1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // For reference check out:
16 // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
17 //
18 // Note that we only have partial C++11 support yet.
19
20 #include "absl/debugging/internal/demangle.h"
21
22 #include <cstdint>
23 #include <cstdio>
24 #include <cstdlib>
25 #include <limits>
26 #include <string>
27
28 #include "absl/base/config.h"
29
30 #if ABSL_INTERNAL_HAS_CXA_DEMANGLE
31 #include <cxxabi.h>
32 #endif
33
34 namespace absl {
35 ABSL_NAMESPACE_BEGIN
36 namespace debugging_internal {
37
38 typedef struct {
39 const char *abbrev;
40 const char *real_name;
41 // Number of arguments in <expression> context, or 0 if disallowed.
42 int arity;
43 } AbbrevPair;
44
45 // List of operators from Itanium C++ ABI.
46 static const AbbrevPair kOperatorList[] = {
47 // New has special syntax (not currently supported).
48 {"nw", "new", 0},
49 {"na", "new[]", 0},
50
51 // Works except that the 'gs' prefix is not supported.
52 {"dl", "delete", 1},
53 {"da", "delete[]", 1},
54
55 {"ps", "+", 1}, // "positive"
56 {"ng", "-", 1}, // "negative"
57 {"ad", "&", 1}, // "address-of"
58 {"de", "*", 1}, // "dereference"
59 {"co", "~", 1},
60
61 {"pl", "+", 2},
62 {"mi", "-", 2},
63 {"ml", "*", 2},
64 {"dv", "/", 2},
65 {"rm", "%", 2},
66 {"an", "&", 2},
67 {"or", "|", 2},
68 {"eo", "^", 2},
69 {"aS", "=", 2},
70 {"pL", "+=", 2},
71 {"mI", "-=", 2},
72 {"mL", "*=", 2},
73 {"dV", "/=", 2},
74 {"rM", "%=", 2},
75 {"aN", "&=", 2},
76 {"oR", "|=", 2},
77 {"eO", "^=", 2},
78 {"ls", "<<", 2},
79 {"rs", ">>", 2},
80 {"lS", "<<=", 2},
81 {"rS", ">>=", 2},
82 {"eq", "==", 2},
83 {"ne", "!=", 2},
84 {"lt", "<", 2},
85 {"gt", ">", 2},
86 {"le", "<=", 2},
87 {"ge", ">=", 2},
88 {"nt", "!", 1},
89 {"aa", "&&", 2},
90 {"oo", "||", 2},
91 {"pp", "++", 1},
92 {"mm", "--", 1},
93 {"cm", ",", 2},
94 {"pm", "->*", 2},
95 {"pt", "->", 0}, // Special syntax
96 {"cl", "()", 0}, // Special syntax
97 {"ix", "[]", 2},
98 {"qu", "?", 3},
99 {"st", "sizeof", 0}, // Special syntax
100 {"sz", "sizeof", 1}, // Not a real operator name, but used in expressions.
101 {nullptr, nullptr, 0},
102 };
103
104 // List of builtin types from Itanium C++ ABI.
105 //
106 // Invariant: only one- or two-character type abbreviations here.
107 static const AbbrevPair kBuiltinTypeList[] = {
108 {"v", "void", 0},
109 {"w", "wchar_t", 0},
110 {"b", "bool", 0},
111 {"c", "char", 0},
112 {"a", "signed char", 0},
113 {"h", "unsigned char", 0},
114 {"s", "short", 0},
115 {"t", "unsigned short", 0},
116 {"i", "int", 0},
117 {"j", "unsigned int", 0},
118 {"l", "long", 0},
119 {"m", "unsigned long", 0},
120 {"x", "long long", 0},
121 {"y", "unsigned long long", 0},
122 {"n", "__int128", 0},
123 {"o", "unsigned __int128", 0},
124 {"f", "float", 0},
125 {"d", "double", 0},
126 {"e", "long double", 0},
127 {"g", "__float128", 0},
128 {"z", "ellipsis", 0},
129
130 {"De", "decimal128", 0}, // IEEE 754r decimal floating point (128 bits)
131 {"Dd", "decimal64", 0}, // IEEE 754r decimal floating point (64 bits)
132 {"Dc", "decltype(auto)", 0},
133 {"Da", "auto", 0},
134 {"Dn", "std::nullptr_t", 0}, // i.e., decltype(nullptr)
135 {"Df", "decimal32", 0}, // IEEE 754r decimal floating point (32 bits)
136 {"Di", "char32_t", 0},
137 {"Du", "char8_t", 0},
138 {"Ds", "char16_t", 0},
139 {"Dh", "float16", 0}, // IEEE 754r half-precision float (16 bits)
140 {nullptr, nullptr, 0},
141 };
142
143 // List of substitutions Itanium C++ ABI.
144 static const AbbrevPair kSubstitutionList[] = {
145 {"St", "", 0},
146 {"Sa", "allocator", 0},
147 {"Sb", "basic_string", 0},
148 // std::basic_string<char, std::char_traits<char>,std::allocator<char> >
149 {"Ss", "string", 0},
150 // std::basic_istream<char, std::char_traits<char> >
151 {"Si", "istream", 0},
152 // std::basic_ostream<char, std::char_traits<char> >
153 {"So", "ostream", 0},
154 // std::basic_iostream<char, std::char_traits<char> >
155 {"Sd", "iostream", 0},
156 {nullptr, nullptr, 0},
157 };
158
159 // State needed for demangling. This struct is copied in almost every stack
160 // frame, so every byte counts.
161 typedef struct {
162 int mangled_idx; // Cursor of mangled name.
163 int out_cur_idx; // Cursor of output string.
164 int prev_name_idx; // For constructors/destructors.
165 unsigned int prev_name_length : 16; // For constructors/destructors.
166 signed int nest_level : 15; // For nested names.
167 unsigned int append : 1; // Append flag.
168 // Note: for some reason MSVC can't pack "bool append : 1" into the same int
169 // with the above two fields, so we use an int instead. Amusingly it can pack
170 // "signed bool" as expected, but relying on that to continue to be a legal
171 // type seems ill-advised (as it's illegal in at least clang).
172 } ParseState;
173
174 static_assert(sizeof(ParseState) == 4 * sizeof(int),
175 "unexpected size of ParseState");
176
177 // One-off state for demangling that's not subject to backtracking -- either
178 // constant data, data that's intentionally immune to backtracking (steps), or
179 // data that would never be changed by backtracking anyway (recursion_depth).
180 //
181 // Only one copy of this exists for each call to Demangle, so the size of this
182 // struct is nearly inconsequential.
183 typedef struct {
184 const char *mangled_begin; // Beginning of input string.
185 char *out; // Beginning of output string.
186 int out_end_idx; // One past last allowed output character.
187 int recursion_depth; // For stack exhaustion prevention.
188 int steps; // Cap how much work we'll do, regardless of depth.
189 ParseState parse_state; // Backtrackable state copied for most frames.
190 } State;
191
192 namespace {
193 // Prevent deep recursion / stack exhaustion.
194 // Also prevent unbounded handling of complex inputs.
195 class ComplexityGuard {
196 public:
ComplexityGuard(State * state)197 explicit ComplexityGuard(State *state) : state_(state) {
198 ++state->recursion_depth;
199 ++state->steps;
200 }
~ComplexityGuard()201 ~ComplexityGuard() { --state_->recursion_depth; }
202
203 // 256 levels of recursion seems like a reasonable upper limit on depth.
204 // 128 is not enough to demagle synthetic tests from demangle_unittest.txt:
205 // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..."
206 static constexpr int kRecursionDepthLimit = 256;
207
208 // We're trying to pick a charitable upper-limit on how many parse steps are
209 // necessary to handle something that a human could actually make use of.
210 // This is mostly in place as a bound on how much work we'll do if we are
211 // asked to demangle an mangled name from an untrusted source, so it should be
212 // much larger than the largest expected symbol, but much smaller than the
213 // amount of work we can do in, e.g., a second.
214 //
215 // Some real-world symbols from an arbitrary binary started failing between
216 // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set
217 // the limit.
218 //
219 // Spending one second on 2^17 parse steps would require each step to take
220 // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in
221 // under a second.
222 static constexpr int kParseStepsLimit = 1 << 17;
223
IsTooComplex() const224 bool IsTooComplex() const {
225 return state_->recursion_depth > kRecursionDepthLimit ||
226 state_->steps > kParseStepsLimit;
227 }
228
229 private:
230 State *state_;
231 };
232 } // namespace
233
234 // We don't use strlen() in libc since it's not guaranteed to be async
235 // signal safe.
StrLen(const char * str)236 static size_t StrLen(const char *str) {
237 size_t len = 0;
238 while (*str != '\0') {
239 ++str;
240 ++len;
241 }
242 return len;
243 }
244
245 // Returns true if "str" has at least "n" characters remaining.
AtLeastNumCharsRemaining(const char * str,size_t n)246 static bool AtLeastNumCharsRemaining(const char *str, size_t n) {
247 for (size_t i = 0; i < n; ++i) {
248 if (str[i] == '\0') {
249 return false;
250 }
251 }
252 return true;
253 }
254
255 // Returns true if "str" has "prefix" as a prefix.
StrPrefix(const char * str,const char * prefix)256 static bool StrPrefix(const char *str, const char *prefix) {
257 size_t i = 0;
258 while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {
259 ++i;
260 }
261 return prefix[i] == '\0'; // Consumed everything in "prefix".
