1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/strings/charconv.h"
16
17 #include <algorithm>
18 #include <cassert>
19 #include <cstddef>
20 #include <cstdint>
21 #include <limits>
22 #include <system_error> // NOLINT(build/c++11)
23
24 #include "absl/base/casts.h"
25 #include "absl/base/config.h"
26 #include "absl/numeric/bits.h"
27 #include "absl/numeric/int128.h"
28 #include "absl/strings/internal/charconv_bigint.h"
29 #include "absl/strings/internal/charconv_parse.h"
30
31 // The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
32 // point numbers have the same endianness in memory as a bitfield struct
33 // containing the corresponding parts.
34 //
35 // When set, we replace calls to ldexp() with manual bit packing, which is
36 // faster and is unaffected by floating point environment.
37 #ifdef ABSL_BIT_PACK_FLOATS
38 #error ABSL_BIT_PACK_FLOATS cannot be directly set
39 #elif defined(__x86_64__) || defined(_M_X64)
40 #define ABSL_BIT_PACK_FLOATS 1
41 #endif
42
43 // A note about subnormals:
44 //
45 // The code below talks about "normals" and "subnormals". A normal IEEE float
46 // has a fixed-width mantissa and power of two exponent. For example, a normal
47 // `double` has a 53-bit mantissa. Because the high bit is always 1, it is not
48 // stored in the representation. The implicit bit buys an extra bit of
49 // resolution in the datatype.
50 //
51 // The downside of this scheme is that there is a large gap between DBL_MIN and
52 // zero. (Large, at least, relative to the different between DBL_MIN and the
53 // next representable number). This gap is softened by the "subnormal" numbers,
54 // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
55 // bit. An all-bits-zero exponent in the encoding represents subnormals. (Zero
56 // is represented as a subnormal with an all-bits-zero mantissa.)
57 //
58 // The code below, in calculations, represents the mantissa as a uint64_t. The
59 // end result normally has the 53rd bit set. It represents subnormals by using
60 // narrower mantissas.
61
62 namespace absl {
63 ABSL_NAMESPACE_BEGIN
64 namespace {
65
66 template <typename FloatType>
67 struct FloatTraits;
68
69 template <>
70 struct FloatTraits<double> {
71 using mantissa_t = uint64_t;
72
73 // The number of bits in the given float type.
74 static constexpr int kTargetBits = 64;
75
76 // The number of exponent bits in the given float type.
77 static constexpr int kTargetExponentBits = 11;
78
79 // The number of mantissa bits in the given float type. This includes the
80 // implied high bit.
81 static constexpr int kTargetMantissaBits = 53;
82
83 // The largest supported IEEE exponent, in our integral mantissa
84 // representation.
85 //
86 // If `m` is the largest possible int kTargetMantissaBits bits wide, then
87 // m * 2**kMaxExponent is exactly equal to DBL_MAX.
88 static constexpr int kMaxExponent = 971;
89
90 // The smallest supported IEEE normal exponent, in our integral mantissa
91 // representation.
92 //
93 // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
94 // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
95 static constexpr int kMinNormalExponent = -1074;
96
97 // The IEEE exponent bias. It equals ((1 << (kTargetExponentBits - 1)) - 1).
98 static constexpr int kExponentBias = 1023;
99
100 // The Eisel-Lemire "Shifting to 54/25 Bits" adjustment. It equals (63 - 1 -
101 // kTargetMantissaBits).
102 static constexpr int kEiselLemireShift = 9;
103
104 // The Eisel-Lemire high64_mask. It equals ((1 << kEiselLemireShift) - 1).
105 static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
106
107 // The smallest negative integer N (smallest negative means furthest from
108 // zero) such that parsing 9999999999999999999eN, with 19 nines, is still
109 // positive. Parsing a smaller (more negative) N will produce zero.
110 //
111 // Adjusting the decimal point and exponent, without adjusting the value,
112 // 9999999999999999999eN equals 9.999999999999999999eM where M = N + 18.
113 //
114 // 9999999999999999999, with 19 nines but no decimal point, is the largest
115 // "repeated nines" integer that fits in a uint64_t.
116 static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
117
118 // The smallest positive integer N such that parsing 1eN produces infinity.
119 // Parsing a smaller N will produce something finite.
120 static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
121
MakeNanabsl::__anon31f333790111::FloatTraits122 static double MakeNan(const char* tagp) {
123 #if ABSL_HAVE_BUILTIN(__builtin_nan)
124 // Use __builtin_nan() if available since it has a fix for
125 // https://bugs.llvm.org/show_bug.cgi?id=37778
126 // std::nan may use the glibc implementation.
127 return __builtin_nan(tagp);
128 #else
129 // Support nan no matter which namespace it's in. Some platforms
130 // incorrectly don't put it in namespace std.
131 using namespace std; // NOLINT
132 return nan(tagp);
133 #endif
134 }
135
136 // Builds a nonzero floating point number out of the provided parts.
137 //
138 // This is intended to do the same operation as ldexp(mantissa, exponent),
139 // but using purely integer math, to avoid -ffastmath and floating
140 // point environment issues. Using type punning is also faster. We fall back
141 // to ldexp on a per-platform basis for portability.
142 //
143 // `exponent` must be between kMinNormalExponent and kMaxExponent.
144 //
145 // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
146 // a normal value is made, or it must be less narrow than that, in which case
147 // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
148 // made.
Makeabsl::__anon31f333790111::FloatTraits149 static double Make(mantissa_t mantissa, int exponent, bool sign) {
150 #ifndef ABSL_BIT_PACK_FLOATS
151 // Support ldexp no matter which namespace it's in. Some platforms
152 // incorrectly don't put it in namespace std.
153 using namespace std; // NOLINT
154 return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
155 #else
156 constexpr uint64_t kMantissaMask =
157 (uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
158 uint64_t dbl = static_cast<uint64_t>(sign) << 63;
159 if (mantissa > kMantissaMask) {
160 // Normal value.
161 // Adjust by 1023 for the exponent representation bias, and an additional
162 // 52 due to the implied decimal point in the IEEE mantissa
163 // representation.
164 dbl += static_cast<uint64_t>(exponent + 1023 + kTargetMantissaBits - 1)
165 << 52;
166 mantissa &= kMantissaMask;
167 } else {
168 // subnormal value
169 assert(exponent == kMinNormalExponent);
170 }
171 dbl += mantissa;
172 return absl::bit_cast<double>(dbl);
173 #endif // ABSL_BIT_PACK_FLOATS
174 }
175 };
176
177 // Specialization of floating point traits for the `float` type. See the
178 // FloatTraits<double> specialization above for meaning of each of the following
179 // members and methods.
180 template <>
181 struct FloatTraits<float> {
182 using mantissa_t = uint32_t;
183
184 static constexpr int kTargetBits = 32;
185 static constexpr int kTargetExponentBits = 8;
186 static constexpr int kTargetMantissaBits = 24;
187 static constexpr int kMaxExponent = 104;
188 static constexpr int kMinNormalExponent = -149;
189 static constexpr int kExponentBias = 127;
190 static constexpr int kEiselLemireShift = 38;
191 static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
192 static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
193 static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
194
MakeNanabsl::__anon31f333790111::FloatTraits195 static float MakeNan(const char* tagp) {
196 #if ABSL_HAVE_BUILTIN(__builtin_nanf)
197 // Use __builtin_nanf() if available since it has a fix for
198 // https://bugs.llvm.org/show_bug.cgi?id=37778
199 // std::nanf may use the glibc implementation.
200 return __builtin_nanf(tagp);
201 #else
202 // Support nanf no matter which namespace it's in. Some platforms
203 // incorrectly don't put it in namespace std.
204 using namespace std; // NOLINT
205 return std::nanf(tagp);
206 #endif
207 }
208
Makeabsl::__anon31f333790111::FloatTraits209 static float Make(mantissa_t mantissa, int exponent, bool sign) {
210 #ifndef ABSL_BIT_PACK_FLOATS
211 // Support ldexpf no matter which namespace it's in. Some platforms
212 // incorrectly don't put it in namespace std.
213 using namespace std; // NOLINT
214 return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
215 #else
216 constexpr uint32_t kMantissaMask =
217 (uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
218 uint32_t flt = static_cast<uint32_t>(sign) << 31;
219 if (mantissa > kMantissaMask) {
220 // Normal value.
221 // Adjust by 127 for the exponent representation bias, and an additional
222 // 23 due to the implied decimal point in the IEEE mantissa
223 // representation.
224 flt += static_cast<uint32_t>(exponent + 127 + kTargetMantissaBits - 1)
225 << 23;
226 mantissa &= kMantissaMask;
227 } else {
228 // subnormal value
229 assert(exponent == kMinNormalExponent);
230 }
231 flt += mantissa;
232 return absl::bit_cast<float>(flt);
233 #endif // ABSL_BIT_PACK_FLOATS
234 }
235 };
236
237 // Decimal-to-binary conversions require coercing powers of 10 into a mantissa
238 // and a power of 2. The two helper functions Power10Mantissa(n) and
239 // Power10Exponent(n) perform this task. Together, these represent a hand-
240 // rolled floating point value which is equal to or just less than 10**n.
