result1.net_error());
3656 disk_cache::Entry* entry1 = result1.ReleaseEntry();
3657 ScopedEntryPtr entry1_closer(entry1);
3658 EXPECT_NE(nullptr, entry1);
3659
3660 net::TestCompletionCallback doom_callback;
3661 EXPECT_EQ(net::ERR_IO_PENDING,
3662 cache_->DoomEntry(key, net::HIGHEST, doom_callback.callback()));
3663
3664 EntryResult result2 = create_callback.GetResult(
3665 cache_->CreateEntry(key, net::HIGHEST, create_callback.callback()));
3666 ASSERT_EQ(net::OK, result2.net_error());
3667 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3668 ScopedEntryPtr entry2_closer(entry2);
3669 EXPECT_THAT(doom_callback.GetResult(net::ERR_IO_PENDING), IsOk());
3670 }
3671
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateOptimistic)3672 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateOptimistic) {
3673 // Test that we optimize the doom -> create sequence when optimistic ops
3674 // are on.
3675 SetSimpleCacheMode();
3676 InitCache();
3677 const char kKey[] = "the key";
3678
3679 // Create entry and initiate its Doom.
3680 disk_cache::Entry* entry1 = nullptr;
3681 ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
3682 ASSERT_TRUE(entry1 != nullptr);
3683
3684 net::TestCompletionCallback doom_callback;
3685 cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback());
3686
3687 TestEntryResultCompletionCallback create_callback;
3688 // Open entry2, with same key. With optimistic ops, this should succeed
3689 // immediately, hence us using cache_->CreateEntry directly rather than using
3690 // the DiskCacheTestWithCache::CreateEntry wrapper which blocks when needed.
3691 EntryResult result2 =
3692 cache_->CreateEntry(kKey, net::HIGHEST, create_callback.callback());
3693 ASSERT_EQ(net::OK, result2.net_error());
3694 disk_cache::Entry* entry2 = result2.ReleaseEntry();
3695 ASSERT_NE(nullptr, entry2);
3696
3697 // Do some I/O to make sure it's alive.
3698 const int kSize = 2048;
3699 auto buf_1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
3700 auto buf_2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
3701 CacheTestFillBuffer(buf_1->data(), kSize, false);
3702
3703 EXPECT_EQ(kSize, WriteData(entry2, /* index = */ 1, /* offset = */ 0,
3704 buf_1.get(), kSize, /* truncate = */ false));
3705 EXPECT_EQ(kSize, ReadData(entry2, /* index = */ 1, /* offset = */ 0,
3706 buf_2.get(), kSize));
3707
3708 doom_callback.WaitForResult();
3709
3710 entry1->Close();
3711 entry2->Close();
3712 }
3713
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateOptimisticMassDoom)3714 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateOptimisticMassDoom) {
3715 // Test that shows that a certain DCHECK in mass doom code had to be removed
3716 // once optimistic doom -> create was added.
3717 SetSimpleCacheMode();
3718 InitCache();
3719 const char kKey[] = "the key";
3720
3721 // Create entry and initiate its Doom.
3722 disk_cache::Entry* entry1 = nullptr;
3723 ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
3724 ASSERT_TRUE(entry1 != nullptr);
3725
3726 net::TestCompletionCallback doom_callback;
3727 cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback());
3728
3729 TestEntryResultCompletionCallback create_callback;
3730 // Open entry2, with same key. With optimistic ops, this should succeed
3731 // immediately, hence us using cache_->CreateEntry directly rather than using
3732 // the DiskCacheTestWithCache::CreateEntry wrapper which blocks when needed.
3733 EntryResult result =
3734 cache_->CreateEntry(kKey, net::HIGHEST, create_callback.callback());
3735 ASSERT_EQ(net::OK, result.net_error());
3736 disk_cache::Entry* entry2 = result.ReleaseEntry();
3737 ASSERT_NE(nullptr, entry2);
3738
3739 net::TestCompletionCallback doomall_callback;
3740
3741 // This is what had code that had a no-longer valid DCHECK.
3742 cache_->DoomAllEntries(doomall_callback.callback());
3743
3744 doom_callback.WaitForResult();
3745 doomall_callback.WaitForResult();
3746
3747 entry1->Close();
3748 entry2->Close();
3749 }
3750
TEST_F(DiskCacheEntryTest,SimpleCacheDoomOpenOptimistic)3751 TEST_F(DiskCacheEntryTest, SimpleCacheDoomOpenOptimistic) {
3752 // Test that we optimize the doom -> optimize sequence when optimistic ops
3753 // are on.
3754 SetSimpleCacheMode();
3755 InitCache();
3756 const char kKey[] = "the key";
3757
3758 // Create entry and initiate its Doom.
3759 disk_cache::Entry* entry1 = nullptr;
3760 ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
3761 ASSERT_TRUE(entry1 != nullptr);
3762 entry1->Close();
3763
3764 net::TestCompletionCallback doom_callback;
3765 cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback());
3766
3767 // Try to open entry. This should detect a miss immediately, since it's
3768 // the only thing after a doom.
3769
3770 EntryResult result2 =
3771 cache_->OpenEntry(kKey, net::HIGHEST, EntryResultCallback());
3772 EXPECT_EQ(net::ERR_FAILED, result2.net_error());
3773 EXPECT_EQ(nullptr, result2.ReleaseEntry());
3774 doom_callback.WaitForResult();
3775 }
3776
TEST_F(DiskCacheEntryTest,SimpleCacheDoomDoom)3777 TEST_F(DiskCacheEntryTest, SimpleCacheDoomDoom) {
3778 // Test sequence:
3779 // Create, Doom, Create, Doom (1st entry), Open.
3780 SetSimpleCacheMode();
3781 InitCache();
3782 disk_cache::Entry* null = nullptr;
3783
3784 const char key[] = "the first key";
3785
3786 disk_cache::Entry* entry1 = nullptr;
3787 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
3788 ScopedEntryPtr entry1_closer(entry1);
3789 EXPECT_NE(null, entry1);
3790
3791 EXPECT_THAT(DoomEntry(key), IsOk());
3792
3793 disk_cache::Entry* entry2 = nullptr;
3794 ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
3795 ScopedEntryPtr entry2_closer(entry2);
3796 EXPECT_NE(null, entry2);
3797
3798 // Redundantly dooming entry1 should not delete entry2.
3799 disk_cache::SimpleEntryImpl* simple_entry1 =
3800 static_cast<disk_cache::SimpleEntryImpl*>(entry1);
3801 net::TestCompletionCallback cb;
3802 EXPECT_EQ(net::OK,
3803 cb.GetResult(simple_entry1->DoomEntry(cb.callback())));
3804
3805 disk_cache::Entry* entry3 = nullptr;
3806 ASSERT_THAT(OpenEntry(key, &entry3), IsOk());
3807 ScopedEntryPtr entry3_closer(entry3);
3808 EXPECT_NE(null, entry3);
3809 }
3810
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCreateDoom)3811 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateDoom) {
3812 // Test sequence:
3813 // Create, Doom, Create, Doom.
3814 SetSimpleCacheMode();
3815 InitCache();
3816
3817 disk_cache::Entry* null = nullptr;
3818
3819 const char key[] = "the first key";
3820
3821 disk_cache::Entry* entry1 = nullptr;
3822 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
3823 ScopedEntryPtr entry1_closer(entry1);
3824 EXPECT_NE(null, entry1);
3825
3826 entry1->Doom();
3827
3828 disk_cache::Entry* entry2 = nullptr;
3829 ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
3830 ScopedEntryPtr entry2_closer(entry2);
3831 EXPECT_NE(null, entry2);
3832
3833 entry2->Doom();
3834
3835 // This test passes if it doesn't crash.
3836 }
3837
TEST_F(DiskCacheEntryTest,SimpleCacheDoomCloseCreateCloseOpen)3838 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCloseCreateCloseOpen) {
3839 // Test sequence: Create, Doom, Close, Create, Close, Open.
3840 SetSimpleCacheMode();
3841 InitCache();
3842
3843 disk_cache::Entry* null = nullptr;
3844
3845 const char key[] = "this is a key";
3846
3847 disk_cache::Entry* entry1 = nullptr;
3848 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
3849 ScopedEntryPtr entry1_closer(entry1);
3850 EXPECT_NE(null, entry1);
3851
3852 entry1->Doom();
3853 entry1_closer.reset();
3854 entry1 = nullptr;
3855
3856 disk_cache::Entry* entry2 = nullptr;
3857 ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
3858 ScopedEntryPtr entry2_closer(entry2);
3859 EXPECT_NE(null, entry2);
3860
3861 entry2_closer.reset();
3862 entry2 = nullptr;
3863
3864 disk_cache::Entry* entry3 = nullptr;
3865 ASSERT_THAT(OpenEntry(key, &entry3), IsOk());
3866 ScopedEntryPtr entry3_closer(entry3);
3867 EXPECT_NE(null, entry3);
3868 }
3869
3870 // Checks that an optimistic Create would fail later on a racing Open.
TEST_F(DiskCacheEntryTest,SimpleCacheOptimisticCreateFailsOnOpen)3871 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticCreateFailsOnOpen) {
3872 SetSimpleCacheMode();
3873 InitCache();
3874
3875 // Create a corrupt file in place of a future entry. Optimistic create should
3876 // initially succeed, but realize later that creation failed.
3877 const std::string key = "the key";
3878 disk_cache::Entry* entry = nullptr;
3879 disk_cache::Entry* entry2 = nullptr;
3880
3881 EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests(
3882 key, cache_path_));
3883 EntryResult result =
3884 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
3885 EXPECT_THAT(result.net_error(), IsOk());
3886 entry = result.ReleaseEntry();
3887 ASSERT_TRUE(entry);
3888 ScopedEntryPtr entry_closer(entry);
3889 ASSERT_NE(net::OK, OpenEntry(key, &entry2));
3890
3891 // Check that we are not leaking.
3892 EXPECT_TRUE(
3893 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3894
3895 DisableIntegrityCheck();
3896 }
3897
3898 // Tests that old entries are evicted while new entries remain in the index.
3899 // This test relies on non-mandatory properties of the simple Cache Backend:
3900 // LRU eviction, specific values of high-watermark and low-watermark etc.
3901 // When changing the eviction algorithm, the test will have to be re-engineered.
TEST_F(DiskCacheEntryTest,SimpleCacheEvictOldEntries)3902 TEST_F(DiskCacheEntryTest, SimpleCacheEvictOldEntries) {
3903 const int kMaxSize = 200 * 1024;
3904 const int kWriteSize = kMaxSize / 10;
3905 const int kNumExtraEntries = 12;
3906 SetSimpleCacheMode();
3907 SetMaxSize(kMaxSize);
3908 InitCache();
3909
3910 std::string key1("the first key");
3911 disk_cache::Entry* entry;
3912 ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
3913 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kWriteSize);
3914 CacheTestFillBuffer(buffer->data(), kWriteSize, false);
3915 EXPECT_EQ(kWriteSize,
3916 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
3917 entry->Close();
3918 AddDelay();
3919
3920 std::string key2("the key prefix");
3921 for (int i = 0; i < kNumExtraEntries; i++) {
3922 if (i == kNumExtraEntries - 2) {
3923 // Create a distinct timestamp for the last two entries. These entries
3924 // will be checked for outliving the eviction.
3925 AddDelay();
3926 }
3927 ASSERT_THAT(CreateEntry(key2 + base::NumberToString(i), &entry), IsOk());
3928 ScopedEntryPtr entry_closer(entry);
3929 EXPECT_EQ(kWriteSize,
3930 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
3931 }
3932
3933 // TODO(pasko): Find a way to wait for the eviction task(s) to finish by using
3934 // the internal knowledge about |SimpleBackendImpl|.
3935 ASSERT_NE(net::OK, OpenEntry(key1, &entry))
3936 << "Should have evicted the old entry";
3937 for (int i = 0; i < 2; i++) {
3938 int entry_no = kNumExtraEntries - i - 1;
3939 // Generally there is no guarantee that at this point the backround eviction
3940 // is finished. We are testing the positive case, i.e. when the eviction
3941 // never reaches this entry, should be non-flaky.
3942 ASSERT_EQ(net::OK, OpenEntry(key2 + base::NumberToString(entry_no), &entry))
3943 << "Should not have evicted fresh entry " << entry_no;
3944 entry->Close();
3945 }
3946 }
3947
3948 // Tests that if a read and a following in-flight truncate are both in progress
3949 // simultaniously that they both can occur successfully. See
3950 // http://crbug.com/239223
TEST_F(DiskCacheEntryTest,SimpleCacheInFlightTruncate)3951 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightTruncate) {
3952 SetSimpleCacheMode();
3953 InitCache();
3954
3955 const char key[] = "the first key";
3956
3957 // We use a very large entry size here to make sure this doesn't hit
3958 // the prefetch path for any concievable setting. Hitting prefetch would
3959 // make us serve the read below from memory entirely on I/O thread, missing
3960 // the point of the test which coverred two concurrent disk ops, with
3961 // portions of work happening on the workpool.
3962 const int kBufferSize = 50000;
3963 auto write_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
3964 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
3965
3966 disk_cache::Entry* entry = nullptr;
3967 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
3968
3969 EXPECT_EQ(kBufferSize,
3970 WriteData(entry, 1, 0, write_buffer.get(), kBufferSize, false));
3971 entry->Close();
3972 entry = nullptr;
3973
3974 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
3975 ScopedEntryPtr entry_closer(entry);
3976
3977 MessageLoopHelper helper;
3978 int expected = 0;
3979
3980 // Make a short read.
3981 const int kReadBufferSize = 512;
3982 auto read_buffer =
3983 base::MakeRefCounted<net::IOBufferWithSize>(kReadBufferSize);
3984 CallbackTest read_callback(&helper, false);
3985 EXPECT_EQ(net::ERR_IO_PENDING,
3986 entry->ReadData(1, 0, read_buffer.get(), kReadBufferSize,
3987 base::BindOnce(&CallbackTest::Run,
3988 base::Unretained(&read_callback))));
3989 ++expected;
3990
3991 // Truncate the entry to the length of that read.
3992 auto truncate_buffer =
3993 base::MakeRefCounted<net::IOBufferWithSize>(kReadBufferSize);
3994 CacheTestFillBuffer(truncate_buffer->data(), kReadBufferSize, false);
3995 CallbackTest truncate_callback(&helper, false);
3996 EXPECT_EQ(
3997 net::ERR_IO_PENDING,
3998 entry->WriteData(1, 0, truncate_buffer.get(), kReadBufferSize,
3999 base::BindOnce(&CallbackTest::Run,
4000 base::Unretained(&truncate_callback)),
4001 true));
4002 ++expected;
4003
4004 // Wait for both the read and truncation to finish, and confirm that both
4005 // succeeded.
4006 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
4007 EXPECT_EQ(kReadBufferSize, read_callback.last_result());
4008 EXPECT_EQ(kReadBufferSize, truncate_callback.last_result());
4009 EXPECT_EQ(0,
4010 memcmp(write_buffer->data(), read_buffer->data(), kReadBufferSize));
4011 }
4012
4013 // Tests that if a write and a read dependant on it are both in flight
4014 // simultaneiously that they both can complete successfully without erroneous
4015 // early returns. See http://crbug.com/239223
TEST_F(DiskCacheEntryTest,SimpleCacheInFlightRead)4016 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightRead) {
4017 SetSimpleCacheMode();
4018 InitCache();
4019
4020 const char key[] = "the first key";
4021 EntryResult result =
4022 cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
4023 ASSERT_EQ(net::OK, result.net_error());
4024 disk_cache::Entry* entry = result.ReleaseEntry();
4025 ScopedEntryPtr entry_closer(entry);
4026
4027 const int kBufferSize = 1024;
4028 auto write_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
4029 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
4030
4031 MessageLoopHelper helper;
4032 int expected = 0;
4033
4034 CallbackTest write_callback(&helper, false);
4035 EXPECT_EQ(net::ERR_IO_PENDING,
4036 entry->WriteData(1, 0, write_buffer.get(), kBufferSize,
4037 base::BindOnce(&CallbackTest::Run,
4038 base::Unretained(&write_callback)),
4039 true));
4040 ++expected;
4041
4042 auto read_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
4043 CallbackTest read_callback(&helper, false);
4044 EXPECT_EQ(net::ERR_IO_PENDING,
4045 entry->ReadData(1, 0, read_buffer.get(), kBufferSize,
4046 base::BindOnce(&CallbackTest::Run,
4047 base::Unretained(&read_callback))));
4048 ++expected;
4049
4050 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
4051 EXPECT_EQ(kBufferSize, write_callback.last_result());
4052 EXPECT_EQ(kBufferSize, read_callback.last_result());
4053 EXPECT_EQ(0, memcmp(write_buffer->data(), read_buffer->data(), kBufferSize));
4054 }
4055
TEST_F(DiskCacheEntryTest,SimpleCacheOpenCreateRaceWithNoIndex)4056 TEST_F(DiskCacheEntryTest, SimpleCacheOpenCreateRaceWithNoIndex) {
4057 SetSimpleCacheMode();
4058 DisableSimpleCacheWaitForIndex();
4059 DisableIntegrityCheck();
4060 InitCache();
4061
4062 // Assume the index is not initialized, which is likely, since we are blocking
4063 // the IO thread from executing the index finalization step.
4064 TestEntryResultCompletionCallback cb1;
4065 TestEntryResultCompletionCallback cb2;
4066 EntryResult rv1 = cache_->OpenEntry("key", net::HIGHEST, cb1.callback());
4067 EntryResult rv2 = cache_->CreateEntry("key", net::HIGHEST, cb2.callback());
4068
4069 rv1 = cb1.GetResult(std::move(rv1));
4070 EXPECT_THAT(rv1.net_error(), IsError(net::ERR_FAILED));
4071 rv2 = cb2.GetResult(std::move(rv2));
4072 ASSERT_THAT(rv2.net_error(), IsOk());
4073 disk_cache::Entry* entry2 = rv2.ReleaseEntry();
4074
4075 // Try to get an alias for entry2. Open should succeed, and return the same
4076 // pointer.
4077 disk_cache::Entry* entry3 = nullptr;
4078 ASSERT_EQ(net::OK, OpenEntry("key", &entry3));
4079 EXPECT_EQ(entry3, entry2);
4080
4081 entry2->Close();
4082 entry3->Close();
4083 }
4084
4085 // Checking one more scenario of overlapped reading of a bad entry.
4086 // Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of
4087 // last two reads.
TEST_F(DiskCacheEntryTest,SimpleCacheMultipleReadersCheckCRC2)4088 TEST_F(DiskCacheEntryTest, SimpleCacheMultipleReadersCheckCRC2) {
4089 SetSimpleCacheMode();
4090 InitCache();
4091
4092 const char key[] = "key";
4093 int size = 50000;
4094 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, size));
4095
4096 auto read_buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(size);
4097 auto read_buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(size);
4098
4099 // Advance the first reader a little.
4100 disk_cache::Entry* entry = nullptr;
4101 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4102 ScopedEntryPtr entry_closer(entry);
4103 EXPECT_EQ(1, ReadData(entry, 1, 0, read_buffer1.get(), 1));
4104
4105 // Advance the 2nd reader by the same amount.
4106 disk_cache::Entry* entry2 = nullptr;
4107 EXPECT_THAT(OpenEntry(key, &entry2), IsOk());
4108 ScopedEntryPtr entry2_closer(entry2);
4109 EXPECT_EQ(1, ReadData(entry2, 1, 0, read_buffer2.get(), 1));
4110
4111 // Continue reading 1st.
4112 EXPECT_GT(0, ReadData(entry, 1, 1, read_buffer1.get(), size));
4113
4114 // This read should fail as well because we have previous read failures.
4115 EXPECT_GT(0, ReadData(entry2, 1, 1, read_buffer2.get(), 1));
4116 DisableIntegrityCheck();
4117 }
4118
4119 // Test if we can sequentially read each subset of the data until all the data
4120 // is read, then the CRC is calculated correctly and the reads are successful.
TEST_F(DiskCacheEntryTest,SimpleCacheReadCombineCRC)4121 TEST_F(DiskCacheEntryTest, SimpleCacheReadCombineCRC) {
4122 // Test sequence:
4123 // Create, Write, Read (first half of data), Read (second half of data),
4124 // Close.
4125 SetSimpleCacheMode();
4126 InitCache();
4127 disk_cache::Entry* null = nullptr;
4128 const char key[] = "the first key";
4129
4130 const int kHalfSize = 200;
4131 const int kSize = 2 * kHalfSize;
4132 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4133 CacheTestFillBuffer(buffer1->data(), kSize, false);
4134 disk_cache::Entry* entry = nullptr;
4135
4136 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4137 EXPECT_NE(null, entry);
4138
4139 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
4140 entry->Close();
4141
4142 disk_cache::Entry* entry2 = nullptr;
4143 ASSERT_THAT(OpenEntry(key, &entry2), IsOk());
4144 EXPECT_EQ(entry, entry2);
4145
4146 // Read the first half of the data.
4147 int offset = 0;
4148 int buf_len = kHalfSize;
4149 auto buffer1_read1 = base::MakeRefCounted<net::IOBufferWithSize>(buf_len);
4150 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read1.get(), buf_len));
4151 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), buf_len));
4152
4153 // Read the second half of the data.
4154 offset = buf_len;
4155 buf_len = kHalfSize;
4156 auto buffer1_read2 = base::MakeRefCounted<net::IOBufferWithSize>(buf_len);
4157 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read2.get(), buf_len));
4158 char* buffer1_data = buffer1->data() + offset;
4159 EXPECT_EQ(0, memcmp(buffer1_data, buffer1_read2->data(), buf_len));
4160
4161 // Check that we are not leaking.
4162 EXPECT_NE(entry, null);
4163 EXPECT_TRUE(
4164 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
4165 entry->Close();
4166 entry = nullptr;
4167 }
4168
4169 // Test if we can write the data not in sequence and read correctly. In
4170 // this case the CRC will not be present.
TEST_F(DiskCacheEntryTest,SimpleCacheNonSequentialWrite)4171 TEST_F(DiskCacheEntryTest, SimpleCacheNonSequentialWrite) {
4172 // Test sequence:
4173 // Create, Write (second half of data), Write (first half of data), Read,
4174 // Close.
4175 SetSimpleCacheMode();
4176 InitCache();
4177 disk_cache::Entry* null = nullptr;
4178 const char key[] = "the first key";
4179
4180 const int kHalfSize = 200;
4181 const int kSize = 2 * kHalfSize;
4182 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4183 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4184 CacheTestFillBuffer(buffer1->data(), kSize, false);
4185 char* buffer1_data = buffer1->data() + kHalfSize;
4186 memcpy(buffer2->data(), buffer1_data, kHalfSize);
4187
4188 disk_cache::Entry* entry = nullptr;
4189 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4190 entry->Close();
4191 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
4192 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4193 EXPECT_NE(null, entry);
4194
4195 int offset = kHalfSize;
4196 int buf_len = kHalfSize;
4197
4198 EXPECT_EQ(buf_len,
4199 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
4200 offset = 0;
4201 buf_len = kHalfSize;
4202 EXPECT_EQ(buf_len,
4203 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
4204 entry->Close();
4205
4206 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4207
4208 auto buffer1_read1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4209 EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize));
4210 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kSize));
4211 // Check that we are not leaking.
4212 ASSERT_NE(entry, null);
4213 EXPECT_TRUE(static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
4214 entry->Close();
4215 }
4216 }
4217
4218 // Test that changing stream1 size does not affect stream0 (stream0 and stream1
4219 // are stored in the same file in Simple Cache).
TEST_F(DiskCacheEntryTest,SimpleCacheStream1SizeChanges)4220 TEST_F(DiskCacheEntryTest, SimpleCacheStream1SizeChanges) {
4221 SetSimpleCacheMode();
4222 InitCache();
4223 disk_cache::Entry* entry = nullptr;
4224 const std::string key("the key");
4225 const int kSize = 100;
4226 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4227 auto buffer_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4228 CacheTestFillBuffer(buffer->data(), kSize, false);
4229
4230 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4231 EXPECT_TRUE(entry);
4232
4233 // Write something into stream0.
4234 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
4235 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
4236 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
4237 entry->Close();
4238
4239 // Extend stream1.
4240 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4241 int stream1_size = 100;
4242 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, false));
4243 EXPECT_EQ(stream1_size, entry->GetDataSize(1));
4244 entry->Close();
4245
4246 // Check that stream0 data has not been modified and that the EOF record for
4247 // stream 0 contains a crc.
4248 // The entry needs to be reopened before checking the crc: Open will perform
4249 // the synchronization with the previous Close. This ensures the EOF records
4250 // have been written to disk before we attempt to read them independently.
4251 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4252 base::FilePath entry_file0_path = cache_path_.AppendASCII(
4253 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
4254 base::File entry_file0(entry_file0_path,
4255 base::File::FLAG_READ | base::File::FLAG_OPEN);
4256 ASSERT_TRUE(entry_file0.IsValid());
4257
4258 int data_size[disk_cache::kSimpleEntryStreamCount] = {kSize, stream1_size, 0};
4259 int sparse_data_size = 0;
4260 disk_cache::SimpleEntryStat entry_stat(
4261 base::Time::Now(), base::Time::Now(), data_size, sparse_data_size);
4262 int eof_offset = entry_stat.GetEOFOffsetInFile(key.size(), 0);
4263 disk_cache::SimpleFileEOF eof_record;
4264 ASSERT_EQ(static_cast<int>(sizeof(eof_record)),
4265 entry_file0.Read(eof_offset, reinterpret_cast<char*>(&eof_record),
4266 sizeof(eof_record)));
4267 EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber, eof_record.final_magic_number);
4268 EXPECT_TRUE((eof_record.flags & disk_cache::SimpleFileEOF::FLAG_HAS_CRC32) ==
4269 disk_cache::SimpleFileEOF::FLAG_HAS_CRC32);
4270
4271 buffer_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4272 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
4273 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
4274
4275 // Shrink stream1.
4276 stream1_size = 50;
4277 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, true));
4278 EXPECT_EQ(stream1_size, entry->GetDataSize(1));
4279 entry->Close();
4280
4281 // Check that stream0 data has not been modified.
4282 buffer_read = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4283 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4284 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
4285 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
4286 entry->Close();
4287 entry = nullptr;
4288 }
4289
4290 // Test that writing within the range for which the crc has already been
4291 // computed will properly invalidate the computed crc.
TEST_F(DiskCacheEntryTest,SimpleCacheCRCRewrite)4292 TEST_F(DiskCacheEntryTest, SimpleCacheCRCRewrite) {
4293 // Test sequence:
4294 // Create, Write (big data), Write (small data in the middle), Close.
4295 // Open, Read (all), Close.
4296 SetSimpleCacheMode();
4297 InitCache();
4298 disk_cache::Entry* null = nullptr;
4299 const char key[] = "the first key";
4300
4301 const int kHalfSize = 200;
4302 const int kSize = 2 * kHalfSize;
4303 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4304 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kHalfSize);
4305 CacheTestFillBuffer(buffer1->data(), kSize, false);
4306 CacheTestFillBuffer(buffer2->data(), kHalfSize, false);
4307
4308 disk_cache::Entry* entry = nullptr;
4309 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4310 EXPECT_NE(null, entry);
4311 entry->Close();
4312
4313 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
4314 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4315 int offset = 0;
4316 int buf_len = kSize;
4317
4318 EXPECT_EQ(buf_len,
4319 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
4320 offset = kHalfSize;
4321 buf_len = kHalfSize;
4322 EXPECT_EQ(buf_len,
4323 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
4324 entry->Close();
4325
4326 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4327
4328 auto buffer1_read1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4329 EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize));
4330 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kHalfSize));
4331 EXPECT_EQ(
4332 0,
4333 memcmp(buffer2->data(), buffer1_read1->data() + kHalfSize, kHalfSize));
4334
4335 entry->Close();
4336 }
4337 }
4338
SimpleCacheThirdStreamFileExists(const char * key)4339 bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key) {
4340 int third_stream_file_index =
4341 disk_cache::simple_util::GetFileIndexFromStreamIndex(2);
4342 base::FilePath third_stream_file_path = cache_path_.AppendASCII(
4343 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(
4344 key, third_stream_file_index));
4345 return PathExists(third_stream_file_path);
4346 }
4347
SyncDoomEntry(const char * key)4348 void DiskCacheEntryTest::SyncDoomEntry(const char* key) {
4349 net::TestCompletionCallback callback;
4350 cache_->DoomEntry(key, net::HIGHEST, callback.callback());
4351 callback.WaitForResult();
4352 }
4353
CreateEntryWithHeaderBodyAndSideData(const std::string & key,int data_size)4354 void DiskCacheEntryTest::CreateEntryWithHeaderBodyAndSideData(
4355 const std::string& key,
4356 int data_size) {
4357 // Use one buffer for simplicity.
4358 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(data_size);
4359 CacheTestFillBuffer(buffer->data(), data_size, false);
4360
4361 disk_cache::Entry* entry = nullptr;
4362 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4363 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
4364 EXPECT_EQ(data_size, WriteData(entry, i, /* offset */ 0, buffer.get(),
4365 data_size, false));
4366 }
4367 entry->Close();
4368 }
4369
TruncateFileFromEnd(int file_index,const std::string & key,int data_size,int truncate_size)4370 void DiskCacheEntryTest::TruncateFileFromEnd(int file_index,
4371 const std::string& key,
4372 int data_size,
4373 int truncate_size) {
4374 // Remove last eof bytes from cache file.
4375 ASSERT_GT(data_size, truncate_size);
4376 const int64_t new_size =
4377 disk_cache::simple_util::GetFileSizeFromDataSize(key.size(), data_size) -
4378 truncate_size;
4379 const base::FilePath entry_path = cache_path_.AppendASCII(
4380 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, file_index));
4381 EXPECT_TRUE(TruncatePath(entry_path, new_size));
4382 }
4383
UseAfterBackendDestruction()4384 void DiskCacheEntryTest::UseAfterBackendDestruction() {
4385 disk_cache::Entry* entry = nullptr;
4386 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
4387 ResetCaches();
4388
4389 const int kSize = 100;
4390 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4391 CacheTestFillBuffer(buffer->data(), kSize, false);
4392
4393 // Do some writes and reads, but don't change the result. We're OK
4394 // with them failing, just not them crashing.
4395 WriteData(entry, 1, 0, buffer.get(), kSize, false);
4396 ReadData(entry, 1, 0, buffer.get(), kSize);
4397 WriteSparseData(entry, 20000, buffer.get(), kSize);
4398
4399 entry->Close();
4400 }
4401
CloseSparseAfterBackendDestruction()4402 void DiskCacheEntryTest::CloseSparseAfterBackendDestruction() {
4403 const int kSize = 100;
4404 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4405 CacheTestFillBuffer(buffer->data(), kSize, false);
4406
4407 disk_cache::Entry* entry = nullptr;
4408 ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
4409 WriteSparseData(entry, 20000, buffer.get(), kSize);
4410
4411 ResetCaches();
4412
4413 // This call shouldn't DCHECK or crash.
4414 entry->Close();
4415 }
4416
4417 // Check that a newly-created entry with no third-stream writes omits the
4418 // third stream file.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream1)4419 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream1) {
4420 SetSimpleCacheMode();
4421 InitCache();
4422
4423 const char key[] = "key";
4424
4425 disk_cache::Entry* entry;
4426
4427 // Create entry and close without writing: third stream file should be
4428 // omitted, since the stream is empty.
4429 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4430 entry->Close();
4431 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4432
4433 SyncDoomEntry(key);
4434 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4435 }
4436
4437 // Check that a newly-created entry with only a single zero-offset, zero-length
4438 // write omits the third stream file.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream2)4439 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream2) {
4440 SetSimpleCacheMode();
4441 InitCache();
4442
4443 const int kHalfSize = 8;
4444 const int kSize = kHalfSize * 2;
4445 const char key[] = "key";
4446 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4447 CacheTestFillBuffer(buffer->data(), kHalfSize, false);
4448
4449 disk_cache::Entry* entry;
4450
4451 // Create entry, write empty buffer to third stream, and close: third stream
4452 // should still be omitted, since the entry ignores writes that don't modify
4453 // data or change the length.
4454 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4455 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer.get(), 0, true));
4456 entry->Close();
4457 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4458
4459 SyncDoomEntry(key);
4460 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4461 }
4462
4463 // Check that we can read back data written to the third stream.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream3)4464 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream3) {
4465 SetSimpleCacheMode();
4466 InitCache();
4467
4468 const int kHalfSize = 8;
4469 const int kSize = kHalfSize * 2;
4470 const char key[] = "key";
4471 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4472 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4473 CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
4474
4475 disk_cache::Entry* entry;
4476
4477 // Create entry, write data to third stream, and close: third stream should
4478 // not be omitted, since it contains data. Re-open entry and ensure there
4479 // are that many bytes in the third stream.
4480 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4481 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true));
4482 entry->Close();
4483 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
4484
4485 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4486 EXPECT_EQ(kHalfSize, ReadData(entry, 2, 0, buffer2.get(), kSize));
4487 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kHalfSize));
4488 entry->Close();
4489 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
4490
4491 SyncDoomEntry(key);
4492 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4493 }
4494
4495 // Check that we remove the third stream file upon opening an entry and finding
4496 // the third stream empty. (This is the upgrade path for entries written
4497 // before the third stream was optional.)
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream4)4498 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream4) {
4499 SetSimpleCacheMode();
4500 InitCache();
4501
4502 const int kHalfSize = 8;
4503 const int kSize = kHalfSize * 2;
4504 const char key[] = "key";
4505 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4506 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4507 CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
4508
4509 disk_cache::Entry* entry;
4510
4511 // Create entry, write data to third stream, truncate third stream back to
4512 // empty, and close: third stream will not initially be omitted, since entry
4513 // creates the file when the first significant write comes in, and only
4514 // removes it on open if it is empty. Reopen, ensure that the file is
4515 // deleted, and that there's no data in the third stream.
4516 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4517 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true));
4518 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer1.get(), 0, true));
4519 entry->Close();
4520 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
4521
4522 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4523 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4524 EXPECT_EQ(0, ReadData(entry, 2, 0, buffer2.get(), kSize));
4525 entry->Close();
4526 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4527
4528 SyncDoomEntry(key);
4529 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4530 }
4531
4532 // Check that we don't accidentally create the third stream file once the entry
4533 // has been doomed.
TEST_F(DiskCacheEntryTest,SimpleCacheOmittedThirdStream5)4534 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream5) {
4535 SetSimpleCacheMode();
4536 InitCache();
4537
4538 const int kHalfSize = 8;
4539 const int kSize = kHalfSize * 2;
4540 const char key[] = "key";
4541 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4542 CacheTestFillBuffer(buffer->data(), kHalfSize, false);
4543
4544 disk_cache::Entry* entry;
4545
4546 // Create entry, doom entry, write data to third stream, and close: third
4547 // stream should not exist. (Note: We don't care if the write fails, just
4548 // that it doesn't cause the file to be created on disk.)
4549 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4550 entry->Doom();
4551 WriteData(entry, 2, 0, buffer.get(), kHalfSize, true);
4552 entry->Close();
4553 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4554 }
4555
4556 // There could be a race between Doom and an optimistic write.
TEST_F(DiskCacheEntryTest,SimpleCacheDoomOptimisticWritesRace)4557 TEST_F(DiskCacheEntryTest, SimpleCacheDoomOptimisticWritesRace) {
4558 // Test sequence:
4559 // Create, first Write, second Write, Close.
4560 // Open, Close.
4561 SetSimpleCacheMode();
4562 InitCache();
4563 disk_cache::Entry* null = nullptr;
4564 const char key[] = "the first key";
4565
4566 const int kSize = 200;
4567 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4568 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4569 CacheTestFillBuffer(buffer1->data(), kSize, false);
4570 CacheTestFillBuffer(buffer2->data(), kSize, false);
4571
4572 // The race only happens on stream 1 and stream 2.
4573 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
4574 ASSERT_THAT(DoomAllEntries(), IsOk());
4575 disk_cache::Entry* entry = nullptr;
4576
4577 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4578 EXPECT_NE(null, entry);
4579 entry->Close();
4580 entry = nullptr;
4581
4582 ASSERT_THAT(DoomAllEntries(), IsOk());
4583 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4584 EXPECT_NE(null, entry);
4585
4586 int offset = 0;
4587 int buf_len = kSize;
4588 // This write should not be optimistic (since create is).
4589 EXPECT_EQ(buf_len,
4590 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
4591
4592 offset = kSize;
4593 // This write should be optimistic.
4594 EXPECT_EQ(buf_len,
4595 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
4596 entry->Close();
4597
4598 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4599 EXPECT_NE(null, entry);
4600
4601 entry->Close();
4602 entry = nullptr;
4603 }
4604 }
4605
4606 // Tests for a regression in crbug.com/317138 , in which deleting an already
4607 // doomed entry was removing the active entry from the index.
TEST_F(DiskCacheEntryTest,SimpleCachePreserveActiveEntries)4608 TEST_F(DiskCacheEntryTest, SimpleCachePreserveActiveEntries) {
4609 SetSimpleCacheMode();
4610 InitCache();
4611
4612 disk_cache::Entry* null = nullptr;
4613
4614 const char key[] = "this is a key";
4615
4616 disk_cache::Entry* entry1 = nullptr;
4617 ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
4618 ScopedEntryPtr entry1_closer(entry1);
4619 EXPECT_NE(null, entry1);
4620 entry1->Doom();
4621
4622 disk_cache::Entry* entry2 = nullptr;
4623 ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
4624 ScopedEntryPtr entry2_closer(entry2);
4625 EXPECT_NE(null, entry2);
4626 entry2_closer.reset();
4627
4628 // Closing then reopening entry2 insures that entry2 is serialized, and so
4629 // it can be opened from files without error.
4630 entry2 = nullptr;
4631 ASSERT_THAT(OpenEntry(key, &entry2), IsOk());
4632 EXPECT_NE(null, entry2);
4633 entry2_closer.reset(entry2);
4634
4635 scoped_refptr<disk_cache::SimpleEntryImpl>
4636 entry1_refptr = static_cast<disk_cache::SimpleEntryImpl*>(entry1);
4637
4638 // If crbug.com/317138 has regressed, this will remove |entry2| from
4639 // the backend's |active_entries_| while |entry2| is still alive and its
4640 // files are still on disk.
4641 entry1_closer.reset();
4642 entry1 = nullptr;
4643
4644 // Close does not have a callback. However, we need to be sure the close is
4645 // finished before we continue the test. We can take advantage of how the ref
4646 // counting of a SimpleEntryImpl works to fake out a callback: When the
4647 // last Close() call is made to an entry, an IO operation is sent to the
4648 // synchronous entry to close the platform files. This IO operation holds a
4649 // ref pointer to the entry, which expires when the operation is done. So,
4650 // we take a refpointer, and watch the SimpleEntry object until it has only
4651 // one ref; this indicates the IO operation is complete.
4652 while (!entry1_refptr->HasOneRef()) {
4653 base::PlatformThread::YieldCurrentThread();
4654 base::RunLoop().RunUntilIdle();
4655 }
4656 entry1_refptr = nullptr;
4657
4658 // In the bug case, this new entry ends up being a duplicate object pointing
4659 // at the same underlying files.
4660 disk_cache::Entry* entry3 = nullptr;
4661 EXPECT_THAT(OpenEntry(key, &entry3), IsOk());
4662 ScopedEntryPtr entry3_closer(entry3);
4663 EXPECT_NE(null, entry3);
4664
4665 // The test passes if these two dooms do not crash.
4666 entry2->Doom();
4667 entry3->Doom();
4668 }
4669
TEST_F(DiskCacheEntryTest,SimpleCacheBasicSparseIO)4670 TEST_F(DiskCacheEntryTest, SimpleCacheBasicSparseIO) {
4671 SetSimpleCacheMode();
4672 InitCache();
4673 BasicSparseIO();
4674 }
4675
TEST_F(DiskCacheEntryTest,SimpleCacheHugeSparseIO)4676 TEST_F(DiskCacheEntryTest, SimpleCacheHugeSparseIO) {
4677 SetSimpleCacheMode();
4678 InitCache();
4679 HugeSparseIO();
4680 }
4681
TEST_F(DiskCacheEntryTest,SimpleCacheGetAvailableRange)4682 TEST_F(DiskCacheEntryTest, SimpleCacheGetAvailableRange) {
4683 SetSimpleCacheMode();
4684 InitCache();
4685 GetAvailableRangeTest();
4686 }
4687
TEST_F(DiskCacheEntryTest,SimpleCacheUpdateSparseEntry)4688 TEST_F(DiskCacheEntryTest, SimpleCacheUpdateSparseEntry) {
4689 SetSimpleCacheMode();
4690 InitCache();
4691 UpdateSparseEntry();
4692 }
4693
TEST_F(DiskCacheEntryTest,SimpleCacheDoomSparseEntry)4694 TEST_F(DiskCacheEntryTest, SimpleCacheDoomSparseEntry) {
4695 SetSimpleCacheMode();
4696 InitCache();
4697 DoomSparseEntry();
4698 }
4699
TEST_F(DiskCacheEntryTest,SimpleCachePartialSparseEntry)4700 TEST_F(DiskCacheEntryTest, SimpleCachePartialSparseEntry) {
4701 SetSimpleCacheMode();
4702 InitCache();
4703 PartialSparseEntry();
4704 }
4705
TEST_F(DiskCacheEntryTest,SimpleCacheTruncateLargeSparseFile)4706 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateLargeSparseFile) {
4707 const int kSize = 1024;
4708
4709 SetSimpleCacheMode();
4710 // An entry is allowed sparse data 1/10 the size of the cache, so this size
4711 // allows for one |kSize|-sized range plus overhead, but not two ranges.
4712 SetMaxSize(kSize * 15);
4713 InitCache();
4714
4715 const char key[] = "key";
4716 disk_cache::Entry* null = nullptr;
4717 disk_cache::Entry* entry;
4718 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4719 EXPECT_NE(null, entry);
4720
4721 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4722 CacheTestFillBuffer(buffer->data(), kSize, false);
4723 net::TestCompletionCallback callback;
4724 int ret;
4725
4726 // Verify initial conditions.
4727 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
4728 EXPECT_EQ(0, callback.GetResult(ret));
4729
4730 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
4731 EXPECT_EQ(0, callback.GetResult(ret));
4732
4733 // Write a range and make sure it reads back.
4734 ret = entry->WriteSparseData(0, buffer.get(), kSize, callback.callback());
4735 EXPECT_EQ(kSize, callback.GetResult(ret));
4736
4737 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
4738 EXPECT_EQ(kSize, callback.GetResult(ret));
4739
4740 // Write another range and make sure it reads back.
4741 ret = entry->WriteSparseData(kSize, buffer.get(), kSize, callback.callback());
4742 EXPECT_EQ(kSize, callback.GetResult(ret));
4743
4744 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
4745 EXPECT_EQ(kSize, callback.GetResult(ret));
4746
4747 // Make sure the first range was removed when the second was written.
4748 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
4749 EXPECT_EQ(0, callback.GetResult(ret));
4750
4751 // Close and reopen the entry and make sure the first entry is still absent
4752 // and the second entry is still present.
4753 entry->Close();
4754 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4755
4756 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
4757 EXPECT_EQ(0, callback.GetResult(ret));
4758
4759 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
4760 EXPECT_EQ(kSize, callback.GetResult(ret));
4761
4762 entry->Close();
4763 }
4764
TEST_F(DiskCacheEntryTest,SimpleCacheNoBodyEOF)4765 TEST_F(DiskCacheEntryTest, SimpleCacheNoBodyEOF) {
4766 SetSimpleCacheMode();
4767 InitCache();
4768
4769 const std::string key("the first key");
4770 const int kSize = 1024;
4771 CreateEntryWithHeaderBodyAndSideData(key, kSize);
4772
4773 disk_cache::Entry* entry = nullptr;
4774 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4775 entry->Close();
4776
4777 TruncateFileFromEnd(0 /*header and body file index*/, key, kSize,
4778 static_cast<int>(sizeof(disk_cache::SimpleFileEOF)));
4779 EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED));
4780 }
4781
TEST_F(DiskCacheEntryTest,SimpleCacheNoSideDataEOF)4782 TEST_F(DiskCacheEntryTest, SimpleCacheNoSideDataEOF) {
4783 SetSimpleCacheMode();
4784 InitCache();
4785
4786 const char key[] = "the first key";
4787 const int kSize = 1024;
4788 CreateEntryWithHeaderBodyAndSideData(key, kSize);
4789
4790 disk_cache::Entry* entry = nullptr;
4791 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4792 entry->Close();
4793
4794 TruncateFileFromEnd(1 /*side data file_index*/, key, kSize,
4795 static_cast<int>(sizeof(disk_cache::SimpleFileEOF)));
4796 EXPECT_THAT(OpenEntry(key, &entry), IsOk());
4797 // The corrupted stream should have been deleted.
4798 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
4799 // _0 should still exist.
4800 base::FilePath path_0 = cache_path_.AppendASCII(
4801 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
4802 EXPECT_TRUE(base::PathExists(path_0));
4803
4804 auto check_stream_data = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4805 EXPECT_EQ(kSize, ReadData(entry, 0, 0, check_stream_data.get(), kSize));
4806 EXPECT_EQ(kSize, ReadData(entry, 1, 0, check_stream_data.get(), kSize));
4807 EXPECT_EQ(0, entry->GetDataSize(2));
4808 entry->Close();
4809 }
4810
TEST_F(DiskCacheEntryTest,SimpleCacheReadWithoutKeySHA256)4811 TEST_F(DiskCacheEntryTest, SimpleCacheReadWithoutKeySHA256) {
4812 // This test runs as APP_CACHE to make operations more synchronous.
4813 SetCacheType(net::APP_CACHE);
4814 SetSimpleCacheMode();
4815 InitCache();
4816 disk_cache::Entry* entry;
4817 std::string key("a key");
4818 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4819
4820 const std::string stream_0_data = "data for stream zero";
4821 auto stream_0_iobuffer =
4822 base::MakeRefCounted<net::StringIOBuffer>(stream_0_data);
4823 EXPECT_EQ(static_cast<int>(stream_0_data.size()),
4824 WriteData(entry, 0, 0, stream_0_iobuffer.get(),
4825 stream_0_data.size(), false));
4826 const std::string stream_1_data = "FOR STREAM ONE, QUITE DIFFERENT THINGS";
4827 auto stream_1_iobuffer =
4828 base::MakeRefCounted<net::StringIOBuffer>(stream_1_data);
4829 EXPECT_EQ(static_cast<int>(stream_1_data.size()),
4830 WriteData(entry, 1, 0, stream_1_iobuffer.get(),
4831 stream_1_data.size(), false));
4832 entry->Close();
4833
4834 base::RunLoop().RunUntilIdle();
4835 disk_cache::FlushCacheThreadForTesting();
4836 base::RunLoop().RunUntilIdle();
4837
4838 EXPECT_TRUE(
4839 disk_cache::simple_util::RemoveKeySHA256FromEntry(key, cache_path_));
4840 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4841 ScopedEntryPtr entry_closer(entry);
4842
4843 EXPECT_EQ(static_cast<int>(stream_0_data.size()), entry->GetDataSize(0));
4844 auto check_stream_0_data =
4845 base::MakeRefCounted<net::IOBufferWithSize>(stream_0_data.size());
4846 EXPECT_EQ(
4847 static_cast<int>(stream_0_data.size()),
4848 ReadData(entry, 0, 0, check_stream_0_data.get(), stream_0_data.size()));
4849 EXPECT_EQ(0, stream_0_data.compare(0, std::string::npos,
4850 check_stream_0_data->data(),
4851 stream_0_data.size()));
4852
4853 EXPECT_EQ(static_cast<int>(stream_1_data.size()), entry->GetDataSize(1));
4854 auto check_stream_1_data =
4855 base::MakeRefCounted<net::IOBufferWithSize>(stream_1_data.size());
4856 EXPECT_EQ(
4857 static_cast<int>(stream_1_data.size()),
4858 ReadData(entry, 1, 0, check_stream_1_data.get(), stream_1_data.size()));
4859 EXPECT_EQ(0, stream_1_data.compare(0, std::string::npos,
4860 check_stream_1_data->data(),
4861 stream_1_data.size()));
4862 }
4863
TEST_F(DiskCacheEntryTest,SimpleCacheDoubleOpenWithoutKeySHA256)4864 TEST_F(DiskCacheEntryTest, SimpleCacheDoubleOpenWithoutKeySHA256) {
4865 // This test runs as APP_CACHE to make operations more synchronous.
