• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/synchronization/mutex.h"
16 
17 #ifdef _WIN32
18 #include <windows.h>
19 #ifdef ERROR
20 #undef ERROR
21 #endif
22 #else
23 #include <fcntl.h>
24 #include <pthread.h>
25 #include <sched.h>
26 #include <sys/time.h>
27 #endif
28 
29 #include <assert.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35 
36 #include <algorithm>
37 #include <atomic>
38 #include <cstddef>
39 #include <cstdlib>
40 #include <cstring>
41 #include <thread>  // NOLINT(build/c++11)
42 
43 #include "absl/base/attributes.h"
44 #include "absl/base/call_once.h"
45 #include "absl/base/config.h"
46 #include "absl/base/dynamic_annotations.h"
47 #include "absl/base/internal/atomic_hook.h"
48 #include "absl/base/internal/cycleclock.h"
49 #include "absl/base/internal/hide_ptr.h"
50 #include "absl/base/internal/low_level_alloc.h"
51 #include "absl/base/internal/raw_logging.h"
52 #include "absl/base/internal/spinlock.h"
53 #include "absl/base/internal/sysinfo.h"
54 #include "absl/base/internal/thread_identity.h"
55 #include "absl/base/internal/tsan_mutex_interface.h"
56 #include "absl/base/optimization.h"
57 #include "absl/debugging/stacktrace.h"
58 #include "absl/debugging/symbolize.h"
59 #include "absl/synchronization/internal/graphcycles.h"
60 #include "absl/synchronization/internal/per_thread_sem.h"
61 #include "absl/time/time.h"
62 
63 using absl::base_internal::CurrentThreadIdentityIfPresent;
64 using absl::base_internal::CycleClock;
65 using absl::base_internal::PerThreadSynch;
66 using absl::base_internal::SchedulingGuard;
67 using absl::base_internal::ThreadIdentity;
68 using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
69 using absl::synchronization_internal::GraphCycles;
70 using absl::synchronization_internal::GraphId;
71 using absl::synchronization_internal::InvalidGraphId;
72 using absl::synchronization_internal::KernelTimeout;
73 using absl::synchronization_internal::PerThreadSem;
74 
75 extern "C" {
ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)76 ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)() {
77   std::this_thread::yield();
78 }
79 }  // extern "C"
80 
81 namespace absl {
82 ABSL_NAMESPACE_BEGIN
83 
84 namespace {
85 
86 #if defined(ABSL_HAVE_THREAD_SANITIZER)
87 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
88 #else
89 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
90 #endif
91 
92 ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
93     kDeadlockDetectionDefault);
94 ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
95 
96 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
97 absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
98     submit_profile_data;
99 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(
100     const char* msg, const void* obj, int64_t wait_cycles)>
101     mutex_tracer;
102 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
103 absl::base_internal::AtomicHook<void (*)(const char* msg, const void* cv)>
104     cond_var_tracer;
105 
106 }  // namespace
107 
108 static inline bool EvalConditionAnnotated(const Condition* cond, Mutex* mu,
109                                           bool locking, bool trylock,
110                                           bool read_lock);
111 
RegisterMutexProfiler(void (* fn)(int64_t wait_cycles))112 void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles)) {
113   submit_profile_data.Store(fn);
114 }
115 
RegisterMutexTracer(void (* fn)(const char * msg,const void * obj,int64_t wait_cycles))116 void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj,
117                                     int64_t wait_cycles)) {
118   mutex_tracer.Store(fn);
119 }
120 
RegisterCondVarTracer(void (* fn)(const char * msg,const void * cv))121 void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv)) {
122   cond_var_tracer.Store(fn);
123 }
124 
125 namespace {
126 // Represents the strategy for spin and yield.
127 // See the comment in GetMutexGlobals() for more information.
128 enum DelayMode { AGGRESSIVE, GENTLE };
129 
130 struct ABSL_CACHELINE_ALIGNED MutexGlobals {
131   absl::once_flag once;
132   // Note: this variable is initialized separately in Mutex::LockSlow,
133   // so that Mutex::Lock does not have a stack frame in optimized build.
134   std::atomic<int> spinloop_iterations{0};
135   int32_t mutex_sleep_spins[2] = {};
136   absl::Duration mutex_sleep_time;
137 };
138 
139 ABSL_CONST_INIT static MutexGlobals globals;
140 
MeasureTimeToYield()141 absl::Duration MeasureTimeToYield() {
142   absl::Time before = absl::Now();
143   ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
144   return absl::Now() - before;
145 }
146 
GetMutexGlobals()147 const MutexGlobals& GetMutexGlobals() {
148   absl::base_internal::LowLevelCallOnce(&globals.once, [&]() {
149     if (absl::base_internal::NumCPUs() > 1) {
150       // If the mode is aggressive then spin many times before yielding.
151       // If the mode is gentle then spin only a few times before yielding.
152       // Aggressive spinning is used to ensure that an Unlock() call,
153       // which must get the spin lock for any thread to make progress gets it
154       // without undue delay.
155       globals.mutex_sleep_spins[AGGRESSIVE] = 5000;
156       globals.mutex_sleep_spins[GENTLE] = 250;
157       globals.mutex_sleep_time = absl::Microseconds(10);
158     } else {
159       // If this a uniprocessor, only yield/sleep. Real-time threads are often
160       // unable to yield, so the sleep time needs to be long enough to keep
161       // the calling thread asleep until scheduling happens.
