• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/cord.h"
16 
17 #include <algorithm>
18 #include <cassert>
19 #include <cstddef>
20 #include <cstdint>
21 #include <cstdio>
22 #include <cstdlib>
23 #include <cstring>
24 #include <iomanip>
25 #include <ios>
26 #include <iostream>
27 #include <limits>
28 #include <memory>
29 #include <ostream>
30 #include <sstream>
31 #include <string>
32 #include <utility>
33 
34 #include "absl/base/attributes.h"
35 #include "absl/base/config.h"
36 #include "absl/base/internal/endian.h"
37 #include "absl/base/internal/raw_logging.h"
38 #include "absl/base/macros.h"
39 #include "absl/base/optimization.h"
40 #include "absl/container/inlined_vector.h"
41 #include "absl/crc/crc32c.h"
42 #include "absl/crc/internal/crc_cord_state.h"
43 #include "absl/functional/function_ref.h"
44 #include "absl/strings/cord_buffer.h"
45 #include "absl/strings/escaping.h"
46 #include "absl/strings/internal/cord_data_edge.h"
47 #include "absl/strings/internal/cord_internal.h"
48 #include "absl/strings/internal/cord_rep_btree.h"
49 #include "absl/strings/internal/cord_rep_crc.h"
50 #include "absl/strings/internal/cord_rep_flat.h"
51 #include "absl/strings/internal/cordz_update_tracker.h"
52 #include "absl/strings/internal/resize_uninitialized.h"
53 #include "absl/strings/match.h"
54 #include "absl/strings/str_cat.h"
55 #include "absl/strings/string_view.h"
56 #include "absl/strings/strip.h"
57 #include "absl/types/optional.h"
58 #include "absl/types/span.h"
59 
60 namespace absl {
61 ABSL_NAMESPACE_BEGIN
62 
63 using ::absl::cord_internal::CordRep;
64 using ::absl::cord_internal::CordRepBtree;
65 using ::absl::cord_internal::CordRepCrc;
66 using ::absl::cord_internal::CordRepExternal;
67 using ::absl::cord_internal::CordRepFlat;
68 using ::absl::cord_internal::CordRepSubstring;
69 using ::absl::cord_internal::CordzUpdateTracker;
70 using ::absl::cord_internal::InlineData;
71 using ::absl::cord_internal::kMaxFlatLength;
72 using ::absl::cord_internal::kMinFlatLength;
73 
74 using ::absl::cord_internal::kInlinedVectorSize;
75 using ::absl::cord_internal::kMaxBytesToCopy;
76 
77 static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
78                      int indent = 0);
79 static bool VerifyNode(CordRep* root, CordRep* start_node);
80 
VerifyTree(CordRep * node)81 static inline CordRep* VerifyTree(CordRep* node) {
82   assert(node == nullptr || VerifyNode(node, node));
83   static_cast<void>(&VerifyNode);
84   return node;
85 }
86 
CreateFlat(const char * data,size_t length,size_t alloc_hint)87 static CordRepFlat* CreateFlat(const char* data, size_t length,
88                                size_t alloc_hint) {
89   CordRepFlat* flat = CordRepFlat::New(length + alloc_hint);
90   flat->length = length;
91   memcpy(flat->Data(), data, length);
92   return flat;
93 }
94 
95 // Creates a new flat or Btree out of the specified array.
96 // The returned node has a refcount of 1.
NewBtree(const char * data,size_t length,size_t alloc_hint)97 static CordRep* NewBtree(const char* data, size_t length, size_t alloc_hint) {
98   if (length <= kMaxFlatLength) {
99     return CreateFlat(data, length, alloc_hint);
100   }
101   CordRepFlat* flat = CreateFlat(data, kMaxFlatLength, 0);
102   data += kMaxFlatLength;
103   length -= kMaxFlatLength;
104   auto* root = CordRepBtree::Create(flat);
105   return CordRepBtree::Append(root, {data, length}, alloc_hint);
106 }
107 
108 // Create a new tree out of the specified array.
109 // The returned node has a refcount of 1.
NewTree(const char * data,size_t length,size_t alloc_hint)110 static CordRep* NewTree(const char* data, size_t length, size_t alloc_hint) {
111   if (length == 0) return nullptr;
112   return NewBtree(data, length, alloc_hint);
113 }
114 
115 namespace cord_internal {
116 
InitializeCordRepExternal(absl::string_view data,CordRepExternal * rep)117 void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep) {
118   assert(!data.empty());
119   rep->length = data.size();
120   rep->tag = EXTERNAL;
121   rep->base = data.data();
122   VerifyTree(rep);
123 }
124 
125 }  // namespace cord_internal
126 
127 // Creates a CordRep from the provided string. If the string is large enough,
128 // and not wasteful, we move the string into an external cord rep, preserving
129 // the already allocated string contents.
130 // Requires the provided string length to be larger than `kMaxInline`.
CordRepFromString(std::string && src)131 static CordRep* CordRepFromString(std::string&& src) {
132   assert(src.length() > cord_internal::kMaxInline);
133   if (
134       // String is short: copy data to avoid external block overhead.
135       src.size() <= kMaxBytesToCopy ||
136       // String is wasteful: copy data to avoid pinning too much unused memory.
137       src.size() < src.capacity() / 2
138   ) {
139     return NewTree(src.data(), src.size(), 0);
140   }
141 
142   struct StringReleaser {
143     void operator()(absl::string_view /* data */) {}
144     std::string data;
145   };
146   const absl::string_view original_data = src;
147   auto* rep =
148       static_cast<::absl::cord_internal::CordRepExternalImpl<StringReleaser>*>(
149           absl::cord_internal::NewExternalRep(original_data,
150                                               StringReleaser{std::move(src)}));
151   // Moving src may have invalidated its data pointer, so adjust it.
152   rep->base = rep->template get<0>().data.data();
153   return rep;
154 }
155 
156 // --------------------------------------------------------------------
157 // Cord::InlineRep functions
158 
159 #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
160 constexpr unsigned char Cord::InlineRep::kMaxInline;
161 #endif
162 
set_data(const char * data,size_t n)163 inline void Cord::InlineRep::set_data(const char* data, size_t n) {
164   static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
165   data_.set_inline_data(data, n);
166 }
167 
set_data(size_t n)168 inline char* Cord::InlineRep::set_data(size_t n) {
169   assert(n <= kMaxInline);
170   ResetToEmpty();
171   set_inline_size(n);
172   return data_.as_chars();
173 }
174 
reduce_size(size_t n)175 inline void Cord::InlineRep::reduce_size(size_t n) {
176   size_t tag = inline_size();
177   assert(tag <= kMaxInline);
178   assert(tag >= n);
179   tag -= n;
180   memset(data_.as_chars() + tag, 0, n);
181   set_inline_size(tag);
182 }
183 
remove_prefix(size_t n)184 inline void Cord::InlineRep::remove_prefix(size_t n) {
185   cord_internal::SmallMemmove(data_.as_chars(), data_.as_chars() + n,
186                               inline_size() - n);
187   reduce_size(n);
188 }
189 
190 // Returns `rep` converted into a CordRepBtree.
191 // Directly returns `rep` if `rep` is already a CordRepBtree.