262 }
263
InitState(State * state,const char * mangled,char * out,size_t out_size)264 static void InitState(State* state,
265 const char* mangled,
266 char* out,
267 size_t out_size) {
268 state->mangled_begin = mangled;
269 state->out = out;
270 state->out_end_idx = static_cast<int>(out_size);
271 state->recursion_depth = 0;
272 state->steps = 0;
273
274 state->parse_state.mangled_idx = 0;
275 state->parse_state.out_cur_idx = 0;
276 state->parse_state.prev_name_idx = 0;
277 state->parse_state.prev_name_length = 0;
278 state->parse_state.nest_level = -1;
279 state->parse_state.append = true;
280 }
281
RemainingInput(State * state)282 static inline const char *RemainingInput(State *state) {
283 return &state->mangled_begin[state->parse_state.mangled_idx];
284 }
285
286 // Returns true and advances "mangled_idx" if we find "one_char_token"
287 // at "mangled_idx" position. It is assumed that "one_char_token" does
288 // not contain '\0'.
ParseOneCharToken(State * state,const char one_char_token)289 static bool ParseOneCharToken(State *state, const char one_char_token) {
290 ComplexityGuard guard(state);
291 if (guard.IsTooComplex()) return false;
292 if (RemainingInput(state)[0] == one_char_token) {
293 ++state->parse_state.mangled_idx;
294 return true;
295 }
296 return false;
297 }
298
299 // Returns true and advances "mangled_cur" if we find "two_char_token"
300 // at "mangled_cur" position. It is assumed that "two_char_token" does
301 // not contain '\0'.
ParseTwoCharToken(State * state,const char * two_char_token)302 static bool ParseTwoCharToken(State *state, const char *two_char_token) {
303 ComplexityGuard guard(state);
304 if (guard.IsTooComplex()) return false;
305 if (RemainingInput(state)[0] == two_char_token[0] &&
306 RemainingInput(state)[1] == two_char_token[1]) {
307 state->parse_state.mangled_idx += 2;
308 return true;
309 }
310 return false;
311 }
312
313 // Returns true and advances "mangled_cur" if we find any character in
314 // "char_class" at "mangled_cur" position.
ParseCharClass(State * state,const char * char_class)315 static bool ParseCharClass(State *state, const char *char_class) {
316 ComplexityGuard guard(state);
317 if (guard.IsTooComplex()) return false;
318 if (RemainingInput(state)[0] == '\0') {
319 return false;
320 }
321 const char *p = char_class;
322 for (; *p != '\0'; ++p) {
323 if (RemainingInput(state)[0] == *p) {
324 ++state->parse_state.mangled_idx;
325 return true;
326 }
327 }
328 return false;
329 }
330
ParseDigit(State * state,int * digit)331 static bool ParseDigit(State *state, int *digit) {
332 char c = RemainingInput(state)[0];
333 if (ParseCharClass(state, "0123456789")) {
334 if (digit != nullptr) {
335 *digit = c - '0';
336 }
337 return true;
338 }
339 return false;
340 }
341
342 // This function is used for handling an optional non-terminal.
Optional(bool)343 static bool Optional(bool /*status*/) { return true; }
344
345 // This function is used for handling <non-terminal>+ syntax.
346 typedef bool (*ParseFunc)(State *);
OneOrMore(ParseFunc parse_func,State * state)347 static bool OneOrMore(ParseFunc parse_func, State *state) {
348 if (parse_func(state)) {
349 while (parse_func(state)) {
350 }
351 return true;
352 }
353 return false;
354 }
355
356 // This function is used for handling <non-terminal>* syntax. The function
357 // always returns true and must be followed by a termination token or a
358 // terminating sequence not handled by parse_func (e.g.
359 // ParseOneCharToken(state, 'E')).
ZeroOrMore(ParseFunc parse_func,State * state)360 static bool ZeroOrMore(ParseFunc parse_func, State *state) {
361 while (parse_func(state)) {
362 }
363 return true;
364 }
365
366 // Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is
367 // set to out_end_idx+1. The output string is ensured to
368 // always terminate with '\0' as long as there is no overflow.
Append(State * state,const char * const str,const size_t length)369 static void Append(State *state, const char *const str, const size_t length) {
370 for (size_t i = 0; i < length; ++i) {
371 if (state->parse_state.out_cur_idx + 1 <
372 state->out_end_idx) { // +1 for '\0'
373 state->out[state->parse_state.out_cur_idx++] = str[i];
374 } else {
375 // signal overflow
376 state->parse_state.out_cur_idx = state->out_end_idx + 1;
377 break;
378 }
379 }
380 if (state->parse_state.out_cur_idx < state->out_end_idx) {
381 state->out[state->parse_state.out_cur_idx] =
382 '\0'; // Terminate it with '\0'
383 }
384 }
385
386 // We don't use equivalents in libc to avoid locale issues.
IsLower(char c)387 static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }
388
IsAlpha(char c)389 static bool IsAlpha(char c) {
390 return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
391 }
392
IsDigit(char c)393 static bool IsDigit(char c) { return c >= '0' && c <= '9'; }
394
395 // Returns true if "str" is a function clone suffix. These suffixes are used
396 // by GCC 4.5.x and later versions (and our locally-modified version of GCC
397 // 4.4.x) to indicate functions which have been cloned during optimization.
398 // We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix.
399 // Additionally, '_' is allowed along with the alphanumeric sequence.
IsFunctionCloneSuffix(const char * str)400 static bool IsFunctionCloneSuffix(const char *str) {
401 size_t i = 0;
402 while (str[i] != '\0') {
403 bool parsed = false;
404 // Consume a single [.<alpha> | _]*[.<digit>]* sequence.
405 if (str[i] == '.' && (IsAlpha(str[i + 1]) || str[i + 1] == '_')) {
406 parsed = true;
407 i += 2;
408 while (IsAlpha(str[i]) || str[i] == '_') {
409 ++i;
410 }
411 }
412 if (str[i] == '.' && IsDigit(str[i + 1])) {
413 parsed = true;
414 i += 2;
415 while (IsDigit(str[i])) {
416 ++i;
417 }
418 }
419 if (!parsed)
420 return false;
421 }
422 return true; // Consumed everything in "str".
423 }
424
EndsWith(State * state,const char chr)425 static bool EndsWith(State *state, const char chr) {
426 return state->parse_state.out_cur_idx > 0 &&
427 state->parse_state.out_cur_idx < state->out_end_idx &&
428 chr == state->out[state->parse_state.out_cur_idx - 1];
429 }
430
431 // Append "str" with some tweaks, iff "append" state is true.
MaybeAppendWithLength(State * state,const char * const str,const size_t length)432 static void MaybeAppendWithLength(State *state, const char *const str,
433 const size_t length) {
434 if (state->parse_state.append && length > 0) {
435 // Append a space if the output buffer ends with '<' and "str"
436 // starts with '<' to avoid <<<.
437 if (str[0] == '<' && EndsWith(state, '<')) {
438 Append(state, " ", 1);
439 }
440 // Remember the last identifier name for ctors/dtors,
441 // but only if we haven't yet overflown the buffer.
442 if (state->parse_state.out_cur_idx < state->out_end_idx &&
443 (IsAlpha(str[0]) || str[0] == '_')) {
444 state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;
445 state->parse_state.prev_name_length = static_cast<unsigned int>(length);
446 }
447 Append(state, str, length);
448 }
449 }
450
451 // Appends a positive decimal number to the output if appending is enabled.
MaybeAppendDecimal(State * state,int val)452 static bool MaybeAppendDecimal(State *state, int val) {
453 // Max {32-64}-bit unsigned int is 20 digits.
454 constexpr size_t kMaxLength = 20;
455 char buf[kMaxLength];
456
457 // We can't use itoa or sprintf as neither is specified to be
458 // async-signal-safe.
459 if (state->parse_state.append) {
460 // We can't have a one-before-the-beginning pointer, so instead start with
461 // one-past-the-end and manipulate one character before the pointer.
462 char *p = &buf[kMaxLength];
463 do { // val=0 is the only input that should write a leading zero digit.
464 *--p = static_cast<char>((val % 10) + '0');
465 val /= 10;
466 } while (p > buf && val != 0);
467
468 // 'p' landed on the last character we set. How convenient.
469 Append(state, p, kMaxLength - static_cast<size_t>(p - buf));
470 }
471
472 return true;
473 }
474
475 // A convenient wrapper around MaybeAppendWithLength().
476 // Returns true so that it can be placed in "if" conditions.
MaybeAppend(State * state,const char * const str)477 static bool MaybeAppend(State *state, const char *const str) {
478 if (state->parse_state.append) {
479 size_t length = StrLen(str);
480 MaybeAppendWithLength(state, str, length);
481 }
482 return true;
483 }
484
485 // This function is used for handling nested names.
EnterNestedName(State * state)486 static bool EnterNestedName(State *state) {
487 state->parse_state.nest_level = 0;
488 return true;
489 }
490
491 // This function is used for handling nested names.
LeaveNestedName(State * state,int16_t prev_value)492 static bool LeaveNestedName(State *state, int16_t prev_value) {
493 state->parse_state.nest_level = prev_value;
494 return true;
495 }
496
497 // Disable the append mode not to print function parameters, etc.
DisableAppend(State * state)498 static bool DisableAppend(State *state) {
499 state->parse_state.append = false;
500 return true;
501 }
502
503 // Restore the append mode to the previous state.