241 //
242 // The return values satisfy two range guarantees:
243 //
244 // Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
245 // < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
246 //
247 // 2**63 <= Power10Mantissa(n) < 2**64.
248 //
249 // See the "Table of powers of 10" comment below for a "1e60" example.
250 //
251 // Lookups into the power-of-10 table must first check the Power10Overflow() and
252 // Power10Underflow() functions, to avoid out-of-bounds table access.
253 //
254 // Indexes into these tables are biased by -kPower10TableMinInclusive. Valid
255 // indexes range from kPower10TableMinInclusive to kPower10TableMaxExclusive.
256 extern const uint64_t kPower10MantissaHighTable[]; // High 64 of 128 bits.
257 extern const uint64_t kPower10MantissaLowTable[]; // Low 64 of 128 bits.
258
259 // The smallest (inclusive) allowed value for use with the Power10Mantissa()
260 // and Power10Exponent() functions below. (If a smaller exponent is needed in
261 // calculations, the end result is guaranteed to underflow.)
262 constexpr int kPower10TableMinInclusive = -342;
263
264 // The largest (exclusive) allowed value for use with the Power10Mantissa() and
265 // Power10Exponent() functions below. (If a larger-or-equal exponent is needed
266 // in calculations, the end result is guaranteed to overflow.)
267 constexpr int kPower10TableMaxExclusive = 309;
268
Power10Mantissa(int n)269 uint64_t Power10Mantissa(int n) {
270 return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
271 }
272
Power10Exponent(int n)273 int Power10Exponent(int n) {
274 // The 217706 etc magic numbers encode the results as a formula instead of a
275 // table. Their equivalence (over the kPower10TableMinInclusive ..
276 // kPower10TableMaxExclusive range) is confirmed by
277 // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
278 return (217706 * n >> 16) - 63;
279 }
280
281 // Returns true if n is large enough that 10**n always results in an IEEE
282 // overflow.
Power10Overflow(int n)283 bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
284
285 // Returns true if n is small enough that 10**n times a ParsedFloat mantissa
286 // always results in an IEEE underflow.
Power10Underflow(int n)287 bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
288
289 // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
290 // to 10**n numerically. Put another way, this returns true if there is no
291 // truncation error in Power10Mantissa(n).
Power10Exact(int n)292 bool Power10Exact(int n) { return n >= 0 && n <= 27; }
293
294 // Sentinel exponent values for representing numbers too large or too close to
295 // zero to represent in a double.
296 constexpr int kOverflow = 99999;
297 constexpr int kUnderflow = -99999;
298
299 // Struct representing the calculated conversion result of a positive (nonzero)
300 // floating point number.
301 //
302 // The calculated number is mantissa * 2**exponent (mantissa is treated as an
303 // integer.) `mantissa` is chosen to be the correct width for the IEEE float
304 // representation being calculated. (`mantissa` will always have the same bit
305 // width for normal values, and narrower bit widths for subnormals.)
306 //
307 // If the result of conversion was an underflow or overflow, exponent is set
308 // to kUnderflow or kOverflow.
309 struct CalculatedFloat {
310 uint64_t mantissa = 0;
311 int exponent = 0;
312 };
313
314 // Returns the bit width of the given uint128. (Equivalently, returns 128
315 // minus the number of leading zero bits.)
BitWidth(uint128 value)316 int BitWidth(uint128 value) {
317 if (Uint128High64(value) == 0) {
318 // This static_cast is only needed when using a std::bit_width()
319 // implementation that does not have the fix for LWG 3656 applied.
320 return static_cast<int>(bit_width(Uint128Low64(value)));
321 }
322 return 128 - countl_zero(Uint128High64(value));
323 }
324
325 // Calculates how far to the right a mantissa needs to be shifted to create a
326 // properly adjusted mantissa for an IEEE floating point number.
327 //
328 // `mantissa_width` is the bit width of the mantissa to be shifted, and
329 // `binary_exponent` is the exponent of the number before the shift.
330 //
331 // This accounts for subnormal values, and will return a larger-than-normal
332 // shift if binary_exponent would otherwise be too low.
333 template <typename FloatType>
NormalizedShiftSize(int mantissa_width,int binary_exponent)334 int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
335 const int normal_shift =
336 mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
337 const int minimum_shift =
338 FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
339 return std::max(normal_shift, minimum_shift);
340 }
341
342 // Right shifts a uint128 so that it has the requested bit width. (The
343 // resulting value will have 128 - bit_width leading zeroes.) The initial
344 // `value` must be wider than the requested bit width.
345 //
346 // Returns the number of bits shifted.
TruncateToBitWidth(int bit_width,uint128 * value)347 int TruncateToBitWidth(int bit_width, uint128* value) {
348 const int current_bit_width = BitWidth(*value);
349 const int shift = current_bit_width - bit_width;
350 *value >>= shift;
351 return shift;
352 }
353
354 // Checks if the given ParsedFloat represents one of the edge cases that are
355 // not dependent on number base: zero, infinity, or NaN. If so, sets *value
356 // the appropriate double, and returns true.
357 template <typename FloatType>
HandleEdgeCase(const strings_internal::ParsedFloat & input,bool negative,FloatType * value)358 bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
359 FloatType* value) {
360 if (input.type == strings_internal::FloatType::kNan) {
361 // A bug in both clang < 7 and gcc would cause the compiler to optimize
362 // away the buffer we are building below. Declaring the buffer volatile
363 // avoids the issue, and has no measurable performance impact in
364 // microbenchmarks.
365 //
366 // https://bugs.llvm.org/show_bug.cgi?id=37778
367 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
368 constexpr ptrdiff_t kNanBufferSize = 128;
369 #if (defined(__GNUC__) && !defined(__clang__)) || \
370 (defined(__clang__) && __clang_major__ < 7)
371 volatile char n_char_sequence[kNanBufferSize];
372 #else
373 char n_char_sequence[kNanBufferSize];
374 #endif
375 if (input.subrange_begin == nullptr) {
376 n_char_sequence[0] = '\0';
377 } else {
378 ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
379 nan_size = std::min(nan_size, kNanBufferSize - 1);
380 std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
381 n_char_sequence[nan_size] = '\0';
382 }
383 char* nan_argument = const_cast<char*>(n_char_sequence);
384 *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
385 : FloatTraits<FloatType>::MakeNan(nan_argument);
386 return true;
387 }
388 if (input.type == strings_internal::FloatType::kInfinity) {
389 *value = negative ? -std::numeric_limits<FloatType>::infinity()
390 : std::numeric_limits<FloatType>::infinity();
391 return true;
392 }
393 if (input.mantissa == 0) {
394 *value = negative ? -0.0 : 0.0;
395 return true;
396 }
397 return false;
398 }
399
400 // Given a CalculatedFloat result of a from_chars conversion, generate the
401 // correct output values.
402 //
403 // CalculatedFloat can represent an underflow or overflow, in which case the
404 // error code in *result is set. Otherwise, the calculated floating point
405 // number is stored in *value.
406 template <typename FloatType>
EncodeResult(const CalculatedFloat & calculated,bool negative,absl::from_chars_result * result,FloatType * value)407 void EncodeResult(const CalculatedFloat& calculated, bool negative,
408 absl::from_chars_result* result, FloatType* value) {
409 if (calculated.exponent == kOverflow) {
410 result->ec = std::errc::result_out_of_range;
411 *value = negative ? -std::numeric_limits<FloatType>::max()
412 : std::numeric_limits<FloatType>::max();
413 return;
414 } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
415 result->ec = std::errc::result_out_of_range;
416 *value = negative ? -0.0 : 0.0;
417 return;
418 }
419 *value = FloatTraits<FloatType>::Make(
420 static_cast<typename FloatTraits<FloatType>::mantissa_t>(
421 calculated.mantissa),
422 calculated.exponent, negative);
423 }
424
425 // Returns the given uint128 shifted to the right by `shift` bits, and rounds
426 // the remaining bits using round_to_nearest logic. The value is returned as a
427 // uint64_t, since this is the type used by this library for storing calculated
428 // floating point mantissas.
429 //
430 // It is expected that the width of the input value shifted by `shift` will
431 // be the correct bit-width for the target mantissa, which is strictly narrower
432 // than a uint64_t.
433 //
434 // If `input_exact` is false, then a nonzero error epsilon is assumed. For
435 // rounding purposes, the true value being rounded is strictly greater than the
436 // input value. The error may represent a single lost carry bit.
437 //
438 // When input_exact, shifted bits of the form 1000000... represent a tie, which
439 // is broken by rounding to even -- the rounding direction is chosen so the low
440 // bit of the returned value is 0.