ForceBtree(CordRep * rep)192 static CordRepBtree* ForceBtree(CordRep* rep) {
193   return rep->IsBtree()
194              ? rep->btree()
195              : CordRepBtree::Create(cord_internal::RemoveCrcNode(rep));
196 }
197 
AppendTreeToInlined(CordRep * tree,MethodIdentifier method)198 void Cord::InlineRep::AppendTreeToInlined(CordRep* tree,
199                                           MethodIdentifier method) {
200   assert(!is_tree());
201   if (!data_.is_empty()) {
202     CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
203     tree = CordRepBtree::Append(CordRepBtree::Create(flat), tree);
204   }
205   EmplaceTree(tree, method);
206 }
207 
AppendTreeToTree(CordRep * tree,MethodIdentifier method)208 void Cord::InlineRep::AppendTreeToTree(CordRep* tree, MethodIdentifier method) {
209   assert(is_tree());
210   const CordzUpdateScope scope(data_.cordz_info(), method);
211   tree = CordRepBtree::Append(ForceBtree(data_.as_tree()), tree);
212   SetTree(tree, scope);
213 }
214 
AppendTree(CordRep * tree,MethodIdentifier method)215 void Cord::InlineRep::AppendTree(CordRep* tree, MethodIdentifier method) {
216   assert(tree != nullptr);
217   assert(tree->length != 0);
218   assert(!tree->IsCrc());
219   if (data_.is_tree()) {
220     AppendTreeToTree(tree, method);
221   } else {
222     AppendTreeToInlined(tree, method);
223   }
224 }
225 
PrependTreeToInlined(CordRep * tree,MethodIdentifier method)226 void Cord::InlineRep::PrependTreeToInlined(CordRep* tree,
227                                            MethodIdentifier method) {
228   assert(!is_tree());
229   if (!data_.is_empty()) {
230     CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
231     tree = CordRepBtree::Prepend(CordRepBtree::Create(flat), tree);
232   }
233   EmplaceTree(tree, method);
234 }
235 
PrependTreeToTree(CordRep * tree,MethodIdentifier method)236 void Cord::InlineRep::PrependTreeToTree(CordRep* tree,
237                                         MethodIdentifier method) {
238   assert(is_tree());
239   const CordzUpdateScope scope(data_.cordz_info(), method);
240   tree = CordRepBtree::Prepend(ForceBtree(data_.as_tree()), tree);
241   SetTree(tree, scope);
242 }
243 
PrependTree(CordRep * tree,MethodIdentifier method)244 void Cord::InlineRep::PrependTree(CordRep* tree, MethodIdentifier method) {
245   assert(tree != nullptr);
246   assert(tree->length != 0);
247   assert(!tree->IsCrc());
248   if (data_.is_tree()) {
249     PrependTreeToTree(tree, method);
250   } else {
251     PrependTreeToInlined(tree, method);
252   }
253 }
254 
255 // Searches for a non-full flat node at the rightmost leaf of the tree. If a
256 // suitable leaf is found, the function will update the length field for all
257 // nodes to account for the size increase. The append region address will be
258 // written to region and the actual size increase will be written to size.
PrepareAppendRegion(CordRep * root,char ** region,size_t * size,size_t max_length)259 static inline bool PrepareAppendRegion(CordRep* root, char** region,
260                                        size_t* size, size_t max_length) {
261   if (root->IsBtree() && root->refcount.IsOne()) {
262     Span<char> span = root->btree()->GetAppendBuffer(max_length);
263     if (!span.empty()) {
264       *region = span.data();
265       *size = span.size();
266       return true;
267     }
268   }
269 
270   CordRep* dst = root;
271   if (!dst->IsFlat() || !dst->refcount.IsOne()) {
272     *region = nullptr;
273     *size = 0;
274     return false;
275   }
276 
277   const size_t in_use = dst->length;
278   const size_t capacity = dst->flat()->Capacity();
279   if (in_use == capacity) {
280     *region = nullptr;
281     *size = 0;
282     return false;
283   }
284 
285   const size_t size_increase = std::min(capacity - in_use, max_length);
286   dst->length += size_increase;
287 
288   *region = dst->flat()->Data() + in_use;
289   *size = size_increase;
290   return true;
291 }
292 
AssignSlow(const Cord::InlineRep & src)293 void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
294   assert(&src != this);
295   assert(is_tree() || src.is_tree());
296   auto constexpr method = CordzUpdateTracker::kAssignCord;
297   if (ABSL_PREDICT_TRUE(!is_tree())) {
298     EmplaceTree(CordRep::Ref(src.as_tree()), src.data_, method);
299     return;
300   }
301 
302   CordRep* tree = as_tree();
303   if (CordRep* src_tree = src.tree()) {
304     // Leave any existing `cordz_info` in place, and let MaybeTrackCord()
305     // decide if this cord should be (or remains to be) sampled or not.
306     data_.set_tree(CordRep::Ref(src_tree));
307     CordzInfo::MaybeTrackCord(data_, src.data_, method);
308   } else {
309     CordzInfo::MaybeUntrackCord(data_.cordz_info());
310     data_ = src.data_;
311   }
312   CordRep::Unref(tree);
313 }
314 
UnrefTree()315 void Cord::InlineRep::UnrefTree() {
316   if (is_tree()) {
317     CordzInfo::MaybeUntrackCord(data_.cordz_info());
318     CordRep::Unref(tree());
319   }
320 }
321 
322 // --------------------------------------------------------------------
323 // Constructors and destructors
324 
Cord(absl::string_view src,MethodIdentifier method)325 Cord::Cord(absl::string_view src, MethodIdentifier method)
326     : contents_(InlineData::kDefaultInit) {
327   const size_t n = src.size();
328   if (n <= InlineRep::kMaxInline) {
329     contents_.set_data(src.data(), n);
330   } else {
331     CordRep* rep = NewTree(src.data(), n, 0);
332     contents_.EmplaceTree(rep, method);
333   }
334 }
335 
336 template <typename T, Cord::EnableIfString<T>>
Cord(T && src)337 Cord::Cord(T&& src) : contents_(InlineData::kDefaultInit) {
338   if (src.size() <= InlineRep::kMaxInline) {
339     contents_.set_data(src.data(), src.size());
340   } else {
341     CordRep* rep = CordRepFromString(std::forward<T>(src));
342     contents_.EmplaceTree(rep, CordzUpdateTracker::kConstructorString);
343   }
344 }
345 
346 template Cord::Cord(std::string&& src);
347 
348 // The destruction code is separate so that the compiler can determine
349 // that it does not need to call the destructor on a moved-from Cord.
DestroyCordSlow()350 void Cord::DestroyCordSlow() {
351   assert(contents_.is_tree());
352   CordzInfo::MaybeUntrackCord(contents_.cordz_info());
353   CordRep::Unref(VerifyTree(contents_.as_tree()));
354 }
355 
356 // --------------------------------------------------------------------
357 // Mutators
358 
Clear()359 void Cord::Clear() {
360   if (CordRep* tree = contents_.clear()) {
361     CordRep::Unref(tree);
362   }
363 }
364 
AssignLargeString(std::string && src)365 Cord& Cord::AssignLargeString(std::string&& src) {
366   auto constexpr method = CordzUpdateTracker::kAssignString;
367   assert(src.size() > kMaxBytesToCopy);
368   CordRep* rep = CordRepFromString(std::move(src));
369   if (CordRep* tree = contents_.tree()) {
370     CordzUpdateScope scope(contents_.cordz_info(), method);
371     contents_.SetTree(rep, scope);
372     CordRep::Unref(tree);
373   } else {
374     contents_.EmplaceTree(rep, method);
375   }
376   return *this;
377 }
378 
operator =(absl::string_view src)379 Cord& Cord::operator=(absl::string_view src) {
380   auto constexpr method = CordzUpdateTracker::kAssignString;
381   const char* data = src.data();
382   size_t length = src.size();
383   CordRep* tree = contents_.tree();
384   if (length <= InlineRep::kMaxInline) {
385     // Embed into this->contents_, which is somewhat subtle:
386     // - MaybeUntrackCord must be called before Unref(tree).
387     // - MaybeUntrackCord must be called before set_data() clobbers cordz_info.
388     // - set_data() must be called before Unref(tree) as it may reference tree.
389     if (tree != nullptr) CordzInfo::MaybeUntrackCord(contents_.cordz_info());
390     contents_.set_data(data, length);
391     if (tree != nullptr) CordRep::Unref(tree);
392     return *this;
393   }
394   if (tree != nullptr) {
395     CordzUpdateScope scope(contents_.cordz_info(), method);
396     if (tree->IsFlat() && tree->flat()->Capacity() >= length &&
397         tree->refcount.IsOne()) {
398       // Copy in place if the existing FLAT node is reusable.