4866 SetCacheType(net::APP_CACHE);
4867 SetSimpleCacheMode();
4868 InitCache();
4869 disk_cache::Entry* entry;
4870 std::string key("a key");
4871 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4872 entry->Close();
4873
4874 base::RunLoop().RunUntilIdle();
4875 disk_cache::FlushCacheThreadForTesting();
4876 base::RunLoop().RunUntilIdle();
4877
4878 EXPECT_TRUE(
4879 disk_cache::simple_util::RemoveKeySHA256FromEntry(key, cache_path_));
4880 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4881 entry->Close();
4882
4883 base::RunLoop().RunUntilIdle();
4884 disk_cache::FlushCacheThreadForTesting();
4885 base::RunLoop().RunUntilIdle();
4886
4887 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4888 entry->Close();
4889 }
4890
TEST_F(DiskCacheEntryTest,SimpleCacheReadCorruptKeySHA256)4891 TEST_F(DiskCacheEntryTest, SimpleCacheReadCorruptKeySHA256) {
4892 // This test runs as APP_CACHE to make operations more synchronous.
4893 SetCacheType(net::APP_CACHE);
4894 SetSimpleCacheMode();
4895 InitCache();
4896 disk_cache::Entry* entry;
4897 std::string key("a key");
4898 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4899 entry->Close();
4900
4901 base::RunLoop().RunUntilIdle();
4902 disk_cache::FlushCacheThreadForTesting();
4903 base::RunLoop().RunUntilIdle();
4904
4905 EXPECT_TRUE(
4906 disk_cache::simple_util::CorruptKeySHA256FromEntry(key, cache_path_));
4907 EXPECT_NE(net::OK, OpenEntry(key, &entry));
4908 }
4909
TEST_F(DiskCacheEntryTest,SimpleCacheReadCorruptLength)4910 TEST_F(DiskCacheEntryTest, SimpleCacheReadCorruptLength) {
4911 SetCacheType(net::APP_CACHE);
4912 SetSimpleCacheMode();
4913 InitCache();
4914 disk_cache::Entry* entry;
4915 std::string key("a key");
4916 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
4917 entry->Close();
4918
4919 base::RunLoop().RunUntilIdle();
4920 disk_cache::FlushCacheThreadForTesting();
4921 base::RunLoop().RunUntilIdle();
4922
4923 EXPECT_TRUE(
4924 disk_cache::simple_util::CorruptStream0LengthFromEntry(key, cache_path_));
4925 EXPECT_NE(net::OK, OpenEntry(key, &entry));
4926 }
4927
TEST_F(DiskCacheEntryTest,SimpleCacheCreateRecoverFromRmdir)4928 TEST_F(DiskCacheEntryTest, SimpleCacheCreateRecoverFromRmdir) {
4929 // This test runs as APP_CACHE to make operations more synchronous.
4930 // (in particular we want to see if create succeeded or not, so we don't
4931 // want an optimistic one).
4932 SetCacheType(net::APP_CACHE);
4933 SetSimpleCacheMode();
4934 InitCache();
4935
4936 // Pretend someone deleted the cache dir. This shouldn't be too scary in
4937 // the test since cache_path_ is set as:
4938 // CHECK(temp_dir_.CreateUniqueTempDir());
4939 // cache_path_ = temp_dir_.GetPath().AppendASCII("cache");
4940 disk_cache::DeleteCache(cache_path_,
4941 true /* delete the dir, what we really want*/);
4942
4943 disk_cache::Entry* entry;
4944 std::string key("a key");
4945 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4946 entry->Close();
4947 }
4948
TEST_F(DiskCacheEntryTest,SimpleCacheSparseErrorHandling)4949 TEST_F(DiskCacheEntryTest, SimpleCacheSparseErrorHandling) {
4950 // If there is corruption in sparse file, we should delete all the files
4951 // before returning the failure. Further additional sparse operations in
4952 // failure state should fail gracefully.
4953 SetSimpleCacheMode();
4954 InitCache();
4955
4956 std::string key("a key");
4957
4958 disk_cache::SimpleFileTracker::EntryFileKey num_key(
4959 disk_cache::simple_util::GetEntryHashKey(key));
4960 base::FilePath path_0 = cache_path_.AppendASCII(
4961 disk_cache::simple_util::GetFilenameFromEntryFileKeyAndFileIndex(num_key,
4962 0));
4963 base::FilePath path_s = cache_path_.AppendASCII(
4964 disk_cache::simple_util::GetSparseFilenameFromEntryFileKey(num_key));
4965
4966 disk_cache::Entry* entry = nullptr;
4967 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
4968
4969 const int kSize = 1024;
4970 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
4971 CacheTestFillBuffer(buffer->data(), kSize, false);
4972
4973 EXPECT_EQ(kSize, WriteSparseData(entry, 0, buffer.get(), kSize));
4974 entry->Close();
4975
4976 disk_cache::FlushCacheThreadForTesting();
4977 EXPECT_TRUE(base::PathExists(path_0));
4978 EXPECT_TRUE(base::PathExists(path_s));
4979
4980 // Now corrupt the _s file in a way that makes it look OK on open, but not on
4981 // read.
4982 base::File file_s(path_s, base::File::FLAG_OPEN | base::File::FLAG_READ |
4983 base::File::FLAG_WRITE);
4984 ASSERT_TRUE(file_s.IsValid());
4985 file_s.SetLength(sizeof(disk_cache::SimpleFileHeader) +
4986 sizeof(disk_cache::SimpleFileSparseRangeHeader) +
4987 key.size());
4988 file_s.Close();
4989
4990 // Re-open, it should still be fine.
4991 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
4992
4993 // Read should fail though.
4994 EXPECT_EQ(net::ERR_CACHE_READ_FAILURE,
4995 ReadSparseData(entry, 0, buffer.get(), kSize));
4996
4997 // At the point read returns to us, the files should already been gone.
4998 EXPECT_FALSE(base::PathExists(path_0));
4999 EXPECT_FALSE(base::PathExists(path_s));
5000
5001 // Re-trying should still fail. Not DCHECK-fail.
5002 EXPECT_EQ(net::ERR_FAILED, ReadSparseData(entry, 0, buffer.get(), kSize));
5003
5004 // Similarly for other ops.
5005 EXPECT_EQ(net::ERR_FAILED, WriteSparseData(entry, 0, buffer.get(), kSize));
5006 net::TestCompletionCallback cb;
5007
5008 TestRangeResultCompletionCallback range_cb;
5009 RangeResult result = range_cb.GetResult(
5010 entry->GetAvailableRange(0, 1024, range_cb.callback()));
5011 EXPECT_EQ(net::ERR_FAILED, result.net_error);
5012
5013 entry->Close();
5014 disk_cache::FlushCacheThreadForTesting();
5015
5016 // Closing shouldn't resurrect files, either.
5017 EXPECT_FALSE(base::PathExists(path_0));
5018 EXPECT_FALSE(base::PathExists(path_s));
5019 }
5020
TEST_F(DiskCacheEntryTest,SimpleCacheCreateCollision)5021 TEST_F(DiskCacheEntryTest, SimpleCacheCreateCollision) {
5022 // These two keys collide; this test is that we properly handled creation
5023 // of both.
5024 const char kCollKey1[] =
5025 "\xfb\x4e\x9c\x1d\x66\x71\xf7\x54\xa3\x11\xa0\x7e\x16\xa5\x68\xf6";
5026 const char kCollKey2[] =
5027 "\xbc\x60\x64\x92\xbc\xa0\x5c\x15\x17\x93\x29\x2d\xe4\x21\xbd\x03";
5028
5029 const int kSize = 256;
5030 auto buffer1 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5031 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5032 auto read_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5033 CacheTestFillBuffer(buffer1->data(), kSize, false);
5034 CacheTestFillBuffer(buffer2->data(), kSize, false);
5035
5036 SetSimpleCacheMode();
5037 InitCache();
5038
5039 disk_cache::Entry* entry1;
5040 ASSERT_THAT(CreateEntry(kCollKey1, &entry1), IsOk());
5041
5042 disk_cache::Entry* entry2;
5043 ASSERT_THAT(CreateEntry(kCollKey2, &entry2), IsOk());
5044
5045 // Make sure that entry was actually created and we didn't just succeed
5046 // optimistically. (Oddly I can't seem to hit the sequence of events required
5047 // for the bug that used to be here if I just set this to APP_CACHE).
5048 EXPECT_EQ(kSize, WriteData(entry2, 0, 0, buffer2.get(), kSize, false));
5049
5050 // entry1 is still usable, though, and distinct (we just won't be able to
5051 // re-open it).
5052 EXPECT_EQ(kSize, WriteData(entry1, 0, 0, buffer1.get(), kSize, false));
5053 EXPECT_EQ(kSize, ReadData(entry1, 0, 0, read_buffer.get(), kSize));
5054 EXPECT_EQ(0, memcmp(buffer1->data(), read_buffer->data(), kSize));
5055
5056 EXPECT_EQ(kSize, ReadData(entry2, 0, 0, read_buffer.get(), kSize));
5057 EXPECT_EQ(0, memcmp(buffer2->data(), read_buffer->data(), kSize));
5058
5059 entry1->Close();
5060 entry2->Close();
5061 }
5062
TEST_F(DiskCacheEntryTest,SimpleCacheConvertToSparseStream2LeftOver)5063 TEST_F(DiskCacheEntryTest, SimpleCacheConvertToSparseStream2LeftOver) {
5064 // Testcase for what happens when we have a sparse stream and a left over
5065 // empty stream 2 file.
5066 const int kSize = 10;
5067 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5068 CacheTestFillBuffer(buffer->data(), kSize, false);
5069
5070 SetSimpleCacheMode();
5071 InitCache();
5072 disk_cache::Entry* entry;
5073 std::string key("a key");
5074 ASSERT_THAT(CreateEntry(key, &entry), IsOk());
5075 // Create an empty stream 2. To do that, we first make a non-empty one, then
5076 // truncate it (since otherwise the write would just get ignored).
5077 EXPECT_EQ(kSize, WriteData(entry, /* stream = */ 2, /* offset = */ 0,
5078 buffer.get(), kSize, false));
5079 EXPECT_EQ(0, WriteData(entry, /* stream = */ 2, /* offset = */ 0,
5080 buffer.get(), 0, true));
5081
5082 EXPECT_EQ(kSize, WriteSparseData(entry, 5, buffer.get(), kSize));
5083 entry->Close();
5084
5085 // Reopen, and try to get the sparse data back.
5086 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
5087 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5088 EXPECT_EQ(kSize, ReadSparseData(entry, 5, buffer2.get(), kSize));
5089 EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize));
5090 entry->Close();
5091 }
5092
TEST_F(DiskCacheEntryTest,SimpleCacheLazyStream2CreateFailure)5093 TEST_F(DiskCacheEntryTest, SimpleCacheLazyStream2CreateFailure) {
5094 // Testcase for what happens when lazy-creation of stream 2 fails.
5095 const int kSize = 10;
5096 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5097 CacheTestFillBuffer(buffer->data(), kSize, false);
5098
5099 // Synchronous ops, for ease of disk state;
5100 SetCacheType(net::APP_CACHE);
5101 SetSimpleCacheMode();
5102 InitCache();
5103
5104 const char kKey[] = "a key";
5105 disk_cache::Entry* entry = nullptr;
5106 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5107
5108 // Create _1 file for stream 2; this should inject a failure when the cache
5109 // tries to create it itself.