441 //
442 // When !input_exact, shifted bits of the form 10000000... represent a value
443 // strictly greater than one half (due to the error epsilon), and so ties are
444 // always broken by rounding up.
445 //
446 // When !input_exact, shifted bits of the form 01111111... are uncertain;
447 // the true value may or may not be greater than 10000000..., due to the
448 // possible lost carry bit. The correct rounding direction is unknown. In this
449 // case, the result is rounded down, and `output_exact` is set to false.
450 //
451 // Zero and negative values of `shift` are accepted, in which case the word is
452 // shifted left, as necessary.
ShiftRightAndRound(uint128 value,int shift,bool input_exact,bool * output_exact)453 uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
454 bool* output_exact) {
455 if (shift <= 0) {
456 *output_exact = input_exact;
457 return static_cast<uint64_t>(value << -shift);
458 }
459 if (shift >= 128) {
460 // Exponent is so small that we are shifting away all significant bits.
461 // Answer will not be representable, even as a subnormal, so return a zero
462 // mantissa (which represents underflow).
463 *output_exact = true;
464 return 0;
465 }
466
467 *output_exact = true;
468 const uint128 shift_mask = (uint128(1) << shift) - 1;
469 const uint128 halfway_point = uint128(1) << (shift - 1);
470
471 const uint128 shifted_bits = value & shift_mask;
472 value >>= shift;
473 if (shifted_bits > halfway_point) {
474 // Shifted bits greater than 10000... require rounding up.
475 return static_cast<uint64_t>(value + 1);
476 }
477 if (shifted_bits == halfway_point) {
478 // In exact mode, shifted bits of 10000... mean we're exactly halfway
479 // between two numbers, and we must round to even. So only round up if
480 // the low bit of `value` is set.
481 //
482 // In inexact mode, the nonzero error means the actual value is greater
483 // than the halfway point and we must always round up.
484 if ((value & 1) == 1 || !input_exact) {
485 ++value;
486 }
487 return static_cast<uint64_t>(value);
488 }
489 if (!input_exact && shifted_bits == halfway_point - 1) {
490 // Rounding direction is unclear, due to error.
491 *output_exact = false;
492 }
493 // Otherwise, round down.
494 return static_cast<uint64_t>(value);
495 }
496
497 // Checks if a floating point guess needs to be rounded up, using high precision
498 // math.
499 //
500 // `guess_mantissa` and `guess_exponent` represent a candidate guess for the
501 // number represented by `parsed_decimal`.
502 //
503 // The exact number represented by `parsed_decimal` must lie between the two
504 // numbers:
505 // A = `guess_mantissa * 2**guess_exponent`
506 // B = `(guess_mantissa + 1) * 2**guess_exponent`
507 //
508 // This function returns false if `A` is the better guess, and true if `B` is
509 // the better guess, with rounding ties broken by rounding to even.
MustRoundUp(uint64_t guess_mantissa,int guess_exponent,const strings_internal::ParsedFloat & parsed_decimal)510 bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
511 const strings_internal::ParsedFloat& parsed_decimal) {
512 // 768 is the number of digits needed in the worst case. We could determine a
513 // better limit dynamically based on the value of parsed_decimal.exponent.
514 // This would optimize pathological input cases only. (Sane inputs won't have
515 // hundreds of digits of mantissa.)
516 absl::strings_internal::BigUnsigned<84> exact_mantissa;
517 int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
518
519 // Adjust the `guess` arguments to be halfway between A and B.
520 guess_mantissa = guess_mantissa * 2 + 1;
521 guess_exponent -= 1;
522
523 // In our comparison:
524 // lhs = exact = exact_mantissa * 10**exact_exponent
525 // = exact_mantissa * 5**exact_exponent * 2**exact_exponent
526 // rhs = guess = guess_mantissa * 2**guess_exponent
527 //
528 // Because we are doing integer math, we can't directly deal with negative
529 // exponents. We instead move these to the other side of the inequality.
530 absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
531 int comparison;
532 if (exact_exponent >= 0) {
533 lhs.MultiplyByFiveToTheNth(exact_exponent);
534 absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
535 // There are powers of 2 on both sides of the inequality; reduce this to
536 // a single bit-shift.
537 if (exact_exponent > guess_exponent) {
538 lhs.ShiftLeft(exact_exponent - guess_exponent);
539 } else {
540 rhs.ShiftLeft(guess_exponent - exact_exponent);
541 }
542 comparison = Compare(lhs, rhs);
543 } else {
544 // Move the power of 5 to the other side of the equation, giving us:
545 // lhs = exact_mantissa * 2**exact_exponent
546 // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
547 absl::strings_internal::BigUnsigned<84> rhs =
548 absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
549 rhs.MultiplyBy(guess_mantissa);
550 if (exact_exponent > guess_exponent) {
551 lhs.ShiftLeft(exact_exponent - guess_exponent);
552 } else {
553 rhs.ShiftLeft(guess_exponent - exact_exponent);
554 }
555 comparison = Compare(lhs, rhs);
556 }
557 if (comparison < 0) {
558 return false;
559 } else if (comparison > 0) {
560 return true;
561 } else {
562 // When lhs == rhs, the decimal input is exactly between A and B.
563 // Round towards even -- round up only if the low bit of the initial
564 // `guess_mantissa` was a 1. We shifted guess_mantissa left 1 bit at
565 // the beginning of this function, so test the 2nd bit here.
566 return (guess_mantissa & 2) == 2;
567 }
568 }
569
570 // Constructs a CalculatedFloat from a given mantissa and exponent, but
571 // with the following normalizations applied:
572 //
573 // If rounding has caused mantissa to increase just past the allowed bit
574 // width, shift and adjust exponent.
575 //
576 // If exponent is too high, sets kOverflow.
577 //
578 // If mantissa is zero (representing a non-zero value not representable, even
579 // as a subnormal), sets kUnderflow.
580 template <typename FloatType>
CalculatedFloatFromRawValues(uint64_t mantissa,int exponent)581 CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
582 CalculatedFloat result;
583 if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
584 mantissa >>= 1;
585 exponent += 1;
586 }
587 if (exponent > FloatTraits<FloatType>::kMaxExponent) {
588 result.exponent = kOverflow;
589 } else if (mantissa == 0) {
590 result.exponent = kUnderflow;
591 } else {
592 result.exponent = exponent;
593 result.mantissa = mantissa;
594 }
595 return result;
596 }
597
598 template <typename FloatType>
CalculateFromParsedHexadecimal(const strings_internal::ParsedFloat & parsed_hex)599 CalculatedFloat CalculateFromParsedHexadecimal(
600 const strings_internal::ParsedFloat& parsed_hex) {
601 uint64_t mantissa = parsed_hex.mantissa;
602 int exponent = parsed_hex.exponent;
603 // This static_cast is only needed when using a std::bit_width()
604 // implementation that does not have the fix for LWG 3656 applied.
605 int mantissa_width = static_cast<int>(bit_width(mantissa));
606 const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
607 bool result_exact;
608 exponent += shift;
609 mantissa = ShiftRightAndRound(mantissa, shift,
610 /* input exact= */ true, &result_exact);
611 // ParseFloat handles rounding in the hexadecimal case, so we don't have to
612 // check `result_exact` here.
613 return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
614 }
615
616 template <typename FloatType>
CalculateFromParsedDecimal(const strings_internal::ParsedFloat & parsed_decimal)617 CalculatedFloat CalculateFromParsedDecimal(
618 const strings_internal::ParsedFloat& parsed_decimal) {
619 CalculatedFloat result;
620
621 // Large or small enough decimal exponents will always result in overflow
622 // or underflow.
623 if (Power10Underflow(parsed_decimal.exponent)) {
624 result.exponent = kUnderflow;
625 return result;
626 } else if (Power10Overflow(parsed_decimal.exponent)) {
627 result.exponent = kOverflow;
628 return result;
629 }
630
631 // Otherwise convert our power of 10 into a power of 2 times an integer
632 // mantissa, and multiply this by our parsed decimal mantissa.
633 uint128 wide_binary_mantissa = parsed_decimal.mantissa;
634 wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
635 int binary_exponent = Power10Exponent(parsed_decimal.exponent);
636
637 // Discard bits that are inaccurate due to truncation error. The magic
638 // `mantissa_width` constants below are justified in
639 // https://abseil.io/about/design/charconv. They represent the number of bits
640 // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
641 // propagation.
642 bool mantissa_exact;
643 int mantissa_width;
644 if (parsed_decimal.subrange_begin) {
645 // Truncated mantissa
646 mantissa_width = 58;
647 mantissa_exact = false;
648 binary_exponent +=
649 TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
650 } else if (!Power10Exact(parsed_decimal.exponent)) {
651 // Exact mantissa, truncated power of ten
652 mantissa_width = 63;
653 mantissa_exact = false;
654 binary_exponent +=
655 TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
656 } else {
657 // Product is exact
658 mantissa_width = BitWidth(wide_binary_mantissa);
659 mantissa_exact = true;
660 }
661
662 // Shift into an FloatType-sized mantissa, and round to nearest.