399       memmove(tree->flat()->Data(), data, length);
400       tree->length = length;
401       VerifyTree(tree);
402       return *this;
403     }
404     contents_.SetTree(NewTree(data, length, 0), scope);
405     CordRep::Unref(tree);
406   } else {
407     contents_.EmplaceTree(NewTree(data, length, 0), method);
408   }
409   return *this;
410 }
411 
412 // TODO(sanjay): Move to Cord::InlineRep section of file.  For now,
413 // we keep it here to make diffs easier.
AppendArray(absl::string_view src,MethodIdentifier method)414 void Cord::InlineRep::AppendArray(absl::string_view src,
415                                   MethodIdentifier method) {
416   MaybeRemoveEmptyCrcNode();
417   if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.
418 
419   size_t appended = 0;
420   CordRep* rep = tree();
421   const CordRep* const root = rep;
422   CordzUpdateScope scope(root ? cordz_info() : nullptr, method);
423   if (root != nullptr) {
424     rep = cord_internal::RemoveCrcNode(rep);
425     char* region;
426     if (PrepareAppendRegion(rep, &region, &appended, src.size())) {
427       memcpy(region, src.data(), appended);
428     }
429   } else {
430     // Try to fit in the inline buffer if possible.
431     size_t inline_length = inline_size();
432     if (src.size() <= kMaxInline - inline_length) {
433       // Append new data to embedded array
434       set_inline_size(inline_length + src.size());
435       memcpy(data_.as_chars() + inline_length, src.data(), src.size());
436       return;
437     }
438 
439     // Allocate flat to be a perfect fit on first append exceeding inlined size.
440     // Subsequent growth will use amortized growth until we reach maximum flat
441     // size.
442     rep = CordRepFlat::New(inline_length + src.size());
443     appended = std::min(src.size(), rep->flat()->Capacity() - inline_length);
444     memcpy(rep->flat()->Data(), data_.as_chars(), inline_length);
445     memcpy(rep->flat()->Data() + inline_length, src.data(), appended);
446     rep->length = inline_length + appended;
447   }
448 
449   src.remove_prefix(appended);
450   if (src.empty()) {
451     CommitTree(root, rep, scope, method);
452     return;
453   }
454 
455   // TODO(b/192061034): keep legacy 10% growth rate: consider other rates.
456   rep = ForceBtree(rep);
457   const size_t min_growth = std::max<size_t>(rep->length / 10, src.size());
458   rep = CordRepBtree::Append(rep->btree(), src, min_growth - src.size());
459 
460   CommitTree(root, rep, scope, method);
461 }
462 
TakeRep() const463 inline CordRep* Cord::TakeRep() const& {
464   return CordRep::Ref(contents_.tree());
465 }
466 
TakeRep()467 inline CordRep* Cord::TakeRep() && {
468   CordRep* rep = contents_.tree();
469   contents_.clear();
470   return rep;
471 }
472 
473 template <typename C>
AppendImpl(C && src)474 inline void Cord::AppendImpl(C&& src) {
475   auto constexpr method = CordzUpdateTracker::kAppendCord;
476 
477   contents_.MaybeRemoveEmptyCrcNode();
478   if (src.empty()) return;
479 
480   if (empty()) {
481     // Since destination is empty, we can avoid allocating a node,
482     if (src.contents_.is_tree()) {
483       // by taking the tree directly
484       CordRep* rep =
485           cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
486       contents_.EmplaceTree(rep, method);
487     } else {
488       // or copying over inline data
489       contents_.data_ = src.contents_.data_;
490     }
491     return;
492   }
493 
494   // For short cords, it is faster to copy data if there is room in dst.
495   const size_t src_size = src.contents_.size();
496   if (src_size <= kMaxBytesToCopy) {
497     CordRep* src_tree = src.contents_.tree();
498     if (src_tree == nullptr) {
499       // src has embedded data.
500       contents_.AppendArray({src.contents_.data(), src_size}, method);
501       return;
502     }
503     if (src_tree->IsFlat()) {
504       // src tree just has one flat node.
505       contents_.AppendArray({src_tree->flat()->Data(), src_size}, method);
506       return;
507     }
508     if (&src == this) {
509       // ChunkIterator below assumes that src is not modified during traversal.
510       Append(Cord(src));
511       return;
512     }
513     // TODO(mec): Should we only do this if "dst" has space?
514     for (absl::string_view chunk : src.Chunks()) {
515       Append(chunk);
516     }
517     return;
518   }
519 
520   // Guaranteed to be a tree (kMaxBytesToCopy > kInlinedSize)
521   CordRep* rep = cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
522   contents_.AppendTree(rep, CordzUpdateTracker::kAppendCord);
523 }
524 
ExtractAppendBuffer(CordRep * rep,size_t min_capacity)525 static CordRep::ExtractResult ExtractAppendBuffer(CordRep* rep,
526                                                   size_t min_capacity) {
527   switch (rep->tag) {
528     case cord_internal::BTREE:
529       return CordRepBtree::ExtractAppendBuffer(rep->btree(), min_capacity);
530     default:
531       if (rep->IsFlat() && rep->refcount.IsOne() &&
532           rep->flat()->Capacity() - rep->length >= min_capacity) {
533         return {nullptr, rep};
534       }
535       return {rep, nullptr};
536   }
537 }
538 
CreateAppendBuffer(InlineData & data,size_t block_size,size_t capacity)539 static CordBuffer CreateAppendBuffer(InlineData& data, size_t block_size,
540                                      size_t capacity) {
541   // Watch out for overflow, people can ask for size_t::max().
542   const size_t size = data.inline_size();
543   const size_t max_capacity = std::numeric_limits<size_t>::max() - size;
544   capacity = (std::min)(max_capacity, capacity) + size;
545   CordBuffer buffer =
546       block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity)
547                  : CordBuffer::CreateWithDefaultLimit(capacity);
548   cord_internal::SmallMemmove(buffer.data(), data.as_chars(), size);
549   buffer.SetLength(size);
550   data = {};
551   return buffer;
552 }
553 
GetAppendBufferSlowPath(size_t block_size,size_t capacity,size_t min_capacity)554 CordBuffer Cord::GetAppendBufferSlowPath(size_t block_size, size_t capacity,
555                                          size_t min_capacity) {
556   auto constexpr method = CordzUpdateTracker::kGetAppendBuffer;
557   CordRep* tree = contents_.tree();
558   if (tree != nullptr) {
559     CordzUpdateScope scope(contents_.cordz_info(), method);
560     CordRep::ExtractResult result = ExtractAppendBuffer(tree, min_capacity);
561     if (result.extracted != nullptr) {
562       contents_.SetTreeOrEmpty(result.tree, scope);
563       return CordBuffer(result.extracted->flat());
564     }
565     return block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity)
566                       : CordBuffer::CreateWithDefaultLimit(capacity);
567   }
568   return CreateAppendBuffer(contents_.data_, block_size, capacity);
569 }
570 
Append(const Cord & src)571 void Cord::Append(const Cord& src) { AppendImpl(src); }
572 
Append(Cord && src)573 void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); }
574 
575 template <typename T, Cord::EnableIfString<T>>
Append(T && src)576 void Cord::Append(T&& src) {
577   if (src.size() <= kMaxBytesToCopy) {
578     Append(absl::string_view(src));
579   } else {
580     CordRep* rep = CordRepFromString(std::forward<T>(src));
581     contents_.AppendTree(rep, CordzUpdateTracker::kAppendString);
582   }
583 }
584 
585 template void Cord::Append(std::string&& src);
586 
Prepend(const Cord & src)587 void Cord::Prepend(const Cord& src) {
588   contents_.MaybeRemoveEmptyCrcNode();
589   if (src.empty()) return;
590 
591   CordRep* src_tree = src.contents_.tree();
592   if (src_tree != nullptr) {
593     CordRep::Ref(src_tree);
594     contents_.PrependTree(cord_internal::RemoveCrcNode(src_tree),
595                           CordzUpdateTracker::kPrependCord);
596     return;
597   }
598 
599   // `src` cord is inlined.
600   absl::string_view src_contents(src.contents_.data(), src.contents_.size());
601   return Prepend(src_contents);
602 }
603 
PrependArray(absl::string_view src,MethodIdentifier method)604 void Cord::PrependArray(absl::string_view src, MethodIdentifier method) {
605   contents_.MaybeRemoveEmptyCrcNode();
606   if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.
607 
608   if (!contents_.is_tree()) {
609     size_t cur_size = contents_.inline_size();
610     if (cur_size + src.size() <= InlineRep::kMaxInline) {
611       // Use embedded storage.
612       InlineData data;
613       data.set_inline_size(cur_size + src.size());
614       memcpy(data.as_chars(), src.data(), src.size());
615       memcpy(data.as_chars() + src.size(), contents_.data(), cur_size);
616       contents_.data_ = data;
617       return;
618     }
619   }
620   CordRep* rep = NewTree(src.data(), src.size(), 0);
621   contents_.PrependTree(rep, method);
622 }
623 
AppendPrecise(absl::string_view src,MethodIdentifier method)624 void Cord::AppendPrecise(absl::string_view src, MethodIdentifier method) {
625   assert(!src.empty());
626   assert(src.size() <= cord_internal::kMaxFlatLength);
627   if (contents_.remaining_inline_capacity() >= src.size()) {
628     const size_t inline_length = contents_.inline_size();
629     contents_.set_inline_size(inline_length + src.size());
630     memcpy(contents_.data_.as_chars() + inline_length, src.data(), src.size());
631   } else {
632     contents_.AppendTree(CordRepFlat::Create(src), method);
633   }
634 }
635 
PrependPrecise(absl::string_view src,MethodIdentifier method)636 void Cord::PrependPrecise(absl::string_view src, MethodIdentifier method) {
637   assert(!src.empty());
638   assert(src.size() <= cord_internal::kMaxFlatLength);
639   if (contents_.remaining_inline_capacity() >= src.size()) {
640     const size_t cur_size = contents_.inline_size();
641     InlineData data;
642     data.set_inline_size(cur_size + src.size());
643     memcpy(data.as_chars(), src.data(), src.size());
644     memcpy(data.as_chars() + src.size(), contents_.data(), cur_size);
645     contents_.data_ = data;
646   } else {
647     contents_.PrependTree(CordRepFlat::Create(src), method);
648   }
649 }
650 
651 template <typename T, Cord::EnableIfString<T>>
Prepend(T && src)652 inline void Cord::Prepend(T&& src) {
653   if (src.size() <= kMaxBytesToCopy) {
654     Prepend(absl::string_view(src));
655   } else {
656     CordRep* rep = CordRepFromString(std::forward<T>(src));
657     contents_.PrependTree(rep, CordzUpdateTracker::kPrependString);
658   }
659 }
660 
661 template void Cord::Prepend(std::string&& src);
662 
RemovePrefix(size_t n)663 void Cord::RemovePrefix(size_t n) {
664   ABSL_INTERNAL_CHECK(n <= size(),
665                       absl::StrCat("Requested prefix size ", n,
666                                    " exceeds Cord's size ", size()));
667   contents_.MaybeRemoveEmptyCrcNode();
668   CordRep* tree = contents_.tree();
669   if (tree == nullptr) {
670     contents_.remove_prefix(n);
671   } else {
672     auto constexpr method = CordzUpdateTracker::kRemovePrefix;
673     CordzUpdateScope scope(contents_.cordz_info(), method);
674     tree = cord_internal::RemoveCrcNode(tree);
675     if (n >= tree->length) {
676       CordRep::Unref(tree);
677       tree = nullptr;
678     } else if (tree->IsBtree()) {
679       CordRep* old = tree;
680       tree = tree->btree()->SubTree(n, tree->length - n);
681       CordRep::Unref(old);
682     } else if (tree->IsSubstring() && tree->refcount.IsOne()) {
683       tree->substring()->start += n;
684       tree->length -= n;
685     } else {
686       CordRep* rep = CordRepSubstring::Substring(tree, n, tree->length - n);
687       CordRep::Unref(tree);
688       tree = rep;
689     }
690     contents_.SetTreeOrEmpty(tree, scope);
691   }
692 }
693 
RemoveSuffix(size_t n)694 void Cord::RemoveSuffix(size_t n) {
695   ABSL_INTERNAL_CHECK(n <= size(),
696                       absl::StrCat("Requested suffix size ", n,
697                                    " exceeds Cord's size ", size()));
698   contents_.MaybeRemoveEmptyCrcNode();
699   CordRep* tree = contents_.tree();
700   if (tree == nullptr) {
701     contents_.reduce_size(n);
702   } else {
703     auto constexpr method = CordzUpdateTracker::kRemoveSuffix;
704     CordzUpdateScope scope(contents_.cordz_info(), method);
705     tree = cord_internal::RemoveCrcNode(tree);
706     if (n >= tree->length) {
707       CordRep::Unref(tree);
708       tree = nullptr;
709     } else if (tree->IsBtree()) {
710       tree = CordRepBtree::RemoveSuffix(tree->btree(), n);
711     } else if (!tree->IsExternal() && tree->refcount.IsOne()) {
712       assert(tree->IsFlat() || tree->IsSubstring());
713       tree->length -= n;
714     } else {
715       CordRep* rep = CordRepSubstring::Substring(tree, 0, tree->length - n);
716       CordRep::Unref(tree);
717       tree = rep;
718     }
719     contents_.SetTreeOrEmpty(tree, scope);
720   }
721 }
722 
Subcord(size_t pos,size_t new_size) const723 Cord Cord::Subcord(size_t pos, size_t new_size) const {
724   Cord sub_cord;
725   size_t length = size();
726   if (pos > length) pos = length;
727   if (new_size > length - pos) new_size = length - pos;
728   if (new_size == 0) return sub_cord;
729 
730   CordRep* tree = contents_.tree();
731   if (tree == nullptr) {
732     sub_cord.contents_.set_data(contents_.data() + pos, new_size);
733     return sub_cord;
734   }
735 
736   if (new_size <= InlineRep::kMaxInline) {
737     sub_cord.contents_.set_inline_size(new_size);
738     char* dest = sub_cord.contents_.data_.as_chars();
739     Cord::ChunkIterator it = chunk_begin();
740     it.AdvanceBytes(pos);
741     size_t remaining_size = new_size;
742     while (remaining_size > it->size()) {
743       cord_internal::SmallMemmove(dest, it->data(), it->size());
744       remaining_size -= it->size();
745       dest += it->size();
746       ++it;
747     }
748     cord_internal::SmallMemmove(dest, it->data(), remaining_size);
749     return sub_cord;
750   }
751 
752   tree = cord_internal::SkipCrcNode(tree);
753   if (tree->IsBtree()) {
754     tree = tree->btree()->SubTree(pos, new_size);
755   } else {
756     tree = CordRepSubstring::Substring(tree, pos, new_size);
757   }
758   sub_cord.contents_.EmplaceTree(tree, contents_.data_,
759                                  CordzUpdateTracker::kSubCord);
760   return sub_cord;
761 }
762 
763 // --------------------------------------------------------------------
764 // Comparators
765 
766 namespace {
767 
ClampResult(int memcmp_res)768 int ClampResult(int memcmp_res) {
769   return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
770 }
771 
CompareChunks(absl::string_view * lhs,absl::string_view * rhs,size_t * size_to_compare)772 int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
773                   size_t* size_to_compare) {
774   size_t compared_size = std::min(lhs->size(), rhs->size());
775   assert(*size_to_compare >= compared_size);
776   *size_to_compare -= compared_size;
777 
778   int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
779   if (memcmp_res != 0) return memcmp_res;
780 
781   lhs->remove_prefix(compared_size);
782   rhs->remove_prefix(compared_size);
783 
784   return 0;
785 }
786 
787 // This overload set computes comparison results from memcmp result. This
788 // interface is used inside GenericCompare below. Different implementations
789 // are specialized for int and bool. For int we clamp result to {-1, 0, 1}
790 // set. For bool we just interested in "value == 0".