RestoreAppend(State * state,bool prev_value)504 static bool RestoreAppend(State *state, bool prev_value) {
505 state->parse_state.append = prev_value;
506 return true;
507 }
508
509 // Increase the nest level for nested names.
MaybeIncreaseNestLevel(State * state)510 static void MaybeIncreaseNestLevel(State *state) {
511 if (state->parse_state.nest_level > -1) {
512 ++state->parse_state.nest_level;
513 }
514 }
515
516 // Appends :: for nested names if necessary.
MaybeAppendSeparator(State * state)517 static void MaybeAppendSeparator(State *state) {
518 if (state->parse_state.nest_level >= 1) {
519 MaybeAppend(state, "::");
520 }
521 }
522
523 // Cancel the last separator if necessary.
MaybeCancelLastSeparator(State * state)524 static void MaybeCancelLastSeparator(State *state) {
525 if (state->parse_state.nest_level >= 1 && state->parse_state.append &&
526 state->parse_state.out_cur_idx >= 2) {
527 state->parse_state.out_cur_idx -= 2;
528 state->out[state->parse_state.out_cur_idx] = '\0';
529 }
530 }
531
532 // Returns true if the identifier of the given length pointed to by
533 // "mangled_cur" is anonymous namespace.
IdentifierIsAnonymousNamespace(State * state,size_t length)534 static bool IdentifierIsAnonymousNamespace(State *state, size_t length) {
535 // Returns true if "anon_prefix" is a proper prefix of "mangled_cur".
536 static const char anon_prefix[] = "_GLOBAL__N_";
537 return (length > (sizeof(anon_prefix) - 1) &&
538 StrPrefix(RemainingInput(state), anon_prefix));
539 }
540
541 // Forward declarations of our parsing functions.
542 static bool ParseMangledName(State *state);
543 static bool ParseEncoding(State *state);
544 static bool ParseName(State *state);
545 static bool ParseUnscopedName(State *state);
546 static bool ParseNestedName(State *state);
547 static bool ParsePrefix(State *state);
548 static bool ParseUnqualifiedName(State *state);
549 static bool ParseSourceName(State *state);
550 static bool ParseLocalSourceName(State *state);
551 static bool ParseUnnamedTypeName(State *state);
552 static bool ParseNumber(State *state, int *number_out);
553 static bool ParseFloatNumber(State *state);
554 static bool ParseSeqId(State *state);
555 static bool ParseIdentifier(State *state, size_t length);
556 static bool ParseOperatorName(State *state, int *arity);
557 static bool ParseSpecialName(State *state);
558 static bool ParseCallOffset(State *state);
559 static bool ParseNVOffset(State *state);
560 static bool ParseVOffset(State *state);
561 static bool ParseAbiTags(State *state);
562 static bool ParseCtorDtorName(State *state);
563 static bool ParseDecltype(State *state);
564 static bool ParseType(State *state);
565 static bool ParseCVQualifiers(State *state);
566 static bool ParseBuiltinType(State *state);
567 static bool ParseFunctionType(State *state);
568 static bool ParseBareFunctionType(State *state);
569 static bool ParseClassEnumType(State *state);
570 static bool ParseArrayType(State *state);
571 static bool ParsePointerToMemberType(State *state);
572 static bool ParseTemplateParam(State *state);
573 static bool ParseTemplateTemplateParam(State *state);
574 static bool ParseTemplateArgs(State *state);
575 static bool ParseTemplateArg(State *state);
576 static bool ParseBaseUnresolvedName(State *state);
577 static bool ParseUnresolvedName(State *state);
578 static bool ParseExpression(State *state);
579 static bool ParseExprPrimary(State *state);
580 static bool ParseExprCastValue(State *state);
581 static bool ParseLocalName(State *state);
582 static bool ParseLocalNameSuffix(State *state);
583 static bool ParseDiscriminator(State *state);
584 static bool ParseSubstitution(State *state, bool accept_std);
585
586 // Implementation note: the following code is a straightforward
587 // translation of the Itanium C++ ABI defined in BNF with a couple of
588 // exceptions.
589 //
590 // - Support GNU extensions not defined in the Itanium C++ ABI
591 // - <prefix> and <template-prefix> are combined to avoid infinite loop
592 // - Reorder patterns to shorten the code
593 // - Reorder patterns to give greedier functions precedence
594 // We'll mark "Less greedy than" for these cases in the code
595 //
596 // Each parsing function changes the parse state and returns true on
597 // success, or returns false and doesn't change the parse state (note:
598 // the parse-steps counter increases regardless of success or failure).
599 // To ensure that the parse state isn't changed in the latter case, we
600 // save the original state before we call multiple parsing functions
601 // consecutively with &&, and restore it if unsuccessful. See
602 // ParseEncoding() as an example of this convention. We follow the
603 // convention throughout the code.
604 //
605 // Originally we tried to do demangling without following the full ABI
606 // syntax but it turned out we needed to follow the full syntax to
607 // parse complicated cases like nested template arguments. Note that
608 // implementing a full-fledged demangler isn't trivial (libiberty's
609 // cp-demangle.c has +4300 lines).
610 //
611 // Note that (foo) in <(foo) ...> is a modifier to be ignored.
612 //
613 // Reference:
614 // - Itanium C++ ABI
615 // <https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling>
616
617 // <mangled-name> ::= _Z <encoding>
ParseMangledName(State * state)618 static bool ParseMangledName(State *state) {
619 ComplexityGuard guard(state);
620 if (guard.IsTooComplex()) return false;
621 return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);
622 }
623
624 // <encoding> ::= <(function) name> <bare-function-type>
625 // ::= <(data) name>
626 // ::= <special-name>
ParseEncoding(State * state)627 static bool ParseEncoding(State *state) {
628 ComplexityGuard guard(state);
629 if (guard.IsTooComplex()) return false;
630 // Implementing the first two productions together as <name>
631 // [<bare-function-type>] avoids exponential blowup of backtracking.
632 //
633 // Since Optional(...) can't fail, there's no need to copy the state for
634 // backtracking.
635 if (ParseName(state) && Optional(ParseBareFunctionType(state))) {
636 return true;
637 }
638
639 if (ParseSpecialName(state)) {
640 return true;
641 }
642 return false;
643 }
644
645 // <name> ::= <nested-name>
646 // ::= <unscoped-template-name> <template-args>
647 // ::= <unscoped-name>
648 // ::= <local-name>
ParseName(State * state)649 static bool ParseName(State *state) {
650 ComplexityGuard guard(state);
651 if (guard.IsTooComplex()) return false;
652 if (ParseNestedName(state) || ParseLocalName(state)) {
653 return true;
654 }
655
656 // We reorganize the productions to avoid re-parsing unscoped names.
657 // - Inline <unscoped-template-name> productions:
658 // <name> ::= <substitution> <template-args>
659 // ::= <unscoped-name> <template-args>
660 // ::= <unscoped-name>
661 // - Merge the two productions that start with unscoped-name:
662 // <name> ::= <unscoped-name> [<template-args>]
663
664 ParseState copy = state->parse_state;
665 // "std<...>" isn't a valid name.
666 if (ParseSubstitution(state, /*accept_std=*/false) &&
667 ParseTemplateArgs(state)) {
668 return true;
669 }
670 state->parse_state = copy;
671
672 // Note there's no need to restore state after this since only the first
673 // subparser can fail.
674 return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));
675 }
676
677 // <unscoped-name> ::= <unqualified-name>
678 // ::= St <unqualified-name>
ParseUnscopedName(State * state)679 static bool ParseUnscopedName(State *state) {
680 ComplexityGuard guard(state);
681 if (guard.IsTooComplex()) return false;
682 if (ParseUnqualifiedName(state)) {
683 return true;
684 }
685
686 ParseState copy = state->parse_state;
687 if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&
688 ParseUnqualifiedName(state)) {
689 return true;
690 }
691 state->parse_state = copy;
692 return false;
693 }
694
695 // <ref-qualifer> ::= R // lvalue method reference qualifier
696 // ::= O // rvalue method reference qualifier
ParseRefQualifier(State * state)697 static inline bool ParseRefQualifier(State *state) {
698 return ParseCharClass(state, "OR");
699 }
700
701 // <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>
702 // <unqualified-name> E
703 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
704 // <template-args> E
ParseNestedName(State * state)705 static bool ParseNestedName(State *state) {
706 ComplexityGuard guard(state);
707 if (guard.IsTooComplex()) return false;
708 ParseState copy = state->parse_state;
709 if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&
710 Optional(ParseCVQualifiers(state)) &&
711 Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&
712 LeaveNestedName(state, copy.nest_level) &&
713 ParseOneCharToken(state, 'E')) {
714 return true;
715 }
716 state->parse_state = copy;
717 return false;
718 }
719
720 // This part is tricky. If we literally translate them to code, we'll
721 // end up infinite loop. Hence we merge them to avoid the case.