663 const int shift =
664 NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
665 bool result_exact;
666 binary_exponent += shift;
667 uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
668 mantissa_exact, &result_exact);
669 if (!result_exact) {
670 // We could not determine the rounding direction using int128 math. Use
671 // full resolution math instead.
672 if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
673 binary_mantissa += 1;
674 }
675 }
676
677 return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
678 binary_exponent);
679 }
680
681 // As discussed in https://nigeltao.github.io/blog/2020/eisel-lemire.html the
682 // primary goal of the Eisel-Lemire algorithm is speed, for 99+% of the cases,
683 // not 100% coverage. As long as Eisel-Lemire doesn’t claim false positives,
684 // the combined approach (falling back to an alternative implementation when
685 // this function returns false) is both fast and correct.
686 template <typename FloatType>
EiselLemire(const strings_internal::ParsedFloat & input,bool negative,FloatType * value,std::errc * ec)687 bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
688 FloatType* value, std::errc* ec) {
689 uint64_t man = input.mantissa;
690 int exp10 = input.exponent;
691 if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10) {
692 *value = negative ? -0.0 : 0.0;
693 *ec = std::errc::result_out_of_range;
694 return true;
695 } else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10) {
696 // Return max (a finite value) consistent with from_chars and DR 3081. For
697 // SimpleAtod and SimpleAtof, post-processing will return infinity.
698 *value = negative ? -std::numeric_limits<FloatType>::max()
699 : std::numeric_limits<FloatType>::max();
700 *ec = std::errc::result_out_of_range;
701 return true;
702 }
703
704 // Assert kPower10TableMinInclusive <= exp10 < kPower10TableMaxExclusive.
705 // Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
706 static_assert(
707 FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10 >=
708 kPower10TableMinInclusive,
709 "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
710 static_assert(
711 FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10 <=
712 kPower10TableMaxExclusive,
713 "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
714
715 // The terse (+) comments in this function body refer to sections of the
716 // https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
717 //
718 // That blog post discusses double precision (11 exponent bits with a -1023
719 // bias, 52 mantissa bits), but the same approach applies to single precision
720 // (8 exponent bits with a -127 bias, 23 mantissa bits). Either way, the
721 // computation here happens with 64-bit values (e.g. man) or 128-bit values
722 // (e.g. x) before finally converting to 64- or 32-bit floating point.
723 //
724 // See also "Number Parsing at a Gigabyte per Second, Software: Practice and
725 // Experience 51 (8), 2021" (https://arxiv.org/abs/2101.11408) for detail.
726
727 // (+) Normalization.
728 int clz = countl_zero(man);
729 man <<= static_cast<unsigned int>(clz);
730 // The 217706 etc magic numbers are from the Power10Exponent function.
731 uint64_t ret_exp2 =
732 static_cast<uint64_t>((217706 * exp10 >> 16) + 64 +
733 FloatTraits<FloatType>::kExponentBias - clz);
734
735 // (+) Multiplication.
736 uint128 x = static_cast<uint128>(man) *
737 static_cast<uint128>(
738 kPower10MantissaHighTable[exp10 - kPower10TableMinInclusive]);
739
740 // (+) Wider Approximation.
741 static constexpr uint64_t high64_mask =
742 FloatTraits<FloatType>::kEiselLemireMask;
743 if (((Uint128High64(x) & high64_mask) == high64_mask) &&
744 (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
745 uint128 y =
746 static_cast<uint128>(man) *
747 static_cast<uint128>(
748 kPower10MantissaLowTable[exp10 - kPower10TableMinInclusive]);
749 x += Uint128High64(y);
750 // For example, parsing "4503599627370497.5" will take the if-true
751 // branch here (for double precision), since:
752 // - x = 0x8000000000000BFF_FFFFFFFFFFFFFFFF
753 // - y = 0x8000000000000BFF_7FFFFFFFFFFFF400
754 // - man = 0xA000000000000F00
755 // Likewise, when parsing "0.0625" for single precision:
756 // - x = 0x7FFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF
757 // - y = 0x813FFFFFFFFFFFFF_8A00000000000000
758 // - man = 0x9C40000000000000
759 if (((Uint128High64(x) & high64_mask) == high64_mask) &&
760 ((Uint128Low64(x) + 1) == 0) &&
761 (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(y)))) {
762 return false;
763 }
764 }
765
766 // (+) Shifting to 54 Bits (or for single precision, to 25 bits).
767 uint64_t msb = Uint128High64(x) >> 63;
768 uint64_t ret_man =
769 Uint128High64(x) >> (msb + FloatTraits<FloatType>::kEiselLemireShift);
770 ret_exp2 -= 1 ^ msb;
771
772 // (+) Half-way Ambiguity.
773 //
774 // For example, parsing "1e+23" will take the if-true branch here (for double
775 // precision), since:
776 // - x = 0x54B40B1F852BDA00_0000000000000000
777 // - ret_man = 0x002A5A058FC295ED
778 // Likewise, when parsing "20040229.0" for single precision:
779 // - x = 0x4C72894000000000_0000000000000000
780 // - ret_man = 0x000000000131CA25
781 if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & high64_mask) == 0) &&
782 ((ret_man & 3) == 1)) {
783 return false;
784 }
785
786 // (+) From 54 to 53 Bits (or for single precision, from 25 to 24 bits).
787 ret_man += ret_man & 1; // Line From54a.
788 ret_man >>= 1; // Line From54b.
789 // Incrementing ret_man (at line From54a) may have overflowed 54 bits (53
790 // bits after the right shift by 1 at line From54b), so adjust for that.
791 //
792 // For example, parsing "9223372036854775807" will take the if-true branch
793 // here (for double precision), since:
794 // - ret_man = 0x0020000000000000 = (1 << 53)
795 // Likewise, when parsing "2147483647.0" for single precision:
796 // - ret_man = 0x0000000001000000 = (1 << 24)
797 if ((ret_man >> FloatTraits<FloatType>::kTargetMantissaBits) > 0) {
798 ret_exp2 += 1;
799 // Conceptually, we need a "ret_man >>= 1" in this if-block to balance
800 // incrementing ret_exp2 in the line immediately above. However, we only
801 // get here when line From54a overflowed (after adding a 1), so ret_man
802 // here is (1 << 53). Its low 53 bits are therefore all zeroes. The only
803 // remaining use of ret_man is to mask it with ((1 << 52) - 1), so only its
804 // low 52 bits matter. A "ret_man >>= 1" would have no effect in practice.
805 //
806 // We omit the "ret_man >>= 1", even if it is cheap (and this if-branch is
807 // rarely taken) and technically 'more correct', so that mutation tests
808 // that would otherwise modify or omit that "ret_man >>= 1" don't complain
809 // that such code mutations have no observable effect.
810 }
811
812 // ret_exp2 is a uint64_t. Zero or underflow means that we're in subnormal
813 // space. max_exp2 (0x7FF for double precision, 0xFF for single precision) or
814 // above means that we're in Inf/NaN space.
815 //
816 // The if block is equivalent to (but has fewer branches than):
817 // if ((ret_exp2 <= 0) || (ret_exp2 >= max_exp2)) { etc }
818 //
819 // For example, parsing "4.9406564584124654e-324" will take the if-true
820 // branch here, since ret_exp2 = -51.
821 static constexpr uint64_t max_exp2 =
822 (1 << FloatTraits<FloatType>::kTargetExponentBits) - 1;
823 if ((ret_exp2 - 1) >= (max_exp2 - 1)) {
824 return false;
825 }
826
827 #ifndef ABSL_BIT_PACK_FLOATS
828 if (FloatTraits<FloatType>::kTargetBits == 64) {
829 *value = FloatTraits<FloatType>::Make(
830 (ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
831 static_cast<int>(ret_exp2) - 1023 - 52, negative);
832 return true;
833 } else if (FloatTraits<FloatType>::kTargetBits == 32) {
834 *value = FloatTraits<FloatType>::Make(
835 (static_cast<uint32_t>(ret_man) & 0x007FFFFFu) | 0x00800000u,
836 static_cast<int>(ret_exp2) - 127 - 23, negative);
837 return true;
838 }
839 #else
840 if (FloatTraits<FloatType>::kTargetBits == 64) {
841 uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
842 if (negative) {
843 ret_bits |= 0x8000000000000000u;
844 }
845 *value = absl::bit_cast<double>(ret_bits);
846 return true;
847 } else if (FloatTraits<FloatType>::kTargetBits == 32) {
848 uint32_t ret_bits = (static_cast<uint32_t>(ret_exp2) << 23) |
849 (static_cast<uint32_t>(ret_man) & 0x007FFFFFu);
850 if (negative) {
851 ret_bits |= 0x80000000u;
852 }
853 *value = absl::bit_cast<float>(ret_bits);
854 return true;
855 }
856 #endif // ABSL_BIT_PACK_FLOATS
857 return false;
858 }
859
860 template <typename FloatType>
FromCharsImpl(const char * first,const char * last,FloatType & value,chars_format fmt_flags)861 from_chars_result FromCharsImpl(const char* first, const char* last,
862 FloatType& value, chars_format fmt_flags) {
863 from_chars_result result;
864 result.ptr = first; // overwritten on successful parse
865 result.ec = std::errc();
866
867 bool negative = false;
868 if (first != last && *first == '-') {
869 ++first;
870 negative = true;
871 }
872 // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
873 // to parse a hexadecimal float.
874 if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
875 *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
876 const char* hex_first = first + 2;
877 strings_internal::ParsedFloat hex_parse =
878 strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
879 if (hex_parse.end == nullptr ||
880 hex_parse.type != strings_internal::FloatType::kNumber) {
881 // Either we failed to parse a hex float after the "0x", or we read
882 // "0xinf" or "0xnan" which we don't want to match.
883 //
884 // However, a string that begins with "0x" also begins with "0", which
885 // is normally a valid match for the number zero. So we want these
886 // strings to match zero unless fmt_flags is `scientific`. (This flag
887 // means an exponent is required, which the string "0" does not have.)
888 if (fmt_flags == chars_format::scientific) {
889 result.ec = std::errc::invalid_argument;
890 } else {
891 result.ptr = first + 1;
892 value = negative ? -0.0 : 0.0;
893 }
894 return result;
895 }
896 // We matched a value.
897 result.ptr = hex_parse.end;
898 if (HandleEdgeCase(hex_parse, negative, &value)) {
899 return result;
900 }
901 CalculatedFloat calculated =
902 CalculateFromParsedHexadecimal<FloatType>(hex_parse);
903 EncodeResult(calculated, negative, &result, &value);
904 return result;
905 }
906 // Otherwise, we choose the number base based on the flags.
907 if ((fmt_flags & chars_format::hex) == chars_format::hex) {
908 strings_internal::ParsedFloat hex_parse =
909 strings_internal::ParseFloat<16>(first, last, fmt_flags);
910 if (hex_parse.end == nullptr) {
911 result.ec = std::errc::invalid_argument;
912 return result;
913 }
914 result.ptr = hex_parse.end;
915 if (HandleEdgeCase(hex_parse, negative, &value)) {
916 return result;
917 }
918 CalculatedFloat calculated =
919 CalculateFromParsedHexadecimal<FloatType>(hex_parse);
920 EncodeResult(calculated, negative, &result, &value);
921 return result;
922 } else {
923 strings_internal::ParsedFloat decimal_parse =
924 strings_internal::ParseFloat<10>(first, last, fmt_flags);
925 if (decimal_parse.end == nullptr) {
926 result.ec = std::errc::invalid_argument;
927 return result;
928 }
929 result.ptr = decimal_parse.end;
930 if (HandleEdgeCase(decimal_parse, negative, &value)) {
931 return result;
932 }
933 // A nullptr subrange_begin means that the decimal_parse.mantissa is exact
934 // (not truncated), a precondition of the Eisel-Lemire algorithm.
935 if ((decimal_parse.subrange_begin == nullptr) &&
936 EiselLemire<FloatType>(decimal_parse, negative, &value, &result.ec)) {
937 return result;
938 }
939 CalculatedFloat calculated =
940 CalculateFromParsedDecimal<FloatType>(decimal_parse);
941 EncodeResult(calculated, negative, &result, &value);
942 return result;
943 }
944 }
945 } // namespace
946
from_chars(const char * first,const char * last,double & value,chars_format fmt)947 from_chars_result from_chars(const char* first, const char* last, double& value,
948 chars_format fmt) {
949 return FromCharsImpl(first, last, value, fmt);
950 }
951
from_chars(const char * first,const char * last,float & value,chars_format fmt)952 from_chars_result from_chars(const char* first, const char* last, float& value,
953 chars_format fmt) {
954 return FromCharsImpl(first, last, value, fmt);
955 }
956
957 namespace {
958
959 // Table of powers of 10, from kPower10TableMinInclusive to
960 // kPower10TableMaxExclusive.
961 //
962 // kPower10MantissaHighTable[i - kPower10TableMinInclusive] stores the 64-bit
963 // mantissa. The high bit is always on.
964 //
965 // kPower10MantissaLowTable extends that 64-bit mantissa to 128 bits.
966 //
967 // Power10Exponent(i) calculates the power-of-two exponent.
968 //
969 // For a number i, this gives the unique mantissaHigh and exponent such that
970 // (mantissaHigh * 2**exponent) <= 10**i < ((mantissaHigh + 1) * 2**exponent).
971 //
972 // For example, Python can confirm that the exact hexadecimal value of 1e60 is:
973 // >>> a = 1000000000000000000000000000000000000000000000000000000000000
974 // >>> hex(a)
975 // '0x9f4f2726179a224501d762422c946590d91000000000000000'
976 // Adding underscores at every 8th hex digit shows 50 hex digits:
977 // '0x9f4f2726_179a2245_01d76242_2c946590_d9100000_00000000_00'.
978 // In this case, the high bit of the first hex digit, 9, is coincidentally set,
979 // so we do not have to do further shifting to deduce the 128-bit mantissa:
980 // - kPower10MantissaHighTable[60 - kP10TMI] = 0x9f4f2726179a2245U
981 // - kPower10MantissaLowTable[ 60 - kP10TMI] = 0x01d762422c946590U
982 // where kP10TMI is kPower10TableMinInclusive. The low 18 of those 50 hex
983 // digits are truncated.
984 //
985 // 50 hex digits (with the high bit set) is 200 bits and mantissaHigh holds 64
986 // bits, so Power10Exponent(60) = 200 - 64 = 136. Again, Python can confirm:
987 // >>> b = 0x9f4f2726179a2245
988 // >>> ((b+0)<<136) <= a
989 // True
990 // >>> ((b+1)<<136) <= a
991 // False
992 //
993 // The tables were generated by
994 // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
995 // after re-formatting its output into two arrays of N uint64_t values (instead
996 // of an N element array of uint64_t pairs).
