• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // A btree implementation of the STL set and map interfaces. A btree is smaller
16 // and generally also faster than STL set/map (refer to the benchmarks below).
17 // The red-black tree implementation of STL set/map has an overhead of 3
18 // pointers (left, right and parent) plus the node color information for each
19 // stored value. So a set<int32_t> consumes 40 bytes for each value stored in
20 // 64-bit mode. This btree implementation stores multiple values on fixed
21 // size nodes (usually 256 bytes) and doesn't store child pointers for leaf
22 // nodes. The result is that a btree_set<int32_t> may use much less memory per
23 // stored value. For the random insertion benchmark in btree_bench.cc, a
24 // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
25 //
26 // The packing of multiple values on to each node of a btree has another effect
27 // besides better space utilization: better cache locality due to fewer cache
28 // lines being accessed. Better cache locality translates into faster
29 // operations.
30 //
31 // CAVEATS
32 //
33 // Insertions and deletions on a btree can cause splitting, merging or
34 // rebalancing of btree nodes. And even without these operations, insertions
35 // and deletions on a btree will move values around within a node. In both
36 // cases, the result is that insertions and deletions can invalidate iterators
37 // pointing to values other than the one being inserted/deleted. Therefore, this
38 // container does not provide pointer stability. This is notably different from
39 // STL set/map which takes care to not invalidate iterators on insert/erase
40 // except, of course, for iterators pointing to the value being erased.  A
41 // partial workaround when erasing is available: erase() returns an iterator
42 // pointing to the item just after the one that was erased (or end() if none
43 // exists).
44 
45 #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
46 #define ABSL_CONTAINER_INTERNAL_BTREE_H_
47 
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <functional>
54 #include <iterator>
55 #include <limits>
56 #include <new>
57 #include <string>
58 #include <type_traits>
59 #include <utility>
60 
61 #include "absl/base/internal/raw_logging.h"
62 #include "absl/base/macros.h"
63 #include "absl/container/internal/common.h"
64 #include "absl/container/internal/common_policy_traits.h"
65 #include "absl/container/internal/compressed_tuple.h"
66 #include "absl/container/internal/container_memory.h"
67 #include "absl/container/internal/layout.h"
68 #include "absl/memory/memory.h"
69 #include "absl/meta/type_traits.h"
70 #include "absl/strings/cord.h"
71 #include "absl/strings/string_view.h"
72 #include "absl/types/compare.h"
73 #include "absl/utility/utility.h"
74 
75 namespace absl {
76 ABSL_NAMESPACE_BEGIN
77 namespace container_internal {
78 
79 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
80 #error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set
81 #elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
82     defined(ABSL_HAVE_MEMORY_SANITIZER)
83 // When compiled in sanitizer mode, we add generation integers to the nodes and
84 // iterators. When iterators are used, we validate that the container has not
85 // been mutated since the iterator was constructed.
86 #define ABSL_BTREE_ENABLE_GENERATIONS
87 #endif
88 
89 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
BtreeGenerationsEnabled()90 constexpr bool BtreeGenerationsEnabled() { return true; }
91 #else
92 constexpr bool BtreeGenerationsEnabled() { return false; }
93 #endif
94 
95 template <typename Compare, typename T, typename U>
96 using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>;
97 
98 // A helper class that indicates if the Compare parameter is a key-compare-to
99 // comparator.
100 template <typename Compare, typename T>
101 using btree_is_key_compare_to =
102     std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>;
103 
104 struct StringBtreeDefaultLess {
105   using is_transparent = void;
106 
107   StringBtreeDefaultLess() = default;
108 
109   // Compatibility constructor.
StringBtreeDefaultLessStringBtreeDefaultLess110   StringBtreeDefaultLess(std::less<std::string>) {}        // NOLINT
StringBtreeDefaultLessStringBtreeDefaultLess111   StringBtreeDefaultLess(std::less<absl::string_view>) {}  // NOLINT
112 
113   // Allow converting to std::less for use in key_comp()/value_comp().
114   explicit operator std::less<std::string>() const { return {}; }
115   explicit operator std::less<absl::string_view>() const { return {}; }
116   explicit operator std::less<absl::Cord>() const { return {}; }
117 
operatorStringBtreeDefaultLess118   absl::weak_ordering operator()(absl::string_view lhs,
119                                  absl::string_view rhs) const {
120     return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
121   }
StringBtreeDefaultLessStringBtreeDefaultLess122   StringBtreeDefaultLess(std::less<absl::Cord>) {}  // NOLINT
operatorStringBtreeDefaultLess123   absl::weak_ordering operator()(const absl::Cord &lhs,
124                                  const absl::Cord &rhs) const {
125     return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
126   }
operatorStringBtreeDefaultLess127   absl::weak_ordering operator()(const absl::Cord &lhs,
128                                  absl::string_view rhs) const {
129     return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
130   }
operatorStringBtreeDefaultLess131   absl::weak_ordering operator()(absl::string_view lhs,
132                                  const absl::Cord &rhs) const {
133     return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
134   }
135 };
136 
137 struct StringBtreeDefaultGreater {
138   using is_transparent = void;
139 
140   StringBtreeDefaultGreater() = default;
141 
StringBtreeDefaultGreaterStringBtreeDefaultGreater142   StringBtreeDefaultGreater(std::greater<std::string>) {}        // NOLINT
StringBtreeDefaultGreaterStringBtreeDefaultGreater143   StringBtreeDefaultGreater(std::greater<absl::string_view>) {}  // NOLINT
144 
145   // Allow converting to std::greater for use in key_comp()/value_comp().
146   explicit operator std::greater<std::string>() const { return {}; }
147   explicit operator std::greater<absl::string_view>() const { return {}; }
148   explicit operator std::greater<absl::Cord>() const { return {}; }
149 
operatorStringBtreeDefaultGreater150   absl::weak_ordering operator()(absl::string_view lhs,
151                                  absl::string_view rhs) const {
152     return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
153   }
StringBtreeDefaultGreaterStringBtreeDefaultGreater154   StringBtreeDefaultGreater(std::greater<absl::Cord>) {}  // NOLINT
operatorStringBtreeDefaultGreater155   absl::weak_ordering operator()(const absl::Cord &lhs,
156                                  const absl::Cord &rhs) const {
157     return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
158   }
operatorStringBtreeDefaultGreater159   absl::weak_ordering operator()(const absl::Cord &lhs,
160                                  absl::string_view rhs) const {
161     return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs));
162   }
operatorStringBtreeDefaultGreater163   absl::weak_ordering operator()(absl::string_view lhs,
164                                  const absl::Cord &rhs) const {
165     return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
166   }
167 };
168 
169 // See below comments for checked_compare.
170 template <typename Compare, bool is_class = std::is_class<Compare>::value>
171 struct checked_compare_base : Compare {
172   using Compare::Compare;
checked_compare_basechecked_compare_base173   explicit checked_compare_base(Compare c) : Compare(std::move(c)) {}
compchecked_compare_base174   const Compare &comp() const { return *this; }
175 };
176 template <typename Compare>
177 struct checked_compare_base<Compare, false> {
178   explicit checked_compare_base(Compare c) : compare(std::move(c)) {}
179   const Compare &comp() const { return compare; }
180   Compare compare;
181 };
182 
183 // A mechanism for opting out of checked_compare for use only in btree_test.cc.
184 struct BtreeTestOnlyCheckedCompareOptOutBase {};
185 
186 // A helper class to adapt the specified comparator for two use cases:
187 // (1) When using common Abseil string types with common comparison functors,
188 // convert a boolean comparison into a three-way comparison that returns an
189 // `absl::weak_ordering`. This helper class is specialized for
190 // less<std::string>, greater<std::string>, less<string_view>,
191 // greater<string_view>, less<absl::Cord>, and greater<absl::Cord>.
192 // (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see
193 // https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever
194 // a comparison is made, we will make assertions to verify that the comparator
195 // is valid.
196 template <typename Compare, typename Key>
197 struct key_compare_adapter {
198   // Inherit from checked_compare_base to support function pointers and also
199   // keep empty-base-optimization (EBO) support for classes.
200   // Note: we can't use CompressedTuple here because that would interfere
201   // with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a
202   // CompressedTuple and nested `CompressedTuple`s don't support EBO.
203   // TODO(b/214288561): use CompressedTuple instead once it supports EBO for
204   // nested `CompressedTuple`s.
205   struct checked_compare : checked_compare_base<Compare> {
206    private:
207     using Base = typename checked_compare::checked_compare_base;
208     using Base::comp;
209 
210     // If possible, returns whether `t` is equivalent to itself. We can only do
211     // this for `Key`s because we can't be sure that it's safe to call
212     // `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a
213     // compilation failure inside the implementation of the comparison operator.
214     bool is_self_equivalent(const Key &k) const {
215       // Note: this works for both boolean and three-way comparators.
216       return comp()(k, k) == 0;
217     }
218     // If we can't compare `t` with itself, returns true unconditionally.
219     template <typename T>
220     bool is_self_equivalent(const T &) const {
221       return true;
222     }
223 
224    public:
225     using Base::Base;
226     checked_compare(Compare comp) : Base(std::move(comp)) {}  // NOLINT
227 
228     // Allow converting to Compare for use in key_comp()/value_comp().
229     explicit operator Compare() const { return comp(); }
230 
231     template <typename T, typename U,
232               absl::enable_if_t<
233                   std::is_same<bool, compare_result_t<Compare, T, U>>::value,
234                   int> = 0>
235     bool operator()(const T &lhs, const U &rhs) const {
236       // NOTE: if any of these assertions fail, then the comparator does not
237       // establish a strict-weak-ordering (see
238       // https://en.cppreference.com/w/cpp/named_req/Compare).
239       assert(is_self_equivalent(lhs));
240       assert(is_self_equivalent(rhs));
241       const bool lhs_comp_rhs = comp()(lhs, rhs);
242       assert(!lhs_comp_rhs || !comp()(rhs, lhs));
243       return lhs_comp_rhs;
244     }
245 
246     template <
247         typename T, typename U,
248         absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>,
249                                               absl::weak_ordering>::value,
250                           int> = 0>
251     absl::weak_ordering operator()(const T &lhs, const U &rhs) const {
252       // NOTE: if any of these assertions fail, then the comparator does not
253       // establish a strict-weak-ordering (see
254       // https://en.cppreference.com/w/cpp/named_req/Compare).
255       assert(is_self_equivalent(lhs));
256       assert(is_self_equivalent(rhs));
257       const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs);
258 #ifndef NDEBUG
259       const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs);
260       if (lhs_comp_rhs > 0) {
261         assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0");
262       } else if (lhs_comp_rhs == 0) {
263         assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0");
264       } else {
265         assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0");
266       }
267 #endif
268       return lhs_comp_rhs;
269     }
270   };
271   using type = absl::conditional_t<
272       std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value,
273       Compare, checked_compare>;
274 };
275 
276 template <>
277 struct key_compare_adapter<std::less<std::string>, std::string> {
278   using type = StringBtreeDefaultLess;
279 };
280 
281 template <>
282 struct key_compare_adapter<std::greater<std::string>, std::string> {
283   using type = StringBtreeDefaultGreater;
284 };
285 
286 template <>
287 struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> {
288   using type = StringBtreeDefaultLess;
289 };
290 
291 template <>
292 struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> {
293   using type = StringBtreeDefaultGreater;
294 };
295 
296 template <>
297 struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> {
298   using type = StringBtreeDefaultLess;
299 };
300 
301 template <>
302 struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> {
303   using type = StringBtreeDefaultGreater;
304 };
305 
306 // Detects an 'absl_btree_prefer_linear_node_search' member. This is
307 // a protocol used as an opt-in or opt-out of linear search.
308 //
309 //  For example, this would be useful for key types that wrap an integer
310 //  and define their own cheap operator<(). For example:
311 //
312 //   class K {
313 //    public:
314 //     using absl_btree_prefer_linear_node_search = std::true_type;
315 //     ...
316 //    private:
317 //     friend bool operator<(K a, K b) { return a.k_ < b.k_; }
318 //     int k_;
319 //   };
320 //
321 //   btree_map<K, V> m;  // Uses linear search
322 //
323 // If T has the preference tag, then it has a preference.
324 // Btree will use the tag's truth value.
325 template <typename T, typename = void>
326 struct has_linear_node_search_preference : std::false_type {};
327 template <typename T, typename = void>
328 struct prefers_linear_node_search : std::false_type {};
329 template <typename T>
330 struct has_linear_node_search_preference<
331     T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
332     : std::true_type {};
333 template <typename T>
334 struct prefers_linear_node_search<
335     T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
336     : T::absl_btree_prefer_linear_node_search {};
337 
338 template <typename Compare, typename Key>
339 constexpr bool compare_has_valid_result_type() {
340   using compare_result_type = compare_result_t<Compare, Key, Key>;
341   return std::is_same<compare_result_type, bool>::value ||
342          std::is_convertible<compare_result_type, absl::weak_ordering>::value;
343 }
344 
345 template <typename original_key_compare, typename value_type>
346 class map_value_compare {
347   template <typename Params>
348   friend class btree;
349 
350   // Note: this `protected` is part of the API of std::map::value_compare. See
351   // https://en.cppreference.com/w/cpp/container/map/value_compare.
352  protected:
353   explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {}
354 
355   original_key_compare comp;  // NOLINT
356 
357  public:
358   auto operator()(const value_type &lhs, const value_type &rhs) const
359       -> decltype(comp(lhs.first, rhs.first)) {
360     return comp(lhs.first, rhs.first);
361   }
362 };
363 
364 template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
365           bool IsMulti, bool IsMap, typename SlotPolicy>
366 struct common_params : common_policy_traits<SlotPolicy> {
367   using original_key_compare = Compare;
368 
369   // If Compare is a common comparator for a string-like type, then we adapt it
370   // to use heterogeneous lookup and to be a key-compare-to comparator.
371   // We also adapt the comparator to diagnose invalid comparators in debug mode.
372   // We disable this when `Compare` is invalid in a way that will cause
373   // adaptation to fail (having invalid return type) so that we can give a
374   // better compilation failure in static_assert_validation. If we don't do
375   // this, then there will be cascading compilation failures that are confusing
376   // for users.