722 //
723 // <prefix> ::= <prefix> <unqualified-name>
724 // ::= <template-prefix> <template-args>
725 // ::= <template-param>
726 // ::= <substitution>
727 // ::= # empty
728 // <template-prefix> ::= <prefix> <(template) unqualified-name>
729 // ::= <template-param>
730 // ::= <substitution>
ParsePrefix(State * state)731 static bool ParsePrefix(State *state) {
732 ComplexityGuard guard(state);
733 if (guard.IsTooComplex()) return false;
734 bool has_something = false;
735 while (true) {
736 MaybeAppendSeparator(state);
737 if (ParseTemplateParam(state) ||
738 ParseSubstitution(state, /*accept_std=*/true) ||
739 ParseUnscopedName(state) ||
740 (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) {
741 has_something = true;
742 MaybeIncreaseNestLevel(state);
743 continue;
744 }
745 MaybeCancelLastSeparator(state);
746 if (has_something && ParseTemplateArgs(state)) {
747 return ParsePrefix(state);
748 } else {
749 break;
750 }
751 }
752 return true;
753 }
754
755 // <unqualified-name> ::= <operator-name> [<abi-tags>]
756 // ::= <ctor-dtor-name> [<abi-tags>]
757 // ::= <source-name> [<abi-tags>]
758 // ::= <local-source-name> [<abi-tags>]
759 // ::= <unnamed-type-name> [<abi-tags>]
760 //
761 // <local-source-name> is a GCC extension; see below.
ParseUnqualifiedName(State * state)762 static bool ParseUnqualifiedName(State *state) {
763 ComplexityGuard guard(state);
764 if (guard.IsTooComplex()) return false;
765 if (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) ||
766 ParseSourceName(state) || ParseLocalSourceName(state) ||
767 ParseUnnamedTypeName(state)) {
768 return ParseAbiTags(state);
769 }
770 return false;
771 }
772
773 // <abi-tags> ::= <abi-tag> [<abi-tags>]
774 // <abi-tag> ::= B <source-name>
ParseAbiTags(State * state)775 static bool ParseAbiTags(State *state) {
776 ComplexityGuard guard(state);
777 if (guard.IsTooComplex()) return false;
778
779 while (ParseOneCharToken(state, 'B')) {
780 ParseState copy = state->parse_state;
781 MaybeAppend(state, "[abi:");
782
783 if (!ParseSourceName(state)) {
784 state->parse_state = copy;
785 return false;
786 }
787 MaybeAppend(state, "]");
788 }
789
790 return true;
791 }
792
793 // <source-name> ::= <positive length number> <identifier>
ParseSourceName(State * state)794 static bool ParseSourceName(State *state) {
795 ComplexityGuard guard(state);
796 if (guard.IsTooComplex()) return false;
797 ParseState copy = state->parse_state;
798 int length = -1;
799 if (ParseNumber(state, &length) &&
800 ParseIdentifier(state, static_cast<size_t>(length))) {
801 return true;
802 }
803 state->parse_state = copy;
804 return false;
805 }
806
807 // <local-source-name> ::= L <source-name> [<discriminator>]
808 //
809 // References:
810 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775
811 // https://gcc.gnu.org/viewcvs?view=rev&revision=124467
ParseLocalSourceName(State * state)812 static bool ParseLocalSourceName(State *state) {
813 ComplexityGuard guard(state);
814 if (guard.IsTooComplex()) return false;
815 ParseState copy = state->parse_state;
816 if (ParseOneCharToken(state, 'L') && ParseSourceName(state) &&
817 Optional(ParseDiscriminator(state))) {
818 return true;
819 }
820 state->parse_state = copy;
821 return false;
822 }
823
824 // <unnamed-type-name> ::= Ut [<(nonnegative) number>] _
825 // ::= <closure-type-name>
826 // <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _
827 // <lambda-sig> ::= <(parameter) type>+
ParseUnnamedTypeName(State * state)828 static bool ParseUnnamedTypeName(State *state) {
829 ComplexityGuard guard(state);
830 if (guard.IsTooComplex()) return false;
831 ParseState copy = state->parse_state;
832 // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }.
833 // Optionally parse the encoded value into 'which' and add 2 to get the index.
834 int which = -1;
835
836 // Unnamed type local to function or class.
837 if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) &&
838 which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
839 ParseOneCharToken(state, '_')) {
840 MaybeAppend(state, "{unnamed type#");
841 MaybeAppendDecimal(state, 2 + which);
842 MaybeAppend(state, "}");
843 return true;
844 }
845 state->parse_state = copy;
846
847 // Closure type.
848 which = -1;
849 if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) &&
850 OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) &&
851 ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) &&
852 which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
853 ParseOneCharToken(state, '_')) {
854 MaybeAppend(state, "{lambda()#");
855 MaybeAppendDecimal(state, 2 + which);
856 MaybeAppend(state, "}");
857 return true;
858 }
859 state->parse_state = copy;
860
861 return false;
862 }
863
864 // <number> ::= [n] <non-negative decimal integer>
865 // If "number_out" is non-null, then *number_out is set to the value of the
866 // parsed number on success.
ParseNumber(State * state,int * number_out)867 static bool ParseNumber(State *state, int *number_out) {
868 ComplexityGuard guard(state);
869 if (guard.IsTooComplex()) return false;
870 bool negative = false;
871 if (ParseOneCharToken(state, 'n')) {
872 negative = true;
873 }
874 const char *p = RemainingInput(state);
875 uint64_t number = 0;
876 for (; *p != '\0'; ++p) {
877 if (IsDigit(*p)) {
878 number = number * 10 + static_cast<uint64_t>(*p - '0');
879 } else {
880 break;
881 }
882 }
883 // Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives
884 // "incorrect" results for out-of-range inputs, but negative values only
885 // appear for literals, which aren't printed.
886 if (negative) {
887 number = ~number + 1;
888 }
889 if (p != RemainingInput(state)) { // Conversion succeeded.
890 state->parse_state.mangled_idx += p - RemainingInput(state);
891 if (number_out != nullptr) {
892 // Note: possibly truncate "number".
893 *number_out = static_cast<int>(number);
894 }
895 return true;
896 }
897 return false;
898 }
899
900 // Floating-point literals are encoded using a fixed-length lowercase
901 // hexadecimal string.
ParseFloatNumber(State * state)902 static bool ParseFloatNumber(State *state) {
903 ComplexityGuard guard(state);
904 if (guard.IsTooComplex()) return false;
905 const char *p = RemainingInput(state);
906 for (; *p != '\0'; ++p) {
907 if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) {
908 break;
909 }
910 }
911 if (p != RemainingInput(state)) { // Conversion succeeded.
912 state->parse_state.mangled_idx += p - RemainingInput(state);
913 return true;
914 }
915 return false;
916 }
917
918 // The <seq-id> is a sequence number in base 36,
919 // using digits and upper case letters
ParseSeqId(State * state)920 static bool ParseSeqId(State *state) {
921 ComplexityGuard guard(state);
922 if (guard.IsTooComplex()) return false;
923 const char *p = RemainingInput(state);
924 for (; *p != '\0'; ++p) {
925 if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) {
926 break;
927 }
928 }
929 if (p != RemainingInput(state)) { // Conversion succeeded.
930 state->parse_state.mangled_idx += p - RemainingInput(state);
931 return true;
932 }
933 return false;
934 }
935
936 // <identifier> ::= <unqualified source code identifier> (of given length)
ParseIdentifier(State * state,size_t length)937 static bool ParseIdentifier(State *state, size_t length) {
938 ComplexityGuard guard(state);
939 if (guard.IsTooComplex()) return false;
940 if (!AtLeastNumCharsRemaining(RemainingInput(state), length)) {
941 return false;
942 }
943 if (IdentifierIsAnonymousNamespace(state, length)) {
944 MaybeAppend(state, "(anonymous namespace)");
945 } else {
946 MaybeAppendWithLength(state, RemainingInput(state), length);
947 }
948 state->parse_state.mangled_idx += length;
949 return true;
950 }
951
952 // <operator-name> ::= nw, and other two letters cases
953 // ::= cv <type> # (cast)
954 // ::= v <digit> <source-name> # vendor extended operator
ParseOperatorName(State * state,int * arity)955 static bool ParseOperatorName(State *state, int *arity) {
956 ComplexityGuard guard(state);
957 if (guard.IsTooComplex()) return false;
958 if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) {
959 return false;
960 }
961 // First check with "cv" (cast) case.
962 ParseState copy = state->parse_state;
963 if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") &&
964 EnterNestedName(state) && ParseType(state) &&
965 LeaveNestedName(state, copy.nest_level)) {
966 if (arity != nullptr) {
967 *arity = 1;
968 }
969 return true;
970 }
971 state->parse_state = copy;
972
973 // Then vendor extended operators.
974 if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) &&
975 ParseSourceName(state)) {
976 return true;
977 }
978 state->parse_state = copy;
979
980 // Other operator names should start with a lower alphabet followed
981 // by a lower/upper alphabet.
982 if (!(IsLower(RemainingInput(state)[0]) &&
983 IsAlpha(RemainingInput(state)[1]))) {
984 return false;
985 }
986 // We may want to perform a binary search if we really need speed.
987 const AbbrevPair *p;
988 for (p = kOperatorList; p->abbrev != nullptr; ++p) {
989 if (RemainingInput(state)[0] == p->abbrev[0] &&
990 RemainingInput(state)[1] == p->abbrev[1]) {
991 if (arity != nullptr) {
992 *arity = p->arity;
993 }
994 MaybeAppend(state, "operator");
995 if (IsLower(*p->real_name)) { // new, delete, etc.