5110 base::FilePath entry_file1_path = cache_path_.AppendASCII(
5111 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(kKey, 1));
5112 base::File entry_file1(entry_file1_path,
5113 base::File::FLAG_WRITE | base::File::FLAG_CREATE);
5114 ASSERT_TRUE(entry_file1.IsValid());
5115 entry_file1.Close();
5116
5117 EXPECT_EQ(net::ERR_CACHE_WRITE_FAILURE,
5118 WriteData(entry, /* index = */ 2, /* offset = */ 0, buffer.get(),
5119 kSize, /* truncate = */ false));
5120 entry->Close();
5121 }
5122
TEST_F(DiskCacheEntryTest,SimpleCacheChecksumpScrewUp)5123 TEST_F(DiskCacheEntryTest, SimpleCacheChecksumpScrewUp) {
5124 // Test for a bug that occurred during development of movement of CRC
5125 // computation off I/O thread.
5126 const int kSize = 10;
5127 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5128 CacheTestFillBuffer(buffer->data(), kSize, false);
5129
5130 const int kDoubleSize = kSize * 2;
5131 auto big_buffer = base::MakeRefCounted<net::IOBufferWithSize>(kDoubleSize);
5132 CacheTestFillBuffer(big_buffer->data(), kDoubleSize, false);
5133
5134 SetSimpleCacheMode();
5135 InitCache();
5136
5137 const char kKey[] = "a key";
5138 disk_cache::Entry* entry = nullptr;
5139 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5140
5141 // Write out big_buffer for the double range. Checksum will be set to this.
5142 ASSERT_EQ(kDoubleSize,
5143 WriteData(entry, 1, 0, big_buffer.get(), kDoubleSize, false));
5144
5145 // Reset remembered position to 0 by writing at an earlier non-zero offset.
5146 ASSERT_EQ(1, WriteData(entry, /* stream = */ 1, /* offset = */ 1,
5147 big_buffer.get(), /* len = */ 1, false));
5148
5149 // Now write out the half-range twice. An intermediate revision would
5150 // incorrectly compute checksum as if payload was buffer followed by buffer
5151 // rather than buffer followed by end of big_buffer.
5152 ASSERT_EQ(kSize, WriteData(entry, 1, 0, buffer.get(), kSize, false));
5153 ASSERT_EQ(kSize, WriteData(entry, 1, 0, buffer.get(), kSize, false));
5154 entry->Close();
5155
5156 ASSERT_THAT(OpenEntry(kKey, &entry), IsOk());
5157 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5158 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
5159 EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize));
5160 EXPECT_EQ(kSize, ReadData(entry, 1, kSize, buffer2.get(), kSize));
5161 EXPECT_EQ(0, memcmp(big_buffer->data() + kSize, buffer2->data(), kSize));
5162 entry->Close();
5163 }
5164
TEST_F(DiskCacheEntryTest,SimpleUseAfterBackendDestruction)5165 TEST_F(DiskCacheEntryTest, SimpleUseAfterBackendDestruction) {
5166 SetSimpleCacheMode();
5167 InitCache();
5168 UseAfterBackendDestruction();
5169 }
5170
TEST_F(DiskCacheEntryTest,MemoryOnlyUseAfterBackendDestruction)5171 TEST_F(DiskCacheEntryTest, MemoryOnlyUseAfterBackendDestruction) {
5172 // https://crbug.com/741620
5173 SetMemoryOnlyMode();
5174 InitCache();
5175 UseAfterBackendDestruction();
5176 }
5177
TEST_F(DiskCacheEntryTest,SimpleCloseSparseAfterBackendDestruction)5178 TEST_F(DiskCacheEntryTest, SimpleCloseSparseAfterBackendDestruction) {
5179 SetSimpleCacheMode();
5180 InitCache();
5181 CloseSparseAfterBackendDestruction();
5182 }
5183
TEST_F(DiskCacheEntryTest,MemoryOnlyCloseSparseAfterBackendDestruction)5184 TEST_F(DiskCacheEntryTest, MemoryOnlyCloseSparseAfterBackendDestruction) {
5185 // https://crbug.com/946434
5186 SetMemoryOnlyMode();
5187 InitCache();
5188 CloseSparseAfterBackendDestruction();
5189 }
5190
LastUsedTimePersists()5191 void DiskCacheEntryTest::LastUsedTimePersists() {
5192 // Make sure that SetLastUsedTimeForTest persists. When used with SimpleCache,
5193 // this also checks that Entry::GetLastUsed is based on information in index,
5194 // when available, not atime on disk, which can be inaccurate.
5195 const char kKey[] = "a key";
5196 InitCache();
5197
5198 disk_cache::Entry* entry1 = nullptr;
5199 ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
5200 ASSERT_TRUE(nullptr != entry1);
5201 base::Time modified_last_used = entry1->GetLastUsed() - base::Minutes(5);
5202 entry1->SetLastUsedTimeForTest(modified_last_used);
5203 entry1->Close();
5204
5205 disk_cache::Entry* entry2 = nullptr;
5206 ASSERT_THAT(OpenEntry(kKey, &entry2), IsOk());
5207 ASSERT_TRUE(nullptr != entry2);
5208
5209 base::TimeDelta diff = modified_last_used - entry2->GetLastUsed();
5210 EXPECT_LT(diff, base::Seconds(2));
5211 EXPECT_GT(diff, -base::Seconds(2));
5212 entry2->Close();
5213 }
5214
TEST_F(DiskCacheEntryTest,LastUsedTimePersists)5215 TEST_F(DiskCacheEntryTest, LastUsedTimePersists) {
5216 LastUsedTimePersists();
5217 }
5218
TEST_F(DiskCacheEntryTest,SimpleLastUsedTimePersists)5219 TEST_F(DiskCacheEntryTest, SimpleLastUsedTimePersists) {
5220 SetSimpleCacheMode();
5221 LastUsedTimePersists();
5222 }
5223
TEST_F(DiskCacheEntryTest,MemoryOnlyLastUsedTimePersists)5224 TEST_F(DiskCacheEntryTest, MemoryOnlyLastUsedTimePersists) {
5225 SetMemoryOnlyMode();
5226 LastUsedTimePersists();
5227 }
5228
TruncateBackwards()5229 void DiskCacheEntryTest::TruncateBackwards() {
5230 const char kKey[] = "a key";
5231
5232 disk_cache::Entry* entry = nullptr;
5233 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5234 ASSERT_TRUE(entry != nullptr);
5235
5236 const int kBigSize = 40 * 1024;
5237 const int kSmallSize = 9727;
5238
5239 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kBigSize);
5240 CacheTestFillBuffer(buffer->data(), kBigSize, false);
5241 auto read_buf = base::MakeRefCounted<net::IOBufferWithSize>(kBigSize);
5242
5243 ASSERT_EQ(kSmallSize, WriteData(entry, /* index = */ 0,
5244 /* offset = */ kBigSize, buffer.get(),
5245 /* size = */ kSmallSize,
5246 /* truncate = */ false));
5247 memset(read_buf->data(), 0, kBigSize);
5248 ASSERT_EQ(kSmallSize, ReadData(entry, /* index = */ 0,
5249 /* offset = */ kBigSize, read_buf.get(),
5250 /* size = */ kSmallSize));
5251 EXPECT_EQ(0, memcmp(read_buf->data(), buffer->data(), kSmallSize));
5252
5253 // A partly overlapping truncate before the previous write.
5254 ASSERT_EQ(kBigSize,
5255 WriteData(entry, /* index = */ 0,
5256 /* offset = */ 3, buffer.get(), /* size = */ kBigSize,
5257 /* truncate = */ true));
5258 memset(read_buf->data(), 0, kBigSize);
5259 ASSERT_EQ(kBigSize,
5260 ReadData(entry, /* index = */ 0,
5261 /* offset = */ 3, read_buf.get(), /* size = */ kBigSize));
5262 EXPECT_EQ(0, memcmp(read_buf->data(), buffer->data(), kBigSize));
5263 EXPECT_EQ(kBigSize + 3, entry->GetDataSize(0));
5264 entry->Close();
5265 }
5266
TEST_F(DiskCacheEntryTest,TruncateBackwards)5267 TEST_F(DiskCacheEntryTest, TruncateBackwards) {
5268 // https://crbug.com/946539/
5269 InitCache();
5270 TruncateBackwards();
5271 }
5272
TEST_F(DiskCacheEntryTest,SimpleTruncateBackwards)5273 TEST_F(DiskCacheEntryTest, SimpleTruncateBackwards) {
5274 SetSimpleCacheMode();
5275 InitCache();
5276 TruncateBackwards();
5277 }
5278
TEST_F(DiskCacheEntryTest,MemoryOnlyTruncateBackwards)5279 TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateBackwards) {
5280 SetMemoryOnlyMode();
5281 InitCache();
5282 TruncateBackwards();
5283 }
5284
ZeroWriteBackwards()5285 void DiskCacheEntryTest::ZeroWriteBackwards() {
5286 const char kKey[] = "a key";
5287
5288 disk_cache::Entry* entry = nullptr;
5289 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5290 ASSERT_TRUE(entry != nullptr);
5291
5292 const int kSize = 1024;
5293 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5294 CacheTestFillBuffer(buffer->data(), kSize, false);
5295
5296 // Offset here needs to be > blockfile's kMaxBlockSize to hit
5297 // https://crbug.com/946538, as writes close to beginning are handled
5298 // specially.
5299 EXPECT_EQ(0, WriteData(entry, /* index = */ 0,
5300 /* offset = */ 17000, buffer.get(),
5301 /* size = */ 0, /* truncate = */ true));
5302
5303 EXPECT_EQ(0, WriteData(entry, /* index = */ 0,
5304 /* offset = */ 0, buffer.get(),
5305 /* size = */ 0, /* truncate = */ false));
5306
5307 EXPECT_EQ(kSize, ReadData(entry, /* index = */ 0,
5308 /* offset = */ 0, buffer.get(),
5309 /* size = */ kSize));
5310 for (int i = 0; i < kSize; ++i) {
5311 EXPECT_EQ(0, buffer->data()[i]) << i;
5312 }
5313 entry->Close();
5314 }
5315
TEST_F(DiskCacheEntryTest,ZeroWriteBackwards)5316 TEST_F(DiskCacheEntryTest, ZeroWriteBackwards) {
5317 // https://crbug.com/946538/
5318 InitCache();
5319 ZeroWriteBackwards();
5320 }
5321
TEST_F(DiskCacheEntryTest,SimpleZeroWriteBackwards)5322 TEST_F(DiskCacheEntryTest, SimpleZeroWriteBackwards) {
5323 SetSimpleCacheMode();
5324 InitCache();
5325 ZeroWriteBackwards();
5326 }
5327
TEST_F(DiskCacheEntryTest,MemoryOnlyZeroWriteBackwards)5328 TEST_F(DiskCacheEntryTest, MemoryOnlyZeroWriteBackwards) {
5329 SetMemoryOnlyMode();
5330 InitCache();
5331 ZeroWriteBackwards();
5332 }
5333
SparseOffset64Bit()5334 void DiskCacheEntryTest::SparseOffset64Bit() {
5335 // Offsets to sparse ops are 64-bit, make sure we keep track of all of them.
5336 // (Or, as at least in case of blockfile, fail things cleanly, as it has a
5337 // cap on max offset that's much lower).
5338 bool blockfile = !memory_only_ && !simple_cache_mode_;
5339 InitCache();
5340
5341 const char kKey[] = "a key";
5342
5343 disk_cache::Entry* entry = nullptr;
5344 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5345 ASSERT_TRUE(entry != nullptr);
5346
5347 const int kSize = 1024;
5348 // One bit set very high, so intermediate truncations to 32-bit would drop it
5349 // even if they happen after a bunch of shifting right.