791 template <typename ResultType>
ComputeCompareResult(int memcmp_res)792 ResultType ComputeCompareResult(int memcmp_res) {
793   return ClampResult(memcmp_res);
794 }
795 template <>
ComputeCompareResult(int memcmp_res)796 bool ComputeCompareResult<bool>(int memcmp_res) {
797   return memcmp_res == 0;
798 }
799 
800 }  // namespace
801 
802 // Helper routine. Locates the first flat or external chunk of the Cord without
803 // initializing the iterator, and returns a string_view referencing the data.
FindFlatStartPiece() const804 inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
805   if (!is_tree()) {
806     return absl::string_view(data_.as_chars(), data_.inline_size());
807   }
808 
809   CordRep* node = cord_internal::SkipCrcNode(tree());
810   if (node->IsFlat()) {
811     return absl::string_view(node->flat()->Data(), node->length);
812   }
813 
814   if (node->IsExternal()) {
815     return absl::string_view(node->external()->base, node->length);
816   }
817 
818   if (node->IsBtree()) {
819     CordRepBtree* tree = node->btree();
820     int height = tree->height();
821     while (--height >= 0) {
822       tree = tree->Edge(CordRepBtree::kFront)->btree();
823     }
824     return tree->Data(tree->begin());
825   }
826 
827   // Get the child node if we encounter a SUBSTRING.
828   size_t offset = 0;
829   size_t length = node->length;
830   assert(length != 0);
831 
832   if (node->IsSubstring()) {
833     offset = node->substring()->start;
834     node = node->substring()->child;
835   }
836 
837   if (node->IsFlat()) {
838     return absl::string_view(node->flat()->Data() + offset, length);
839   }
840 
841   assert(node->IsExternal() && "Expect FLAT or EXTERNAL node here");
842 
843   return absl::string_view(node->external()->base + offset, length);
844 }
845 
SetCrcCordState(crc_internal::CrcCordState state)846 void Cord::SetCrcCordState(crc_internal::CrcCordState state) {
847   auto constexpr method = CordzUpdateTracker::kSetExpectedChecksum;
848   if (empty()) {
849     contents_.MaybeRemoveEmptyCrcNode();
850     CordRep* rep = CordRepCrc::New(nullptr, std::move(state));
851     contents_.EmplaceTree(rep, method);
852   } else if (!contents_.is_tree()) {
853     CordRep* rep = contents_.MakeFlatWithExtraCapacity(0);
854     rep = CordRepCrc::New(rep, std::move(state));
855     contents_.EmplaceTree(rep, method);
856   } else {
857     const CordzUpdateScope scope(contents_.data_.cordz_info(), method);
858     CordRep* rep = CordRepCrc::New(contents_.data_.as_tree(), std::move(state));
859     contents_.SetTree(rep, scope);
860   }
861 }
862 
SetExpectedChecksum(uint32_t crc)863 void Cord::SetExpectedChecksum(uint32_t crc) {
864   // Construct a CrcCordState with a single chunk.
865   crc_internal::CrcCordState state;
866   state.mutable_rep()->prefix_crc.push_back(
867       crc_internal::CrcCordState::PrefixCrc(size(), absl::crc32c_t{crc}));
868   SetCrcCordState(std::move(state));
869 }
870 
MaybeGetCrcCordState() const871 const crc_internal::CrcCordState* Cord::MaybeGetCrcCordState() const {
872   if (!contents_.is_tree() || !contents_.tree()->IsCrc()) {
873     return nullptr;
874   }
875   return &contents_.tree()->crc()->crc_cord_state;
876 }
877 
ExpectedChecksum() const878 absl::optional<uint32_t> Cord::ExpectedChecksum() const {
879   if (!contents_.is_tree() || !contents_.tree()->IsCrc()) {
880     return absl::nullopt;
881   }
882   return static_cast<uint32_t>(
883       contents_.tree()->crc()->crc_cord_state.Checksum());
884 }
885 
CompareSlowPath(absl::string_view rhs,size_t compared_size,size_t size_to_compare) const886 inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
887                                  size_t size_to_compare) const {
888   auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
889     if (!chunk->empty()) return true;
890     ++*it;
891     if (it->bytes_remaining_ == 0) return false;
892     *chunk = **it;
893     return true;
894   };
895 
896   Cord::ChunkIterator lhs_it = chunk_begin();
897 
898   // compared_size is inside first chunk.
899   absl::string_view lhs_chunk =
900       (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
901   assert(compared_size <= lhs_chunk.size());
902   assert(compared_size <= rhs.size());
903   lhs_chunk.remove_prefix(compared_size);
904   rhs.remove_prefix(compared_size);
905   size_to_compare -= compared_size;  // skip already compared size.
906 
907   while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
908     int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
909     if (comparison_result != 0) return comparison_result;
910     if (size_to_compare == 0) return 0;
911   }
912 
913   return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
914 }
915 
CompareSlowPath(const Cord & rhs,size_t compared_size,size_t size_to_compare) const916 inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
917                                  size_t size_to_compare) const {
918   auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
919     if (!chunk->empty()) return true;
920     ++*it;
921     if (it->bytes_remaining_ == 0) return false;
922     *chunk = **it;
923     return true;
924   };
925 
926   Cord::ChunkIterator lhs_it = chunk_begin();
927   Cord::ChunkIterator rhs_it = rhs.chunk_begin();
928 
929   // compared_size is inside both first chunks.
930   absl::string_view lhs_chunk =
931       (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
932   absl::string_view rhs_chunk =
933       (rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
934   assert(compared_size <= lhs_chunk.size());
935   assert(compared_size <= rhs_chunk.size());
936   lhs_chunk.remove_prefix(compared_size);
937   rhs_chunk.remove_prefix(compared_size);
938   size_to_compare -= compared_size;  // skip already compared size.
939 
940   while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
941     int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
942     if (memcmp_res != 0) return memcmp_res;
943     if (size_to_compare == 0) return 0;
944   }
945 
946   return static_cast<int>(rhs_chunk.empty()) -
947          static_cast<int>(lhs_chunk.empty());
948 }
949 
GetFirstChunk(const Cord & c)950 inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
951   if (c.empty()) return {};
952   return c.contents_.FindFlatStartPiece();
953 }
GetFirstChunk(absl::string_view sv)954 inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
955   return sv;
956 }
957 
958 // Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
959 // that 'size_to_compare' is greater that size of smallest of first chunks.
960 template <typename ResultType, typename RHS>
GenericCompare(const Cord & lhs,const RHS & rhs,size_t size_to_compare)961 ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
962                           size_t size_to_compare) {
963   absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
964   absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);
965 
966   size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
967   assert(size_to_compare >= compared_size);
968   int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
969   if (compared_size == size_to_compare || memcmp_res != 0) {
970     return ComputeCompareResult<ResultType>(memcmp_res);
971   }
972 
973   return ComputeCompareResult<ResultType>(
974       lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
975 }
976 
EqualsImpl(absl::string_view rhs,size_t size_to_compare) const977 bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
978   return GenericCompare<bool>(*this, rhs, size_to_compare);
979 }
980 
EqualsImpl(const Cord & rhs,size_t size_to_compare) const981 bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
982   return GenericCompare<bool>(*this, rhs, size_to_compare);
983 }
984 
985 template <typename RHS>
SharedCompareImpl(const Cord & lhs,const RHS & rhs)986 inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
987   size_t lhs_size = lhs.size();
988   size_t rhs_size = rhs.size();
989   if (lhs_size == rhs_size) {
990     return GenericCompare<int>(lhs, rhs, lhs_size);
991   }
992   if (lhs_size < rhs_size) {
993     auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
994     return data_comp_res == 0 ? -1 : data_comp_res;
995   }
996 
997   auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
998   return data_comp_res == 0 ? +1 : data_comp_res;
999 }
1000 
Compare(absl::string_view rhs) const1001 int Cord::Compare(absl::string_view rhs) const {
1002   return SharedCompareImpl(*this, rhs);
1003 }
1004 
CompareImpl(const Cord & rhs) const1005 int Cord::CompareImpl(const Cord& rhs) const {
1006   return SharedCompareImpl(*this, rhs);
1007 }
1008 
EndsWith(absl::string_view rhs) const1009 bool Cord::EndsWith(absl::string_view rhs) const {
1010   size_t my_size = size();
1011   size_t rhs_size = rhs.size();
1012 
1013   if (my_size < rhs_size) return false;
1014 
1015   Cord tmp(*this);
1016   tmp.RemovePrefix(my_size - rhs_size);
1017   return tmp.EqualsImpl(rhs, rhs_size);
1018 }
1019 
EndsWith(const Cord & rhs) const1020 bool Cord::EndsWith(const Cord& rhs) const {
1021   size_t my_size = size();
1022   size_t rhs_size = rhs.size();
1023 
1024   if (my_size < rhs_size) return false;
1025 
1026   Cord tmp(*this);
1027   tmp.RemovePrefix(my_size - rhs_size);
1028   return tmp.EqualsImpl(rhs, rhs_size);
1029 }
1030 
1031 // --------------------------------------------------------------------
1032 // Misc.