996 MaybeAppend(state, " ");
997 }
998 MaybeAppend(state, p->real_name);
999 state->parse_state.mangled_idx += 2;
1000 return true;
1001 }
1002 }
1003 return false;
1004 }
1005
1006 // <special-name> ::= TV <type>
1007 // ::= TT <type>
1008 // ::= TI <type>
1009 // ::= TS <type>
1010 // ::= TH <type> # thread-local
1011 // ::= Tc <call-offset> <call-offset> <(base) encoding>
1012 // ::= GV <(object) name>
1013 // ::= T <call-offset> <(base) encoding>
1014 // G++ extensions:
1015 // ::= TC <type> <(offset) number> _ <(base) type>
1016 // ::= TF <type>
1017 // ::= TJ <type>
1018 // ::= GR <name>
1019 // ::= GA <encoding>
1020 // ::= Th <call-offset> <(base) encoding>
1021 // ::= Tv <call-offset> <(base) encoding>
1022 //
1023 // Note: we don't care much about them since they don't appear in
1024 // stack traces. The are special data.
ParseSpecialName(State * state)1025 static bool ParseSpecialName(State *state) {
1026 ComplexityGuard guard(state);
1027 if (guard.IsTooComplex()) return false;
1028 ParseState copy = state->parse_state;
1029 if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTISH") &&
1030 ParseType(state)) {
1031 return true;
1032 }
1033 state->parse_state = copy;
1034
1035 if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) &&
1036 ParseCallOffset(state) && ParseEncoding(state)) {
1037 return true;
1038 }
1039 state->parse_state = copy;
1040
1041 if (ParseTwoCharToken(state, "GV") && ParseName(state)) {
1042 return true;
1043 }
1044 state->parse_state = copy;
1045
1046 if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) &&
1047 ParseEncoding(state)) {
1048 return true;
1049 }
1050 state->parse_state = copy;
1051
1052 // G++ extensions
1053 if (ParseTwoCharToken(state, "TC") && ParseType(state) &&
1054 ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1055 DisableAppend(state) && ParseType(state)) {
1056 RestoreAppend(state, copy.append);
1057 return true;
1058 }
1059 state->parse_state = copy;
1060
1061 if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") &&
1062 ParseType(state)) {
1063 return true;
1064 }
1065 state->parse_state = copy;
1066
1067 if (ParseTwoCharToken(state, "GR") && ParseName(state)) {
1068 return true;
1069 }
1070 state->parse_state = copy;
1071
1072 if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) {
1073 return true;
1074 }
1075 state->parse_state = copy;
1076
1077 if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") &&
1078 ParseCallOffset(state) && ParseEncoding(state)) {
1079 return true;
1080 }
1081 state->parse_state = copy;
1082 return false;
1083 }
1084
1085 // <call-offset> ::= h <nv-offset> _
1086 // ::= v <v-offset> _
ParseCallOffset(State * state)1087 static bool ParseCallOffset(State *state) {
1088 ComplexityGuard guard(state);
1089 if (guard.IsTooComplex()) return false;
1090 ParseState copy = state->parse_state;
1091 if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) &&
1092 ParseOneCharToken(state, '_')) {
1093 return true;
1094 }
1095 state->parse_state = copy;
1096
1097 if (ParseOneCharToken(state, 'v') && ParseVOffset(state) &&
1098 ParseOneCharToken(state, '_')) {
1099 return true;
1100 }
1101 state->parse_state = copy;
1102
1103 return false;
1104 }
1105
1106 // <nv-offset> ::= <(offset) number>
ParseNVOffset(State * state)1107 static bool ParseNVOffset(State *state) {
1108 ComplexityGuard guard(state);
1109 if (guard.IsTooComplex()) return false;
1110 return ParseNumber(state, nullptr);
1111 }
1112
1113 // <v-offset> ::= <(offset) number> _ <(virtual offset) number>
ParseVOffset(State * state)1114 static bool ParseVOffset(State *state) {
1115 ComplexityGuard guard(state);
1116 if (guard.IsTooComplex()) return false;
1117 ParseState copy = state->parse_state;
1118 if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1119 ParseNumber(state, nullptr)) {
1120 return true;
1121 }
1122 state->parse_state = copy;
1123 return false;
1124 }
1125
1126 // <ctor-dtor-name> ::= C1 | C2 | C3 | CI1 <base-class-type> | CI2
1127 // <base-class-type>
1128 // ::= D0 | D1 | D2
1129 // # GCC extensions: "unified" constructor/destructor. See
1130 // #
1131 // https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847
1132 // ::= C4 | D4
ParseCtorDtorName(State * state)1133 static bool ParseCtorDtorName(State *state) {
1134 ComplexityGuard guard(state);
1135 if (guard.IsTooComplex()) return false;
1136 ParseState copy = state->parse_state;
1137 if (ParseOneCharToken(state, 'C')) {
1138 if (ParseCharClass(state, "1234")) {
1139 const char *const prev_name =
1140 state->out + state->parse_state.prev_name_idx;
1141 MaybeAppendWithLength(state, prev_name,
1142 state->parse_state.prev_name_length);
1143 return true;
1144 } else if (ParseOneCharToken(state, 'I') && ParseCharClass(state, "12") &&
1145 ParseClassEnumType(state)) {
1146 return true;
1147 }
1148 }
1149 state->parse_state = copy;
1150
1151 if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) {
1152 const char *const prev_name = state->out + state->parse_state.prev_name_idx;
1153 MaybeAppend(state, "~");
1154 MaybeAppendWithLength(state, prev_name,
1155 state->parse_state.prev_name_length);
1156 return true;
1157 }
1158 state->parse_state = copy;
1159 return false;
1160 }
1161
1162 // <decltype> ::= Dt <expression> E # decltype of an id-expression or class
1163 // # member access (C++0x)
1164 // ::= DT <expression> E # decltype of an expression (C++0x)
ParseDecltype(State * state)1165 static bool ParseDecltype(State *state) {
1166 ComplexityGuard guard(state);
1167 if (guard.IsTooComplex()) return false;
1168
1169 ParseState copy = state->parse_state;
1170 if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") &&
1171 ParseExpression(state) && ParseOneCharToken(state, 'E')) {
1172 return true;
1173 }
1174 state->parse_state = copy;
1175
1176 return false;
1177 }
1178
1179 // <type> ::= <CV-qualifiers> <type>
1180 // ::= P <type> # pointer-to
1181 // ::= R <type> # reference-to
1182 // ::= O <type> # rvalue reference-to (C++0x)
1183 // ::= C <type> # complex pair (C 2000)
1184 // ::= G <type> # imaginary (C 2000)
1185 // ::= U <source-name> <type> # vendor extended type qualifier
1186 // ::= <builtin-type>
1187 // ::= <function-type>
1188 // ::= <class-enum-type> # note: just an alias for <name>
1189 // ::= <array-type>
1190 // ::= <pointer-to-member-type>
1191 // ::= <template-template-param> <template-args>
1192 // ::= <template-param>
1193 // ::= <decltype>
1194 // ::= <substitution>
1195 // ::= Dp <type> # pack expansion of (C++0x)
1196 // ::= Dv <num-elems> _ # GNU vector extension
1197 //
ParseType(State * state)1198 static bool ParseType(State *state) {
1199 ComplexityGuard guard(state);
1200 if (guard.IsTooComplex()) return false;
1201 ParseState copy = state->parse_state;
1202
1203 // We should check CV-qualifers, and PRGC things first.
1204 //
1205 // CV-qualifiers overlap with some operator names, but an operator name is not
1206 // valid as a type. To avoid an ambiguity that can lead to exponential time
1207 // complexity, refuse to backtrack the CV-qualifiers.
1208 //
1209 // _Z4aoeuIrMvvE
1210 // => _Z 4aoeuI rM v v E
1211 // aoeu<operator%=, void, void>
1212 // => _Z 4aoeuI r Mv v E
1213 // aoeu<void void::* restrict>
1214 //
1215 // By consuming the CV-qualifiers first, the former parse is disabled.
1216 if (ParseCVQualifiers(state)) {
1217 const bool result = ParseType(state);
1218 if (!result) state->parse_state = copy;
1219 return result;
1220 }
1221 state->parse_state = copy;
1222
1223 // Similarly, these tag characters can overlap with other <name>s resulting in
1224 // two different parse prefixes that land on <template-args> in the same
1225 // place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by
1226 // refusing to backtrack the tag characters.
1227 if (ParseCharClass(state, "OPRCG")) {
1228 const bool result = ParseType(state);
1229 if (!result) state->parse_state = copy;
1230 return result;
1231 }
1232 state->parse_state = copy;
1233
1234 if (ParseTwoCharToken(state, "Dp") && ParseType(state)) {
1235 return true;
1236 }
1237 state->parse_state = copy;
1238
1239 if (ParseOneCharToken(state, 'U') && ParseSourceName(state) &&
1240 ParseType(state)) {
1241 return true;
1242 }
1243 state->parse_state = copy;
1244
1245 if (ParseBuiltinType(state) || ParseFunctionType(state) ||
1246 ParseClassEnumType(state) || ParseArrayType(state) ||
1247 ParsePointerToMemberType(state) || ParseDecltype(state) ||
1248 // "std" on its own isn't a type.
1249 ParseSubstitution(state, /*accept_std=*/false)) {
1250 return true;
1251 }
1252
1253 if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) {
1254 return true;
1255 }
1256 state->parse_state = copy;
1257
1258 // Less greedy than <template-template-param> <template-args>.
1259 if (ParseTemplateParam(state)) {
1260 return true;
1261 }
1262
1263 if (ParseTwoCharToken(state, "Dv") && ParseNumber(state, nullptr) &&
1264 ParseOneCharToken(state, '_')) {
1265 return true;
1266 }
1267 state->parse_state = copy;
1268
1269 return false;
1270 }
1271
1272 // <CV-qualifiers> ::= [r] [V] [K]
1273 // We don't allow empty <CV-qualifiers> to avoid infinite loop in
1274 // ParseType().