997
998 const uint64_t kPower10MantissaHighTable[] = {
999 0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
1000 0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
1001 0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
1002 0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
1003 0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
1004 0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
1005 0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
1006 0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
1007 0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
1008 0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
1009 0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
1010 0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
1011 0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
1012 0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
1013 0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
1014 0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
1015 0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
1016 0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
1017 0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
1018 0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
1019 0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
1020 0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
1021 0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
1022 0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
1023 0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
1024 0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
1025 0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
1026 0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
1027 0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
1028 0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
1029 0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
1030 0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
1031 0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
1032 0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
1033 0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
1034 0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
1035 0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
1036 0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
1037 0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
1038 0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
1039 0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
1040 0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
1041 0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
1042 0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
1043 0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
1044 0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
1045 0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
1046 0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
1047 0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
1048 0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
1049 0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
1050 0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
1051 0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
1052 0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
1053 0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
1054 0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
1055 0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
1056 0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
1057 0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
1058 0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
1059 0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
1060 0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
1061 0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
1062 0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
1063 0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
1064 0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
1065 0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
1066 0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
1067 0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
1068 0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
1069 0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
1070 0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
1071 0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
1072 0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
1073 0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
1074 0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
1075 0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
1076 0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
1077 0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
1078 0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
1079 0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
1080 0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
1081 0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
1082 0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
1083 0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
1084 0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
1085 0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
1086 0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
1087 0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
1088 0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
1089 0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
1090 0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
1091 0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
1092 0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
1093 0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
1094 0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
1095 0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
1096 0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
1097 0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
1098 0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
1099 0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
1100 0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
1101 0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
1102 0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
1103 0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
1104 0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
1105 0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
1106 0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
1107 0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
1108 0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
1109 0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
1110 0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
1111 0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
1112 0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
1113 0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
1114 0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
1115 0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
1116 0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
1117 0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
1118 0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
1119 0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
1120 0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
1121 0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
1122 0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
1123 0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
1124 0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
1125 0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
1126 0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
1127 0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
1128 0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
1129 0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
1130 0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
1131 0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
1132 0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
1133 0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
1134 0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
1135 0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
1136 0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
1137 0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
1138 0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
1139 0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
1140 0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
1141 0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
1142 0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
1143 0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
1144 0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
1145 0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
1146 0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
1147 0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
1148 0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
1149 0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
1150 0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
1151 0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
1152 0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