377   using key_compare =
378       absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(),
379                           Compare,
380                           typename key_compare_adapter<Compare, Key>::type>;
381 
382   static constexpr bool kIsKeyCompareStringAdapted =
383       std::is_same<key_compare, StringBtreeDefaultLess>::value ||
384       std::is_same<key_compare, StringBtreeDefaultGreater>::value;
385   static constexpr bool kIsKeyCompareTransparent =
386       IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted;
387 
388   // A type which indicates if we have a key-compare-to functor or a plain old
389   // key-compare functor.
390   using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
391 
392   using allocator_type = Alloc;
393   using key_type = Key;
394   using size_type = size_t;
395   using difference_type = ptrdiff_t;
396 
397   using slot_policy = SlotPolicy;
398   using slot_type = typename slot_policy::slot_type;
399   using value_type = typename slot_policy::value_type;
400   using init_type = typename slot_policy::mutable_value_type;
401   using pointer = value_type *;
402   using const_pointer = const value_type *;
403   using reference = value_type &;
404   using const_reference = const value_type &;
405 
406   using value_compare =
407       absl::conditional_t<IsMap,
408                           map_value_compare<original_key_compare, value_type>,
409                           original_key_compare>;
410   using is_map_container = std::integral_constant<bool, IsMap>;
411 
412   // For the given lookup key type, returns whether we can have multiple
413   // equivalent keys in the btree. If this is a multi-container, then we can.
414   // Otherwise, we can have multiple equivalent keys only if all of the
415   // following conditions are met:
416   // - The comparator is transparent.
417   // - The lookup key type is not the same as key_type.
418   // - The comparator is not a StringBtreeDefault{Less,Greater} comparator
419   //   that we know has the same equivalence classes for all lookup types.
420   template <typename LookupKey>
421   constexpr static bool can_have_multiple_equivalent_keys() {
422     return IsMulti || (IsTransparent<key_compare>::value &&
423                        !std::is_same<LookupKey, Key>::value &&
424                        !kIsKeyCompareStringAdapted);
425   }
426 
427   enum {
428     kTargetNodeSize = TargetNodeSize,
429 
430     // Upper bound for the available space for slots. This is largest for leaf
431     // nodes, which have overhead of at least a pointer + 4 bytes (for storing
432     // 3 field_types and an enum).
433     kNodeSlotSpace = TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
434   };
435 
436   // This is an integral type large enough to hold as many slots as will fit a
437   // node of TargetNodeSize bytes.
438   using node_count_type =
439       absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) >
440                            (std::numeric_limits<uint8_t>::max)()),
441                           uint16_t, uint8_t>;  // NOLINT
442 };
443 
444 // An adapter class that converts a lower-bound compare into an upper-bound
445 // compare. Note: there is no need to make a version of this adapter specialized
446 // for key-compare-to functors because the upper-bound (the first value greater
447 // than the input) is never an exact match.
448 template <typename Compare>
449 struct upper_bound_adapter {
450   explicit upper_bound_adapter(const Compare &c) : comp(c) {}
451   template <typename K1, typename K2>
452   bool operator()(const K1 &a, const K2 &b) const {
453     // Returns true when a is not greater than b.
454     return !compare_internal::compare_result_as_less_than(comp(b, a));
455   }
456 
457  private:
458   Compare comp;
459 };
460 
461 enum class MatchKind : uint8_t { kEq, kNe };
462 
463 template <typename V, bool IsCompareTo>
464 struct SearchResult {
465   V value;
466   MatchKind match;
467 
468   static constexpr bool HasMatch() { return true; }
469   bool IsEq() const { return match == MatchKind::kEq; }
470 };
471 
472 // When we don't use CompareTo, `match` is not present.
473 // This ensures that callers can't use it accidentally when it provides no
474 // useful information.
475 template <typename V>
476 struct SearchResult<V, false> {
477   SearchResult() {}
478   explicit SearchResult(V v) : value(v) {}
479   SearchResult(V v, MatchKind /*match*/) : value(v) {}
480 
481   V value;
482 
483   static constexpr bool HasMatch() { return false; }
484   static constexpr bool IsEq() { return false; }
485 };
486 
487 // A node in the btree holding. The same node type is used for both internal
488 // and leaf nodes in the btree, though the nodes are allocated in such a way
489 // that the children array is only valid in internal nodes.
490 template <typename Params>
491 class btree_node {
492   using is_key_compare_to = typename Params::is_key_compare_to;
493   using field_type = typename Params::node_count_type;
494   using allocator_type = typename Params::allocator_type;
495   using slot_type = typename Params::slot_type;
496   using original_key_compare = typename Params::original_key_compare;
497 
498  public:
499   using params_type = Params;
500   using key_type = typename Params::key_type;
501   using value_type = typename Params::value_type;
502   using pointer = typename Params::pointer;
503   using const_pointer = typename Params::const_pointer;
504   using reference = typename Params::reference;
505   using const_reference = typename Params::const_reference;
506   using key_compare = typename Params::key_compare;
507   using size_type = typename Params::size_type;
508   using difference_type = typename Params::difference_type;
509 
510   // Btree decides whether to use linear node search as follows:
511   //   - If the comparator expresses a preference, use that.
512   //   - If the key expresses a preference, use that.
513   //   - If the key is arithmetic and the comparator is std::less or
514   //     std::greater, choose linear.
515   //   - Otherwise, choose binary.
516   // TODO(ezb): Might make sense to add condition(s) based on node-size.
517   using use_linear_search = std::integral_constant<
518       bool, has_linear_node_search_preference<original_key_compare>::value
519                 ? prefers_linear_node_search<original_key_compare>::value
520             : has_linear_node_search_preference<key_type>::value
521                 ? prefers_linear_node_search<key_type>::value
522                 : std::is_arithmetic<key_type>::value &&
523                       (std::is_same<std::less<key_type>,
524                                     original_key_compare>::value ||
525                        std::is_same<std::greater<key_type>,
526                                     original_key_compare>::value)>;
527 
528   // This class is organized by absl::container_internal::Layout as if it had
529   // the following structure:
530   //   // A pointer to the node's parent.
531   //   btree_node *parent;
532   //
533   //   // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a
534   //   // generation integer in order to check that when iterators are
535   //   // used, they haven't been invalidated already. Only the generation on
536   //   // the root is used, but we have one on each node because whether a node
537   //   // is root or not can change.
538   //   uint32_t generation;
539   //
540   //   // The position of the node in the node's parent.
541   //   field_type position;
542   //   // The index of the first populated value in `values`.
543   //   // TODO(ezb): right now, `start` is always 0. Update insertion/merge
544   //   // logic to allow for floating storage within nodes.
545   //   field_type start;
546   //   // The index after the last populated value in `values`. Currently, this
547   //   // is the same as the count of values.
548   //   field_type finish;
549   //   // The maximum number of values the node can hold. This is an integer in
550   //   // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf
551   //   // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
552   //   // nodes (even though there are still kNodeSlots values in the node).
553   //   // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
554   //   // to free extra bits for is_root, etc.
555   //   field_type max_count;
556   //
557   //   // The array of values. The capacity is `max_count` for leaf nodes and
558   //   // kNodeSlots for internal nodes. Only the values in
559   //   // [start, finish) have been initialized and are valid.
560   //   slot_type values[max_count];
561   //
562   //   // The array of child pointers. The keys in children[i] are all less
563   //   // than key(i). The keys in children[i + 1] are all greater than key(i).
564   //   // There are 0 children for leaf nodes and kNodeSlots + 1 children for
565   //   // internal nodes.
566   //   btree_node *children[kNodeSlots + 1];
567   //
568   // This class is only constructed by EmptyNodeType. Normally, pointers to the
569   // layout above are allocated, cast to btree_node*, and de-allocated within
570   // the btree implementation.
571   ~btree_node() = default;
572   btree_node(btree_node const &) = delete;
573   btree_node &operator=(btree_node const &) = delete;
574 
575   // Public for EmptyNodeType.
576   constexpr static size_type Alignment() {
577     static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
578                   "Alignment of all nodes must be equal.");
579     return InternalLayout().Alignment();
580   }
581 
582  protected:
583   btree_node() = default;
584 
585  private:
586   using layout_type =
587       absl::container_internal::Layout<btree_node *, uint32_t, field_type,
588                                        slot_type, btree_node *>;
589   constexpr static size_type SizeWithNSlots(size_type n) {
590     return layout_type(
591                /*parent*/ 1,
592                /*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
593                /*position, start, finish, max_count*/ 4,
594                /*slots*/ n,
595                /*children*/ 0)
596         .AllocSize();
597   }
598   // A lower bound for the overhead of fields other than slots in a leaf node.
599   constexpr static size_type MinimumOverhead() {
600     return SizeWithNSlots(1) - sizeof(slot_type);
601   }
602 
603   // Compute how many values we can fit onto a leaf node taking into account
604   // padding.
605   constexpr static size_type NodeTargetSlots(const size_type begin,
606                                              const size_type end) {
607     return begin == end ? begin
608            : SizeWithNSlots((begin + end) / 2 + 1) >
609                    params_type::kTargetNodeSize
610                ? NodeTargetSlots(begin, (begin + end) / 2)
611                : NodeTargetSlots((begin + end) / 2 + 1, end);
612   }
613 
614   constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize;
615   constexpr static size_type kNodeTargetSlots =
616       NodeTargetSlots(0, kTargetNodeSize);
617 
618   // We need a minimum of 3 slots per internal node in order to perform
619   // splitting (1 value for the two nodes involved in the split and 1 value
620   // propagated to the parent as the delimiter for the split). For performance
621   // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy of
622   // 1/3 (for a node, not a b-tree).
623   constexpr static size_type kMinNodeSlots = 4;
624 
625   constexpr static size_type kNodeSlots =
626       kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots;
627 
628   // The node is internal (i.e. is not a leaf node) if and only if `max_count`
629   // has this value.
630   constexpr static field_type kInternalNodeMaxCount = 0;
631 
632   constexpr static layout_type Layout(const size_type slot_count,
633                                       const size_type child_count) {
634     return layout_type(
635         /*parent*/ 1,
636         /*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
637         /*position, start, finish, max_count*/ 4,
638         /*slots*/ slot_count,
639         /*children*/ child_count);
640   }
641   // Leaves can have less than kNodeSlots values.
642   constexpr static layout_type LeafLayout(
643       const size_type slot_count = kNodeSlots) {
644     return Layout(slot_count, 0);
645   }
646   constexpr static layout_type InternalLayout() {
647     return Layout(kNodeSlots, kNodeSlots + 1);
648   }
649   constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) {
650     return LeafLayout(slot_count).AllocSize();
651   }
652   constexpr static size_type InternalSize() {
653     return InternalLayout().AllocSize();
654   }
655 
656   // N is the index of the type in the Layout definition.
657   // ElementType<N> is the Nth type in the Layout definition.
658   template <size_type N>
659   inline typename layout_type::template ElementType<N> *GetField() {
660     // We assert that we don't read from values that aren't there.
661     assert(N < 4 || is_internal());
662     return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
663   }
664   template <size_type N>
665   inline const typename layout_type::template ElementType<N> *GetField() const {
666     assert(N < 4 || is_internal());
667     return InternalLayout().template Pointer<N>(
668         reinterpret_cast<const char *>(this));
669   }
670   void set_parent(btree_node *p) { *GetField<0>() = p; }
671   field_type &mutable_finish() { return GetField<2>()[2]; }
672   slot_type *slot(size_type i) { return &GetField<3>()[i]; }
673   slot_type *start_slot() { return slot(start()); }
674   slot_type *finish_slot() { return slot(finish()); }
675   const slot_type *slot(size_type i) const { return &GetField<3>()[i]; }
676   void set_position(field_type v) { GetField<2>()[0] = v; }
677   void set_start(field_type v) { GetField<2>()[1] = v; }
678   void set_finish(field_type v) { GetField<2>()[2] = v; }
679   // This method is only called by the node init methods.
680   void set_max_count(field_type v) { GetField<2>()[3] = v; }
681 
682  public:
683   // Whether this is a leaf node or not. This value doesn't change after the
684   // node is created.
685   bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; }
686   // Whether this is an internal node or not. This value doesn't change after
687   // the node is created.
688   bool is_internal() const { return !is_leaf(); }
689 
690   // Getter for the position of this node in its parent.
691   field_type position() const { return GetField<2>()[0]; }
692 
693   // Getter for the offset of the first value in the `values` array.
694   field_type start() const {
695     // TODO(ezb): when floating storage is implemented, return GetField<2>()[1];
696     assert(GetField<2>()[1] == 0);
697     return 0;
698   }
699 
700   // Getter for the offset after the last value in the `values` array.
701   field_type finish() const { return GetField<2>()[2]; }
702 
703   // Getters for the number of values stored in this node.
704   field_type count() const {
705     assert(finish() >= start());
706     return finish() - start();
707   }
708   field_type max_count() const {
709     // Internal nodes have max_count==kInternalNodeMaxCount.
710     // Leaf nodes have max_count in [1, kNodeSlots].
711     const field_type max_count = GetField<2>()[3];
712     return max_count == field_type{kInternalNodeMaxCount}
713                ? field_type{kNodeSlots}
714                : max_count;
715   }
716 
717   // Getter for the parent of this node.
718   btree_node *parent() const { return *GetField<0>(); }
719   // Getter for whether the node is the root of the tree. The parent of the
720   // root of the tree is the leftmost node in the tree which is guaranteed to
721   // be a leaf.
722   bool is_root() const { return parent()->is_leaf(); }
723   void make_root() {
724     assert(parent()->is_root());
725     set_generation(parent()->generation());
726     set_parent(parent()->parent());
727   }
728 
729   // Gets the root node's generation integer, which is the one used by the tree.
730   uint32_t *get_root_generation() const {
731     assert(BtreeGenerationsEnabled());
732     const btree_node *curr = this;
733     for (; !curr->is_root(); curr = curr->parent()) continue;
734     return const_cast<uint32_t *>(&curr->GetField<1>()[0]);
735   }
736 
737   // Returns the generation for iterator validation.
738   uint32_t generation() const {
739     return BtreeGenerationsEnabled() ? *get_root_generation() : 0;
740   }
741   // Updates generation. Should only be called on a root node or during node
742   // initialization.
743   void set_generation(uint32_t generation) {
744     if (BtreeGenerationsEnabled()) GetField<1>()[0] = generation;
745   }
746   // Updates the generation. We do this whenever the node is mutated.
747   void next_generation() {
748     if (BtreeGenerationsEnabled()) ++*get_root_generation();
749   }
750 
751   // Getters for the key/value at position i in the node.