5350 const int64_t kOffset = (1ll << 61);
5351
5352 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5353 CacheTestFillBuffer(buffer->data(), kSize, false);
5354
5355 EXPECT_EQ(blockfile ? net::ERR_CACHE_OPERATION_NOT_SUPPORTED : kSize,
5356 WriteSparseData(entry, kOffset, buffer.get(), kSize));
5357
5358 int64_t start_out = -1;
5359 EXPECT_EQ(0, GetAvailableRange(entry, /* offset = */ 0, kSize, &start_out));
5360
5361 start_out = -1;
5362 EXPECT_EQ(blockfile ? 0 : kSize,
5363 GetAvailableRange(entry, kOffset, kSize, &start_out));
5364 EXPECT_EQ(kOffset, start_out);
5365
5366 entry->Close();
5367 }
5368
TEST_F(DiskCacheEntryTest,SparseOffset64Bit)5369 TEST_F(DiskCacheEntryTest, SparseOffset64Bit) {
5370 InitCache();
5371 SparseOffset64Bit();
5372 }
5373
TEST_F(DiskCacheEntryTest,SimpleSparseOffset64Bit)5374 TEST_F(DiskCacheEntryTest, SimpleSparseOffset64Bit) {
5375 SetSimpleCacheMode();
5376 InitCache();
5377 SparseOffset64Bit();
5378 }
5379
TEST_F(DiskCacheEntryTest,MemoryOnlySparseOffset64Bit)5380 TEST_F(DiskCacheEntryTest, MemoryOnlySparseOffset64Bit) {
5381 // https://crbug.com/946436
5382 SetMemoryOnlyMode();
5383 InitCache();
5384 SparseOffset64Bit();
5385 }
5386
TEST_F(DiskCacheEntryTest,SimpleCacheCloseResurrection)5387 TEST_F(DiskCacheEntryTest, SimpleCacheCloseResurrection) {
5388 const int kSize = 10;
5389 auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5390 CacheTestFillBuffer(buffer->data(), kSize, false);
5391
5392 const char kKey[] = "key";
5393 SetSimpleCacheMode();
5394 InitCache();
5395
5396 disk_cache::Entry* entry = nullptr;
5397 ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
5398 ASSERT_TRUE(entry != nullptr);
5399
5400 // Let optimistic create finish.
5401 base::RunLoop().RunUntilIdle();
5402 disk_cache::FlushCacheThreadForTesting();
5403 base::RunLoop().RunUntilIdle();
5404
5405 int rv = entry->WriteData(1, 0, buffer.get(), kSize,
5406 net::CompletionOnceCallback(), false);
5407
5408 // Write should be optimistic.
5409 ASSERT_EQ(kSize, rv);
5410
5411 // Since the write is still pending, the open will get queued...
5412 TestEntryResultCompletionCallback cb_open;
5413 EntryResult result2 =
5414 cache_->OpenEntry(kKey, net::HIGHEST, cb_open.callback());
5415 EXPECT_EQ(net::ERR_IO_PENDING, result2.net_error());
5416
5417 // ... as the open is queued, this Close will temporarily reduce the number
5418 // of external references to 0. This should not break things.
5419 entry->Close();
5420
5421 // Wait till open finishes.
5422 result2 = cb_open.GetResult(std::move(result2));
5423 ASSERT_EQ(net::OK, result2.net_error());
5424 disk_cache::Entry* entry2 = result2.ReleaseEntry();
5425 ASSERT_TRUE(entry2 != nullptr);
5426
5427 // Get first close a chance to finish.
5428 base::RunLoop().RunUntilIdle();
5429 disk_cache::FlushCacheThreadForTesting();
5430 base::RunLoop().RunUntilIdle();
5431
5432 // Make sure |entry2| is still usable.
5433 auto buffer2 = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5434 memset(buffer2->data(), 0, kSize);
5435 EXPECT_EQ(kSize, ReadData(entry2, 1, 0, buffer2.get(), kSize));
5436 EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize));
5437 entry2->Close();
5438 }
5439
TEST_F(DiskCacheEntryTest,BlockFileSparsePendingAfterDtor)5440 TEST_F(DiskCacheEntryTest, BlockFileSparsePendingAfterDtor) {
5441 // Test of behavior of ~EntryImpl for sparse entry that runs after backend
5442 // destruction.
5443 //
5444 // Hand-creating the backend for realistic shutdown behavior.
5445 CleanupCacheDir();
5446 CreateBackend(disk_cache::kNone);
5447
5448 disk_cache::Entry* entry = nullptr;
5449 ASSERT_THAT(CreateEntry("key", &entry), IsOk());
5450 ASSERT_TRUE(entry != nullptr);
5451
5452 const int kSize = 61184;
5453
5454 auto buf = base::MakeRefCounted<net::IOBufferWithSize>(kSize);
5455 CacheTestFillBuffer(buf->data(), kSize, false);
5456
5457 // The write pattern here avoids the second write being handled by the
5458 // buffering layer, making SparseControl have to deal with its asynchrony.
5459 EXPECT_EQ(1, WriteSparseData(entry, 65535, buf.get(), 1));
5460 EXPECT_EQ(net::ERR_IO_PENDING,
5461 entry->WriteSparseData(2560, buf.get(), kSize, base::DoNothing()));
5462 entry->Close();
5463 ResetCaches();
5464
5465 // Create a new instance as a way of flushing the thread.
5466 InitCache();
5467 FlushQueueForTest();
5468 }
5469
5470 class DiskCacheSimplePrefetchTest : public DiskCacheEntryTest {
5471 public:
5472 DiskCacheSimplePrefetchTest() = default;
5473
5474 enum { kEntrySize = 1024 };
5475
SetUp()5476 void SetUp() override {
5477 payload_ = base::MakeRefCounted<net::IOBufferWithSize>(kEntrySize);
5478 CacheTestFillBuffer(payload_->data(), kEntrySize, false);
5479 DiskCacheEntryTest::SetUp();
5480 }
5481
SetupFullAndTrailerPrefetch(int full_size,int trailer_speculative_size)5482 void SetupFullAndTrailerPrefetch(int full_size,
5483 int trailer_speculative_size) {
5484 std::map<std::string, std::string> params;
5485 params[disk_cache::kSimpleCacheFullPrefetchBytesParam] =
5486 base::NumberToString(full_size);
5487 params[disk_cache::kSimpleCacheTrailerPrefetchSpeculativeBytesParam] =
5488 base::NumberToString(trailer_speculative_size);
5489 scoped_feature_list_.InitAndEnableFeatureWithParameters(
5490 disk_cache::kSimpleCachePrefetchExperiment, params);
5491 }
5492
SetupFullPrefetch(int size)5493 void SetupFullPrefetch(int size) { SetupFullAndTrailerPrefetch(size, 0); }
5494
InitCacheAndCreateEntry(const std::string & key)5495 void InitCacheAndCreateEntry(const std::string& key) {
5496 SetSimpleCacheMode();
5497 SetCacheType(SimpleCacheType());
5498 InitCache();
5499
5500 disk_cache::Entry* entry;
5501 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
5502 // Use stream 1 since that's what new prefetch stuff is about.
5503 ASSERT_EQ(kEntrySize,
5504 WriteData(entry, 1, 0, payload_.get(), kEntrySize, false));
5505 entry->Close();
5506 }
5507
SimpleCacheType() const5508 virtual net::CacheType SimpleCacheType() const { return net::DISK_CACHE; }
5509
InitCacheAndCreateEntryWithNoCrc(const std::string & key)5510 void InitCacheAndCreateEntryWithNoCrc(const std::string& key) {
5511 const int kHalfSize = kEntrySize / 2;
5512 const int kRemSize = kEntrySize - kHalfSize;
5513
5514 SetSimpleCacheMode();
5515 InitCache();
5516
5517 disk_cache::Entry* entry;
5518 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
5519 // Use stream 1 since that's what new prefetch stuff is about.
5520 ASSERT_EQ(kEntrySize,
5521 WriteData(entry, 1, 0, payload_.get(), kEntrySize, false));
5522
5523 // Overwrite later part of the buffer, since we can't keep track of
5524 // the checksum in that case. Do it with identical contents, though,
5525 // so that the only difference between here and InitCacheAndCreateEntry()
5526 // would be whether the result has a checkum or not.
5527 auto second_half = base::MakeRefCounted<net::IOBufferWithSize>(kRemSize);
5528 memcpy(second_half->data(), payload_->data() + kHalfSize, kRemSize);
5529 ASSERT_EQ(kRemSize, WriteData(entry, 1, kHalfSize, second_half.get(),
5530 kRemSize, false));
5531 entry->Close();
5532 }
5533
TryRead(const std::string & key,bool expect_preread_stream1)5534 void TryRead(const std::string& key, bool expect_preread_stream1) {
5535 disk_cache::Entry* entry = nullptr;
5536 ASSERT_THAT(OpenEntry(key, &entry), IsOk());
5537 auto read_buf = base::MakeRefCounted<net::IOBufferWithSize>(kEntrySize);
5538 net::TestCompletionCallback cb;
5539 int rv = entry->ReadData(1, 0, read_buf.get(), kEntrySize, cb.callback());
5540
5541 // if preload happened, sync reply is expected.
5542 if (expect_preread_stream1)
5543 EXPECT_EQ(kEntrySize, rv);
5544 else
5545 EXPECT_EQ(net::ERR_IO_PENDING, rv);
5546 rv = cb.GetResult(rv);
5547 EXPECT_EQ(kEntrySize, rv);
5548 EXPECT_EQ(0, memcmp(read_buf->data(), payload_->data(), kEntrySize));
5549 entry->Close();
5550 }
5551
5552 protected:
5553 scoped_refptr<net::IOBuffer> payload_;
5554 base::test::ScopedFeatureList scoped_feature_list_;
5555 };
5556
TEST_F(DiskCacheSimplePrefetchTest,NoPrefetch)5557 TEST_F(DiskCacheSimplePrefetchTest, NoPrefetch) {
5558 base::HistogramTester histogram_tester;
5559 SetupFullPrefetch(0);
5560
5561 const char kKey[] = "a key";
5562 InitCacheAndCreateEntry(kKey);
5563 TryRead(kKey, /* expect_preread_stream1 */ false);
5564
5565 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5566 disk_cache::OPEN_PREFETCH_NONE, 1);
5567 }
5568
TEST_F(DiskCacheSimplePrefetchTest,YesPrefetch)5569 TEST_F(DiskCacheSimplePrefetchTest, YesPrefetch) {
5570 base::HistogramTester histogram_tester;
5571 SetupFullPrefetch(2 * kEntrySize);
5572
5573 const char kKey[] = "a key";
5574 InitCacheAndCreateEntry(kKey);
5575 TryRead(kKey, /* expect_preread_stream1 */ true);
5576
5577 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5578 disk_cache::OPEN_PREFETCH_FULL, 1);
5579 }
5580
TEST_F(DiskCacheSimplePrefetchTest,YesPrefetchNoRead)5581 TEST_F(DiskCacheSimplePrefetchTest, YesPrefetchNoRead) {
5582 base::HistogramTester histogram_tester;
5583 SetupFullPrefetch(2 * kEntrySize);
5584
5585 const char kKey[] = "a key";
5586 InitCacheAndCreateEntry(kKey);
5587
5588 disk_cache::Entry* entry = nullptr;
5589 ASSERT_THAT(OpenEntry(kKey, &entry), IsOk());
5590 entry->Close();
5591
5592 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5593 disk_cache::OPEN_PREFETCH_FULL, 1);
5594 }
5595
5596 // This makes sure we detect checksum error on entry that's small enough to be
5597 // prefetched. This is like DiskCacheEntryTest.BadChecksum, but we make sure
5598 // to configure prefetch explicitly.
TEST_F(DiskCacheSimplePrefetchTest,BadChecksumSmall)5599 TEST_F(DiskCacheSimplePrefetchTest, BadChecksumSmall) {
5600 SetupFullPrefetch(1024); // bigger than stuff below.
5601 SetSimpleCacheMode();
5602 InitCache();
5603
5604 const char key[] = "the first key";
5605 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, 10));
5606
5607 disk_cache::Entry* entry = nullptr;
5608
5609 // Open the entry. Since we made a small entry, we will detect the CRC
5610 // problem at open.