1033 
operator std::string() const1034 Cord::operator std::string() const {
1035   std::string s;
1036   absl::CopyCordToString(*this, &s);
1037   return s;
1038 }
1039 
CopyCordToString(const Cord & src,std::string * dst)1040 void CopyCordToString(const Cord& src, std::string* dst) {
1041   if (!src.contents_.is_tree()) {
1042     src.contents_.CopyTo(dst);
1043   } else {
1044     absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
1045     src.CopyToArraySlowPath(&(*dst)[0]);
1046   }
1047 }
1048 
CopyToArraySlowPath(char * dst) const1049 void Cord::CopyToArraySlowPath(char* dst) const {
1050   assert(contents_.is_tree());
1051   absl::string_view fragment;
1052   if (GetFlatAux(contents_.tree(), &fragment)) {
1053     memcpy(dst, fragment.data(), fragment.size());
1054     return;
1055   }
1056   for (absl::string_view chunk : Chunks()) {
1057     memcpy(dst, chunk.data(), chunk.size());
1058     dst += chunk.size();
1059   }
1060 }
1061 
AdvanceAndReadBytes(size_t n)1062 Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
1063   ABSL_HARDENING_ASSERT(bytes_remaining_ >= n &&
1064                         "Attempted to iterate past `end()`");
1065   Cord subcord;
1066   auto constexpr method = CordzUpdateTracker::kCordReader;
1067 
1068   if (n <= InlineRep::kMaxInline) {
1069     // Range to read fits in inline data. Flatten it.
1070     char* data = subcord.contents_.set_data(n);
1071     while (n > current_chunk_.size()) {
1072       memcpy(data, current_chunk_.data(), current_chunk_.size());
1073       data += current_chunk_.size();
1074       n -= current_chunk_.size();
1075       ++*this;
1076     }
1077     memcpy(data, current_chunk_.data(), n);
1078     if (n < current_chunk_.size()) {
1079       RemoveChunkPrefix(n);
1080     } else if (n > 0) {
1081       ++*this;
1082     }
1083     return subcord;
1084   }
1085 
1086   if (btree_reader_) {
1087     size_t chunk_size = current_chunk_.size();
1088     if (n <= chunk_size && n <= kMaxBytesToCopy) {
1089       subcord = Cord(current_chunk_.substr(0, n), method);
1090       if (n < chunk_size) {
1091         current_chunk_.remove_prefix(n);
1092       } else {
1093         current_chunk_ = btree_reader_.Next();
1094       }
1095     } else {
1096       CordRep* rep;
1097       current_chunk_ = btree_reader_.Read(n, chunk_size, rep);
1098       subcord.contents_.EmplaceTree(rep, method);
1099     }
1100     bytes_remaining_ -= n;
1101     return subcord;
1102   }
1103 
1104   // Short circuit if reading the entire data edge.
1105   assert(current_leaf_ != nullptr);
1106   if (n == current_leaf_->length) {
1107     bytes_remaining_ = 0;
1108     current_chunk_ = {};
1109     CordRep* tree = CordRep::Ref(current_leaf_);
1110     subcord.contents_.EmplaceTree(VerifyTree(tree), method);
1111     return subcord;
1112   }
1113 
1114   // From this point on, we need a partial substring node.
1115   // Get pointer to the underlying flat or external data payload and
1116   // compute data pointer and offset into current flat or external.
1117   CordRep* payload = current_leaf_->IsSubstring()
1118                          ? current_leaf_->substring()->child
1119                          : current_leaf_;
1120   const char* data = payload->IsExternal() ? payload->external()->base
1121                                            : payload->flat()->Data();
1122   const size_t offset = static_cast<size_t>(current_chunk_.data() - data);
1123 
1124   auto* tree = CordRepSubstring::Substring(payload, offset, n);
1125   subcord.contents_.EmplaceTree(VerifyTree(tree), method);
1126   bytes_remaining_ -= n;
1127   current_chunk_.remove_prefix(n);
1128   return subcord;
1129 }
1130 
operator [](size_t i) const1131 char Cord::operator[](size_t i) const {
1132   ABSL_HARDENING_ASSERT(i < size());
1133   size_t offset = i;
1134   const CordRep* rep = contents_.tree();
1135   if (rep == nullptr) {
1136     return contents_.data()[i];
1137   }
1138   rep = cord_internal::SkipCrcNode(rep);
1139   while (true) {
1140     assert(rep != nullptr);
1141     assert(offset < rep->length);
1142     if (rep->IsFlat()) {
1143       // Get the "i"th character directly from the flat array.
1144       return rep->flat()->Data()[offset];
1145     } else if (rep->IsBtree()) {
1146       return rep->btree()->GetCharacter(offset);
1147     } else if (rep->IsExternal()) {
1148       // Get the "i"th character from the external array.
1149       return rep->external()->base[offset];
1150     } else {
1151       // This must be a substring a node, so bypass it to get to the child.
1152       assert(rep->IsSubstring());
1153       offset += rep->substring()->start;
1154       rep = rep->substring()->child;
1155     }
1156   }
1157 }
1158 
1159 namespace {
1160 
1161 // Tests whether the sequence of chunks beginning at `position` starts with
1162 // `needle`.
1163 //
1164 // REQUIRES: remaining `absl::Cord` starting at `position` is greater than or
1165 // equal to `needle.size()`.
IsSubstringInCordAt(absl::Cord::CharIterator position,absl::string_view needle)1166 bool IsSubstringInCordAt(absl::Cord::CharIterator position,
1167                          absl::string_view needle) {
1168   auto haystack_chunk = absl::Cord::ChunkRemaining(position);
1169   while (true) {
1170     // Precondition is that `absl::Cord::ChunkRemaining(position)` is not
1171     // empty. This assert will trigger if that is not true.
1172     assert(!haystack_chunk.empty());
1173     auto min_length = std::min(haystack_chunk.size(), needle.size());
1174     if (!absl::ConsumePrefix(&needle, haystack_chunk.substr(0, min_length))) {
1175       return false;
1176     }
1177     if (needle.empty()) {
1178       return true;
1179     }
1180     absl::Cord::Advance(&position, min_length);
1181     haystack_chunk = absl::Cord::ChunkRemaining(position);
1182   }
1183 }
1184 
1185 }  // namespace
1186 
1187 // A few options how this could be implemented:
1188 // (a) Flatten the Cord and find, i.e.
1189 //       haystack.Flatten().find(needle)
1190 //     For large 'haystack' (where Cord makes sense to be used), this copies
1191 //     the whole 'haystack' and can be slow.
1192 // (b) Use std::search, i.e.
1193 //       std::search(haystack.char_begin(), haystack.char_end(),
1194 //                   needle.begin(), needle.end())
1195 //     This avoids the copy, but compares one byte at a time, and branches a
1196 //     lot every time it has to advance. It is also not possible to use
1197 //     std::search as is, because CharIterator is only an input iterator, not a
1198 //     forward iterator.