752   const key_type &key(size_type i) const { return params_type::key(slot(i)); }
753   reference value(size_type i) { return params_type::element(slot(i)); }
754   const_reference value(size_type i) const {
755     return params_type::element(slot(i));
756   }
757 
758   // Getters/setter for the child at position i in the node.
759   btree_node *child(field_type i) const { return GetField<4>()[i]; }
760   btree_node *start_child() const { return child(start()); }
761   btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; }
762   void clear_child(field_type i) {
763     absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
764   }
765   void set_child_noupdate_position(field_type i, btree_node *c) {
766     absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
767     mutable_child(i) = c;
768   }
769   void set_child(field_type i, btree_node *c) {
770     set_child_noupdate_position(i, c);
771     c->set_position(i);
772   }
773   void init_child(field_type i, btree_node *c) {
774     set_child(i, c);
775     c->set_parent(this);
776   }
777 
778   // Returns the position of the first value whose key is not less than k.
779   template <typename K>
780   SearchResult<size_type, is_key_compare_to::value> lower_bound(
781       const K &k, const key_compare &comp) const {
782     return use_linear_search::value ? linear_search(k, comp)
783                                     : binary_search(k, comp);
784   }
785   // Returns the position of the first value whose key is greater than k.
786   template <typename K>
787   size_type upper_bound(const K &k, const key_compare &comp) const {
788     auto upper_compare = upper_bound_adapter<key_compare>(comp);
789     return use_linear_search::value ? linear_search(k, upper_compare).value
790                                     : binary_search(k, upper_compare).value;
791   }
792 
793   template <typename K, typename Compare>
794   SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
795   linear_search(const K &k, const Compare &comp) const {
796     return linear_search_impl(k, start(), finish(), comp,
797                               btree_is_key_compare_to<Compare, key_type>());
798   }
799 
800   template <typename K, typename Compare>
801   SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
802   binary_search(const K &k, const Compare &comp) const {
803     return binary_search_impl(k, start(), finish(), comp,
804                               btree_is_key_compare_to<Compare, key_type>());
805   }
806 
807   // Returns the position of the first value whose key is not less than k using
808   // linear search performed using plain compare.
809   template <typename K, typename Compare>
810   SearchResult<size_type, false> linear_search_impl(
811       const K &k, size_type s, const size_type e, const Compare &comp,
812       std::false_type /* IsCompareTo */) const {
813     while (s < e) {
814       if (!comp(key(s), k)) {
815         break;
816       }
817       ++s;
818     }
819     return SearchResult<size_type, false>{s};
820   }
821 
822   // Returns the position of the first value whose key is not less than k using
823   // linear search performed using compare-to.
824   template <typename K, typename Compare>
825   SearchResult<size_type, true> linear_search_impl(
826       const K &k, size_type s, const size_type e, const Compare &comp,
827       std::true_type /* IsCompareTo */) const {
828     while (s < e) {
829       const absl::weak_ordering c = comp(key(s), k);
830       if (c == 0) {
831         return {s, MatchKind::kEq};
832       } else if (c > 0) {
833         break;
834       }
835       ++s;
836     }
837     return {s, MatchKind::kNe};
838   }
839 
840   // Returns the position of the first value whose key is not less than k using
841   // binary search performed using plain compare.
842   template <typename K, typename Compare>
843   SearchResult<size_type, false> binary_search_impl(
844       const K &k, size_type s, size_type e, const Compare &comp,
845       std::false_type /* IsCompareTo */) const {
846     while (s != e) {
847       const size_type mid = (s + e) >> 1;
848       if (comp(key(mid), k)) {
849         s = mid + 1;
850       } else {
851         e = mid;
852       }
853     }
854     return SearchResult<size_type, false>{s};
855   }
856 
857   // Returns the position of the first value whose key is not less than k using
858   // binary search performed using compare-to.
859   template <typename K, typename CompareTo>
860   SearchResult<size_type, true> binary_search_impl(
861       const K &k, size_type s, size_type e, const CompareTo &comp,
862       std::true_type /* IsCompareTo */) const {
863     if (params_type::template can_have_multiple_equivalent_keys<K>()) {
864       MatchKind exact_match = MatchKind::kNe;
865       while (s != e) {
866         const size_type mid = (s + e) >> 1;
867         const absl::weak_ordering c = comp(key(mid), k);
868         if (c < 0) {
869           s = mid + 1;
870         } else {
871           e = mid;
872           if (c == 0) {
873             // Need to return the first value whose key is not less than k,
874             // which requires continuing the binary search if there could be
875             // multiple equivalent keys.
876             exact_match = MatchKind::kEq;
877           }
878         }
879       }
880       return {s, exact_match};
881     } else {  // Can't have multiple equivalent keys.
882       while (s != e) {
883         const size_type mid = (s + e) >> 1;
884         const absl::weak_ordering c = comp(key(mid), k);
885         if (c < 0) {
886           s = mid + 1;
887         } else if (c > 0) {
888           e = mid;
889         } else {
890           return {mid, MatchKind::kEq};
891         }
892       }
893       return {s, MatchKind::kNe};
894     }
895   }
896 
897   // Returns whether key i is ordered correctly with respect to the other keys
898   // in the node. The motivation here is to detect comparators that violate
899   // transitivity. Note: we only do comparisons of keys on this node rather than
900   // the whole tree so that this is constant time.
901   template <typename Compare>
902   bool is_ordered_correctly(field_type i, const Compare &comp) const {
903     if (std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase,
904                         Compare>::value ||
905         params_type::kIsKeyCompareStringAdapted) {
906       return true;
907     }
908 
909     const auto compare = [&](field_type a, field_type b) {
910       const absl::weak_ordering cmp =
911           compare_internal::do_three_way_comparison(comp, key(a), key(b));
912       return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
913     };
914     int cmp = -1;
915     constexpr bool kCanHaveEquivKeys =
916         params_type::template can_have_multiple_equivalent_keys<key_type>();
917     for (field_type j = start(); j < finish(); ++j) {
918       if (j == i) {
919         if (cmp > 0) return false;
920         continue;
921       }
922       int new_cmp = compare(j, i);
923       if (new_cmp < cmp || (!kCanHaveEquivKeys && new_cmp == 0)) return false;
924       cmp = new_cmp;
925     }
926     return true;
927   }
928 
929   // Emplaces a value at position i, shifting all existing values and
930   // children at positions >= i to the right by 1.
931   template <typename... Args>
932   void emplace_value(field_type i, allocator_type *alloc, Args &&...args);
933 
934   // Removes the values at positions [i, i + to_erase), shifting all existing
935   // values and children after that range to the left by to_erase. Clears all
936   // children between [i, i + to_erase).
937   void remove_values(field_type i, field_type to_erase, allocator_type *alloc);
938 
939   // Rebalances a node with its right sibling.
940   void rebalance_right_to_left(field_type to_move, btree_node *right,
941                                allocator_type *alloc);
942   void rebalance_left_to_right(field_type to_move, btree_node *right,
943                                allocator_type *alloc);
944 
945   // Splits a node, moving a portion of the node's values to its right sibling.
946   void split(int insert_position, btree_node *dest, allocator_type *alloc);
947 
948   // Merges a node with its right sibling, moving all of the values and the
949   // delimiting key in the parent node onto itself, and deleting the src node.
950   void merge(btree_node *src, allocator_type *alloc);
951 
952   // Node allocation/deletion routines.
953   void init_leaf(field_type position, field_type max_count,
954                  btree_node *parent) {
955     set_generation(0);
956     set_parent(parent);
957     set_position(position);
958     set_start(0);
959     set_finish(0);
960     set_max_count(max_count);
961     absl::container_internal::SanitizerPoisonMemoryRegion(
962         start_slot(), max_count * sizeof(slot_type));
963   }
964   void init_internal(field_type position, btree_node *parent) {
965     init_leaf(position, kNodeSlots, parent);
966     // Set `max_count` to a sentinel value to indicate that this node is
967     // internal.
968     set_max_count(kInternalNodeMaxCount);
969     absl::container_internal::SanitizerPoisonMemoryRegion(
970         &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *));
971   }
972 
973   static void deallocate(const size_type size, btree_node *node,
974                          allocator_type *alloc) {
975     absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size);
976     absl::container_internal::Deallocate<Alignment()>(alloc, node, size);
977   }
978 
979   // Deletes a node and all of its children.
980   static void clear_and_delete(btree_node *node, allocator_type *alloc);
981 
982  private:
983   template <typename... Args>
984   void value_init(const field_type i, allocator_type *alloc, Args &&...args) {
985     next_generation();
986     absl::container_internal::SanitizerUnpoisonObject(slot(i));
987     params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
988   }
989   void value_destroy(const field_type i, allocator_type *alloc) {
990     next_generation();
991     params_type::destroy(alloc, slot(i));
992     absl::container_internal::SanitizerPoisonObject(slot(i));
993   }
994   void value_destroy_n(const field_type i, const field_type n,
995                        allocator_type *alloc) {
996     next_generation();
997     for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
998       params_type::destroy(alloc, s);
999       absl::container_internal::SanitizerPoisonObject(s);
1000     }
1001   }
1002 
1003   static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) {
1004     absl::container_internal::SanitizerUnpoisonObject(dest);
1005     params_type::transfer(alloc, dest, src);
1006     absl::container_internal::SanitizerPoisonObject(src);
1007   }
1008 
1009   // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
1010   void transfer(const size_type dest_i, const size_type src_i,
1011                 btree_node *src_node, allocator_type *alloc) {
1012     next_generation();
1013     transfer(slot(dest_i), src_node->slot(src_i), alloc);
1014   }
1015 
1016   // Transfers `n` values starting at value `src_i` in `src_node` into the
1017   // values starting at value `dest_i` in `this`.
1018   void transfer_n(const size_type n, const size_type dest_i,
1019                   const size_type src_i, btree_node *src_node,
1020                   allocator_type *alloc) {
1021     next_generation();
1022     for (slot_type *src = src_node->slot(src_i), *end = src + n,
1023                    *dest = slot(dest_i);
1024          src != end; ++src, ++dest) {
1025       transfer(dest, src, alloc);
1026     }
1027   }
1028 
1029   // Same as above, except that we start at the end and work our way to the
1030   // beginning.
1031   void transfer_n_backward(const size_type n, const size_type dest_i,
1032                            const size_type src_i, btree_node *src_node,
1033                            allocator_type *alloc) {
1034     next_generation();
1035     for (slot_type *src = src_node->slot(src_i + n), *end = src - n,
1036                    *dest = slot(dest_i + n);
1037          src != end; --src, --dest) {
1038       // If we modified the loop index calculations above to avoid the -1s here,
1039       // it would result in UB in the computation of `end` (and possibly `src`
1040       // as well, if n == 0), since slot() is effectively an array index and it
1041       // is UB to compute the address of any out-of-bounds array element except
1042       // for one-past-the-end.
1043       transfer(dest - 1, src - 1, alloc);
1044     }
1045   }
1046 
1047   template <typename P>
1048   friend class btree;
1049   template <typename N, typename R, typename P>
1050   friend class btree_iterator;
1051   friend class BtreeNodePeer;
1052   friend struct btree_access;
1053 };
1054 
1055 template <typename Node>
1056 bool AreNodesFromSameContainer(const Node *node_a, const Node *node_b) {
1057   // If either node is null, then give up on checking whether they're from the
1058   // same container. (If exactly one is null, then we'll trigger the
1059   // default-constructed assert in Equals.)
1060   if (node_a == nullptr || node_b == nullptr) return true;
1061   while (!node_a->is_root()) node_a = node_a->parent();
1062   while (!node_b->is_root()) node_b = node_b->parent();
1063   return node_a == node_b;
1064 }
1065 
1066 class btree_iterator_generation_info_enabled {
1067  public:
1068   explicit btree_iterator_generation_info_enabled(uint32_t g)
1069       : generation_(g) {}
1070 
1071   // Updates the generation. For use internally right before we return an
1072   // iterator to the user.
1073   template <typename Node>
1074   void update_generation(const Node *node) {
1075     if (node != nullptr) generation_ = node->generation();
1076   }
1077   uint32_t generation() const { return generation_; }
1078 
1079   template <typename Node>
1080   void assert_valid_generation(const Node *node) const {
1081     if (node != nullptr && node->generation() != generation_) {
1082       ABSL_INTERNAL_LOG(
1083           FATAL,
1084           "Attempting to use an invalidated iterator. The corresponding b-tree "
1085           "container has been mutated since this iterator was constructed.");
1086     }
1087   }
1088 
1089  private:
1090   // Used to check that the iterator hasn't been invalidated.
1091   uint32_t generation_;
1092 };
1093 
1094 class btree_iterator_generation_info_disabled {
1095  public:
1096   explicit btree_iterator_generation_info_disabled(uint32_t) {}
1097   static void update_generation(const void *) {}
1098   static uint32_t generation() { return 0; }
1099   static void assert_valid_generation(const void *) {}
1100 };
1101 
1102 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
1103 using btree_iterator_generation_info = btree_iterator_generation_info_enabled;
1104 #else
1105 using btree_iterator_generation_info = btree_iterator_generation_info_disabled;
1106 #endif
1107 
1108 template <typename Node, typename Reference, typename Pointer>
1109 class btree_iterator : private btree_iterator_generation_info {
1110   using field_type = typename Node::field_type;
1111   using key_type = typename Node::key_type;
1112   using size_type = typename Node::size_type;
1113   using params_type = typename Node::params_type;
1114   using is_map_container = typename params_type::is_map_container;
1115 
1116   using node_type = Node;
1117   using normal_node = typename std::remove_const<Node>::type;
1118   using const_node = const Node;
1119   using normal_pointer = typename params_type::pointer;
1120   using normal_reference = typename params_type::reference;
1121   using const_pointer = typename params_type::const_pointer;
1122   using const_reference = typename params_type::const_reference;
1123   using slot_type = typename params_type::slot_type;
1124 
1125   // In sets, all iterators are const.
1126   using iterator = absl::conditional_t<
1127       is_map_container::value,
1128       btree_iterator<normal_node, normal_reference, normal_pointer>,
1129       btree_iterator<normal_node, const_reference, const_pointer>>;
1130   using const_iterator =
1131       btree_iterator<const_node, const_reference, const_pointer>;
1132 
1133  public:
1134   // These aliases are public for std::iterator_traits.
1135   using difference_type = typename Node::difference_type;
1136   using value_type = typename params_type::value_type;
1137   using pointer = Pointer;
1138   using reference = Reference;
1139   using iterator_category = std::bidirectional_iterator_tag;
1140 
1141   btree_iterator() : btree_iterator(nullptr, -1) {}
1142   explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {}
1143   btree_iterator(Node *n, int p)
1144       : btree_iterator_generation_info(n != nullptr ? n->generation()
1145                                                     : ~uint32_t{}),
1146         node_(n),
1147         position_(p) {}
1148 
1149   // NOTE: this SFINAE allows for implicit conversions from iterator to
1150   // const_iterator, but it specifically avoids hiding the copy constructor so
1151   // that the trivial one will be used when possible.
1152   template <typename N, typename R, typename P,
1153             absl::enable_if_t<
1154                 std::is_same<btree_iterator<N, R, P>, iterator>::value &&
1155                     std::is_same<btree_iterator, const_iterator>::value,
1156                 int> = 0>
1157   btree_iterator(const btree_iterator<N, R, P> other)  // NOLINT
1158       : btree_iterator_generation_info(other),
1159         node_(other.node_),
1160         position_(other.position_) {}
1161 
1162   bool operator==(const iterator &other) const {
1163     return Equals(other);
1164   }
1165   bool operator==(const const_iterator &other) const {
1166     return Equals(other);
1167   }
1168   bool operator!=(const iterator &other) const {
1169     return !Equals(other);
1170   }
1171   bool operator!=(const const_iterator &other) const {
1172     return !Equals(other);
1173   }
1174 
1175   // Returns n such that n calls to ++other yields *this.
1176   // Precondition: n exists.
1177   difference_type operator-(const_iterator other) const {
1178     if (node_ == other.node_) {
1179       if (node_->is_leaf()) return position_ - other.position_;
1180       if (position_ == other.position_) return 0;
1181     }
1182     return distance_slow(other);
1183   }
1184 
1185   // Accessors for the key/value the iterator is pointing at.
1186   reference operator*() const {
1187     ABSL_HARDENING_ASSERT(node_ != nullptr);
1188     assert_valid_generation(node_);
1189     ABSL_HARDENING_ASSERT(position_ >= node_->start());
1190     if (position_ >= node_->finish()) {
1191       ABSL_HARDENING_ASSERT(!IsEndIterator() && "Dereferencing end() iterator");
1192       ABSL_HARDENING_ASSERT(position_ < node_->finish());
1193     }
1194     return node_->value(static_cast<field_type>(position_));
1195   }
1196   pointer operator->() const { return &operator*(); }
1197 
1198   btree_iterator &operator++() {
1199     increment();
1200     return *this;
1201   }
1202   btree_iterator &operator--() {
1203     decrement();
1204     return *this;
1205   }
1206   btree_iterator operator++(int) {
1207     btree_iterator tmp = *this;
1208     ++*this;
1209     return tmp;
1210   }
1211   btree_iterator operator--(int) {
1212     btree_iterator tmp = *this;
1213     --*this;
1214     return tmp;
1215   }
1216 
1217  private:
1218   friend iterator;
1219   friend const_iterator;
1220   template <typename Params>
1221   friend class btree;
1222   template <typename Tree>
1223   friend class btree_container;
1224   template <typename Tree>
1225   friend class btree_set_container;
1226   template <typename Tree>
1227   friend class btree_map_container;
1228   template <typename Tree>
1229   friend class btree_multiset_container;
1230   template <typename TreeType, typename CheckerType>
1231   friend class base_checker;
1232   friend struct btree_access;
1233 
1234   // This SFINAE allows explicit conversions from const_iterator to
1235   // iterator, but also avoids hiding the copy constructor.
1236   // NOTE: the const_cast is safe because this constructor is only called by
1237   // non-const methods and the container owns the nodes.
1238   template <typename N, typename R, typename P,
1239             absl::enable_if_t<
1240                 std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
1241                     std::is_same<btree_iterator, iterator>::value,
1242                 int> = 0>
1243   explicit btree_iterator(const btree_iterator<N, R, P> other)
1244       : btree_iterator_generation_info(other.generation()),
1245         node_(const_cast<node_type *>(other.node_)),
1246         position_(other.position_) {}
1247 
1248   bool Equals(const const_iterator other) const {
1249     ABSL_HARDENING_ASSERT(((node_ == nullptr && other.node_ == nullptr) ||
1250                            (node_ != nullptr && other.node_ != nullptr)) &&
1251                           "Comparing default-constructed iterator with "
1252                           "non-default-constructed iterator.");
1253     // Note: we use assert instead of ABSL_HARDENING_ASSERT here because this
1254     // changes the complexity of Equals from O(1) to O(log(N) + log(M)) where
1255     // N/M are sizes of the containers containing node_/other.node_.
1256     assert(AreNodesFromSameContainer(node_, other.node_) &&
1257            "Comparing iterators from different containers.");
1258     assert_valid_generation(node_);
1259     other.assert_valid_generation(other.node_);
1260     return node_ == other.node_ && position_ == other.position_;
1261   }
1262 
1263   bool IsEndIterator() const {
1264     if (position_ != node_->finish()) return false;
1265     node_type *node = node_;
1266     while (!node->is_root()) {
1267       if (node->position() != node->parent()->finish()) return false;
1268       node = node->parent();
1269     }
1270     return true;
1271   }
1272 
1273   // Returns n such that n calls to ++other yields *this.
1274   // Precondition: n exists && (this->node_ != other.node_ ||
1275   // !this->node_->is_leaf() || this->position_ != other.position_).
1276   difference_type distance_slow(const_iterator other) const;
1277 
1278   // Increment/decrement the iterator.
1279   void increment() {
1280     assert_valid_generation(node_);
1281     if (node_->is_leaf() && ++position_ < node_->finish()) {
1282       return;
1283     }
1284     increment_slow();
1285   }
1286   void increment_slow();
1287 
1288   void decrement() {
1289     assert_valid_generation(node_);
1290     if (node_->is_leaf() && --position_ >= node_->start()) {
1291       return;
1292     }
1293     decrement_slow();
1294   }
1295   void decrement_slow();
1296 
1297   const key_type &key() const {
1298     return node_->key(static_cast<size_type>(position_));
1299   }
1300   decltype(std::declval<Node *>()->slot(0)) slot() {
1301     return node_->slot(static_cast<size_type>(position_));
1302   }
1303 
1304   void update_generation() {
1305     btree_iterator_generation_info::update_generation(node_);
1306   }
1307 
1308   // The node in the tree the iterator is pointing at.
1309   Node *node_;
1310   // The position within the node of the tree the iterator is pointing at.
1311   // NOTE: this is an int rather than a field_type because iterators can point
1312   // to invalid positions (such as -1) in certain circumstances.
1313   int position_;
1314 };
1315 
1316 template <typename Params>
1317 class btree {
1318   using node_type = btree_node<Params>;
1319   using is_key_compare_to = typename Params::is_key_compare_to;
1320   using field_type = typename node_type::field_type;
1321 
1322   // We use a static empty node for the root/leftmost/rightmost of empty btrees
1323   // in order to avoid branching in begin()/end().
1324   struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
1325     using field_type = typename node_type::field_type;
1326     node_type *parent;
1327 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
1328     uint32_t generation = 0;
1329 #endif
1330     field_type position = 0;
1331     field_type start = 0;
1332     field_type finish = 0;
1333     // max_count must be != kInternalNodeMaxCount (so that this node is regarded
1334     // as a leaf node). max_count() is never called when the tree is empty.
1335     field_type max_count = node_type::kInternalNodeMaxCount + 1;
1336 
1337 #ifdef _MSC_VER
1338     // MSVC has constexpr code generations bugs here.
1339     EmptyNodeType() : parent(this) {}
1340 #else
1341     explicit constexpr EmptyNodeType(node_type *p) : parent(p) {}
1342 #endif
1343   };
1344 
1345   static node_type *EmptyNode() {
1346 #ifdef _MSC_VER
1347     static EmptyNodeType *empty_node = new EmptyNodeType;
1348     // This assert fails on some other construction methods.
1349     assert(empty_node->parent == empty_node);
1350     return empty_node;
1351 #else
1352     static constexpr EmptyNodeType empty_node(
1353         const_cast<EmptyNodeType *>(&empty_node));
1354     return const_cast<EmptyNodeType *>(&empty_node);
1355 #endif
1356   }
1357 
1358   enum : uint32_t {
1359     kNodeSlots = node_type::kNodeSlots,
1360     kMinNodeValues = kNodeSlots / 2,
1361   };
1362 
1363   struct node_stats {
1364     using size_type = typename Params::size_type;
1365 
1366     node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
1367 
1368     node_stats &operator+=(const node_stats &other) {
1369       leaf_nodes += other.leaf_nodes;
1370       internal_nodes += other.internal_nodes;
1371       return *this;
1372     }
1373 
1374     size_type leaf_nodes;
1375     size_type internal_nodes;
1376   };
1377 
1378  public:
1379   using key_type = typename Params::key_type;
1380   using value_type = typename Params::value_type;
1381   using size_type = typename Params::size_type;
1382   using difference_type = typename Params::difference_type;
1383   using key_compare = typename Params::key_compare;
1384   using original_key_compare = typename Params::original_key_compare;
1385   using value_compare = typename Params::value_compare;
1386   using allocator_type = typename Params::allocator_type;
1387   using reference = typename Params::reference;
1388   using const_reference = typename Params::const_reference;
1389   using pointer = typename Params::pointer;
1390   using const_pointer = typename Params::const_pointer;
1391   using iterator =
1392       typename btree_iterator<node_type, reference, pointer>::iterator;
1393   using const_iterator = typename iterator::const_iterator;
1394   using reverse_iterator = std::reverse_iterator<iterator>;
1395   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
1396   using node_handle_type = node_handle<Params, Params, allocator_type>;
1397 
1398   // Internal types made public for use by btree_container types.
1399   using params_type = Params;
1400   using slot_type = typename Params::slot_type;
1401 
1402  private:
1403   // Copies or moves (depending on the template parameter) the values in
1404   // other into this btree in their order in other. This btree must be empty
1405   // before this method is called. This method is used in copy construction,
1406   // copy assignment, and move assignment.
1407   template <typename Btree>
1408   void copy_or_move_values_in_order(Btree &other);
1409 
1410   // Validates that various assumptions/requirements are true at compile time.
1411   constexpr static bool static_assert_validation();
1412 
1413  public:
1414   btree(const key_compare &comp, const allocator_type &alloc)
1415       : root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {}
1416 
1417   btree(const btree &other) : btree(other, other.allocator()) {}
1418   btree(const btree &other, const allocator_type &alloc)
1419       : btree(other.key_comp(), alloc) {
1420     copy_or_move_values_in_order(other);
1421   }
1422   btree(btree &&other) noexcept
1423       : root_(absl::exchange(other.root_, EmptyNode())),
1424         rightmost_(std::move(other.rightmost_)),
1425         size_(absl::exchange(other.size_, 0u)) {
1426     other.mutable_rightmost() = EmptyNode();
1427   }
1428   btree(btree &&other, const allocator_type &alloc)
1429       : btree(other.key_comp(), alloc) {
1430     if (alloc == other.allocator()) {
1431       swap(other);
1432     } else {
1433       // Move values from `other` one at a time when allocators are different.
1434       copy_or_move_values_in_order(other);
1435     }
1436   }
1437 
1438   ~btree() {
1439     // Put static_asserts in destructor to avoid triggering them before the type
1440     // is complete.
1441     static_assert(static_assert_validation(), "This call must be elided.");
1442     clear();
1443   }
1444 
1445   // Assign the contents of other to *this.
1446   btree &operator=(const btree &other);
1447   btree &operator=(btree &&other) noexcept;
1448 
1449   iterator begin() { return iterator(leftmost()); }
1450   const_iterator begin() const { return const_iterator(leftmost()); }
1451   iterator end() { return iterator(rightmost(), rightmost()->finish()); }
1452   const_iterator end() const {
1453     return const_iterator(rightmost(), rightmost()->finish());
1454   }
1455   reverse_iterator rbegin() { return reverse_iterator(end()); }
1456   const_reverse_iterator rbegin() const {
1457     return const_reverse_iterator(end());
1458   }
1459   reverse_iterator rend() { return reverse_iterator(begin()); }
1460   const_reverse_iterator rend() const {
1461     return const_reverse_iterator(begin());
1462   }
1463 
1464   // Finds the first element whose key is not less than `key`.
1465   template <typename K>
1466   iterator lower_bound(const K &key) {
1467     return internal_end(internal_lower_bound(key).value);
1468   }
1469   template <typename K>
1470   const_iterator lower_bound(const K &key) const {
1471     return internal_end(internal_lower_bound(key).value);
1472   }
1473 
1474   // Finds the first element whose key is not less than `key` and also returns
1475   // whether that element is equal to `key`.
1476   template <typename K>
1477   std::pair<iterator, bool> lower_bound_equal(const K &key) const;
1478 
1479   // Finds the first element whose key is greater than `key`.
1480   template <typename K>
1481   iterator upper_bound(const K &key) {
1482     return internal_end(internal_upper_bound(key));
1483   }
1484   template <typename K>
1485   const_iterator upper_bound(const K &key) const {
1486     return internal_end(internal_upper_bound(key));
1487   }
1488 
1489   // Finds the range of values which compare equal to key. The first member of
1490   // the returned pair is equal to lower_bound(key). The second member of the
1491   // pair is equal to upper_bound(key).
1492   template <typename K>
1493   std::pair<iterator, iterator> equal_range(const K &key);
1494   template <typename K>
1495   std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
1496     return const_cast<btree *>(this)->equal_range(key);
1497   }
1498 
1499   // Inserts a value into the btree only if it does not already exist. The
1500   // boolean return value indicates whether insertion succeeded or failed.
1501   // Requirement: if `key` already exists in the btree, does not consume `args`.
1502   // Requirement: `key` is never referenced after consuming `args`.
1503   template <typename K, typename... Args>
1504   std::pair<iterator, bool> insert_unique(const K &key, Args &&...args);
1505 
1506   // Inserts with hint. Checks to see if the value should be placed immediately
1507   // before `position` in the tree. If so, then the insertion will take
1508   // amortized constant time. If not, the insertion will take amortized
1509   // logarithmic time as if a call to insert_unique() were made.
1510   // Requirement: if `key` already exists in the btree, does not consume `args`.
1511   // Requirement: `key` is never referenced after consuming `args`.
1512   template <typename K, typename... Args>
1513   std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key,
1514                                                Args &&...args);
1515 
1516   // Insert a range of values into the btree.
1517   // Note: the first overload avoids constructing a value_type if the key
1518   // already exists in the btree.
1519   template <typename InputIterator,
1520             typename = decltype(std::declval<const key_compare &>()(
1521                 params_type::key(*std::declval<InputIterator>()),
1522                 std::declval<const key_type &>()))>
1523   void insert_iterator_unique(InputIterator b, InputIterator e, int);
1524   // We need the second overload for cases in which we need to construct a
1525   // value_type in order to compare it with the keys already in the btree.
1526   template <typename InputIterator>
1527   void insert_iterator_unique(InputIterator b, InputIterator e, char);
1528 
1529   // Inserts a value into the btree.
1530   template <typename ValueType>
1531   iterator insert_multi(const key_type &key, ValueType &&v);
1532 
1533   // Inserts a value into the btree.
1534   template <typename ValueType>
1535   iterator insert_multi(ValueType &&v) {
1536     return insert_multi(params_type::key(v), std::forward<ValueType>(v));
1537   }
1538 
1539   // Insert with hint. Check to see if the value should be placed immediately
1540   // before position in the tree. If it does, then the insertion will take
1541   // amortized constant time. If not, the insertion will take amortized
1542   // logarithmic time as if a call to insert_multi(v) were made.
1543   template <typename ValueType>
1544   iterator insert_hint_multi(iterator position, ValueType &&v);
1545 
1546   // Insert a range of values into the btree.
1547   template <typename InputIterator>
1548   void insert_iterator_multi(InputIterator b,
1549                              InputIterator e);
1550 
1551   // Erase the specified iterator from the btree. The iterator must be valid
1552   // (i.e. not equal to end()).  Return an iterator pointing to the node after
1553   // the one that was erased (or end() if none exists).
1554   // Requirement: does not read the value at `*iter`.
1555   iterator erase(iterator iter);
1556 
1557   // Erases range. Returns the number of keys erased and an iterator pointing
1558   // to the element after the last erased element.
1559   std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
1560 
1561   // Finds an element with key equivalent to `key` or returns `end()` if `key`
1562   // is not present.
1563   template <typename K>
1564   iterator find(const K &key) {
1565     return internal_end(internal_find(key));
1566   }
1567   template <typename K>
1568   const_iterator find(const K &key) const {
1569     return internal_end(internal_find(key));
1570   }
1571 
1572   // Clear the btree, deleting all of the values it contains.
1573   void clear();
1574 
1575   // Swaps the contents of `this` and `other`.
1576   void swap(btree &other);
1577 
1578   const key_compare &key_comp() const noexcept {
1579     return rightmost_.template get<0>();
1580   }
1581   template <typename K1, typename K2>
1582   bool compare_keys(const K1 &a, const K2 &b) const {
1583     return compare_internal::compare_result_as_less_than(key_comp()(a, b));
1584   }
1585 
1586   value_compare value_comp() const {
1587     return value_compare(original_key_compare(key_comp()));
1588   }
1589 
1590   // Verifies the structure of the btree.
1591   void verify() const;
1592 
1593   // Size routines.
1594   size_type size() const { return size_; }
1595   size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
1596   bool empty() const { return size_ == 0; }
1597 
1598   // The height of the btree. An empty tree will have height 0.
1599   size_type height() const {
1600     size_type h = 0;
1601     if (!empty()) {
1602       // Count the length of the chain from the leftmost node up to the
1603       // root. We actually count from the root back around to the level below
1604       // the root, but the calculation is the same because of the circularity
1605       // of that traversal.
1606       const node_type *n = root();
1607       do {
1608         ++h;
1609         n = n->parent();
1610       } while (n != root());
1611     }
1612     return h;
1613   }
1614 
1615   // The number of internal, leaf and total nodes used by the btree.
1616   size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
1617   size_type internal_nodes() const {
1618     return internal_stats(root()).internal_nodes;
1619   }
1620   size_type nodes() const {
1621     node_stats stats = internal_stats(root());
1622     return stats.leaf_nodes + stats.internal_nodes;
1623   }
1624 
1625   // The total number of bytes used by the btree.
1626   // TODO(b/169338300): update to support node_btree_*.
1627   size_type bytes_used() const {
1628     node_stats stats = internal_stats(root());
1629     if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
1630       return sizeof(*this) + node_type::LeafSize(root()->max_count());
1631     } else {
1632       return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
1633              stats.internal_nodes * node_type::InternalSize();
1634     }
1635   }
1636 
1637   // The average number of bytes used per value stored in the btree assuming
1638   // random insertion order.
1639   static double average_bytes_per_value() {
1640     // The expected number of values per node with random insertion order is the
1641     // average of the maximum and minimum numbers of values per node.
1642     const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0;
1643     return node_type::LeafSize() / expected_values_per_node;
1644   }
1645 
1646   // The fullness of the btree. Computed as the number of elements in the btree
1647   // divided by the maximum number of elements a tree with the current number
1648   // of nodes could hold. A value of 1 indicates perfect space
1649   // utilization. Smaller values indicate space wastage.
1650   // Returns 0 for empty trees.
1651   double fullness() const {
1652     if (empty()) return 0.0;
1653     return static_cast<double>(size()) / (nodes() * kNodeSlots);
1654   }
1655   // The overhead of the btree structure in bytes per node. Computed as the
1656   // total number of bytes used by the btree minus the number of bytes used for
1657   // storing elements divided by the number of elements.
1658   // Returns 0 for empty trees.
1659   double overhead() const {
1660     if (empty()) return 0.0;
1661     return (bytes_used() - size() * sizeof(value_type)) /
1662            static_cast<double>(size());
1663   }
1664 
1665   // The allocator used by the btree.
1666   allocator_type get_allocator() const { return allocator(); }
1667 
1668  private:
1669   friend struct btree_access;
1670 
1671   // Internal accessor routines.
1672   node_type *root() { return root_; }
1673   const node_type *root() const { return root_; }
1674   node_type *&mutable_root() noexcept { return root_; }
1675   node_type *rightmost() { return rightmost_.template get<2>(); }
1676   const node_type *rightmost() const { return rightmost_.template get<2>(); }
1677   node_type *&mutable_rightmost() noexcept {
1678     return rightmost_.template get<2>();
1679   }
1680   key_compare *mutable_key_comp() noexcept {
1681     return &rightmost_.template get<0>();
1682   }
1683 
1684   // The leftmost node is stored as the parent of the root node.
1685   node_type *leftmost() { return root()->parent(); }
1686   const node_type *leftmost() const { return root()->parent(); }
1687 
1688   // Allocator routines.
1689   allocator_type *mutable_allocator() noexcept {
1690     return &rightmost_.template get<1>();
1691   }
1692   const allocator_type &allocator() const noexcept {
1693     return rightmost_.template get<1>();
1694   }
1695 
1696   // Allocates a correctly aligned node of at least size bytes using the
1697   // allocator.
1698   node_type *allocate(size_type size) {
1699     return reinterpret_cast<node_type *>(
1700         absl::container_internal::Allocate<node_type::Alignment()>(
1701             mutable_allocator(), size));
1702   }
1703 
1704   // Node creation/deletion routines.
1705   node_type *new_internal_node(field_type position, node_type *parent) {
1706     node_type *n = allocate(node_type::InternalSize());
1707     n->init_internal(position, parent);
1708     return n;
1709   }
1710   node_type *new_leaf_node(field_type position, node_type *parent) {
1711     node_type *n = allocate(node_type::LeafSize());
1712     n->init_leaf(position, kNodeSlots, parent);
1713     return n;
1714   }
1715   node_type *new_leaf_root_node(field_type max_count) {
1716     node_type *n = allocate(node_type::LeafSize(max_count));
1717     n->init_leaf(/*position=*/0, max_count, /*parent=*/n);
1718     return n;
1719   }
1720 
1721   // Deletion helper routines.
1722   iterator rebalance_after_delete(iterator iter);
1723 
1724   // Rebalances or splits the node iter points to.
1725   void rebalance_or_split(iterator *iter);
1726 
1727   // Merges the values of left, right and the delimiting key on their parent
1728   // onto left, removing the delimiting key and deleting right.
1729   void merge_nodes(node_type *left, node_type *right);
1730 
1731   // Tries to merge node with its left or right sibling, and failing that,
1732   // rebalance with its left or right sibling. Returns true if a merge
1733   // occurred, at which point it is no longer valid to access node. Returns
1734   // false if no merging took place.
1735   bool try_merge_or_rebalance(iterator *iter);
1736 
1737   // Tries to shrink the height of the tree by 1.
1738   void try_shrink();
1739 
1740   iterator internal_end(iterator iter) {
1741     return iter.node_ != nullptr ? iter : end();
1742   }
1743   const_iterator internal_end(const_iterator iter) const {
1744     return iter.node_ != nullptr ? iter : end();
1745   }
1746 
1747   // Emplaces a value into the btree immediately before iter. Requires that
1748   // key(v) <= iter.key() and (--iter).key() <= key(v).
1749   template <typename... Args>
1750   iterator internal_emplace(iterator iter, Args &&...args);
1751 
1752   // Returns an iterator pointing to the first value >= the value "iter" is
1753   // pointing at. Note that "iter" might be pointing to an invalid location such
1754   // as iter.position_ == iter.node_->finish(). This routine simply moves iter
1755   // up in the tree to a valid location. Requires: iter.node_ is non-null.
1756   template <typename IterType>
1757   static IterType internal_last(IterType iter);
1758 
1759   // Returns an iterator pointing to the leaf position at which key would
1760   // reside in the tree, unless there is an exact match - in which case, the
1761   // result may not be on a leaf. When there's a three-way comparator, we can
1762   // return whether there was an exact match. This allows the caller to avoid a
1763   // subsequent comparison to determine if an exact match was made, which is
1764   // important for keys with expensive comparison, such as strings.
1765   template <typename K>
1766   SearchResult<iterator, is_key_compare_to::value> internal_locate(
1767       const K &key) const;
1768 
1769   // Internal routine which implements lower_bound().
1770   template <typename K>
1771   SearchResult<iterator, is_key_compare_to::value> internal_lower_bound(
1772       const K &key) const;
1773 
1774   // Internal routine which implements upper_bound().
1775   template <typename K>
1776   iterator internal_upper_bound(const K &key) const;
1777 
1778   // Internal routine which implements find().
1779   template <typename K>
1780   iterator internal_find(const K &key) const;
1781 
1782   // Verifies the tree structure of node.
1783   size_type internal_verify(const node_type *node, const key_type *lo,
1784                             const key_type *hi) const;
1785 
1786   node_stats internal_stats(const node_type *node) const {
1787     // The root can be a static empty node.
1788     if (node == nullptr || (node == root() && empty())) {
1789       return node_stats(0, 0);
1790     }
1791     if (node->is_leaf()) {
1792       return node_stats(1, 0);
1793     }
1794     node_stats res(0, 1);
1795     for (int i = node->start(); i <= node->finish(); ++i) {
1796       res += internal_stats(node->child(i));
1797     }
1798     return res;
1799   }
1800 
1801   node_type *root_;
1802 
1803   // A pointer to the rightmost node. Note that the leftmost node is stored as
1804   // the root's parent. We use compressed tuple in order to save space because
1805   // key_compare and allocator_type are usually empty.
1806   absl::container_internal::CompressedTuple<key_compare, allocator_type,
1807                                             node_type *>
1808       rightmost_;
1809 
1810   // Number of values.
1811   size_type size_;
1812 };
1813 
1814 ////
1815 // btree_node methods
1816 template <typename P>
1817 template <typename... Args>
1818 inline void btree_node<P>::emplace_value(const field_type i,
1819                                          allocator_type *alloc,
1820                                          Args &&...args) {
1821   assert(i >= start());
1822   assert(i <= finish());
1823   // Shift old values to create space for new value and then construct it in
1824   // place.
1825   if (i < finish()) {
1826     transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
1827                         alloc);
1828   }
1829   value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...);
1830   set_finish(finish() + 1);
1831 
1832   if (is_internal() && finish() > i + 1) {
1833     for (field_type j = finish(); j > i + 1; --j) {
1834       set_child(j, child(j - 1));
1835     }
1836     clear_child(i + 1);
1837   }
1838 }
1839 
1840 template <typename P>
1841 inline void btree_node<P>::remove_values(const field_type i,
1842                                          const field_type to_erase,
1843                                          allocator_type *alloc) {
1844   // Transfer values after the removed range into their new places.
1845   value_destroy_n(i, to_erase, alloc);
1846   const field_type orig_finish = finish();
1847   const field_type src_i = i + to_erase;
1848   transfer_n(orig_finish - src_i, i, src_i, this, alloc);
1849 
1850   if (is_internal()) {
1851     // Delete all children between begin and end.
1852     for (field_type j = 0; j < to_erase; ++j) {
1853       clear_and_delete(child(i + j + 1), alloc);
1854     }
1855     // Rotate children after end into new positions.
1856     for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) {
1857       set_child(j - to_erase, child(j));
1858       clear_child(j);
1859     }
1860   }
1861   set_finish(orig_finish - to_erase);
1862 }
1863 
1864 template <typename P>
1865 void btree_node<P>::rebalance_right_to_left(field_type to_move,
1866                                             btree_node *right,
1867                                             allocator_type *alloc) {
1868   assert(parent() == right->parent());
1869   assert(position() + 1 == right->position());
1870   assert(right->count() >= count());
1871   assert(to_move >= 1);
1872   assert(to_move <= right->count());
1873 
1874   // 1) Move the delimiting value in the parent to the left node.
1875   transfer(finish(), position(), parent(), alloc);
1876 
1877   // 2) Move the (to_move - 1) values from the right node to the left node.
1878   transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
1879 
1880   // 3) Move the new delimiting value to the parent from the right node.
1881   parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
1882 
1883   // 4) Shift the values in the right node to their correct positions.
1884   right->transfer_n(right->count() - to_move, right->start(),
1885                     right->start() + to_move, right, alloc);
1886 
1887   if (is_internal()) {
1888     // Move the child pointers from the right to the left node.
1889     for (field_type i = 0; i < to_move; ++i) {
1890       init_child(finish() + i + 1, right->child(i));
1891     }
1892     for (field_type i = right->start(); i <= right->finish() - to_move; ++i) {
1893       assert(i + to_move <= right->max_count());
1894       right->init_child(i, right->child(i + to_move));
1895       right->clear_child(i + to_move);
1896     }
1897   }
1898 
1899   // Fixup `finish` on the left and right nodes.
1900   set_finish(finish() + to_move);
1901   right->set_finish(right->finish() - to_move);
1902 }
1903 
1904 template <typename P>
1905 void btree_node<P>::rebalance_left_to_right(field_type to_move,
1906                                             btree_node *right,
1907                                             allocator_type *alloc) {
1908   assert(parent() == right->parent());
1909   assert(position() + 1 == right->position());
1910   assert(count() >= right->count());
1911   assert(to_move >= 1);
1912   assert(to_move <= count());
1913 
1914   // Values in the right node are shifted to the right to make room for the
1915   // new to_move values. Then, the delimiting value in the parent and the
1916   // other (to_move - 1) values in the left node are moved into the right node.
1917   // Lastly, a new delimiting value is moved from the left node into the
1918   // parent, and the remaining empty left node entries are destroyed.
1919 
1920   // 1) Shift existing values in the right node to their correct positions.
1921   right->transfer_n_backward(right->count(), right->start() + to_move,
1922                              right->start(), right, alloc);
1923 
1924   // 2) Move the delimiting value in the parent to the right node.
1925   right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
1926 
1927   // 3) Move the (to_move - 1) values from the left node to the right node.
1928   right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
1929                     alloc);
1930 
1931   // 4) Move the new delimiting value to the parent from the left node.
1932   parent()->transfer(position(), finish() - to_move, this, alloc);
1933 
1934   if (is_internal()) {
1935     // Move the child pointers from the left to the right node.
1936     for (field_type i = right->finish() + 1; i > right->start(); --i) {
1937       right->init_child(i - 1 + to_move, right->child(i - 1));
1938       right->clear_child(i - 1);
1939     }
1940     for (field_type i = 1; i <= to_move; ++i) {
1941       right->init_child(i - 1, child(finish() - to_move + i));
1942       clear_child(finish() - to_move + i);
1943     }
1944   }
1945 
1946   // Fixup the counts on the left and right nodes.
1947   set_finish(finish() - to_move);
1948   right->set_finish(right->finish() + to_move);
1949 }
1950 
1951 template <typename P>
1952 void btree_node<P>::split(const int insert_position, btree_node *dest,
1953                           allocator_type *alloc) {
1954   assert(dest->count() == 0);
1955   assert(max_count() == kNodeSlots);
1956   assert(position() + 1 == dest->position());
1957   assert(parent() == dest->parent());
1958 
1959   // We bias the split based on the position being inserted. If we're
1960   // inserting at the beginning of the left node then bias the split to put
1961   // more values on the right node. If we're inserting at the end of the
1962   // right node then bias the split to put more values on the left node.
1963   if (insert_position == start()) {
1964     dest->set_finish(dest->start() + finish() - 1);
1965   } else if (insert_position == kNodeSlots) {
1966     dest->set_finish(dest->start());
1967   } else {
1968     dest->set_finish(dest->start() + count() / 2);
1969   }
1970   set_finish(finish() - dest->count());
1971   assert(count() >= 1);
1972 
1973   // Move values from the left sibling to the right sibling.
1974   dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
1975 
1976   // The split key is the largest value in the left sibling.
1977   --mutable_finish();
1978   parent()->emplace_value(position(), alloc, finish_slot());
1979   value_destroy(finish(), alloc);
1980   parent()->set_child_noupdate_position(position() + 1, dest);
1981 
1982   if (is_internal()) {
1983     for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish();
1984          ++i, ++j) {
1985       assert(child(j) != nullptr);
1986       dest->init_child(i, child(j));
1987       clear_child(j);
1988     }
1989   }
1990 }
1991 
1992 template <typename P>
1993 void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
1994   assert(parent() == src->parent());
1995   assert(position() + 1 == src->position());
1996 
1997   // Move the delimiting value to the left node.
1998   value_init(finish(), alloc, parent()->slot(position()));
1999 
2000   // Move the values from the right to the left node.
2001   transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
2002 
2003   if (is_internal()) {
2004     // Move the child pointers from the right to the left node.
2005     for (field_type i = src->start(), j = finish() + 1; i <= src->finish();
2006          ++i, ++j) {
2007       init_child(j, src->child(i));
2008       src->clear_child(i);
2009     }
2010   }
2011 
2012   // Fixup `finish` on the src and dest nodes.
2013   set_finish(start() + 1 + count() + src->count());
2014   src->set_finish(src->start());
2015 
2016   // Remove the value on the parent node and delete the src node.
2017   parent()->remove_values(position(), /*to_erase=*/1, alloc);
2018 }
2019 
2020 template <typename P>
2021 void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
2022   if (node->is_leaf()) {
2023     node->value_destroy_n(node->start(), node->count(), alloc);
2024     deallocate(LeafSize(node->max_count()), node, alloc);
2025     return;
2026   }
2027   if (node->count() == 0) {
2028     deallocate(InternalSize(), node, alloc);
2029     return;
2030   }
2031 
2032   // The parent of the root of the subtree we are deleting.
2033   btree_node *delete_root_parent = node->parent();
2034 
2035   // Navigate to the leftmost leaf under node, and then delete upwards.
2036   while (node->is_internal()) node = node->start_child();
2037 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
2038   // When generations are enabled, we delete the leftmost leaf last in case it's
2039   // the parent of the root and we need to check whether it's a leaf before we
2040   // can update the root's generation.
2041   // TODO(ezb): if we change btree_node::is_root to check a bool inside the node
2042   // instead of checking whether the parent is a leaf, we can remove this logic.
2043   btree_node *leftmost_leaf = node;
2044 #endif
2045   // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
2046   // which isn't guaranteed to be a valid `field_type`.
2047   size_type pos = node->position();
2048   btree_node *parent = node->parent();
2049   for (;;) {
2050     // In each iteration of the next loop, we delete one leaf node and go right.
2051     assert(pos <= parent->finish());
2052     do {
2053       node = parent->child(static_cast<field_type>(pos));
2054       if (node->is_internal()) {
2055         // Navigate to the leftmost leaf under node.
2056         while (node->is_internal()) node = node->start_child();
2057         pos = node->position();
2058         parent = node->parent();
2059       }
2060       node->value_destroy_n(node->start(), node->count(), alloc);
2061 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
2062       if (leftmost_leaf != node)
2063 #endif
2064         deallocate(LeafSize(node->max_count()), node, alloc);
2065       ++pos;
2066     } while (pos <= parent->finish());
2067 
2068     // Once we've deleted all children of parent, delete parent and go up/right.
2069     assert(pos > parent->finish());
2070     do {
2071       node = parent;
2072       pos = node->position();
2073       parent = node->parent();
2074       node->value_destroy_n(node->start(), node->count(), alloc);
2075       deallocate(InternalSize(), node, alloc);
2076       if (parent == delete_root_parent) {
2077 #ifdef ABSL_BTREE_ENABLE_GENERATIONS
2078         deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc);
2079 #endif
2080         return;
2081       }
2082       ++pos;
2083     } while (pos > parent->finish());
2084   }
2085 }
2086 
2087 ////
2088 // btree_iterator methods
2089 
2090 // Note: the implementation here is based on btree_node::clear_and_delete.
2091 template <typename N, typename R, typename P>
2092 auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const
2093     -> difference_type {
2094   const_iterator begin = other;
2095   const_iterator end = *this;
2096   assert(begin.node_ != end.node_ || !begin.node_->is_leaf() ||
2097          begin.position_ != end.position_);
2098 
2099   const node_type *node = begin.node_;
2100   // We need to compensate for double counting if begin.node_ is a leaf node.
2101   difference_type count = node->is_leaf() ? -begin.position_ : 0;
2102 
2103   // First navigate to the leftmost leaf node past begin.
2104   if (node->is_internal()) {
2105     ++count;
2106     node = node->child(begin.position_ + 1);
2107   }
2108   while (node->is_internal()) node = node->start_child();
2109 
2110   // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
2111   // which isn't guaranteed to be a valid `field_type`.
2112   size_type pos = node->position();
2113   const node_type *parent = node->parent();
2114   for (;;) {
2115     // In each iteration of the next loop, we count one leaf node and go right.
2116     assert(pos <= parent->finish());
2117     do {
2118       node = parent->child(static_cast<field_type>(pos));
2119       if (node->is_internal()) {
2120         // Navigate to the leftmost leaf under node.
2121         while (node->is_internal()) node = node->start_child();
2122         pos = node->position();
2123         parent = node->parent();
2124       }
2125       if (node == end.node_) return count + end.position_;
2126       if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
2127         return count + node->count();
2128       // +1 is for the next internal node value.
2129       count += node->count() + 1;
2130       ++pos;
2131     } while (pos <= parent->finish());
2132 
2133     // Once we've counted all children of parent, go up/right.
2134     assert(pos > parent->finish());
2135     do {
2136       node = parent;
2137       pos = node->position();
2138       parent = node->parent();
2139       // -1 because we counted the value at end and shouldn't.
2140       if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
2141         return count - 1;
2142       ++pos;
2143     } while (pos > parent->finish());
2144   }
2145 }
2146 
2147 template <typename N, typename R, typename P>
2148 void btree_iterator<N, R, P>::increment_slow() {
2149   if (node_->is_leaf()) {
2150     assert(position_ >= node_->finish());
2151     btree_iterator save(*this);
2152     while (position_ == node_->finish() && !node_->is_root()) {
2153       assert(node_->parent()->child(node_->position()) == node_);
2154       position_ = node_->position();
2155       node_ = node_->parent();
2156     }
2157     // TODO(ezb): assert we aren't incrementing end() instead of handling.
2158     if (position_ == node_->finish()) {
2159       *this = save;
2160     }
2161   } else {
2162     assert(position_ < node_->finish());
2163     node_ = node_->child(static_cast<field_type>(position_ + 1));
2164     while (node_->is_internal()) {
2165       node_ = node_->start_child();
2166     }
2167     position_ = node_->start();
2168   }
2169 }
2170 
2171 template <typename N, typename R, typename P>
2172 void btree_iterator<N, R, P>::decrement_slow() {
2173   if (node_->is_leaf()) {
2174     assert(position_ <= -1);
2175     btree_iterator save(*this);
2176     while (position_ < node_->start() && !node_->is_root()) {
2177       assert(node_->parent()->child(node_->position()) == node_);
2178       position_ = node_->position() - 1;
2179       node_ = node_->parent();
2180     }
2181     // TODO(ezb): assert we aren't decrementing begin() instead of handling.
2182     if (position_ < node_->start()) {
2183       *this = save;
2184     }
2185   } else {
2186     assert(position_ >= node_->start());
2187     node_ = node_->child(static_cast<field_type>(position_));
2188     while (node_->is_internal()) {
2189       node_ = node_->child(node_->finish());
2190     }
2191     position_ = node_->finish() - 1;
2192   }
2193 }
2194 
2195 ////
2196 // btree methods
2197 template <typename P>
2198 template <typename Btree>
2199 void btree<P>::copy_or_move_values_in_order(Btree &other) {
2200   static_assert(std::is_same<btree, Btree>::value ||
2201                     std::is_same<const btree, Btree>::value,
2202                 "Btree type must be same or const.");
2203   assert(empty());
2204 
2205   // We can avoid key comparisons because we know the order of the
2206   // values is the same order we'll store them in.
2207   auto iter = other.begin();
2208   if (iter == other.end()) return;
2209   insert_multi(iter.slot());
2210   ++iter;
2211   for (; iter != other.end(); ++iter) {
2212     // If the btree is not empty, we can just insert the new value at the end
2213     // of the tree.
2214     internal_emplace(end(), iter.slot());
2215   }
2216 }
2217 
2218 template <typename P>
2219 constexpr bool btree<P>::static_assert_validation() {
2220   static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
2221                 "Key comparison must be nothrow copy constructible");
2222   static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
2223                 "Allocator must be nothrow copy constructible");
2224   static_assert(std::is_trivially_copyable<iterator>::value,
2225                 "iterator not trivially copyable.");
2226 
2227   // Note: We assert that kTargetValues, which is computed from
2228   // Params::kTargetNodeSize, must fit the node_type::field_type.
2229   static_assert(
2230       kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))),
2231       "target node size too large");
2232 
2233   // Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
2234   static_assert(
2235       compare_has_valid_result_type<key_compare, key_type>(),
2236       "key comparison function must return absl::{weak,strong}_ordering or "
2237       "bool.");
2238 
2239   // Test the assumption made in setting kNodeSlotSpace.
2240   static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
2241                 "node space assumption incorrect");
2242 
2243   return true;
2244 }
2245 
2246 template <typename P>
2247 template <typename K>
2248 auto btree<P>::lower_bound_equal(const K &key) const
2249     -> std::pair<iterator, bool> {
2250   const SearchResult<iterator, is_key_compare_to::value> res =
2251       internal_lower_bound(key);
2252   const iterator lower = iterator(internal_end(res.value));
2253   const bool equal = res.HasMatch()
2254                          ? res.IsEq()
2255                          : lower != end() && !compare_keys(key, lower.key());
2256   return {lower, equal};
2257 }
2258 
2259 template <typename P>
2260 template <typename K>
2261 auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
2262   const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key);
2263   const iterator lower = lower_and_equal.first;
2264   if (!lower_and_equal.second) {
2265     return {lower, lower};
2266   }
2267 
2268   const iterator next = std::next(lower);
2269   if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
2270     // The next iterator after lower must point to a key greater than `key`.
2271     // Note: if this assert fails, then it may indicate that the comparator does
2272     // not meet the equivalence requirements for Compare
2273     // (see https://en.cppreference.com/w/cpp/named_req/Compare).
2274     assert(next == end() || compare_keys(key, next.key()));
2275     return {lower, next};
2276   }
2277   // Try once more to avoid the call to upper_bound() if there's only one
2278   // equivalent key. This should prevent all calls to upper_bound() in cases of
2279   // unique-containers with heterogeneous comparators in which all comparison
2280   // operators have the same equivalence classes.
2281   if (next == end() || compare_keys(key, next.key())) return {lower, next};
2282 
2283   // In this case, we need to call upper_bound() to avoid worst case O(N)
2284   // behavior if we were to iterate over equal keys.