ParseCVQualifiers(State * state)1275 static bool ParseCVQualifiers(State *state) {
1276 ComplexityGuard guard(state);
1277 if (guard.IsTooComplex()) return false;
1278 int num_cv_qualifiers = 0;
1279 num_cv_qualifiers += ParseOneCharToken(state, 'r');
1280 num_cv_qualifiers += ParseOneCharToken(state, 'V');
1281 num_cv_qualifiers += ParseOneCharToken(state, 'K');
1282 return num_cv_qualifiers > 0;
1283 }
1284
1285 // <builtin-type> ::= v, etc. # single-character builtin types
1286 // ::= u <source-name>
1287 // ::= Dd, etc. # two-character builtin types
1288 //
1289 // Not supported:
1290 // ::= DF <number> _ # _FloatN (N bits)
1291 //
ParseBuiltinType(State * state)1292 static bool ParseBuiltinType(State *state) {
1293 ComplexityGuard guard(state);
1294 if (guard.IsTooComplex()) return false;
1295 const AbbrevPair *p;
1296 for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) {
1297 // Guaranteed only 1- or 2-character strings in kBuiltinTypeList.
1298 if (p->abbrev[1] == '\0') {
1299 if (ParseOneCharToken(state, p->abbrev[0])) {
1300 MaybeAppend(state, p->real_name);
1301 return true;
1302 }
1303 } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) {
1304 MaybeAppend(state, p->real_name);
1305 return true;
1306 }
1307 }
1308
1309 ParseState copy = state->parse_state;
1310 if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) {
1311 return true;
1312 }
1313 state->parse_state = copy;
1314 return false;
1315 }
1316
1317 // <exception-spec> ::= Do # non-throwing
1318 // exception-specification (e.g.,
1319 // noexcept, throw())
1320 // ::= DO <expression> E # computed (instantiation-dependent)
1321 // noexcept
1322 // ::= Dw <type>+ E # dynamic exception specification
1323 // with instantiation-dependent types
ParseExceptionSpec(State * state)1324 static bool ParseExceptionSpec(State *state) {
1325 ComplexityGuard guard(state);
1326 if (guard.IsTooComplex()) return false;
1327
1328 if (ParseTwoCharToken(state, "Do")) return true;
1329
1330 ParseState copy = state->parse_state;
1331 if (ParseTwoCharToken(state, "DO") && ParseExpression(state) &&
1332 ParseOneCharToken(state, 'E')) {
1333 return true;
1334 }
1335 state->parse_state = copy;
1336 if (ParseTwoCharToken(state, "Dw") && OneOrMore(ParseType, state) &&
1337 ParseOneCharToken(state, 'E')) {
1338 return true;
1339 }
1340 state->parse_state = copy;
1341
1342 return false;
1343 }
1344
1345 // <function-type> ::= [exception-spec] F [Y] <bare-function-type> [O] E
ParseFunctionType(State * state)1346 static bool ParseFunctionType(State *state) {
1347 ComplexityGuard guard(state);
1348 if (guard.IsTooComplex()) return false;
1349 ParseState copy = state->parse_state;
1350 if (Optional(ParseExceptionSpec(state)) && ParseOneCharToken(state, 'F') &&
1351 Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) &&
1352 Optional(ParseOneCharToken(state, 'O')) &&
1353 ParseOneCharToken(state, 'E')) {
1354 return true;
1355 }
1356 state->parse_state = copy;
1357 return false;
1358 }
1359
1360 // <bare-function-type> ::= <(signature) type>+
ParseBareFunctionType(State * state)1361 static bool ParseBareFunctionType(State *state) {
1362 ComplexityGuard guard(state);
1363 if (guard.IsTooComplex()) return false;
1364 ParseState copy = state->parse_state;
1365 DisableAppend(state);
1366 if (OneOrMore(ParseType, state)) {
1367 RestoreAppend(state, copy.append);
1368 MaybeAppend(state, "()");
1369 return true;
1370 }
1371 state->parse_state = copy;
1372 return false;
1373 }
1374
1375 // <class-enum-type> ::= <name>
ParseClassEnumType(State * state)1376 static bool ParseClassEnumType(State *state) {
1377 ComplexityGuard guard(state);
1378 if (guard.IsTooComplex()) return false;
1379 return ParseName(state);
1380 }
1381
1382 // <array-type> ::= A <(positive dimension) number> _ <(element) type>
1383 // ::= A [<(dimension) expression>] _ <(element) type>
ParseArrayType(State * state)1384 static bool ParseArrayType(State *state) {
1385 ComplexityGuard guard(state);
1386 if (guard.IsTooComplex()) return false;
1387 ParseState copy = state->parse_state;
1388 if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) &&
1389 ParseOneCharToken(state, '_') && ParseType(state)) {
1390 return true;
1391 }
1392 state->parse_state = copy;
1393
1394 if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) &&
1395 ParseOneCharToken(state, '_') && ParseType(state)) {
1396 return true;
1397 }
1398 state->parse_state = copy;
1399 return false;
1400 }
1401
1402 // <pointer-to-member-type> ::= M <(class) type> <(member) type>
ParsePointerToMemberType(State * state)1403 static bool ParsePointerToMemberType(State *state) {
1404 ComplexityGuard guard(state);
1405 if (guard.IsTooComplex()) return false;
1406 ParseState copy = state->parse_state;
1407 if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) {
1408 return true;
1409 }
1410 state->parse_state = copy;
1411 return false;
1412 }
1413
1414 // <template-param> ::= T_
1415 // ::= T <parameter-2 non-negative number> _
ParseTemplateParam(State * state)1416 static bool ParseTemplateParam(State *state) {
1417 ComplexityGuard guard(state);
1418 if (guard.IsTooComplex()) return false;
1419 if (ParseTwoCharToken(state, "T_")) {
1420 MaybeAppend(state, "?"); // We don't support template substitutions.
1421 return true;
1422 }
1423
1424 ParseState copy = state->parse_state;
1425 if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) &&
1426 ParseOneCharToken(state, '_')) {
1427 MaybeAppend(state, "?"); // We don't support template substitutions.
1428 return true;
1429 }
1430 state->parse_state = copy;
1431 return false;
1432 }
1433
1434 // <template-template-param> ::= <template-param>
1435 // ::= <substitution>
ParseTemplateTemplateParam(State * state)1436 static bool ParseTemplateTemplateParam(State *state) {
1437 ComplexityGuard guard(state);
1438 if (guard.IsTooComplex()) return false;
1439 return (ParseTemplateParam(state) ||
1440 // "std" on its own isn't a template.
1441 ParseSubstitution(state, /*accept_std=*/false));
1442 }
1443
1444 // <template-args> ::= I <template-arg>+ E
ParseTemplateArgs(State * state)1445 static bool ParseTemplateArgs(State *state) {
1446 ComplexityGuard guard(state);
1447 if (guard.IsTooComplex()) return false;
1448 ParseState copy = state->parse_state;
1449 DisableAppend(state);
1450 if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) &&
1451 ParseOneCharToken(state, 'E')) {
1452 RestoreAppend(state, copy.append);
1453 MaybeAppend(state, "<>");
1454 return true;
1455 }
1456 state->parse_state = copy;
1457 return false;
1458 }
1459
1460 // <template-arg> ::= <type>
1461 // ::= <expr-primary>
1462 // ::= J <template-arg>* E # argument pack
1463 // ::= X <expression> E
ParseTemplateArg(State * state)1464 static bool ParseTemplateArg(State *state) {
1465 ComplexityGuard guard(state);
1466 if (guard.IsTooComplex()) return false;
1467 ParseState copy = state->parse_state;
1468 if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) &&
1469 ParseOneCharToken(state, 'E')) {
1470 return true;
1471 }
1472 state->parse_state = copy;
1473
1474 // There can be significant overlap between the following leading to
1475 // exponential backtracking:
1476 //
1477 // <expr-primary> ::= L <type> <expr-cast-value> E
1478 // e.g. L 2xxIvE 1 E
1479 // <type> ==> <local-source-name> <template-args>
1480 // e.g. L 2xx IvE
1481 //
1482 // This means parsing an entire <type> twice, and <type> can contain
1483 // <template-arg>, so this can generate exponential backtracking. There is
1484 // only overlap when the remaining input starts with "L <source-name>", so
1485 // parse all cases that can start this way jointly to share the common prefix.
1486 //
1487 // We have:
1488 //
1489 // <template-arg> ::= <type>
1490 // ::= <expr-primary>
1491 //
1492 // First, drop all the productions of <type> that must start with something
1493 // other than 'L'. All that's left is <class-enum-type>; inline it.