1199 // (c) Use string_view::find in each fragment, and specifically handle fragment
1200 //     boundaries.
1201 //
1202 // This currently implements option (b).
FindImpl(CharIterator it,absl::string_view needle) const1203 absl::Cord::CharIterator absl::Cord::FindImpl(CharIterator it,
1204                                               absl::string_view needle) const {
1205   // Ensure preconditions are met by callers first.
1206 
1207   // Needle must not be empty.
1208   assert(!needle.empty());
1209   // Haystack must be at least as large as needle.
1210   assert(it.chunk_iterator_.bytes_remaining_ >= needle.size());
1211 
1212   // Cord is a sequence of chunks. To find `needle` we go chunk by chunk looking
1213   // for the first char of needle, up until we have advanced `N` defined as
1214   // `haystack.size() - needle.size()`. If we find the first char of needle at
1215   // `P` and `P` is less than `N`, we then call `IsSubstringInCordAt` to
1216   // see if this is the needle. If not, we advance to `P + 1` and try again.
1217   while (it.chunk_iterator_.bytes_remaining_ >= needle.size()) {
1218     auto haystack_chunk = Cord::ChunkRemaining(it);
1219     assert(!haystack_chunk.empty());
1220     // Look for the first char of `needle` in the current chunk.
1221     auto idx = haystack_chunk.find(needle.front());
1222     if (idx == absl::string_view::npos) {
1223       // No potential match in this chunk, advance past it.
1224       Cord::Advance(&it, haystack_chunk.size());
1225       continue;
1226     }
1227     // We found the start of a potential match in the chunk. Advance the
1228     // iterator and haystack chunk to the match the position.
1229     Cord::Advance(&it, idx);
1230     // Check if there is enough haystack remaining to actually have a match.
1231     if (it.chunk_iterator_.bytes_remaining_ < needle.size()) {
1232       break;
1233     }
1234     // Check if this is `needle`.
1235     if (IsSubstringInCordAt(it, needle)) {
1236       return it;
1237     }
1238     // No match, increment the iterator for the next attempt.
1239     Cord::Advance(&it, 1);
1240   }
1241   // If we got here, we did not find `needle`.
1242   return char_end();
1243 }
1244 
Find(absl::string_view needle) const1245 absl::Cord::CharIterator absl::Cord::Find(absl::string_view needle) const {
1246   if (needle.empty()) {
1247     return char_begin();
1248   }
1249   if (needle.size() > size()) {
1250     return char_end();
1251   }
1252   if (needle.size() == size()) {
1253     return *this == needle ? char_begin() : char_end();
1254   }
1255   return FindImpl(char_begin(), needle);
1256 }
1257 
1258 namespace {
1259 
1260 // Tests whether the sequence of chunks beginning at `haystack` starts with the
1261 // sequence of chunks beginning at `needle_begin` and extending to `needle_end`.
1262 //
1263 // REQUIRES: remaining `absl::Cord` starting at `position` is greater than or
1264 // equal to `needle_end - needle_begin` and `advance`.
IsSubcordInCordAt(absl::Cord::CharIterator haystack,absl::Cord::CharIterator needle_begin,absl::Cord::CharIterator needle_end)1265 bool IsSubcordInCordAt(absl::Cord::CharIterator haystack,
1266                        absl::Cord::CharIterator needle_begin,
1267                        absl::Cord::CharIterator needle_end) {
1268   while (needle_begin != needle_end) {
1269     auto haystack_chunk = absl::Cord::ChunkRemaining(haystack);
1270     assert(!haystack_chunk.empty());
1271     auto needle_chunk = absl::Cord::ChunkRemaining(needle_begin);
1272     auto min_length = std::min(haystack_chunk.size(), needle_chunk.size());
1273     if (haystack_chunk.substr(0, min_length) !=
1274         needle_chunk.substr(0, min_length)) {
1275       return false;
1276     }
1277     absl::Cord::Advance(&haystack, min_length);
1278     absl::Cord::Advance(&needle_begin, min_length);
1279   }
1280   return true;
1281 }
1282 
1283 // Tests whether the sequence of chunks beginning at `position` starts with the
1284 // cord `needle`.
1285 //
1286 // REQUIRES: remaining `absl::Cord` starting at `position` is greater than or
1287 // equal to `needle.size()`.
IsSubcordInCordAt(absl::Cord::CharIterator position,const absl::Cord & needle)1288 bool IsSubcordInCordAt(absl::Cord::CharIterator position,
1289                        const absl::Cord& needle) {
1290   return IsSubcordInCordAt(position, needle.char_begin(), needle.char_end());
1291 }
1292 
1293 }  // namespace
1294 
Find(const absl::Cord & needle) const1295 absl::Cord::CharIterator absl::Cord::Find(const absl::Cord& needle) const {
1296   if (needle.empty()) {
1297     return char_begin();
1298   }
1299   const auto needle_size = needle.size();
1300   if (needle_size > size()) {
1301     return char_end();
1302   }
1303   if (needle_size == size()) {
1304     return *this == needle ? char_begin() : char_end();
1305   }
1306   const auto needle_chunk = Cord::ChunkRemaining(needle.char_begin());
1307   auto haystack_it = char_begin();
1308   while (true) {
1309     haystack_it = FindImpl(haystack_it, needle_chunk);
1310     if (haystack_it == char_end() ||
1311         haystack_it.chunk_iterator_.bytes_remaining_ < needle_size) {
1312       break;
1313     }
1314     // We found the first chunk of `needle` at `haystack_it` but not the entire
1315     // subcord. Advance past the first chunk and check for the remainder.
1316     auto haystack_advanced_it = haystack_it;
1317     auto needle_it = needle.char_begin();
1318     Cord::Advance(&haystack_advanced_it, needle_chunk.size());
1319     Cord::Advance(&needle_it, needle_chunk.size());
1320     if (IsSubcordInCordAt(haystack_advanced_it, needle_it, needle.char_end())) {
1321       return haystack_it;
1322     }
1323     Cord::Advance(&haystack_it, 1);
1324     if (haystack_it.chunk_iterator_.bytes_remaining_ < needle_size) {
1325       break;
1326     }
1327     if (haystack_it.chunk_iterator_.bytes_remaining_ == needle_size) {
1328       // Special case, if there is exactly `needle_size` bytes remaining, the
1329       // subcord is either at `haystack_it` or not at all.
1330       if (IsSubcordInCordAt(haystack_it, needle)) {
1331         return haystack_it;
1332       }
1333       break;
1334     }
1335   }
1336   return char_end();
1337 }
1338 
Contains(absl::string_view rhs) const1339 bool Cord::Contains(absl::string_view rhs) const {
1340   return rhs.empty() || Find(rhs) != char_end();
1341 }
1342 
Contains(const absl::Cord & rhs) const1343 bool Cord::Contains(const absl::Cord& rhs) const {
1344   return rhs.empty() || Find(rhs) != char_end();
1345 }
1346 
FlattenSlowPath()1347 absl::string_view Cord::FlattenSlowPath() {
1348   assert(contents_.is_tree());
1349   size_t total_size = size();
1350   CordRep* new_rep;
1351   char* new_buffer;
1352 
1353   // Try to put the contents into a new flat rep. If they won't fit in the
1354   // biggest possible flat node, use an external rep instead.