162       globals.mutex_sleep_spins[AGGRESSIVE] = 0;
163       globals.mutex_sleep_spins[GENTLE] = 0;
164       globals.mutex_sleep_time = MeasureTimeToYield() * 5;
165       globals.mutex_sleep_time =
166           std::min(globals.mutex_sleep_time, absl::Milliseconds(1));
167       globals.mutex_sleep_time =
168           std::max(globals.mutex_sleep_time, absl::Microseconds(10));
169     }
170   });
171   return globals;
172 }
173 }  // namespace
174 
175 namespace synchronization_internal {
176 // Returns the Mutex delay on iteration `c` depending on the given `mode`.
177 // The returned value should be used as `c` for the next call to `MutexDelay`.
MutexDelay(int32_t c,int mode)178 int MutexDelay(int32_t c, int mode) {
179   const int32_t limit = GetMutexGlobals().mutex_sleep_spins[mode];
180   const absl::Duration sleep_time = GetMutexGlobals().mutex_sleep_time;
181   if (c < limit) {
182     // Spin.
183     c++;
184   } else {
185     SchedulingGuard::ScopedEnable enable_rescheduling;
186     ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0);
187     if (c == limit) {
188       // Yield once.
189       ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
190       c++;
191     } else {
192       // Then wait.
193       absl::SleepFor(sleep_time);
194       c = 0;
195     }
196     ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0);
197   }
198   return c;
199 }
200 }  // namespace synchronization_internal
201 
202 // --------------------------Generic atomic ops
203 // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
204 // "*pv | bits" if necessary.  Wait until (*pv & wait_until_clear)==0
205 // before making any change.
206 // Returns true if bits were previously unset and set by the call.
207 // This is used to set flags in mutex and condition variable words.
AtomicSetBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)208 static bool AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
209                           intptr_t wait_until_clear) {
210   for (;;) {
211     intptr_t v = pv->load(std::memory_order_relaxed);
212     if ((v & bits) == bits) {
213       return false;
214     }
215     if ((v & wait_until_clear) != 0) {
216       continue;
217     }
218     if (pv->compare_exchange_weak(v, v | bits, std::memory_order_release,
219                                   std::memory_order_relaxed)) {
220       return true;
221     }
222   }
223 }
224 
225 //------------------------------------------------------------------
226 
227 // Data for doing deadlock detection.
228 ABSL_CONST_INIT static absl::base_internal::SpinLock deadlock_graph_mu(
229     absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
230 
231 // Graph used to detect deadlocks.
232 ABSL_CONST_INIT static GraphCycles* deadlock_graph
233     ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu);
234 
235 //------------------------------------------------------------------
236 // An event mechanism for debugging mutex use.
237 // It also allows mutexes to be given names for those who can't handle
238 // addresses, and instead like to give their data structures names like
239 // "Henry", "Fido", or "Rupert IV, King of Yondavia".
240 
241 namespace {  // to prevent name pollution
242 enum {       // Mutex and CondVar events passed as "ev" to PostSynchEvent
243              // Mutex events
244   SYNCH_EV_TRYLOCK_SUCCESS,
245   SYNCH_EV_TRYLOCK_FAILED,
246   SYNCH_EV_READERTRYLOCK_SUCCESS,
247   SYNCH_EV_READERTRYLOCK_FAILED,
248   SYNCH_EV_LOCK,
249   SYNCH_EV_LOCK_RETURNING,
250   SYNCH_EV_READERLOCK,
251   SYNCH_EV_READERLOCK_RETURNING,
252   SYNCH_EV_UNLOCK,
253   SYNCH_EV_READERUNLOCK,
254 
255   // CondVar events
256   SYNCH_EV_WAIT,
257   SYNCH_EV_WAIT_RETURNING,
258   SYNCH_EV_SIGNAL,
259   SYNCH_EV_SIGNALALL,
260 };
261 
262 enum {                    // Event flags
263   SYNCH_F_R = 0x01,       // reader event
264   SYNCH_F_LCK = 0x02,     // PostSynchEvent called with mutex held
265   SYNCH_F_TRY = 0x04,     // TryLock or ReaderTryLock
266   SYNCH_F_UNLOCK = 0x08,  // Unlock or ReaderUnlock
267 
268   SYNCH_F_LCK_W = SYNCH_F_LCK,
269   SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
270 };
271 }  // anonymous namespace
272 
273 // Properties of the events.
274 static const struct {
275   int flags;
276   const char* msg;
277 } event_properties[] = {
278     {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "},
279     {0, "TryLock failed "},
280     {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "},
281     {0, "ReaderTryLock failed "},
282     {0, "Lock blocking "},
283     {SYNCH_F_LCK_W, "Lock returning "},
284     {0, "ReaderLock blocking "},
285     {SYNCH_F_LCK_R, "ReaderLock returning "},
286     {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "},
287     {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "},
288     {0, "Wait on "},
289     {0, "Wait unblocked "},
290     {0, "Signal on "},
291     {0, "SignalAll on "},
292 };
293 
294 ABSL_CONST_INIT static absl::base_internal::SpinLock synch_event_mu(
295     absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
296 
297 // Hash table size; should be prime > 2.
298 // Can't be too small, as it's used for deadlock detection information.
299 static constexpr uint32_t kNSynchEvent = 1031;
300 
301 static struct SynchEvent {  // this is a trivial hash table for the events
302   // struct is freed when refcount reaches 0
303   int refcount ABSL_GUARDED_BY(synch_event_mu);
304 
305   // buckets have linear, 0-terminated  chains
306   SynchEvent* next ABSL_GUARDED_BY(synch_event_mu);
307 
308   // