1 // Copyright 2018 The Abseil Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // https://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 // 15 // MOTIVATION AND TUTORIAL 16 // 17 // If you want to put in a single heap allocation N doubles followed by M ints, 18 // it's easy if N and M are known at compile time. 19 // 20 // struct S { 21 // double a[N]; 22 // int b[M]; 23 // }; 24 // 25 // S* p = new S; 26 // 27 // But what if N and M are known only in run time? Class template Layout to the 28 // rescue! It's a portable generalization of the technique known as struct hack. 29 // 30 // // This object will tell us everything we need to know about the memory 31 // // layout of double[N] followed by int[M]. It's structurally identical to 32 // // size_t[2] that stores N and M. It's very cheap to create. 33 // const Layout<double, int> layout(N, M); 34 // 35 // // Allocate enough memory for both arrays. `AllocSize()` tells us how much 36 // // memory is needed. We are free to use any allocation function we want as 37 // // long as it returns aligned memory. 38 // std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]); 39 // 40 // // Obtain the pointer to the array of doubles. 41 // // Equivalent to `reinterpret_cast<double*>(p.get())`. 42 // // 43 // // We could have written layout.Pointer<0>(p) instead. If all the types are 44 // // unique you can use either form, but if some types are repeated you must 45 // // use the index form. 46 // double* a = layout.Pointer<double>(p.get()); 47 // 48 // // Obtain the pointer to the array of ints. 49 // // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`. 50 // int* b = layout.Pointer<int>(p); 51 // 52 // If we are unable to specify sizes of all fields, we can pass as many sizes as 53 // we can to `Partial()`. In return, it'll allow us to access the fields whose 54 // locations and sizes can be computed from the provided information. 55 // `Partial()` comes in handy when the array sizes are embedded into the 56 // allocation. 57 // 58 // // size_t[0] containing N, size_t[1] containing M, double[N], int[M]. 59 // using L = Layout<size_t, size_t, double, int>; 60 // 61 // unsigned char* Allocate(size_t n, size_t m) { 62 // const L layout(1, 1, n, m); 63 // unsigned char* p = new unsigned char[layout.AllocSize()]; 64 // *layout.Pointer<0>(p) = n; 65 // *layout.Pointer<1>(p) = m; 66 // return p; 67 // } 68 // 69 // void Use(unsigned char* p) { 70 // // First, extract N and M. 71 // // Specify that the first array has only one element. Using `prefix` we 72 // // can access the first two arrays but not more. 73 // constexpr auto prefix = L::Partial(1); 74 // size_t n = *prefix.Pointer<0>(p); 75 // size_t m = *prefix.Pointer<1>(p); 76 // 77 // // Now we can get pointers to the payload. 78 // const L layout(1, 1, n, m); 79 // double* a = layout.Pointer<double>(p); 80 // int* b = layout.Pointer<int>(p); 81 // } 82 // 83 // The layout we used above combines fixed-size with dynamically-sized fields. 84 // This is quite common. Layout is optimized for this use case and generates 85 // optimal code. All computations that can be performed at compile time are 86 // indeed performed at compile time. 87 // 88 // Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to 89 // ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no 90 // padding in between arrays. 91 // 92 // You can manually override the alignment of an array by wrapping the type in 93 // `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API 94 // and behavior as `Layout<..., T, ...>` except that the first element of the 95 // array of `T` is aligned to `N` (the rest of the elements follow without 96 // padding). `N` cannot be less than `alignof(T)`. 97 // 98 // `AllocSize()` and `Pointer()` are the most basic methods for dealing with 99 // memory layouts. Check out the reference or code below to discover more. 100 // 101 // EXAMPLE 102 // 103 // // Immutable move-only string with sizeof equal to sizeof(void*). The 104 // // string size and the characters are kept in the same heap allocation. 105 // class CompactString { 106 // public: 107 // CompactString(const char* s = "") { 108 // const size_t size = strlen(s); 109 // // size_t[1] followed by char[size + 1]. 110 // const L layout(1, size + 1); 111 // p_.reset(new unsigned char[layout.AllocSize()]); 112 // // If running under ASAN, mark the padding bytes, if any, to catch 113 // // memory errors. 114 // layout.PoisonPadding(p_.get()); 115 // // Store the size in the allocation. 