2285   return {lower, upper_bound(key)};
2286 }
2287 
2288 template <typename P>
2289 template <typename K, typename... Args>
2290 auto btree<P>::insert_unique(const K &key, Args &&...args)
2291     -> std::pair<iterator, bool> {
2292   if (empty()) {
2293     mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
2294   }
2295 
2296   SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
2297   iterator iter = res.value;
2298 
2299   if (res.HasMatch()) {
2300     if (res.IsEq()) {
2301       // The key already exists in the tree, do nothing.
2302       return {iter, false};
2303     }
2304   } else {
2305     iterator last = internal_last(iter);
2306     if (last.node_ && !compare_keys(key, last.key())) {
2307       // The key already exists in the tree, do nothing.
2308       return {last, false};
2309     }
2310   }
2311   return {internal_emplace(iter, std::forward<Args>(args)...), true};
2312 }
2313 
2314 template <typename P>
2315 template <typename K, typename... Args>
2316 inline auto btree<P>::insert_hint_unique(iterator position, const K &key,
2317                                          Args &&...args)
2318     -> std::pair<iterator, bool> {
2319   if (!empty()) {
2320     if (position == end() || compare_keys(key, position.key())) {
2321       if (position == begin() || compare_keys(std::prev(position).key(), key)) {
2322         // prev.key() < key < position.key()
2323         return {internal_emplace(position, std::forward<Args>(args)...), true};
2324       }
2325     } else if (compare_keys(position.key(), key)) {
2326       ++position;
2327       if (position == end() || compare_keys(key, position.key())) {
2328         // {original `position`}.key() < key < {current `position`}.key()
2329         return {internal_emplace(position, std::forward<Args>(args)...), true};
2330       }
2331     } else {
2332       // position.key() == key
2333       return {position, false};
2334     }
2335   }
2336   return insert_unique(key, std::forward<Args>(args)...);
2337 }
2338 
2339 template <typename P>
2340 template <typename InputIterator, typename>
2341 void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) {
2342   for (; b != e; ++b) {
2343     insert_hint_unique(end(), params_type::key(*b), *b);
2344   }
2345 }
2346 
2347 template <typename P>
2348 template <typename InputIterator>
2349 void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
2350   for (; b != e; ++b) {
2351     // Use a node handle to manage a temp slot.
2352     auto node_handle =
2353         CommonAccess::Construct<node_handle_type>(get_allocator(), *b);
2354     slot_type *slot = CommonAccess::GetSlot(node_handle);
2355     insert_hint_unique(end(), params_type::key(slot), slot);
2356   }
2357 }
2358 
2359 template <typename P>
2360 template <typename ValueType>
2361 auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
2362   if (empty()) {
2363     mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
2364   }
2365 
2366   iterator iter = internal_upper_bound(key);
2367   if (iter.node_ == nullptr) {
2368     iter = end();
2369   }
2370   return internal_emplace(iter, std::forward<ValueType>(v));
2371 }
2372 
2373 template <typename P>
2374 template <typename ValueType>
2375 auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
2376   if (!empty()) {
2377     const key_type &key = params_type::key(v);
2378     if (position == end() || !compare_keys(position.key(), key)) {
2379       if (position == begin() ||
2380           !compare_keys(key, std::prev(position).key())) {
2381         // prev.key() <= key <= position.key()
2382         return internal_emplace(position, std::forward<ValueType>(v));
2383       }
2384     } else {
2385       ++position;
2386       if (position == end() || !compare_keys(position.key(), key)) {
2387         // {original `position`}.key() < key < {current `position`}.key()
2388         return internal_emplace(position, std::forward<ValueType>(v));
2389       }
2390     }
2391   }
2392   return insert_multi(std::forward<ValueType>(v));
2393 }
2394 
2395 template <typename P>
2396 template <typename InputIterator>
2397 void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
2398   for (; b != e; ++b) {
2399     insert_hint_multi(end(), *b);
2400   }
2401 }
2402 
2403 template <typename P>
2404 auto btree<P>::operator=(const btree &other) -> btree & {
2405   if (this != &other) {
2406     clear();
2407 
2408     *mutable_key_comp() = other.key_comp();
2409     if (absl::allocator_traits<
2410             allocator_type>::propagate_on_container_copy_assignment::value) {
2411       *mutable_allocator() = other.allocator();
2412     }
2413 
2414     copy_or_move_values_in_order(other);
2415   }
2416   return *this;
2417 }
2418 
2419 template <typename P>
2420 auto btree<P>::operator=(btree &&other) noexcept -> btree & {
2421   if (this != &other) {
2422     clear();
2423 
2424     using std::swap;
2425     if (absl::allocator_traits<
2426             allocator_type>::propagate_on_container_move_assignment::value) {
2427       swap(root_, other.root_);
2428       // Note: `rightmost_` also contains the allocator and the key comparator.
2429       swap(rightmost_, other.rightmost_);
2430       swap(size_, other.size_);
2431     } else {
2432       if (allocator() == other.allocator()) {
2433         swap(mutable_root(), other.mutable_root());
2434         swap(*mutable_key_comp(), *other.mutable_key_comp());
2435         swap(mutable_rightmost(), other.mutable_rightmost());
2436         swap(size_, other.size_);
2437       } else {
2438         // We aren't allowed to propagate the allocator and the allocator is
2439         // different so we can't take over its memory. We must move each element
2440         // individually. We need both `other` and `this` to have `other`s key
2441         // comparator while moving the values so we can't swap the key
2442         // comparators.
2443         *mutable_key_comp() = other.key_comp();
2444         copy_or_move_values_in_order(other);
2445       }
2446     }
2447   }
2448   return *this;
2449 }
2450 
2451 template <typename P>
2452 auto btree<P>::erase(iterator iter) -> iterator {
2453   iter.node_->value_destroy(static_cast<field_type>(iter.position_),
2454                             mutable_allocator());
2455   iter.update_generation();
2456 
2457   const bool internal_delete = iter.node_->is_internal();
2458   if (internal_delete) {
2459     // Deletion of a value on an internal node. First, transfer the largest
2460     // value from our left child here, then erase/rebalance from that position.
2461     // We can get to the largest value from our left child by decrementing iter.
2462     iterator internal_iter(iter);
2463     --iter;
2464     assert(iter.node_->is_leaf());
2465     internal_iter.node_->transfer(
2466         static_cast<size_type>(internal_iter.position_),
2467         static_cast<size_type>(iter.position_), iter.node_,
2468         mutable_allocator());
2469   } else {
2470     // Shift values after erased position in leaf. In the internal case, we
2471     // don't need to do this because the leaf position is the end of the node.
2472     const field_type transfer_from =
2473         static_cast<field_type>(iter.position_ + 1);
2474     const field_type num_to_transfer = iter.node_->finish() - transfer_from;
2475     iter.node_->transfer_n(num_to_transfer,
2476                            static_cast<size_type>(iter.position_),
2477                            transfer_from, iter.node_, mutable_allocator());
2478   }
2479   // Update node finish and container size.
2480   iter.node_->set_finish(iter.node_->finish() - 1);
2481   --size_;
2482 
2483   // We want to return the next value after the one we just erased. If we
2484   // erased from an internal node (internal_delete == true), then the next
2485   // value is ++(++iter). If we erased from a leaf node (internal_delete ==
2486   // false) then the next value is ++iter. Note that ++iter may point to an
2487   // internal node and the value in the internal node may move to a leaf node
2488   // (iter.node_) when rebalancing is performed at the leaf level.
2489 
2490   iterator res = rebalance_after_delete(iter);
2491 
2492   // If we erased from an internal node, advance the iterator.
2493   if (internal_delete) {
2494     ++res;
2495   }
2496   return res;
2497 }
2498 
2499 template <typename P>
2500 auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
2501   // Merge/rebalance as we walk back up the tree.
2502   iterator res(iter);
2503   bool first_iteration = true;
2504   for (;;) {
2505     if (iter.node_ == root()) {
2506       try_shrink();
2507       if (empty()) {
2508         return end();
2509       }
2510       break;
2511     }
2512     if (iter.node_->count() >= kMinNodeValues) {
2513       break;
2514     }
2515     bool merged = try_merge_or_rebalance(&iter);
2516     // On the first iteration, we should update `res` with `iter` because `res`
2517     // may have been invalidated.
2518     if (first_iteration) {
2519       res = iter;
2520       first_iteration = false;
2521     }
2522     if (!merged) {
2523       break;
2524     }
2525     iter.position_ = iter.node_->position();
2526     iter.node_ = iter.node_->parent();
2527   }
2528   res.update_generation();
2529 
2530   // Adjust our return value. If we're pointing at the end of a node, advance
2531   // the iterator.
2532   if (res.position_ == res.node_->finish()) {
2533     res.position_ = res.node_->finish() - 1;
2534     ++res;
2535   }
2536 
2537   return res;
2538 }
2539 
2540 // Note: we tried implementing this more efficiently by erasing all of the
2541 // elements in [begin, end) at once and then doing rebalancing once at the end
2542 // (rather than interleaving deletion and rebalancing), but that adds a lot of
2543 // complexity, which seems to outweigh the performance win.
2544 template <typename P>
2545 auto btree<P>::erase_range(iterator begin, iterator end)
2546     -> std::pair<size_type, iterator> {
2547   size_type count = static_cast<size_type>(end - begin);
2548   assert(count >= 0);
2549 
2550   if (count == 0) {
2551     return {0, begin};
2552   }
2553 
2554   if (static_cast<size_type>(count) == size_) {
2555     clear();
2556     return {count, this->end()};
2557   }
2558 
2559   if (begin.node_ == end.node_) {
2560     assert(end.position_ > begin.position_);
2561     begin.node_->remove_values(
2562         static_cast<field_type>(begin.position_),
2563         static_cast<field_type>(end.position_ - begin.position_),
2564         mutable_allocator());
2565     size_ -= count;
2566     return {count, rebalance_after_delete(begin)};
2567   }
2568 
2569   const size_type target_size = size_ - count;
2570   while (size_ > target_size) {
2571     if (begin.node_->is_leaf()) {
2572       const size_type remaining_to_erase = size_ - target_size;
2573       const size_type remaining_in_node =
2574           static_cast<size_type>(begin.node_->finish() - begin.position_);
2575       const field_type to_erase = static_cast<field_type>(
2576           (std::min)(remaining_to_erase, remaining_in_node));
2577       begin.node_->remove_values(static_cast<field_type>(begin.position_),
2578                                  to_erase, mutable_allocator());
2579       size_ -= to_erase;
2580       begin = rebalance_after_delete(begin);
2581     } else {
2582       begin = erase(begin);
2583     }
2584   }
2585   begin.update_generation();
2586   return {count, begin};
2587 }
2588 
2589 template <typename P>
2590 void btree<P>::clear() {
2591   if (!empty()) {
2592     node_type::clear_and_delete(root(), mutable_allocator());
2593   }
2594   mutable_root() = mutable_rightmost() = EmptyNode();
2595   size_ = 0;
2596 }
2597 
2598 template <typename P>
2599 void btree<P>::swap(btree &other) {
2600   using std::swap;
2601   if (absl::allocator_traits<
2602           allocator_type>::propagate_on_container_swap::value) {
2603     // Note: `rightmost_` also contains the allocator and the key comparator.
2604     swap(rightmost_, other.rightmost_);
2605   } else {
2606     // It's undefined behavior if the allocators are unequal here.
2607     assert(allocator() == other.allocator());
2608     swap(mutable_rightmost(), other.mutable_rightmost());
2609     swap(*mutable_key_comp(), *other.mutable_key_comp());
2610   }
2611   swap(mutable_root(), other.mutable_root());
2612   swap(size_, other.size_);
2613 }
2614 
2615 template <typename P>
2616 void btree<P>::verify() const {
2617   assert(root() != nullptr);
2618   assert(leftmost() != nullptr);
2619   assert(rightmost() != nullptr);
2620   assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
2621   assert(leftmost() == (++const_iterator(root(), -1)).node_);
2622   assert(rightmost() == (--const_iterator(root(), root()->finish())).node_);
2623   assert(leftmost()->is_leaf());
2624   assert(rightmost()->is_leaf());
2625 }
2626 
2627 template <typename P>
2628 void btree<P>::rebalance_or_split(iterator *iter) {
2629   node_type *&node = iter->node_;
2630   int &insert_position = iter->position_;
2631   assert(node->count() == node->max_count());
2632   assert(kNodeSlots == node->max_count());
2633 
2634   // First try to make room on the node by rebalancing.
2635   node_type *parent = node->parent();
2636   if (node != root()) {
2637     if (node->position() > parent->start()) {
2638       // Try rebalancing with our left sibling.
2639       node_type *left = parent->child(node->position() - 1);
2640       assert(left->max_count() == kNodeSlots);
2641       if (left->count() < kNodeSlots) {
2642         // We bias rebalancing based on the position being inserted. If we're
2643         // inserting at the end of the right node then we bias rebalancing to
2644         // fill up the left node.
2645         field_type to_move =
2646             (kNodeSlots - left->count()) /
2647             (1 + (static_cast<field_type>(insert_position) < kNodeSlots));
2648         to_move = (std::max)(field_type{1}, to_move);
2649 
2650         if (static_cast<field_type>(insert_position) - to_move >=
2651                 node->start() ||
2652             left->count() + to_move < kNodeSlots) {
2653           left->rebalance_right_to_left(to_move, node, mutable_allocator());
2654 
2655           assert(node->max_count() - node->count() == to_move);
2656           insert_position = static_cast<int>(
2657               static_cast<field_type>(insert_position) - to_move);
2658           if (insert_position < node->start()) {
2659             insert_position = insert_position + left->count() + 1;
2660             node = left;
2661           }
2662 
2663           assert(node->count() < node->max_count());
2664           return;
2665         }
2666       }
2667     }
2668 
2669     if (node->position() < parent->finish()) {
2670       // Try rebalancing with our right sibling.
2671       node_type *right = parent->child(node->position() + 1);
2672       assert(right->max_count() == kNodeSlots);
2673       if (right->count() < kNodeSlots) {
2674         // We bias rebalancing based on the position being inserted. If we're
2675         // inserting at the beginning of the left node then we bias rebalancing
2676         // to fill up the right node.
2677         field_type to_move = (kNodeSlots - right->count()) /
2678                              (1 + (insert_position > node->start()));
2679         to_move = (std::max)(field_type{1}, to_move);
2680 
2681         if (static_cast<field_type>(insert_position) <=
2682                 node->finish() - to_move ||
2683             right->count() + to_move < kNodeSlots) {
2684           node->rebalance_left_to_right(to_move, right, mutable_allocator());
2685 
2686           if (insert_position > node->finish()) {
2687             insert_position = insert_position - node->count() - 1;
2688             node = right;
2689           }
2690 
2691           assert(node->count() < node->max_count());
2692           return;
2693         }
2694       }
2695     }
2696 
2697     // Rebalancing failed, make sure there is room on the parent node for a new
2698     // value.