1494 //
1495 // <type> ::= <nested-name> # starts with 'N'
1496 // ::= <unscoped-name>
1497 // ::= <unscoped-template-name> <template-args>
1498 // ::= <local-name> # starts with 'Z'
1499 //
1500 // Drop and inline again:
1501 //
1502 // <type> ::= <unscoped-name>
1503 // ::= <unscoped-name> <template-args>
1504 // ::= <substitution> <template-args> # starts with 'S'
1505 //
1506 // Merge the first two, inline <unscoped-name>, drop last:
1507 //
1508 // <type> ::= <unqualified-name> [<template-args>]
1509 // ::= St <unqualified-name> [<template-args>] # starts with 'S'
1510 //
1511 // Drop and inline:
1512 //
1513 // <type> ::= <operator-name> [<template-args>] # starts with lowercase
1514 // ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D'
1515 // ::= <source-name> [<template-args>] # starts with digit
1516 // ::= <local-source-name> [<template-args>]
1517 // ::= <unnamed-type-name> [<template-args>] # starts with 'U'
1518 //
1519 // One more time:
1520 //
1521 // <type> ::= L <source-name> [<template-args>]
1522 //
1523 // Likewise with <expr-primary>:
1524 //
1525 // <expr-primary> ::= L <type> <expr-cast-value> E
1526 // ::= LZ <encoding> E # cannot overlap; drop
1527 // ::= L <mangled_name> E # cannot overlap; drop
1528 //
1529 // By similar reasoning as shown above, the only <type>s starting with
1530 // <source-name> are "<source-name> [<template-args>]". Inline this.
1531 //
1532 // <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E
1533 //
1534 // Now inline both of these into <template-arg>:
1535 //
1536 // <template-arg> ::= L <source-name> [<template-args>]
1537 // ::= L <source-name> [<template-args>] <expr-cast-value> E
1538 //
1539 // Merge them and we're done:
1540 // <template-arg>
1541 // ::= L <source-name> [<template-args>] [<expr-cast-value> E]
1542 if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) {
1543 copy = state->parse_state;
1544 if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) {
1545 return true;
1546 }
1547 state->parse_state = copy;
1548 return true;
1549 }
1550
1551 // Now that the overlapping cases can't reach this code, we can safely call
1552 // both of these.
1553 if (ParseType(state) || ParseExprPrimary(state)) {
1554 return true;
1555 }
1556 state->parse_state = copy;
1557
1558 if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&
1559 ParseOneCharToken(state, 'E')) {
1560 return true;
1561 }
1562 state->parse_state = copy;
1563 return false;
1564 }
1565
1566 // <unresolved-type> ::= <template-param> [<template-args>]
1567 // ::= <decltype>
1568 // ::= <substitution>
ParseUnresolvedType(State * state)1569 static inline bool ParseUnresolvedType(State *state) {
1570 // No ComplexityGuard because we don't copy the state in this stack frame.
1571 return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) ||
1572 ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false);
1573 }
1574
1575 // <simple-id> ::= <source-name> [<template-args>]
ParseSimpleId(State * state)1576 static inline bool ParseSimpleId(State *state) {
1577 // No ComplexityGuard because we don't copy the state in this stack frame.
1578
1579 // Note: <simple-id> cannot be followed by a parameter pack; see comment in
1580 // ParseUnresolvedType.
1581 return ParseSourceName(state) && Optional(ParseTemplateArgs(state));
1582 }
1583
1584 // <base-unresolved-name> ::= <source-name> [<template-args>]
1585 // ::= on <operator-name> [<template-args>]
1586 // ::= dn <destructor-name>
ParseBaseUnresolvedName(State * state)1587 static bool ParseBaseUnresolvedName(State *state) {
1588 ComplexityGuard guard(state);
1589 if (guard.IsTooComplex()) return false;
1590
1591 if (ParseSimpleId(state)) {
1592 return true;
1593 }
1594
1595 ParseState copy = state->parse_state;
1596 if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) &&
1597 Optional(ParseTemplateArgs(state))) {
1598 return true;
1599 }
1600 state->parse_state = copy;
1601
1602 if (ParseTwoCharToken(state, "dn") &&
1603 (ParseUnresolvedType(state) || ParseSimpleId(state))) {
1604 return true;
1605 }
1606 state->parse_state = copy;
1607
1608 return false;
1609 }
1610
1611 // <unresolved-name> ::= [gs] <base-unresolved-name>
1612 // ::= sr <unresolved-type> <base-unresolved-name>
1613 // ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1614 // <base-unresolved-name>
1615 // ::= [gs] sr <unresolved-qualifier-level>+ E
1616 // <base-unresolved-name>
ParseUnresolvedName(State * state)1617 static bool ParseUnresolvedName(State *state) {
1618 ComplexityGuard guard(state);
1619 if (guard.IsTooComplex()) return false;
1620
1621 ParseState copy = state->parse_state;
1622 if (Optional(ParseTwoCharToken(state, "gs")) &&
1623 ParseBaseUnresolvedName(state)) {
1624 return true;
1625 }
1626 state->parse_state = copy;
1627
1628 if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) &&
1629 ParseBaseUnresolvedName(state)) {
1630 return true;
1631 }
1632 state->parse_state = copy;
1633
1634 if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') &&
1635 ParseUnresolvedType(state) &&
1636 OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
1637 ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
1638 return true;
1639 }
1640 state->parse_state = copy;
1641
1642 if (Optional(ParseTwoCharToken(state, "gs")) &&
1643 ParseTwoCharToken(state, "sr") &&
1644 OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
1645 ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
1646 return true;
1647 }
1648 state->parse_state = copy;
1649
1650 return false;
1651 }
1652
1653 // <expression> ::= <1-ary operator-name> <expression>
1654 // ::= <2-ary operator-name> <expression> <expression>
1655 // ::= <3-ary operator-name> <expression> <expression> <expression>
1656 // ::= cl <expression>+ E
1657 // ::= cp <simple-id> <expression>* E # Clang-specific.
1658 // ::= cv <type> <expression> # type (expression)
1659 // ::= cv <type> _ <expression>* E # type (expr-list)
1660 // ::= st <type>
1661 // ::= <template-param>
1662 // ::= <function-param>
1663 // ::= <expr-primary>
1664 // ::= dt <expression> <unresolved-name> # expr.name
1665 // ::= pt <expression> <unresolved-name> # expr->name
1666 // ::= sp <expression> # argument pack expansion
1667 // ::= sr <type> <unqualified-name> <template-args>
1668 // ::= sr <type> <unqualified-name>
1669 // <function-param> ::= fp <(top-level) CV-qualifiers> _
1670 // ::= fp <(top-level) CV-qualifiers> <number> _
1671 // ::= fL <number> p <(top-level) CV-qualifiers> _
1672 // ::= fL <number> p <(top-level) CV-qualifiers> <number> _
ParseExpression(State * state)1673 static bool ParseExpression(State *state) {
1674 ComplexityGuard guard(state);
1675 if (guard.IsTooComplex()) return false;
1676 if (ParseTemplateParam(state) || ParseExprPrimary(state)) {
1677 return true;
1678 }
1679
1680 ParseState copy = state->parse_state;
1681
1682 // Object/function call expression.
1683 if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) &&
1684 ParseOneCharToken(state, 'E')) {
1685 return true;
1686 }
1687 state->parse_state = copy;
1688
1689 // Clang-specific "cp <simple-id> <expression>* E"
1690 // https://clang.llvm.org/doxygen/ItaniumMangle_8cpp_source.html#l04338
1691 if (ParseTwoCharToken(state, "cp") && ParseSimpleId(state) &&
1692 ZeroOrMore(ParseExpression, state) && ParseOneCharToken(state, 'E')) {
1693 return true;
1694 }
1695 state->parse_state = copy;
1696
1697 // Function-param expression (level 0).
1698 if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) &&
1699 Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
1700 return true;
1701 }
1702 state->parse_state = copy;
1703
1704 // Function-param expression (level 1+).
1705 if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) &&
1706 ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) &&
1707 Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
1708 return true;
1709 }
1710 state->parse_state = copy;
1711
1712 // Parse the conversion expressions jointly to avoid re-parsing the <type> in
1713 // their common prefix. Parsed as:
1714 // <expression> ::= cv <type> <conversion-args>
1715 // <conversion-args> ::= _ <expression>* E
1716 // ::= <expression>
1717 //
1718 // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName
1719 // also needs to accept "cv <type>" in other contexts.
1720 if (ParseTwoCharToken(state, "cv")) {
1721 if (ParseType(state)) {
1722 ParseState copy2 = state->parse_state;
1723 if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) &&
1724 ParseOneCharToken(state, 'E')) {
1725 return true;
1726 }
1727 state->parse_state = copy2;
1728 if (ParseExpression(state)) {
1729 return true;
1730 }
1731 }
1732 } else {
1733 // Parse unary, binary, and ternary operator expressions jointly, taking
1734 // care not to re-parse subexpressions repeatedly. Parse like:
1735 // <expression> ::= <operator-name> <expression>
1736 // [<one-to-two-expressions>]
1737 // <one-to-two-expressions> ::= <expression> [<expression>]
1738 int arity = -1;
1739 if (ParseOperatorName(state, &arity) &&
1740 arity > 0 && // 0 arity => disabled.
1741 (arity < 3 || ParseExpression(state)) &&
1742 (arity < 2 || ParseExpression(state)) &&
1743 (arity < 1 || ParseExpression(state))) {
1744 return true;
1745 }
1746 }
1747 state->parse_state = copy;
1748
1749 // sizeof type
1750 if (ParseTwoCharToken(state, "st") && ParseType(state)) {
1751 return true;
1752 }
1753 state->parse_state = copy;
1754
1755 // Object and pointer member access expressions.
1756 if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) &&
1757 ParseExpression(state) && ParseType(state)) {
1758 return true;
1759 }
1760 state->parse_state = copy;
1761
1762 // Pointer-to-member access expressions. This parses the same as a binary
1763 // operator, but it's implemented separately because "ds" shouldn't be
1764 // accepted in other contexts that parse an operator name.