116 // *layout.Pointer<size_t>(p_.get()) = size; 117 // // Store the characters in the allocation. 118 // memcpy(layout.Pointer<char>(p_.get()), s, size + 1); 119 // } 120 // 121 // size_t size() const { 122 // // Equivalent to reinterpret_cast<size_t&>(*p). 123 // return *L::Partial().Pointer<size_t>(p_.get()); 124 // } 125 // 126 // const char* c_str() const { 127 // // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)). 128 // // The argument in Partial(1) specifies that we have size_t[1] in front 129 // // of the characters. 130 // return L::Partial(1).Pointer<char>(p_.get()); 131 // } 132 // 133 // private: 134 // // Our heap allocation contains a size_t followed by an array of chars. 135 // using L = Layout<size_t, char>; 136 // std::unique_ptr<unsigned char[]> p_; 137 // }; 138 // 139 // int main() { 140 // CompactString s = "hello"; 141 // assert(s.size() == 5); 142 // assert(strcmp(s.c_str(), "hello") == 0); 143 // } 144 // 145 // DOCUMENTATION 146 // 147 // The interface exported by this file consists of: 148 // - class `Layout<>` and its public members. 149 // - The public members of class `internal_layout::LayoutImpl<>`. That class 150 // isn't intended to be used directly, and its name and template parameter 151 // list are internal implementation details, but the class itself provides 152 // most of the functionality in this file. See comments on its members for 153 // detailed documentation. 154 // 155 // `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a 156 // `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)` 157 // creates a `Layout` object, which exposes the same functionality by inheriting 158 // from `LayoutImpl<>`. 159 160 #ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_ 161 #define ABSL_CONTAINER_INTERNAL_LAYOUT_H_ 162 163 #include <assert.h> 164 #include <stddef.h> 165 #include <stdint.h> 166 167 #include <ostream> 168 #include <string> 169 #include <tuple> 170 #include <type_traits> 171 #include <typeinfo> 172 #include <utility> 173 174 #include "absl/base/config.h" 175 #include "absl/debugging/internal/demangle.h" 176 #include "absl/meta/type_traits.h" 177 #include "absl/strings/str_cat.h" 178 #include "absl/types/span.h" 179 #include "absl/utility/utility.h" 180 181 #ifdef ABSL_HAVE_ADDRESS_SANITIZER 182 #include <sanitizer/asan_interface.h> 183 #endif 184 185 namespace absl { 186 ABSL_NAMESPACE_BEGIN 187 namespace container_internal { 188 189 // A type wrapper that instructs `Layout` to use the specific alignment for the 190 // array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API 191 // and behavior as `Layout<..., T, ...>` except that the first element of the 192 // array of `T` is aligned to `N` (the rest of the elements follow without 193 // padding). 194 // 195 // Requires: `N >= alignof(T)` and `N` is a power of 2. 196 template <class T, size_t N> 197 struct Aligned; 198 199 namespace internal_layout { 200 201 template <class T> 202 struct NotAligned {}; 203 204 template <class T, size_t N> 205 struct NotAligned<const Aligned<T, N>> { 206 static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified"); 207 }; 208 209 template <size_t> 210 using IntToSize = size_t; 211 212 template <class> 213 using TypeToSize = size_t; 214 215 template <class T> 216 struct Type : NotAligned<T> { 217 using type = T; 218 }; 219 220 template <class T, size_t N> 221 struct Type<Aligned<T, N>> { 222 using type = T; 223 }; 224 225 template <class T> 226 struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {}; 227 228 template <class T, size_t N> 229 struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {}; 230 231 // Note: workaround for https://gcc.gnu.org/PR88115 232 template <class T> 233 struct AlignOf : NotAligned<T> { 234 static constexpr size_t value = alignof(T); 235 }; 236 237 template <class T, size_t N> 238 struct AlignOf<Aligned<T, N>> { 239 static_assert(N % alignof(T) == 0, 240 "Custom alignment can't be lower than the type's alignment"); 241 static constexpr size_t value = N; 242 }; 243 244 // Does `Ts...` contain `T`? 245 template <class T, class... Ts> 246 using Contains = absl::disjunction<std::is_same<T, Ts>...>; 247 248 template <class From, class To> 249 using CopyConst = 250 typename std::conditional<std::is_const<From>::value, const To, To>::type; 251 252 // Note: We're not qualifying this with absl:: because it doesn't compile under 253 // MSVC. 254 template <class T> 255 using SliceType = Span<T>; 256 257 // This namespace contains no types. It prevents functions defined in it from 258 // being found by ADL. 259 namespace adl_barrier { 260 261 template <class Needle, class... Ts> 262 constexpr size_t Find(Needle, Needle, Ts...) { 263 static_assert(!Contains<Needle, Ts...>(), "Duplicate element type"); 264 return 0; 265 } 266 267 template <class Needle, class T, class... Ts> 268 constexpr size_t Find(Needle, T, Ts...) { 269 return adl_barrier::Find(Needle(), Ts()...) + 1; 270 } 271 272 constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); } 273 274 // Returns `q * m` for the smallest `q` such that `q * m >= n`. 275 // Requires: `m` is a power of two. It's enforced by IsLegalElementType below. 276 constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); } 277 278 constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; } 279 280 constexpr size_t Max(size_t a) { return a; } 281 282 template <class... Ts> 283 constexpr size_t Max(size_t a, size_t b, Ts... rest) { 284 return adl_barrier::Max(b < a ? a : b, rest...); 285 } 286 287 template <class T> 288 std::string TypeName() { 289 std::string out; 290 #if ABSL_INTERNAL_HAS_RTTI 291 absl::StrAppend(&out, "<", 292 absl::debugging_internal::DemangleString(typeid(T).name()), 293 ">"); 294 #endif 295 return out; 296 } 297 298 } // namespace adl_barrier 299 300 template <bool C> 301 using EnableIf = typename std::enable_if<C, int>::type; 302 303 // Can `T` be a template argument of `Layout`? 304 template <class T> 305 using IsLegalElementType = std::integral_constant< 306 bool, !std::is_reference<T>::value && !std::is_volatile<T>::value && 307 !std::is_reference<typename Type<T>::type>::value && 308 !std::is_volatile<typename Type<T>::type>::value && 309 adl_barrier::IsPow2(AlignOf<T>::value)>; 310 311 template <class Elements, class SizeSeq, class OffsetSeq> 312 class LayoutImpl; 313 314 // Public base class of `Layout` and the result type of `Layout::Partial()`. 315 // 316 // `Elements...` contains all template arguments of `Layout` that created this 317 // instance. 318 // 319 // `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments 320 // passed to `Layout::Partial()` or `Layout::Layout()`. 321 // 322 // `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is 323 // `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we 324 // can compute offsets). 325 template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq> 326 class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>, 327 absl::index_sequence<OffsetSeq...>> { 328 private: 329 static_assert(sizeof...(Elements) > 0, "At least one field is required"); 330 static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value, 331 "Invalid element type (see IsLegalElementType)"); 332 333 enum { 334 NumTypes = sizeof...(Elements), 335 NumSizes = sizeof...(SizeSeq), 336 NumOffsets = sizeof...(OffsetSeq), 337 }; 338 339 // These are guaranteed by `Layout`. 340 static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1), 341 "Internal error"); 342 static_assert(NumTypes > 0, "Internal error"); 343 344 // Returns the index of `T` in `Elements...`. Results in a compilation error 345 // if `Elements...` doesn't contain exactly one instance of `T`. 346 template <class T> 347 static constexpr size_t ElementIndex() { 348 static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(), 349 "Type not found"); 350 return adl_barrier::Find(Type<T>(), 351 Type<typename Type<Elements>::type>()...); 352 } 353 354 template <size_t N> 355 using ElementAlignment = 356 AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>; 357 358 public: 359 // Element types of all arrays packed in a tuple. 360 using ElementTypes = std::tuple<typename Type<Elements>::type...>; 361 362 // Element type of the Nth array. 363 template <size_t N> 364 using ElementType = typename std::tuple_element<N, ElementTypes>::type; 365 366 constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes) 367 : size_{sizes...} {} 368 369 // Alignment of the layout, equal to the strictest alignment of all elements. 370 // All pointers passed to the methods of layout must be aligned to this value. 371 static constexpr size_t Alignment() { 372 return adl_barrier::Max(AlignOf<Elements>::value...); 373 } 374 375 // Offset in bytes of the Nth array. 376 // 377 // // int[3], 4 bytes of padding, double[4]. 378 // Layout<int, double> x(3, 4); 379 // assert(x.Offset<0>() == 0); // The ints starts from 0. 380 // assert(x.Offset<1>() == 16); // The doubles starts from 16. 381 // 382 // Requires: `N <= NumSizes && N < sizeof...(Ts)`. 383 template <size_t N, EnableIf<N == 0> = 0> 384 constexpr size_t Offset() const { 385 return 0; 386 } 387 388 template <size_t N, EnableIf<N != 0> = 0> 389 constexpr size_t Offset() const { 390 static_assert(N < NumOffsets, "Index out of bounds"); 391 return adl_barrier::Align( 392 Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1], 393 ElementAlignment<N>::value); 394 } 395 396 // Offset in bytes of the array with the specified element type. There must 397 // be exactly one such array and its zero-based index must be at most 398 // `NumSizes`. 399 // 400 // // int[3], 4 bytes of padding, double[4]. 401 // Layout<int, double> x(3, 4); 402 // assert(x.Offset<int>() == 0); // The ints starts from 0. 403 // assert(x.Offset<double>() == 16); // The doubles starts from 16. 404 template <class T> 405 constexpr size_t Offset() const { 406 return Offset<ElementIndex<T>()>(); 407 } 408 409 // Offsets in bytes of all arrays for which the offsets are known. 410 constexpr std::array<size_t, NumOffsets> Offsets() const { 411 return {{Offset<OffsetSeq>()...}}; 412 } 413 414 // The number of elements in the Nth array. This is the Nth argument of 415 // `Layout::Partial()` or `Layout::Layout()` (zero-based). 416 // 417 // // int[3], 4 bytes of padding, double[4]. 418 // Layout<int, double> x(3, 4); 419 // assert(x.Size<0>() == 3); 420 // assert(x.Size<1>() == 4); 421 // 422 // Requires: `N < NumSizes`. 423 template <size_t N> 424 constexpr size_t Size() const { 425 static_assert(N < NumSizes, "Index out of bounds"); 426 return size_[N]; 427 } 428 429 // The number of elements in the array with the specified element type. 430 // There must be exactly one such array and its zero-based index must be 431 // at most `NumSizes`. 432 // 433 // // int[3], 4 bytes of padding, double[4]. 434 // Layout<int, double> x(3, 4); 435 // assert(x.Size<int>() == 3); 436 // assert(x.Size<double>() == 4); 437 template <class T> 438 constexpr size_t Size() const { 439 return Size<ElementIndex<T>()>(); 440 } 441 442 // The number of elements of all arrays for which they are known. 443 constexpr std::array<size_t, NumSizes> Sizes() const { 444 return {{Size<SizeSeq>()...}}; 445 } 446 447 // Pointer to the beginning of the Nth array. 448 // 449 // `Char` must be `[const] [signed|unsigned] char`. 450 // 451 // // int[3], 4 bytes of padding, double[4]. 452 // Layout<int, double> x(3, 4); 453 // unsigned char* p = new unsigned char[x.AllocSize()]; 454 // int* ints = x.Pointer<0>(p); 455 // double* doubles = x.Pointer<1>(p); 456 // 457 // Requires: `N <= NumSizes && N < sizeof...(Ts)`. 458 // Requires: `p` is aligned to `Alignment()`. 459 template <size_t N, class Char> 460 CopyConst<Char, ElementType<N>>* Pointer(Char* p) const { 461 using C = typename std::remove_const<Char>::type; 462 static_assert( 463 std::is_same<C, char>() || std::is_same<C, unsigned char>() || 464 std::is_same<C, signed char>(), 465 "The argument must be a pointer to [const] [signed|unsigned] char"); 466 constexpr size_t alignment = Alignment(); 467 (void)alignment; 468 assert(reinterpret_cast<uintptr_t>(p) % alignment == 0); 469 return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>()); 470 } 471 472 // Pointer to the beginning of the array with the specified element type. 473 // There must be exactly one such array and its zero-based index must be at 474 // most `NumSizes`. 475 // 476 // `Char` must be `[const] [signed|unsigned] char`. 477 // 478 // // int[3], 4 bytes of padding, double[4]. 479 // Layout<int, double> x(3, 4); 480 // unsigned char* p = new unsigned char[x.AllocSize()]; 481 // int* ints = x.Pointer<int>(p); 482 // double* doubles = x.Pointer<double>(p); 483 // 484 // Requires: `p` is aligned to `Alignment()`. 485 template <class T, class Char> 486 CopyConst<Char, T>* Pointer(Char* p) const { 487 return Pointer<ElementIndex<T>()>(p); 488 } 489 490 // Pointers to all arrays for which pointers are known. 491 // 492 // `Char` must be `[const] [signed|unsigned] char`. 493 // 494 // // int[3], 4 bytes of padding, double[4]. 495 // Layout<int, double> x(3, 4); 496 // unsigned char* p = new unsigned char[x.AllocSize()]; 497 // 498 // int* ints; 499 // double* doubles; 500 // std::tie(ints, doubles) = x.Pointers(p); 501 // 502 // Requires: `p` is aligned to `Alignment()`. 503 // 504 // Note: We're not using ElementType alias here because it does not compile 505 // under MSVC. 506 template <class Char> 507 std::tuple<CopyConst< 508 Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...> 509 Pointers(Char* p) const { 510 return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>( 511 Pointer<OffsetSeq>(p)...); 512 } 513 514 // The Nth array. 515 // 516 // `Char` must be `[const] [signed|unsigned] char`. 517 // 518 // // int[3], 4 bytes of padding, double[4]. 519 // Layout<int, double> x(3, 4); 520 // unsigned char* p = new unsigned char[x.AllocSize()]; 521 // Span<int> ints = x.Slice<0>(p); 522 // Span<double> doubles = x.Slice<1>(p); 523 // 524 // Requires: `N < NumSizes`. 525 // Requires: `p` is aligned to `Alignment()`. 526 template <size_t N, class Char> 527 SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const { 528 return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>()); 529 } 530 531 // The array with the specified element type. There must be exactly one 532 // such array and its zero-based index must be less than `NumSizes`. 533 // 534 // `Char` must be `[const] [signed|unsigned] char`. 535 // 536 // // int[3], 4 bytes of padding, double[4]. 537 // Layout<int, double> x(3, 4); 538 // unsigned char* p = new unsigned char[x.AllocSize()]; 539 // Span<int> ints = x.Slice<int>(p); 540 // Span<double> doubles = x.Slice<double>(p); 541 // 542 // Requires: `p` is aligned to `Alignment()`. 543 template <class T, class Char> 544 SliceType<CopyConst<Char, T>> Slice(Char* p) const { 545 return Slice<ElementIndex<T>()>(p); 546 } 547 548 // All arrays with known sizes. 549 // 550 // `Char` must be `[const] [signed|unsigned] char`. 551 // 552 // // int[3], 4 bytes of padding, double[4]. 553 // Layout<int, double> x(3, 4); 554 // unsigned char* p = new unsigned char[x.AllocSize()]; 555 // 556 // Span<int> ints; 557 // Span<double> doubles; 558 // std::tie(ints, doubles) = x.Slices(p); 559 // 560 // Requires: `p` is aligned to `Alignment()`. 561 // 562 // Note: We're not using ElementType alias here because it does not compile 563 // under MSVC. 564 template <class Char> 565 std::tuple<SliceType<CopyConst< 566 Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...> 567 Slices(Char* p) const { 568 // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed 569 // in 6.1). 570 (void)p; 571 return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>( 572 Slice<SizeSeq>(p)...); 573 } 574 575 // The size of the allocation that fits all arrays. 576 // 577 // // int[3], 4 bytes of padding, double[4]. 578 // Layout<int, double> x(3, 4); 579 // unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes 580 // 581 // Requires: `NumSizes == sizeof...(Ts)`. 582 constexpr size_t AllocSize() const { 583 static_assert(NumTypes == NumSizes, "You must specify sizes of all fields"); 584 return Offset<NumTypes - 1>() + 585 SizeOf<ElementType<NumTypes - 1>>::value * size_[NumTypes - 1]; 586 } 587 588 // If built with --config=asan, poisons padding bytes (if any) in the 589 // allocation. The pointer must point to a memory block at least 590 // `AllocSize()` bytes in length. 591 // 592 // `Char` must be `[const] [signed|unsigned] char`. 593 // 594 // Requires: `p` is aligned to `Alignment()`. 595 template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0> 596 void PoisonPadding(const Char* p) const { 597 Pointer<0>(p); // verify the requirements on `Char` and `p` 598 } 599 600 template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0> 601 void PoisonPadding(const Char* p) const { 602 static_assert(N < NumOffsets, "Index out of bounds"); 603 (void)p; 604 #ifdef ABSL_HAVE_ADDRESS_SANITIZER 605 PoisonPadding<Char, N - 1>(p); 606 // The `if` is an optimization. It doesn't affect the observable behaviour. 607 if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) { 608 size_t start = 609 Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1]; 610 ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start); 611 } 612 #endif 613 } 614 615 // Human-readable description of the memory layout. Useful for debugging. 616 // Slow. 617 // 618 // // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed 619 // // by an unknown number of doubles. 620 // auto x = Layout<char, int, double>::Partial(5, 3); 621 // assert(x.DebugString() == 622 // "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)"); 623 // 624 // Each field is in the following format: @offset<type>(sizeof)[size] (<type> 625 // may be missing depending on the target platform). For example, 626 // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each 627 // int is 4 bytes, and we have 3 of those ints. The size of the last field may 628 // be missing (as in the example above). Only fields with known offsets are 629 // described. Type names may differ across platforms: one compiler might 630 // produce "unsigned*" where another produces "unsigned int *". 631 std::string DebugString() const { 632 const auto offsets = Offsets(); 633 const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...}; 634 const std::string types[] = { 635 adl_barrier::TypeName<ElementType<OffsetSeq>>()...}; 636 std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")"); 637 for (size_t i = 0; i != NumOffsets - 1; ++i) { 638 absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1], 639 "(", sizes[i + 1], ")"); 640 } 641 // NumSizes is a constant that may be zero. Some compilers cannot see that 642 // inside the if statement "size_[NumSizes - 1]" must be valid. 643 int last = static_cast<int>(NumSizes) - 1; 644 if (NumTypes == NumSizes && last >= 0) { 645 absl::StrAppend(&res, "[", size_[last], "]"); 646 } 647 return res; 648 } 649 650 private: 651 // Arguments of `Layout::Partial()` or `Layout::Layout()`. 652 size_t size_[NumSizes > 0 ? NumSizes : 1]; 653 }; 654 655 template <size_t NumSizes, class... Ts> 656 using LayoutType = LayoutImpl< 657 std::tuple<Ts...>, absl::make_index_sequence<NumSizes>, 658 absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>; 659 660 } // namespace internal_layout 661 662 // Descriptor of arrays of various types and sizes laid out in memory one after 663 // another. See the top of the file for documentation. 664 // 665 // Check out the public API of internal_layout::LayoutImpl above. The type is 666 // internal to the library but its methods are public, and they are inherited 667 // by `Layout`. 668 template <class... Ts> 669 class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> { 670 public: 671 static_assert(sizeof...(Ts) > 0, "At least one field is required"); 672 static_assert( 673 absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value, 674 "Invalid element type (see IsLegalElementType)"); 675 676 // The result type of `Partial()` with `NumSizes` arguments. 677 template <size_t NumSizes> 678 using PartialType = internal_layout::LayoutType<NumSizes, Ts...>; 679 680 // `Layout` knows the element types of the arrays we want to lay out in 681 // memory but not the number of elements in each array. 682 // `Partial(size1, ..., sizeN)` allows us to specify the latter. The 683 // resulting immutable object can be used to obtain pointers to the 684 // individual arrays. 685 // 686 // It's allowed to pass fewer array sizes than the number of arrays. E.g., 687 // if all you need is to the offset of the second array, you only need to 688 // pass one argument -- the number of elements in the first array. 689 // 690 // // int[3] followed by 4 bytes of padding and an unknown number of 691 // // doubles. 692 // auto x = Layout<int, double>::Partial(3); 693 // // doubles start at byte 16. 694 // assert(x.Offset<1>() == 16); 695 // 696 // If you know the number of elements in all arrays, you can still call 697 // `Partial()` but it's more convenient to use the constructor of `Layout`. 698 // 699 // Layout<int, double> x(3, 5); 700 // 701 // Note: The sizes of the arrays must be specified in number of elements, 702 // not in bytes. 703 // 704 // Requires: `sizeof...(Sizes) <= sizeof...(Ts)`. 705 // Requires: all arguments are convertible to `size_t`. 706 template <class... Sizes> 707 static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) { 708 static_assert(sizeof...(Sizes) <= sizeof...(Ts), ""); 709 return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...); 710 } 711 712 // Creates a layout with the sizes of all arrays specified. If you know 713 // only the sizes of the first N arrays (where N can be zero), you can use 714 // `Partial()` defined above. The constructor is essentially equivalent to 715 // calling `Partial()` and passing in all array sizes; the constructor is 716 // provided as a convenient abbreviation. 717 // 718 // Note: The sizes of the arrays must be specified in number of elements, 719 // not in bytes. 720 constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes) 721 : internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {} 722 }; 723 724 } // namespace container_internal 725 ABSL_NAMESPACE_END 726 } // namespace absl 727 728 #endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_ 729