2699     assert(parent->max_count() == kNodeSlots);
2700     if (parent->count() == kNodeSlots) {
2701       iterator parent_iter(parent, node->position());
2702       rebalance_or_split(&parent_iter);
2703       parent = node->parent();
2704     }
2705   } else {
2706     // Rebalancing not possible because this is the root node.
2707     // Create a new root node and set the current root node as the child of the
2708     // new root.
2709     parent = new_internal_node(/*position=*/0, parent);
2710     parent->set_generation(root()->generation());
2711     parent->init_child(parent->start(), node);
2712     mutable_root() = parent;
2713     // If the former root was a leaf node, then it's now the rightmost node.
2714     assert(parent->start_child()->is_internal() ||
2715            parent->start_child() == rightmost());
2716   }
2717 
2718   // Split the node.
2719   node_type *split_node;
2720   if (node->is_leaf()) {
2721     split_node = new_leaf_node(node->position() + 1, parent);
2722     node->split(insert_position, split_node, mutable_allocator());
2723     if (rightmost() == node) mutable_rightmost() = split_node;
2724   } else {
2725     split_node = new_internal_node(node->position() + 1, parent);
2726     node->split(insert_position, split_node, mutable_allocator());
2727   }
2728 
2729   if (insert_position > node->finish()) {
2730     insert_position = insert_position - node->count() - 1;
2731     node = split_node;
2732   }
2733 }
2734 
2735 template <typename P>
2736 void btree<P>::merge_nodes(node_type *left, node_type *right) {
2737   left->merge(right, mutable_allocator());
2738   if (rightmost() == right) mutable_rightmost() = left;
2739 }
2740 
2741 template <typename P>
2742 bool btree<P>::try_merge_or_rebalance(iterator *iter) {
2743   node_type *parent = iter->node_->parent();
2744   if (iter->node_->position() > parent->start()) {
2745     // Try merging with our left sibling.
2746     node_type *left = parent->child(iter->node_->position() - 1);
2747     assert(left->max_count() == kNodeSlots);
2748     if (1U + left->count() + iter->node_->count() <= kNodeSlots) {
2749       iter->position_ += 1 + left->count();
2750       merge_nodes(left, iter->node_);
2751       iter->node_ = left;
2752       return true;
2753     }
2754   }
2755   if (iter->node_->position() < parent->finish()) {
2756     // Try merging with our right sibling.
2757     node_type *right = parent->child(iter->node_->position() + 1);
2758     assert(right->max_count() == kNodeSlots);
2759     if (1U + iter->node_->count() + right->count() <= kNodeSlots) {
2760       merge_nodes(iter->node_, right);
2761       return true;
2762     }
2763     // Try rebalancing with our right sibling. We don't perform rebalancing if
2764     // we deleted the first element from iter->node_ and the node is not
2765     // empty. This is a small optimization for the common pattern of deleting
2766     // from the front of the tree.
2767     if (right->count() > kMinNodeValues &&
2768         (iter->node_->count() == 0 || iter->position_ > iter->node_->start())) {
2769       field_type to_move = (right->count() - iter->node_->count()) / 2;
2770       to_move =
2771           (std::min)(to_move, static_cast<field_type>(right->count() - 1));
2772       iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator());
2773       return false;
2774     }
2775   }
2776   if (iter->node_->position() > parent->start()) {
2777     // Try rebalancing with our left sibling. We don't perform rebalancing if
2778     // we deleted the last element from iter->node_ and the node is not
2779     // empty. This is a small optimization for the common pattern of deleting
2780     // from the back of the tree.
2781     node_type *left = parent->child(iter->node_->position() - 1);
2782     if (left->count() > kMinNodeValues &&
2783         (iter->node_->count() == 0 ||
2784          iter->position_ < iter->node_->finish())) {
2785       field_type to_move = (left->count() - iter->node_->count()) / 2;
2786       to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1));
2787       left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator());
2788       iter->position_ += to_move;
2789       return false;
2790     }
2791   }
2792   return false;
2793 }
2794 
2795 template <typename P>
2796 void btree<P>::try_shrink() {
2797   node_type *orig_root = root();
2798   if (orig_root->count() > 0) {
2799     return;
2800   }
2801   // Deleted the last item on the root node, shrink the height of the tree.
2802   if (orig_root->is_leaf()) {
2803     assert(size() == 0);
2804     mutable_root() = mutable_rightmost() = EmptyNode();
2805   } else {
2806     node_type *child = orig_root->start_child();
2807     child->make_root();
2808     mutable_root() = child;
2809   }
2810   node_type::clear_and_delete(orig_root, mutable_allocator());
2811 }
2812 
2813 template <typename P>
2814 template <typename IterType>
2815 inline IterType btree<P>::internal_last(IterType iter) {
2816   assert(iter.node_ != nullptr);
2817   while (iter.position_ == iter.node_->finish()) {
2818     iter.position_ = iter.node_->position();
2819     iter.node_ = iter.node_->parent();
2820     if (iter.node_->is_leaf()) {
2821       iter.node_ = nullptr;
2822       break;
2823     }
2824   }
2825   iter.update_generation();
2826   return iter;
2827 }
2828 
2829 template <typename P>
2830 template <typename... Args>
2831 inline auto btree<P>::internal_emplace(iterator iter, Args &&...args)
2832     -> iterator {
2833   if (iter.node_->is_internal()) {
2834     // We can't insert on an internal node. Instead, we'll insert after the
2835     // previous value which is guaranteed to be on a leaf node.
2836     --iter;
2837     ++iter.position_;
2838   }
2839   const field_type max_count = iter.node_->max_count();
2840   allocator_type *alloc = mutable_allocator();
2841 
2842   const auto transfer_and_delete = [&](node_type *old_node,
2843                                        node_type *new_node) {
2844     new_node->transfer_n(old_node->count(), new_node->start(),
2845                          old_node->start(), old_node, alloc);
2846     new_node->set_finish(old_node->finish());
2847     old_node->set_finish(old_node->start());
2848     new_node->set_generation(old_node->generation());
2849     node_type::clear_and_delete(old_node, alloc);
2850   };
2851   const auto replace_leaf_root_node = [&](field_type new_node_size) {
2852     assert(iter.node_ == root());
2853     node_type *old_root = iter.node_;
2854     node_type *new_root = iter.node_ = new_leaf_root_node(new_node_size);
2855     transfer_and_delete(old_root, new_root);
2856     mutable_root() = mutable_rightmost() = new_root;
2857   };
2858 
2859   bool replaced_node = false;
2860   if (iter.node_->count() == max_count) {
2861     // Make room in the leaf for the new item.
2862     if (max_count < kNodeSlots) {
2863       // Insertion into the root where the root is smaller than the full node
2864       // size. Simply grow the size of the root node.
2865       replace_leaf_root_node(static_cast<field_type>(
2866           (std::min)(static_cast<int>(kNodeSlots), 2 * max_count)));
2867       replaced_node = true;
2868     } else {
2869       rebalance_or_split(&iter);
2870     }
2871   }
2872   (void)replaced_node;
2873 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
2874   if (!replaced_node) {
2875     assert(iter.node_->is_leaf());
2876     if (iter.node_->is_root()) {
2877       replace_leaf_root_node(max_count);
2878     } else {
2879       node_type *old_node = iter.node_;
2880       const bool was_rightmost = rightmost() == old_node;
2881       const bool was_leftmost = leftmost() == old_node;
2882       node_type *parent = old_node->parent();
2883       const field_type position = old_node->position();
2884       node_type *new_node = iter.node_ = new_leaf_node(position, parent);
2885       parent->set_child_noupdate_position(position, new_node);
2886       transfer_and_delete(old_node, new_node);
2887       if (was_rightmost) mutable_rightmost() = new_node;
2888       // The leftmost node is stored as the parent of the root node.
2889       if (was_leftmost) root()->set_parent(new_node);
2890     }
2891   }
2892 #endif
2893   iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc,
2894                             std::forward<Args>(args)...);
2895   assert(
2896       iter.node_->is_ordered_correctly(static_cast<field_type>(iter.position_),
2897                                        original_key_compare(key_comp())) &&
2898       "If this assert fails, then either (1) the comparator may violate "
2899       "transitivity, i.e. comp(a,b) && comp(b,c) -> comp(a,c) (see "
2900       "https://en.cppreference.com/w/cpp/named_req/Compare), or (2) a "
2901       "key may have been mutated after it was inserted into the tree.");
2902   ++size_;
2903   iter.update_generation();
2904   return iter;
2905 }
2906 
2907 template <typename P>
2908 template <typename K>
2909 inline auto btree<P>::internal_locate(const K &key) const
2910     -> SearchResult<iterator, is_key_compare_to::value> {
2911   iterator iter(const_cast<node_type *>(root()));
2912   for (;;) {
2913     SearchResult<size_type, is_key_compare_to::value> res =
2914         iter.node_->lower_bound(key, key_comp());
2915     iter.position_ = static_cast<int>(res.value);
2916     if (res.IsEq()) {
2917       return {iter, MatchKind::kEq};
2918     }
2919     // Note: in the non-key-compare-to case, we don't need to walk all the way
2920     // down the tree if the keys are equal, but determining equality would
2921     // require doing an extra comparison on each node on the way down, and we
2922     // will need to go all the way to the leaf node in the expected case.
2923     if (iter.node_->is_leaf()) {
2924       break;
2925     }
2926     iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
2927   }
2928   // Note: in the non-key-compare-to case, the key may actually be equivalent
2929   // here (and the MatchKind::kNe is ignored).
2930   return {iter, MatchKind::kNe};
2931 }
2932 
2933 template <typename P>
2934 template <typename K>
2935 auto btree<P>::internal_lower_bound(const K &key) const
2936     -> SearchResult<iterator, is_key_compare_to::value> {
2937   if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
2938     SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key);
2939     ret.value = internal_last(ret.value);
2940     return ret;
2941   }
2942   iterator iter(const_cast<node_type *>(root()));
2943   SearchResult<size_type, is_key_compare_to::value> res;
2944   bool seen_eq = false;
2945   for (;;) {
2946     res = iter.node_->lower_bound(key, key_comp());
2947     iter.position_ = static_cast<int>(res.value);
2948     if (iter.node_->is_leaf()) {
2949       break;
2950     }
2951     seen_eq = seen_eq || res.IsEq();
2952     iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
2953   }
2954   if (res.IsEq()) return {iter, MatchKind::kEq};
2955   return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe};
2956 }
2957 
2958 template <typename P>
2959 template <typename K>
2960 auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
2961   iterator iter(const_cast<node_type *>(root()));
2962   for (;;) {
2963     iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp()));
2964     if (iter.node_->is_leaf()) {
2965       break;
2966     }
2967     iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
2968   }
2969   return internal_last(iter);
2970 }
2971 
2972 template <typename P>
2973 template <typename K>
2974 auto btree<P>::internal_find(const K &key) const -> iterator {
2975   SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
2976   if (res.HasMatch()) {
2977     if (res.IsEq()) {
2978       return res.value;
2979     }
2980   } else {
2981     const iterator iter = internal_last(res.value);
2982     if (iter.node_ != nullptr && !compare_keys(key, iter.key())) {
2983       return iter;
2984     }
2985   }
2986   return {nullptr, 0};
2987 }
2988 
2989 template <typename P>
2990 typename btree<P>::size_type btree<P>::internal_verify(
2991     const node_type *node, const key_type *lo, const key_type *hi) const {
2992   assert(node->count() > 0);
2993   assert(node->count() <= node->max_count());
2994   if (lo) {
2995     assert(!compare_keys(node->key(node->start()), *lo));
2996   }
2997   if (hi) {
2998     assert(!compare_keys(*hi, node->key(node->finish() - 1)));
2999   }
3000   for (int i = node->start() + 1; i < node->finish(); ++i) {
3001     assert(!compare_keys(node->key(i), node->key(i - 1)));
3002   }
3003   size_type count = node->count();
3004   if (node->is_internal()) {
3005     for (field_type i = node->start(); i <= node->finish(); ++i) {
3006       assert(node->child(i) != nullptr);
3007       assert(node->child(i)->parent() == node);
3008       assert(node->child(i)->position() == i);
3009       count += internal_verify(node->child(i),
3010                                i == node->start() ? lo : &node->key(i - 1),
3011                                i == node->finish() ? hi : &node->key(i));
3012     }
3013   }
3014   return count;
3015 }
3016 
3017 struct btree_access {
3018   template <typename BtreeContainer, typename Pred>
3019   static auto erase_if(BtreeContainer &container, Pred pred) ->
3020       typename BtreeContainer::size_type {
3021     const auto initial_size = container.size();
3022     auto &tree = container.tree_;
3023     auto *alloc = tree.mutable_allocator();
3024     for (auto it = container.begin(); it != container.end();) {
3025       if (!pred(*it)) {
3026         ++it;
3027         continue;
3028       }
3029       auto *node = it.node_;
3030       if (node->is_internal()) {
3031         // Handle internal nodes normally.
3032         it = container.erase(it);
3033         continue;
3034       }
3035       // If this is a leaf node, then we do all the erases from this node
3036       // at once before doing rebalancing.
3037 
3038       // The current position to transfer slots to.
3039       int to_pos = it.position_;
3040       node->value_destroy(it.position_, alloc);
3041       while (++it.position_ < node->finish()) {
3042         it.update_generation();
3043         if (pred(*it)) {
3044           node->value_destroy(it.position_, alloc);
3045         } else {
3046           node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc);
3047         }
3048       }
3049       const int num_deleted = node->finish() - to_pos;
3050       tree.size_ -= num_deleted;
3051       node->set_finish(to_pos);
3052       it.position_ = to_pos;
3053       it = tree.rebalance_after_delete(it);
3054     }
3055     return initial_size - container.size();
3056   }
3057 };
3058 
3059 #undef ABSL_BTREE_ENABLE_GENERATIONS
3060 
3061 }  // namespace container_internal
3062 ABSL_NAMESPACE_END
3063 }  // namespace absl
3064 
3065 #endif  // ABSL_CONTAINER_INTERNAL_BTREE_H_
3066