1765 if (ParseTwoCharToken(state, "ds") && ParseExpression(state) &&
1766 ParseExpression(state)) {
1767 return true;
1768 }
1769 state->parse_state = copy;
1770
1771 // Parameter pack expansion
1772 if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) {
1773 return true;
1774 }
1775 state->parse_state = copy;
1776
1777 return ParseUnresolvedName(state);
1778 }
1779
1780 // <expr-primary> ::= L <type> <(value) number> E
1781 // ::= L <type> <(value) float> E
1782 // ::= L <mangled-name> E
1783 // // A bug in g++'s C++ ABI version 2 (-fabi-version=2).
1784 // ::= LZ <encoding> E
1785 //
1786 // Warning, subtle: the "bug" LZ production above is ambiguous with the first
1787 // production where <type> starts with <local-name>, which can lead to
1788 // exponential backtracking in two scenarios:
1789 //
1790 // - When whatever follows the E in the <local-name> in the first production is
1791 // not a name, we backtrack the whole <encoding> and re-parse the whole thing.
1792 //
1793 // - When whatever follows the <local-name> in the first production is not a
1794 // number and this <expr-primary> may be followed by a name, we backtrack the
1795 // <name> and re-parse it.
1796 //
1797 // Moreover this ambiguity isn't always resolved -- for example, the following
1798 // has two different parses:
1799 //
1800 // _ZaaILZ4aoeuE1x1EvE
1801 // => operator&&<aoeu, x, E, void>
1802 // => operator&&<(aoeu::x)(1), void>
1803 //
1804 // To resolve this, we just do what GCC's demangler does, and refuse to parse
1805 // casts to <local-name> types.
ParseExprPrimary(State * state)1806 static bool ParseExprPrimary(State *state) {
1807 ComplexityGuard guard(state);
1808 if (guard.IsTooComplex()) return false;
1809 ParseState copy = state->parse_state;
1810
1811 // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E"
1812 // or fail, no backtracking.
1813 if (ParseTwoCharToken(state, "LZ")) {
1814 if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) {
1815 return true;
1816 }
1817
1818 state->parse_state = copy;
1819 return false;
1820 }
1821
1822 // The merged cast production.
1823 if (ParseOneCharToken(state, 'L') && ParseType(state) &&
1824 ParseExprCastValue(state)) {
1825 return true;
1826 }
1827 state->parse_state = copy;
1828
1829 if (ParseOneCharToken(state, 'L') && ParseMangledName(state) &&
1830 ParseOneCharToken(state, 'E')) {
1831 return true;
1832 }
1833 state->parse_state = copy;
1834
1835 return false;
1836 }
1837
1838 // <number> or <float>, followed by 'E', as described above ParseExprPrimary.
ParseExprCastValue(State * state)1839 static bool ParseExprCastValue(State *state) {
1840 ComplexityGuard guard(state);
1841 if (guard.IsTooComplex()) return false;
1842 // We have to be able to backtrack after accepting a number because we could
1843 // have e.g. "7fffE", which will accept "7" as a number but then fail to find
1844 // the 'E'.
1845 ParseState copy = state->parse_state;
1846 if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) {
1847 return true;
1848 }
1849 state->parse_state = copy;
1850
1851 if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) {
1852 return true;
1853 }
1854 state->parse_state = copy;
1855
1856 return false;
1857 }
1858
1859 // <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>]
1860 // ::= Z <(function) encoding> E s [<discriminator>]
1861 //
1862 // Parsing a common prefix of these two productions together avoids an
1863 // exponential blowup of backtracking. Parse like:
1864 // <local-name> := Z <encoding> E <local-name-suffix>
1865 // <local-name-suffix> ::= s [<discriminator>]
1866 // ::= <name> [<discriminator>]
1867
ParseLocalNameSuffix(State * state)1868 static bool ParseLocalNameSuffix(State *state) {
1869 ComplexityGuard guard(state);
1870 if (guard.IsTooComplex()) return false;
1871
1872 if (MaybeAppend(state, "::") && ParseName(state) &&
1873 Optional(ParseDiscriminator(state))) {
1874 return true;
1875 }
1876
1877 // Since we're not going to overwrite the above "::" by re-parsing the
1878 // <encoding> (whose trailing '\0' byte was in the byte now holding the
1879 // first ':'), we have to rollback the "::" if the <name> parse failed.
1880 if (state->parse_state.append) {
1881 state->out[state->parse_state.out_cur_idx - 2] = '\0';
1882 }
1883
1884 return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state));
1885 }
1886
ParseLocalName(State * state)1887 static bool ParseLocalName(State *state) {
1888 ComplexityGuard guard(state);
1889 if (guard.IsTooComplex()) return false;
1890 ParseState copy = state->parse_state;
1891 if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) &&
1892 ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) {
1893 return true;
1894 }
1895 state->parse_state = copy;
1896 return false;
1897 }
1898
1899 // <discriminator> := _ <(non-negative) number>
ParseDiscriminator(State * state)1900 static bool ParseDiscriminator(State *state) {
1901 ComplexityGuard guard(state);
1902 if (guard.IsTooComplex()) return false;
1903 ParseState copy = state->parse_state;
1904 if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) {
1905 return true;
1906 }
1907 state->parse_state = copy;
1908 return false;
1909 }
1910
1911 // <substitution> ::= S_
1912 // ::= S <seq-id> _
1913 // ::= St, etc.
1914 //
1915 // "St" is special in that it's not valid as a standalone name, and it *is*
1916 // allowed to precede a name without being wrapped in "N...E". This means that
1917 // if we accept it on its own, we can accept "St1a" and try to parse
1918 // template-args, then fail and backtrack, accept "St" on its own, then "1a" as
1919 // an unqualified name and re-parse the same template-args. To block this
1920 // exponential backtracking, we disable it with 'accept_std=false' in
1921 // problematic contexts.
ParseSubstitution(State * state,bool accept_std)1922 static bool ParseSubstitution(State *state, bool accept_std) {
1923 ComplexityGuard guard(state);
1924 if (guard.IsTooComplex()) return false;
1925 if (ParseTwoCharToken(state, "S_")) {
1926 MaybeAppend(state, "?"); // We don't support substitutions.
1927 return true;
1928 }
1929
1930 ParseState copy = state->parse_state;
1931 if (ParseOneCharToken(state, 'S') && ParseSeqId(state) &&
1932 ParseOneCharToken(state, '_')) {
1933 MaybeAppend(state, "?"); // We don't support substitutions.
1934 return true;
1935 }
1936 state->parse_state = copy;
1937
1938 // Expand abbreviations like "St" => "std".
1939 if (ParseOneCharToken(state, 'S')) {
1940 const AbbrevPair *p;
1941 for (p = kSubstitutionList; p->abbrev != nullptr; ++p) {
1942 if (RemainingInput(state)[0] == p->abbrev[1] &&
1943 (accept_std || p->abbrev[1] != 't')) {
1944 MaybeAppend(state, "std");
1945 if (p->real_name[0] != '\0') {
1946 MaybeAppend(state, "::");
1947 MaybeAppend(state, p->real_name);
1948 }
1949 ++state->parse_state.mangled_idx;
1950 return true;
1951 }
1952 }
1953 }
1954 state->parse_state = copy;
1955 return false;
1956 }
1957
1958 // Parse <mangled-name>, optionally followed by either a function-clone suffix
1959 // or version suffix. Returns true only if all of "mangled_cur" was consumed.
ParseTopLevelMangledName(State * state)1960 static bool ParseTopLevelMangledName(State *state) {
1961 ComplexityGuard guard(state);
1962 if (guard.IsTooComplex()) return false;
1963 if (ParseMangledName(state)) {
1964 if (RemainingInput(state)[0] != '\0') {
1965 // Drop trailing function clone suffix, if any.
1966 if (IsFunctionCloneSuffix(RemainingInput(state))) {
1967 return true;
1968 }
1969 // Append trailing version suffix if any.
1970 // ex. _Z3foo@@GLIBCXX_3.4
1971 if (RemainingInput(state)[0] == '@') {
1972 MaybeAppend(state, RemainingInput(state));
1973 return true;
1974 }
1975 return false; // Unconsumed suffix.
1976 }
1977 return true;
1978 }
1979 return false;
1980 }
1981
Overflowed(const State * state)1982 static bool Overflowed(const State *state) {
1983 return state->parse_state.out_cur_idx >= state->out_end_idx;
1984 }
1985
1986 // The demangler entry point.
Demangle(const char * mangled,char * out,size_t out_size)1987 bool Demangle(const char* mangled, char* out, size_t out_size) {
1988 State state;
1989 InitState(&state, mangled, out, out_size);
1990 return ParseTopLevelMangledName(&state) && !Overflowed(&state) &&
1991 state.parse_state.out_cur_idx > 0;
1992 }
1993
DemangleString(const char * mangled)1994 std::string DemangleString(const char* mangled) {
1995 std::string out;
1996 int status = 0;
1997 char* demangled = nullptr;
1998 #if ABSL_INTERNAL_HAS_CXA_DEMANGLE
1999 demangled = abi::__cxa_demangle(mangled, nullptr, nullptr, &status);
2000 #endif
2001 if (status == 0 && demangled != nullptr) {
2002 out.append(demangled);
2003 free(demangled);
2004 } else {
2005 out.append(mangled);
2006 }
2007 return out;
2008 }
2009
2010 } // namespace debugging_internal
2011 ABSL_NAMESPACE_END
2012 } // namespace absl
2013