1355   if (total_size <= kMaxFlatLength) {
1356     new_rep = CordRepFlat::New(total_size);
1357     new_rep->length = total_size;
1358     new_buffer = new_rep->flat()->Data();
1359     CopyToArraySlowPath(new_buffer);
1360   } else {
1361     new_buffer = std::allocator<char>().allocate(total_size);
1362     CopyToArraySlowPath(new_buffer);
1363     new_rep = absl::cord_internal::NewExternalRep(
1364         absl::string_view(new_buffer, total_size), [](absl::string_view s) {
1365           std::allocator<char>().deallocate(const_cast<char*>(s.data()),
1366                                             s.size());
1367         });
1368   }
1369   CordzUpdateScope scope(contents_.cordz_info(), CordzUpdateTracker::kFlatten);
1370   CordRep::Unref(contents_.as_tree());
1371   contents_.SetTree(new_rep, scope);
1372   return absl::string_view(new_buffer, total_size);
1373 }
1374 
GetFlatAux(CordRep * rep,absl::string_view * fragment)1375 /* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
1376   assert(rep != nullptr);
1377   if (rep->length == 0) {
1378     *fragment = absl::string_view();
1379     return true;
1380   }
1381   rep = cord_internal::SkipCrcNode(rep);
1382   if (rep->IsFlat()) {
1383     *fragment = absl::string_view(rep->flat()->Data(), rep->length);
1384     return true;
1385   } else if (rep->IsExternal()) {
1386     *fragment = absl::string_view(rep->external()->base, rep->length);
1387     return true;
1388   } else if (rep->IsBtree()) {
1389     return rep->btree()->IsFlat(fragment);
1390   } else if (rep->IsSubstring()) {
1391     CordRep* child = rep->substring()->child;
1392     if (child->IsFlat()) {
1393       *fragment = absl::string_view(
1394           child->flat()->Data() + rep->substring()->start, rep->length);
1395       return true;
1396     } else if (child->IsExternal()) {
1397       *fragment = absl::string_view(
1398           child->external()->base + rep->substring()->start, rep->length);
1399       return true;
1400     } else if (child->IsBtree()) {
1401       return child->btree()->IsFlat(rep->substring()->start, rep->length,
1402                                     fragment);
1403     }
1404   }
1405   return false;
1406 }
1407 
ForEachChunkAux(absl::cord_internal::CordRep * rep,absl::FunctionRef<void (absl::string_view)> callback)1408 /* static */ void Cord::ForEachChunkAux(
1409     absl::cord_internal::CordRep* rep,
1410     absl::FunctionRef<void(absl::string_view)> callback) {
1411   assert(rep != nullptr);
1412   if (rep->length == 0) return;
1413   rep = cord_internal::SkipCrcNode(rep);
1414 
1415   if (rep->IsBtree()) {
1416     ChunkIterator it(rep), end;
1417     while (it != end) {
1418       callback(*it);
1419       ++it;
1420     }
1421     return;
1422   }
1423 
1424   // This is a leaf node, so invoke our callback.
1425   absl::cord_internal::CordRep* current_node = cord_internal::SkipCrcNode(rep);
1426   absl::string_view chunk;
1427   bool success = GetFlatAux(current_node, &chunk);
1428   assert(success);
1429   if (success) {
1430     callback(chunk);
1431   }
1432 }
1433 
DumpNode(CordRep * rep,bool include_data,std::ostream * os,int indent)1434 static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
1435                      int indent) {
1436   const int kIndentStep = 1;
1437   absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
1438   absl::InlinedVector<int, kInlinedVectorSize> indents;
1439   for (;;) {
1440     *os << std::setw(3) << rep->refcount.Get();
1441     *os << " " << std::setw(7) << rep->length;
1442     *os << " [";
1443     if (include_data) *os << static_cast<void*>(rep);
1444     *os << "]";
1445     *os << " " << std::setw(indent) << "";
1446     bool leaf = false;
1447     if (rep == nullptr) {
1448       *os << "NULL\n";
1449       leaf = true;
1450     } else if (rep->IsCrc()) {
1451       *os << "CRC crc=" << rep->crc()->crc_cord_state.Checksum() << "\n";
1452       indent += kIndentStep;
1453       rep = rep->crc()->child;
1454     } else if (rep->IsSubstring()) {
1455       *os << "SUBSTRING @ " << rep->substring()->start << "\n";
1456       indent += kIndentStep;
1457       rep = rep->substring()->child;
1458     } else {  // Leaf or ring
1459       leaf = true;
1460       if (rep->IsExternal()) {
1461         *os << "EXTERNAL [";
1462         if (include_data)
1463           *os << absl::CEscape(std::string(rep->external()->base, rep->length));
1464         *os << "]\n";
1465       } else if (rep->IsFlat()) {
1466         *os << "FLAT cap=" << rep->flat()->Capacity() << " [";
1467         if (include_data)
1468           *os << absl::CEscape(std::string(rep->flat()->Data(), rep->length));
1469         *os << "]\n";
1470       } else {
1471         CordRepBtree::Dump(rep, /*label=*/"", include_data, *os);
1472       }
1473     }
1474     if (leaf) {
1475       if (stack.empty()) break;
1476       rep = stack.back();
1477       stack.pop_back();
1478       indent = indents.back();
1479       indents.pop_back();
1480     }
1481   }
1482   ABSL_INTERNAL_CHECK(indents.empty(), "");
1483 }
1484 
ReportError(CordRep * root,CordRep * node)1485 static std::string ReportError(CordRep* root, CordRep* node) {
1486   std::ostringstream buf;
1487   buf << "Error at node " << node << " in:";
1488   DumpNode(root, true, &buf);
1489   return buf.str();
1490 }
1491 
VerifyNode(CordRep * root,CordRep * start_node)1492 static bool VerifyNode(CordRep* root, CordRep* start_node) {
1493   absl::InlinedVector<CordRep*, 2> worklist;
1494   worklist.push_back(start_node);
1495   do {
1496     CordRep* node = worklist.back();
1497     worklist.pop_back();
1498 
1499     ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
1500     if (node != root) {
1501       ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
1502       ABSL_INTERNAL_CHECK(!node->IsCrc(), ReportError(root, node));
1503     }
1504 
1505     if (node->IsFlat()) {
1506       ABSL_INTERNAL_CHECK(node->length <= node->flat()->Capacity(),
1507                           ReportError(root, node));
1508     } else if (node->IsExternal()) {
1509       ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
1510                           ReportError(root, node));
1511     } else if (node->IsSubstring()) {
1512       ABSL_INTERNAL_CHECK(
1513           node->substring()->start < node->substring()->child->length,
1514           ReportError(root, node));
1515       ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
1516                               node->substring()->child->length,
1517                           ReportError(root, node));
1518     } else if (node->IsCrc()) {
1519       ABSL_INTERNAL_CHECK(
1520           node->crc()->child != nullptr || node->crc()->length == 0,
1521           ReportError(root, node));
1522       if (node->crc()->child != nullptr) {
1523         ABSL_INTERNAL_CHECK(node->crc()->length == node->crc()->child->length,
1524                             ReportError(root, node));
1525         worklist.push_back(node->crc()->child);
1526       }
1527     }
1528   } while (!worklist.empty());
1529   return true;
1530 }
1531 
operator <<(std::ostream & out,const Cord & cord)1532 std::ostream& operator<<(std::ostream& out, const Cord& cord) {
1533   for (absl::string_view chunk : cord.Chunks()) {
1534     out.write(chunk.data(), static_cast<std::streamsize>(chunk.size()));
1535   }
1536   return out;
1537 }
1538 
1539 namespace strings_internal {
FlatOverhead()1540 size_t CordTestAccess::FlatOverhead() { return cord_internal::kFlatOverhead; }
MaxFlatLength()1541 size_t CordTestAccess::MaxFlatLength() { return cord_internal::kMaxFlatLength; }
FlatTagToLength(uint8_t tag)1542 size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
1543   return cord_internal::TagToLength(tag);
1544 }
LengthToTag(size_t s)1545 uint8_t CordTestAccess::LengthToTag(size_t s) {
1546   ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
1547   return cord_internal::AllocatedSizeToTag(s + cord_internal::kFlatOverhead);
1548 }
SizeofCordRepExternal()1549 size_t CordTestAccess::SizeofCordRepExternal() {
1550   return sizeof(CordRepExternal);
1551 }
SizeofCordRepSubstring()1552 size_t CordTestAccess::SizeofCordRepSubstring() {
1553   return sizeof(CordRepSubstring);
1554 }
1555 }  // namespace strings_internal
1556 ABSL_NAMESPACE_END
1557 }  // namespace absl
1558