1153 0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
1154 0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
1155 0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
1156 0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
1157 0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
1158 0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
1159 0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
1160 0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
1161 0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
1162 0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
1163 0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
1164 0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
1165 0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
1166 0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
1167 0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
1168 0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
1169 0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
1170 0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
1171 0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
1172 0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
1173 0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
1174 0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
1175 0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
1176 0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
1177 0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
1178 0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
1179 0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
1180 0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
1181 0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
1182 0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
1183 0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
1184 0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
1185 0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
1186 0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
1187 0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
1188 0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
1189 0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
1190 0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
1191 0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
1192 0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
1193 0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
1194 0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
1195 0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
1196 0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
1197 0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
1198 0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
1199 0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
1200 0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
1201 0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
1202 0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
1203 0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
1204 0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
1205 0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
1206 0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
1207 0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
1208 0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
1209 0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
1210 0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
1211 0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
1212 0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
1213 0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
1214 0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
1215 0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
1216 };
1217
1218 const uint64_t kPower10MantissaLowTable[] = {
1219 0x113faa2906a13b3fU, 0x4ac7ca59a424c507U, 0x5d79bcf00d2df649U,
1220 0xf4d82c2c107973dcU, 0x79071b9b8a4be869U, 0x9748e2826cdee284U,
1221 0xfd1b1b2308169b25U, 0xfe30f0f5e50e20f7U, 0xbdbd2d335e51a935U,
1222 0xad2c788035e61382U, 0x4c3bcb5021afcc31U, 0xdf4abe242a1bbf3dU,
1223 0xd71d6dad34a2af0dU, 0x8672648c40e5ad68U, 0x680efdaf511f18c2U,
1224 0x0212bd1b2566def2U, 0x014bb630f7604b57U, 0x419ea3bd35385e2dU,
1225 0x52064cac828675b9U, 0x7343efebd1940993U, 0x1014ebe6c5f90bf8U,
1226 0xd41a26e077774ef6U, 0x8920b098955522b4U, 0x55b46e5f5d5535b0U,
1227 0xeb2189f734aa831dU, 0xa5e9ec7501d523e4U, 0x47b233c92125366eU,
1228 0x999ec0bb696e840aU, 0xc00670ea43ca250dU, 0x380406926a5e5728U,
1229 0xc605083704f5ecf2U, 0xf7864a44c633682eU, 0x7ab3ee6afbe0211dU,
1230 0x5960ea05bad82964U, 0x6fb92487298e33bdU, 0xa5d3b6d479f8e056U,
1231 0x8f48a4899877186cU, 0x331acdabfe94de87U, 0x9ff0c08b7f1d0b14U,
1232 0x07ecf0ae5ee44dd9U, 0xc9e82cd9f69d6150U, 0xbe311c083a225cd2U,
1233 0x6dbd630a48aaf406U, 0x092cbbccdad5b108U, 0x25bbf56008c58ea5U,
1234 0xaf2af2b80af6f24eU, 0x1af5af660db4aee1U, 0x50d98d9fc890ed4dU,
1235 0xe50ff107bab528a0U, 0x1e53ed49a96272c8U, 0x25e8e89c13bb0f7aU,
1236 0x77b191618c54e9acU, 0xd59df5b9ef6a2417U, 0x4b0573286b44ad1dU,
1237 0x4ee367f9430aec32U, 0x229c41f793cda73fU, 0x6b43527578c1110fU,
1238 0x830a13896b78aaa9U, 0x23cc986bc656d553U, 0x2cbfbe86b7ec8aa8U,
1239 0x7bf7d71432f3d6a9U, 0xdaf5ccd93fb0cc53U, 0xd1b3400f8f9cff68U,
1240 0x23100809b9c21fa1U, 0xabd40a0c2832a78aU, 0x16c90c8f323f516cU,
1241 0xae3da7d97f6792e3U, 0x99cd11cfdf41779cU, 0x40405643d711d583U,
1242 0x482835ea666b2572U, 0xda3243650005eecfU, 0x90bed43e40076a82U,
1243 0x5a7744a6e804a291U, 0x711515d0a205cb36U, 0x0d5a5b44ca873e03U,
1244 0xe858790afe9486c2U, 0x626e974dbe39a872U, 0xfb0a3d212dc8128fU,
1245 0x7ce66634bc9d0b99U, 0x1c1fffc1ebc44e80U, 0xa327ffb266b56220U,
1246 0x4bf1ff9f0062baa8U, 0x6f773fc3603db4a9U, 0xcb550fb4384d21d3U,
1247 0x7e2a53a146606a48U, 0x2eda7444cbfc426dU, 0xfa911155fefb5308U,
1248 0x793555ab7eba27caU, 0x4bc1558b2f3458deU, 0x9eb1aaedfb016f16U,
1249 0x465e15a979c1cadcU, 0x0bfacd89ec191ec9U, 0xcef980ec671f667bU,
1250 0x82b7e12780e7401aU, 0xd1b2ecb8b0908810U, 0x861fa7e6dcb4aa15U,
1251 0x67a791e093e1d49aU, 0xe0c8bb2c5c6d24e0U, 0x58fae9f773886e18U,
1252 0xaf39a475506a899eU, 0x6d8406c952429603U, 0xc8e5087ba6d33b83U,
1253 0xfb1e4a9a90880a64U, 0x5cf2eea09a55067fU, 0xf42faa48c0ea481eU,
1254 0xf13b94daf124da26U, 0x76c53d08d6b70858U, 0x54768c4b0c64ca6eU,
1255 0xa9942f5dcf7dfd09U, 0xd3f93b35435d7c4cU, 0xc47bc5014a1a6dafU,
1256 0x359ab6419ca1091bU, 0xc30163d203c94b62U, 0x79e0de63425dcf1dU,
1257 0x985915fc12f542e4U, 0x3e6f5b7b17b2939dU, 0xa705992ceecf9c42U,
1258 0x50c6ff782a838353U, 0xa4f8bf5635246428U, 0x871b7795e136be99U,
1259 0x28e2557b59846e3fU, 0x331aeada2fe589cfU, 0x3ff0d2c85def7621U,
1260 0x0fed077a756b53a9U, 0xd3e8495912c62894U, 0x64712dd7abbbd95cU,
1261 0xbd8d794d96aacfb3U, 0xecf0d7a0fc5583a0U, 0xf41686c49db57244U,
1262 0x311c2875c522ced5U, 0x7d633293366b828bU, 0xae5dff9c02033197U,
1263 0xd9f57f830283fdfcU, 0xd072df63c324fd7bU, 0x4247cb9e59f71e6dU,
1264 0x52d9be85f074e608U, 0x67902e276c921f8bU, 0x00ba1cd8a3db53b6U,
1265 0x80e8a40eccd228a4U, 0x6122cd128006b2cdU, 0x796b805720085f81U,
1266 0xcbe3303674053bb0U, 0xbedbfc4411068a9cU, 0xee92fb5515482d44U,
1267 0x751bdd152d4d1c4aU, 0xd262d45a78a0635dU, 0x86fb897116c87c34U,
1268 0xd45d35e6ae3d4da0U, 0x8974836059cca109U, 0x2bd1a438703fc94bU,
1269 0x7b6306a34627ddcfU, 0x1a3bc84c17b1d542U, 0x20caba5f1d9e4a93U,
1270 0x547eb47b7282ee9cU, 0xe99e619a4f23aa43U, 0x6405fa00e2ec94d4U,
1271 0xde83bc408dd3dd04U, 0x9624ab50b148d445U, 0x3badd624dd9b0957U,
1272 0xe54ca5d70a80e5d6U, 0x5e9fcf4ccd211f4cU, 0x7647c3200069671fU,
1273 0x29ecd9f40041e073U, 0xf468107100525890U, 0x7182148d4066eeb4U,
1274 0xc6f14cd848405530U, 0xb8ada00e5a506a7cU, 0xa6d90811f0e4851cU,
1275 0x908f4a166d1da663U, 0x9a598e4e043287feU, 0x40eff1e1853f29fdU,
1276 0xd12bee59e68ef47cU, 0x82bb74f8301958ceU, 0xe36a52363c1faf01U,
1277 0xdc44e6c3cb279ac1U, 0x29ab103a5ef8c0b9U, 0x7415d448f6b6f0e7U,
1278 0x111b495b3464ad21U, 0xcab10dd900beec34U, 0x3d5d514f40eea742U,
1279 0x0cb4a5a3112a5112U, 0x47f0e785eaba72abU, 0x59ed216765690f56U,
1280 0x306869c13ec3532cU, 0x1e414218c73a13fbU, 0xe5d1929ef90898faU,
1281 0xdf45f746b74abf39U, 0x6b8bba8c328eb783U, 0x066ea92f3f326564U,
1282 0xc80a537b0efefebdU, 0xbd06742ce95f5f36U, 0x2c48113823b73704U,
1283 0xf75a15862ca504c5U, 0x9a984d73dbe722fbU, 0xc13e60d0d2e0ebbaU,
1284 0x318df905079926a8U, 0xfdf17746497f7052U, 0xfeb6ea8bedefa633U,
1285 0xfe64a52ee96b8fc0U, 0x3dfdce7aa3c673b0U, 0x06bea10ca65c084eU,
1286 0x486e494fcff30a62U, 0x5a89dba3c3efccfaU, 0xf89629465a75e01cU,
1287 0xf6bbb397f1135823U, 0x746aa07ded582e2cU, 0xa8c2a44eb4571cdcU,
1288 0x92f34d62616ce413U, 0x77b020baf9c81d17U, 0x0ace1474dc1d122eU,
1289 0x0d819992132456baU, 0x10e1fff697ed6c69U, 0xca8d3ffa1ef463c1U,
1290 0xbd308ff8a6b17cb2U, 0xac7cb3f6d05ddbdeU, 0x6bcdf07a423aa96bU,
1291 0x86c16c98d2c953c6U, 0xe871c7bf077ba8b7U, 0x11471cd764ad4972U,
1292 0xd598e40d3dd89bcfU, 0x4aff1d108d4ec2c3U, 0xcedf722a585139baU,
1293 0xc2974eb4ee658828U, 0x733d226229feea32U, 0x0806357d5a3f525fU,
1294 0xca07c2dcb0cf26f7U, 0xfc89b393dd02f0b5U, 0xbbac2078d443ace2U,
1295 0xd54b944b84aa4c0dU, 0x0a9e795e65d4df11U, 0x4d4617b5ff4a16d5U,
1296 0x504bced1bf8e4e45U, 0xe45ec2862f71e1d6U, 0x5d767327bb4e5a4cU,
1297 0x3a6a07f8d510f86fU, 0x890489f70a55368bU, 0x2b45ac74ccea842eU,
1298 0x3b0b8bc90012929dU, 0x09ce6ebb40173744U, 0xcc420a6a101d0515U,