5611 EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED));
5612 }
5613
TEST_F(DiskCacheSimplePrefetchTest,ChecksumNoPrefetch)5614 TEST_F(DiskCacheSimplePrefetchTest, ChecksumNoPrefetch) {
5615 base::HistogramTester histogram_tester;
5616
5617 SetupFullPrefetch(0);
5618 const char kKey[] = "a key";
5619 InitCacheAndCreateEntry(kKey);
5620 TryRead(kKey, /* expect_preread_stream1 */ false);
5621
5622 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
5623 disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
5624 }
5625
TEST_F(DiskCacheSimplePrefetchTest,NoChecksumNoPrefetch)5626 TEST_F(DiskCacheSimplePrefetchTest, NoChecksumNoPrefetch) {
5627 base::HistogramTester histogram_tester;
5628
5629 SetupFullPrefetch(0);
5630 const char kKey[] = "a key";
5631 InitCacheAndCreateEntryWithNoCrc(kKey);
5632 TryRead(kKey, /* expect_preread_stream1 */ false);
5633
5634 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
5635 disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
5636 }
5637
TEST_F(DiskCacheSimplePrefetchTest,ChecksumPrefetch)5638 TEST_F(DiskCacheSimplePrefetchTest, ChecksumPrefetch) {
5639 base::HistogramTester histogram_tester;
5640
5641 SetupFullPrefetch(2 * kEntrySize);
5642 const char kKey[] = "a key";
5643 InitCacheAndCreateEntry(kKey);
5644 TryRead(kKey, /* expect_preread_stream1 */ true);
5645
5646 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
5647 disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
5648 }
5649
TEST_F(DiskCacheSimplePrefetchTest,NoChecksumPrefetch)5650 TEST_F(DiskCacheSimplePrefetchTest, NoChecksumPrefetch) {
5651 base::HistogramTester histogram_tester;
5652
5653 SetupFullPrefetch(2 * kEntrySize);
5654 const char kKey[] = "a key";
5655 InitCacheAndCreateEntryWithNoCrc(kKey);
5656 TryRead(kKey, /* expect_preread_stream1 */ true);
5657
5658 // EOF check is recorded even if there is no CRC there.
5659 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
5660 disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
5661 }
5662
TEST_F(DiskCacheSimplePrefetchTest,PrefetchReadsSync)5663 TEST_F(DiskCacheSimplePrefetchTest, PrefetchReadsSync) {
5664 // Make sure we can read things synchronously after prefetch.
5665 SetupFullPrefetch(32768); // way bigger than kEntrySize
5666 const char kKey[] = "a key";
5667 InitCacheAndCreateEntry(kKey);
5668
5669 disk_cache::Entry* entry = nullptr;
5670 ASSERT_THAT(OpenEntry(kKey, &entry), IsOk());
5671 auto read_buf = base::MakeRefCounted<net::IOBufferWithSize>(kEntrySize);
5672
5673 // That this is entry->ReadData(...) rather than ReadData(entry, ...) is
5674 // meaningful here, as the latter is a helper in the test fixture that blocks
5675 // if needed.
5676 EXPECT_EQ(kEntrySize, entry->ReadData(1, 0, read_buf.get(), kEntrySize,
5677 net::CompletionOnceCallback()));
5678 EXPECT_EQ(0, memcmp(read_buf->data(), payload_->data(), kEntrySize));
5679 entry->Close();
5680 }
5681
TEST_F(DiskCacheSimplePrefetchTest,NoFullNoSpeculative)5682 TEST_F(DiskCacheSimplePrefetchTest, NoFullNoSpeculative) {
5683 base::HistogramTester histogram_tester;
5684 SetupFullAndTrailerPrefetch(0, 0);
5685
5686 const char kKey[] = "a key";
5687 InitCacheAndCreateEntry(kKey);
5688 TryRead(kKey, /* expect_preread_stream1 */ false);
5689
5690 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5691 disk_cache::OPEN_PREFETCH_NONE, 1);
5692 }
5693
TEST_F(DiskCacheSimplePrefetchTest,NoFullSmallSpeculative)5694 TEST_F(DiskCacheSimplePrefetchTest, NoFullSmallSpeculative) {
5695 base::HistogramTester histogram_tester;
5696 SetupFullAndTrailerPrefetch(0, kEntrySize / 2);
5697
5698 const char kKey[] = "a key";
5699 InitCacheAndCreateEntry(kKey);
5700 TryRead(kKey, /* expect_preread_stream1 */ false);
5701
5702 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5703 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5704 }
5705
TEST_F(DiskCacheSimplePrefetchTest,NoFullLargeSpeculative)5706 TEST_F(DiskCacheSimplePrefetchTest, NoFullLargeSpeculative) {
5707 base::HistogramTester histogram_tester;
5708 // A large speculative trailer prefetch that exceeds the entry file
5709 // size should effectively trigger full prefetch behavior.
5710 SetupFullAndTrailerPrefetch(0, kEntrySize * 2);
5711
5712 const char kKey[] = "a key";
5713 InitCacheAndCreateEntry(kKey);
5714 TryRead(kKey, /* expect_preread_stream1 */ true);
5715
5716 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5717 disk_cache::OPEN_PREFETCH_FULL, 1);
5718 }
5719
TEST_F(DiskCacheSimplePrefetchTest,SmallFullNoSpeculative)5720 TEST_F(DiskCacheSimplePrefetchTest, SmallFullNoSpeculative) {
5721 base::HistogramTester histogram_tester;
5722 SetupFullAndTrailerPrefetch(kEntrySize / 2, 0);
5723
5724 const char kKey[] = "a key";
5725 InitCacheAndCreateEntry(kKey);
5726 TryRead(kKey, /* expect_preread_stream1 */ false);
5727
5728 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5729 disk_cache::OPEN_PREFETCH_NONE, 1);
5730 }
5731
TEST_F(DiskCacheSimplePrefetchTest,LargeFullNoSpeculative)5732 TEST_F(DiskCacheSimplePrefetchTest, LargeFullNoSpeculative) {
5733 base::HistogramTester histogram_tester;
5734 SetupFullAndTrailerPrefetch(kEntrySize * 2, 0);
5735
5736 const char kKey[] = "a key";
5737 InitCacheAndCreateEntry(kKey);
5738 TryRead(kKey, /* expect_preread_stream1 */ true);
5739
5740 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5741 disk_cache::OPEN_PREFETCH_FULL, 1);
5742 }
5743
TEST_F(DiskCacheSimplePrefetchTest,SmallFullSmallSpeculative)5744 TEST_F(DiskCacheSimplePrefetchTest, SmallFullSmallSpeculative) {
5745 base::HistogramTester histogram_tester;
5746 SetupFullAndTrailerPrefetch(kEntrySize / 2, kEntrySize / 2);
5747
5748 const char kKey[] = "a key";
5749 InitCacheAndCreateEntry(kKey);
5750 TryRead(kKey, /* expect_preread_stream1 */ false);
5751
5752 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5753 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5754 }
5755
TEST_F(DiskCacheSimplePrefetchTest,LargeFullSmallSpeculative)5756 TEST_F(DiskCacheSimplePrefetchTest, LargeFullSmallSpeculative) {
5757 base::HistogramTester histogram_tester;
5758 // Full prefetch takes precedence over a trailer speculative prefetch.
5759 SetupFullAndTrailerPrefetch(kEntrySize * 2, kEntrySize / 2);
5760
5761 const char kKey[] = "a key";
5762 InitCacheAndCreateEntry(kKey);
5763 TryRead(kKey, /* expect_preread_stream1 */ true);
5764
5765 histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
5766 disk_cache::OPEN_PREFETCH_FULL, 1);
5767 }
5768
5769 class DiskCacheSimpleAppCachePrefetchTest : public DiskCacheSimplePrefetchTest {
5770 public:
5771 // APP_CACHE mode will enable trailer prefetch hint support.
SimpleCacheType() const5772 net::CacheType SimpleCacheType() const override { return net::APP_CACHE; }
5773 };
5774
TEST_F(DiskCacheSimpleAppCachePrefetchTest,NoFullNoSpeculative)5775 TEST_F(DiskCacheSimpleAppCachePrefetchTest, NoFullNoSpeculative) {
5776 base::HistogramTester histogram_tester;
5777 SetupFullAndTrailerPrefetch(0, 0);
5778
5779 const char kKey[] = "a key";
5780 InitCacheAndCreateEntry(kKey);
5781 TryRead(kKey, /* expect_preread_stream1 */ false);
5782
5783 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5784 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5785 }
5786
TEST_F(DiskCacheSimpleAppCachePrefetchTest,NoFullSmallSpeculative)5787 TEST_F(DiskCacheSimpleAppCachePrefetchTest, NoFullSmallSpeculative) {
5788 base::HistogramTester histogram_tester;
5789 SetupFullAndTrailerPrefetch(0, kEntrySize / 2);
5790
5791 const char kKey[] = "a key";
5792 InitCacheAndCreateEntry(kKey);
5793 TryRead(kKey, /* expect_preread_stream1 */ false);
5794
5795 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5796 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5797 }
5798
TEST_F(DiskCacheSimpleAppCachePrefetchTest,NoFullLargeSpeculative)5799 TEST_F(DiskCacheSimpleAppCachePrefetchTest, NoFullLargeSpeculative) {
5800 base::HistogramTester histogram_tester;
5801 // Even though the speculative trailer prefetch size is larger than the
5802 // file size, the hint should take precedence and still perform a limited
5803 // trailer prefetch.
5804 SetupFullAndTrailerPrefetch(0, kEntrySize * 2);
5805
5806 const char kKey[] = "a key";
5807 InitCacheAndCreateEntry(kKey);
5808 TryRead(kKey, /* expect_preread_stream1 */ false);
5809
5810 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5811 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5812 }
5813
TEST_F(DiskCacheSimpleAppCachePrefetchTest,SmallFullNoSpeculative)5814 TEST_F(DiskCacheSimpleAppCachePrefetchTest, SmallFullNoSpeculative) {
5815 base::HistogramTester histogram_tester;
5816 SetupFullAndTrailerPrefetch(kEntrySize / 2, 0);
5817
5818 const char kKey[] = "a key";
5819 InitCacheAndCreateEntry(kKey);
5820 TryRead(kKey, /* expect_preread_stream1 */ false);
5821
5822 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5823 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5824 }
5825
TEST_F(DiskCacheSimpleAppCachePrefetchTest,LargeFullNoSpeculative)5826 TEST_F(DiskCacheSimpleAppCachePrefetchTest, LargeFullNoSpeculative) {
5827 base::HistogramTester histogram_tester;
5828 // Full prefetch takes precedence over a trailer hint prefetch.
5829 SetupFullAndTrailerPrefetch(kEntrySize * 2, 0);
5830
5831 const char kKey[] = "a key";
5832 InitCacheAndCreateEntry(kKey);
5833 TryRead(kKey, /* expect_preread_stream1 */ true);
5834
5835 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5836 disk_cache::OPEN_PREFETCH_FULL, 1);
5837 }
5838
TEST_F(DiskCacheSimpleAppCachePrefetchTest,SmallFullSmallSpeculative)5839 TEST_F(DiskCacheSimpleAppCachePrefetchTest, SmallFullSmallSpeculative) {
5840 base::HistogramTester histogram_tester;
5841 SetupFullAndTrailerPrefetch(kEntrySize / 2, kEntrySize / 2);
5842
5843 const char kKey[] = "a key";
5844 InitCacheAndCreateEntry(kKey);
5845 TryRead(kKey, /* expect_preread_stream1 */ false);
5846
5847 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5848 disk_cache::OPEN_PREFETCH_TRAILER, 1);
5849 }
5850
TEST_F(DiskCacheSimpleAppCachePrefetchTest,LargeFullSmallSpeculative)5851 TEST_F(DiskCacheSimpleAppCachePrefetchTest, LargeFullSmallSpeculative) {
5852 base::HistogramTester histogram_tester;
5853 // Full prefetch takes precedence over a trailer speculative prefetch.
5854 SetupFullAndTrailerPrefetch(kEntrySize * 2, kEntrySize / 2);
5855
5856 const char kKey[] = "a key";
5857 InitCacheAndCreateEntry(kKey);
5858 TryRead(kKey, /* expect_preread_stream1 */ true);
5859
5860 histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
5861 disk_cache::OPEN_PREFETCH_FULL, 1);
5862 }
5863