1299 0x9fa946824a12232dU, 0x47939822dc96abf9U, 0x59787e2b93bc56f7U,
1300 0x57eb4edb3c55b65aU, 0xede622920b6b23f1U, 0xe95fab368e45ecedU,
1301 0x11dbcb0218ebb414U, 0xd652bdc29f26a119U, 0x4be76d3346f0495fU,
1302 0x6f70a4400c562ddbU, 0xcb4ccd500f6bb952U, 0x7e2000a41346a7a7U,
1303 0x8ed400668c0c28c8U, 0x728900802f0f32faU, 0x4f2b40a03ad2ffb9U,
1304 0xe2f610c84987bfa8U, 0x0dd9ca7d2df4d7c9U, 0x91503d1c79720dbbU,
1305 0x75a44c6397ce912aU, 0xc986afbe3ee11abaU, 0xfbe85badce996168U,
1306 0xfae27299423fb9c3U, 0xdccd879fc967d41aU, 0x5400e987bbc1c920U,
1307 0x290123e9aab23b68U, 0xf9a0b6720aaf6521U, 0xf808e40e8d5b3e69U,
1308 0xb60b1d1230b20e04U, 0xb1c6f22b5e6f48c2U, 0x1e38aeb6360b1af3U,
1309 0x25c6da63c38de1b0U, 0x579c487e5a38ad0eU, 0x2d835a9df0c6d851U,
1310 0xf8e431456cf88e65U, 0x1b8e9ecb641b58ffU, 0xe272467e3d222f3fU,
1311 0x5b0ed81dcc6abb0fU, 0x98e947129fc2b4e9U, 0x3f2398d747b36224U,
1312 0x8eec7f0d19a03aadU, 0x1953cf68300424acU, 0x5fa8c3423c052dd7U,
1313 0x3792f412cb06794dU, 0xe2bbd88bbee40bd0U, 0x5b6aceaeae9d0ec4U,
1314 0xf245825a5a445275U, 0xeed6e2f0f0d56712U, 0x55464dd69685606bU,
1315 0xaa97e14c3c26b886U, 0xd53dd99f4b3066a8U, 0xe546a8038efe4029U,
1316 0xde98520472bdd033U, 0x963e66858f6d4440U, 0xdde7001379a44aa8U,
1317 0x5560c018580d5d52U, 0xaab8f01e6e10b4a6U, 0xcab3961304ca70e8U,
1318 0x3d607b97c5fd0d22U, 0x8cb89a7db77c506aU, 0x77f3608e92adb242U,
1319 0x55f038b237591ed3U, 0x6b6c46dec52f6688U, 0x2323ac4b3b3da015U,
1320 0xabec975e0a0d081aU, 0x96e7bd358c904a21U, 0x7e50d64177da2e54U,
1321 0xdde50bd1d5d0b9e9U, 0x955e4ec64b44e864U, 0xbd5af13bef0b113eU,
1322 0xecb1ad8aeacdd58eU, 0x67de18eda5814af2U, 0x80eacf948770ced7U,
1323 0xa1258379a94d028dU, 0x096ee45813a04330U, 0x8bca9d6e188853fcU,
1324 0x775ea264cf55347dU, 0x95364afe032a819dU, 0x3a83ddbd83f52204U,
1325 0xc4926a9672793542U, 0x75b7053c0f178293U, 0x5324c68b12dd6338U,
1326 0xd3f6fc16ebca5e03U, 0x88f4bb1ca6bcf584U, 0x2b31e9e3d06c32e5U,
1327 0x3aff322e62439fcfU, 0x09befeb9fad487c2U, 0x4c2ebe687989a9b3U,
1328 0x0f9d37014bf60a10U, 0x538484c19ef38c94U, 0x2865a5f206b06fb9U,
1329 0xf93f87b7442e45d3U, 0xf78f69a51539d748U, 0xb573440e5a884d1bU,
1330 0x31680a88f8953030U, 0xfdc20d2b36ba7c3dU, 0x3d32907604691b4cU,
1331 0xa63f9a49c2c1b10fU, 0x0fcf80dc33721d53U, 0xd3c36113404ea4a8U,
1332 0x645a1cac083126e9U, 0x3d70a3d70a3d70a3U, 0xccccccccccccccccU,
1333 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1334 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1335 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1336 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1337 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1338 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1339 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1340 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1341 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1342 0x0000000000000000U, 0x4000000000000000U, 0x5000000000000000U,
1343 0xa400000000000000U, 0x4d00000000000000U, 0xf020000000000000U,
1344 0x6c28000000000000U, 0xc732000000000000U, 0x3c7f400000000000U,
1345 0x4b9f100000000000U, 0x1e86d40000000000U, 0x1314448000000000U,
1346 0x17d955a000000000U, 0x5dcfab0800000000U, 0x5aa1cae500000000U,
1347 0xf14a3d9e40000000U, 0x6d9ccd05d0000000U, 0xe4820023a2000000U,
1348 0xdda2802c8a800000U, 0xd50b2037ad200000U, 0x4526f422cc340000U,
1349 0x9670b12b7f410000U, 0x3c0cdd765f114000U, 0xa5880a69fb6ac800U,
1350 0x8eea0d047a457a00U, 0x72a4904598d6d880U, 0x47a6da2b7f864750U,
1351 0x999090b65f67d924U, 0xfff4b4e3f741cf6dU, 0xbff8f10e7a8921a4U,
1352 0xaff72d52192b6a0dU, 0x9bf4f8a69f764490U, 0x02f236d04753d5b4U,
1353 0x01d762422c946590U, 0x424d3ad2b7b97ef5U, 0xd2e0898765a7deb2U,
1354 0x63cc55f49f88eb2fU, 0x3cbf6b71c76b25fbU, 0x8bef464e3945ef7aU,
1355 0x97758bf0e3cbb5acU, 0x3d52eeed1cbea317U, 0x4ca7aaa863ee4bddU,
1356 0x8fe8caa93e74ef6aU, 0xb3e2fd538e122b44U, 0x60dbbca87196b616U,
1357 0xbc8955e946fe31cdU, 0x6babab6398bdbe41U, 0xc696963c7eed2dd1U,
1358 0xfc1e1de5cf543ca2U, 0x3b25a55f43294bcbU, 0x49ef0eb713f39ebeU,
1359 0x6e3569326c784337U, 0x49c2c37f07965404U, 0xdc33745ec97be906U,
1360 0x69a028bb3ded71a3U, 0xc40832ea0d68ce0cU, 0xf50a3fa490c30190U,
1361 0x792667c6da79e0faU, 0x577001b891185938U, 0xed4c0226b55e6f86U,
1362 0x544f8158315b05b4U, 0x696361ae3db1c721U, 0x03bc3a19cd1e38e9U,
1363 0x04ab48a04065c723U, 0x62eb0d64283f9c76U, 0x3ba5d0bd324f8394U,
1364 0xca8f44ec7ee36479U, 0x7e998b13cf4e1ecbU, 0x9e3fedd8c321a67eU,
1365 0xc5cfe94ef3ea101eU, 0xbba1f1d158724a12U, 0x2a8a6e45ae8edc97U,
1366 0xf52d09d71a3293bdU, 0x593c2626705f9c56U, 0x6f8b2fb00c77836cU,
1367 0x0b6dfb9c0f956447U, 0x4724bd4189bd5eacU, 0x58edec91ec2cb657U,
1368 0x2f2967b66737e3edU, 0xbd79e0d20082ee74U, 0xecd8590680a3aa11U,
1369 0xe80e6f4820cc9495U, 0x3109058d147fdcddU, 0xbd4b46f0599fd415U,
1370 0x6c9e18ac7007c91aU, 0x03e2cf6bc604ddb0U, 0x84db8346b786151cU,
1371 0xe612641865679a63U, 0x4fcb7e8f3f60c07eU, 0xe3be5e330f38f09dU,
1372 0x5cadf5bfd3072cc5U, 0x73d9732fc7c8f7f6U, 0x2867e7fddcdd9afaU,
1373 0xb281e1fd541501b8U, 0x1f225a7ca91a4226U, 0x3375788de9b06958U,
1374 0x0052d6b1641c83aeU, 0xc0678c5dbd23a49aU, 0xf840b7ba963646e0U,
1375 0xb650e5a93bc3d898U, 0xa3e51f138ab4cebeU, 0xc66f336c36b10137U,
1376 0xb80b0047445d4184U, 0xa60dc059157491e5U, 0x87c89837ad68db2fU,
1377 0x29babe4598c311fbU, 0xf4296dd6fef3d67aU, 0x1899e4a65f58660cU,
1378 0x5ec05dcff72e7f8fU, 0x76707543f4fa1f73U, 0x6a06494a791c53a8U,
1379 0x0487db9d17636892U, 0x45a9d2845d3c42b6U, 0x0b8a2392ba45a9b2U,
1380 0x8e6cac7768d7141eU, 0x3207d795430cd926U, 0x7f44e6bd49e807b8U,
1381 0x5f16206c9c6209a6U, 0x36dba887c37a8c0fU, 0xc2494954da2c9789U,
1382 0xf2db9baa10b7bd6cU, 0x6f92829494e5acc7U, 0xcb772339ba1f17f9U,
1383 0xff2a760414536efbU, 0xfef5138519684abaU, 0x7eb258665fc25d69U,
1384 0xef2f773ffbd97a61U, 0xaafb550ffacfd8faU, 0x95ba2a53f983cf38U,
1385 0xdd945a747bf26183U, 0x94f971119aeef9e4U, 0x7a37cd5601aab85dU,
1386 0xac62e055c10ab33aU, 0x577b986b314d6009U, 0xed5a7e85fda0b80bU,
1387 0x14588f13be847307U, 0x596eb2d8ae258fc8U, 0x6fca5f8ed9aef3bbU,
1388 0x25de7bb9480d5854U, 0xaf561aa79a10ae6aU, 0x1b2ba1518094da04U,
1389 0x90fb44d2f05d0842U, 0x353a1607ac744a53U, 0x42889b8997915ce8U,
1390 0x69956135febada11U, 0x43fab9837e699095U, 0x94f967e45e03f4bbU,
1391 0x1d1be0eebac278f5U, 0x6462d92a69731732U, 0x7d7b8f7503cfdcfeU,
1392 0x5cda735244c3d43eU, 0x3a0888136afa64a7U, 0x088aaa1845b8fdd0U,
1393 0x8aad549e57273d45U, 0x36ac54e2f678864bU, 0x84576a1bb416a7ddU,
1394 0x656d44a2a11c51d5U, 0x9f644ae5a4b1b325U, 0x873d5d9f0dde1feeU,
1395 0xa90cb506d155a7eaU, 0x09a7f12442d588f2U, 0x0c11ed6d538aeb2fU,
1396 0x8f1668c8a86da5faU, 0xf96e017d694487bcU, 0x37c981dcc395a9acU,
1397 0x85bbe253f47b1417U, 0x93956d7478ccec8eU, 0x387ac8d1970027b2U,
1398 0x06997b05fcc0319eU, 0x441fece3bdf81f03U, 0xd527e81cad7626c3U,
1399 0x8a71e223d8d3b074U, 0xf6872d5667844e49U, 0xb428f8ac016561dbU,
1400 0xe13336d701beba52U, 0xecc0024661173473U, 0x27f002d7f95d0190U,
1401 0x31ec038df7b441f4U, 0x7e67047175a15271U, 0x0f0062c6e984d386U,
1402 0x52c07b78a3e60868U, 0xa7709a56ccdf8a82U, 0x88a66076400bb691U,
1403 0x6acff893d00ea435U, 0x0583f6b8c4124d43U, 0xc3727a337a8b704aU,
1404 0x744f18c0592e4c5cU, 0x1162def06f79df73U, 0x8addcb5645ac2ba8U,
1405 0x6d953e2bd7173692U, 0xc8fa8db6ccdd0437U, 0x1d9c9892400a22a2U,
1406 0x2503beb6d00cab4bU, 0x2e44ae64840fd61dU, 0x5ceaecfed289e5d2U,
1407 0x7425a83e872c5f47U, 0xd12f124e28f77719U, 0x82bd6b70d99aaa6fU,
1408 0x636cc64d1001550bU, 0x3c47f7e05401aa4eU, 0x65acfaec34810a71U,
1409 0x7f1839a741a14d0dU, 0x1ede48111209a050U, 0x934aed0aab460432U,
1410 0xf81da84d5617853fU, 0x36251260ab9d668eU, 0xc1d72b7c6b426019U,
1411 0xb24cf65b8612f81fU, 0xdee033f26797b627U, 0x169840ef017da3b1U,
1412 0x8e1f289560ee864eU, 0xf1a6f2bab92a27e2U, 0xae10af696774b1dbU,
1413 0xacca6da1e0a8ef29U, 0x17fd090a58d32af3U, 0xddfc4b4cef07f5b0U,
1414 0x4abdaf101564f98eU, 0x9d6d1ad41abe37f1U, 0x84c86189216dc5edU,
1415 0x32fd3cf5b4e49bb4U, 0x3fbc8c33221dc2a1U, 0x0fabaf3feaa5334aU,
1416 0x29cb4d87f2a7400eU, 0x743e20e9ef511012U, 0x914da9246b255416U,
1417 0x1ad089b6c2f7548eU, 0xa184ac2473b529b1U, 0xc9e5d72d90a2741eU,
1418 0x7e2fa67c7a658892U, 0xddbb901b98feeab7U, 0x552a74227f3ea565U,
1419 0xd53a88958f87275fU, 0x8a892abaf368f137U, 0x2d2b7569b0432d85U,
1420 0x9c3b29620e29fc73U, 0x8349f3ba91b47b8fU, 0x241c70a936219a73U,
1421 0xed238cd383aa0110U, 0xf4363804324a40aaU, 0xb143c6053edcd0d5U,
1422 0xdd94b7868e94050aU, 0xca7cf2b4191c8326U, 0xfd1c2f611f63a3f0U,
1423 0xbc633b39673c8cecU, 0xd5be0503e085d813U, 0x4b2d8644d8a74e18U,
1424 0xddf8e7d60ed1219eU, 0xcabb90e5c942b503U, 0x3d6a751f3b936243U,
1425 0x0cc512670a783ad4U, 0x27fb2b80668b24c5U, 0xb1f9f660802dedf6U,
1426 0x5e7873f8a0396973U, 0xdb0b487b6423e1e8U, 0x91ce1a9a3d2cda62U,
1427 0x7641a140cc7810fbU, 0xa9e904c87fcb0a9dU, 0x546345fa9fbdcd44U,
1428 0xa97c177947ad4095U, 0x49ed8eabcccc485dU, 0x5c68f256bfff5a74U,
1429 0x73832eec6fff3111U, 0xc831fd53c5ff7eabU, 0xba3e7ca8b77f5e55U,
1430 0x28ce1bd2e55f35ebU, 0x7980d163cf5b81b3U, 0xd7e105bcc332621fU,
1431 0x8dd9472bf3fefaa7U, 0xb14f98f6f0feb951U, 0x6ed1bf9a569f33d3U,
1432 0x0a862f80ec4700c8U, 0xcd27bb612758c0faU, 0x8038d51cb897789cU,
1433 0xe0470a63e6bd56c3U, 0x1858ccfce06cac74U, 0x0f37801e0c43ebc8U,
1434 0xd30560258f54e6baU, 0x47c6b82ef32a2069U, 0x4cdc331d57fa5441U,
1435 0xe0133fe4adf8e952U, 0x58180fddd97723a6U, 0x570f09eaa7ea7648U,
1436 };
1437
1438 } // namespace
1439 ABSL_NAMESPACE_END
1440 } // namespace absl
1441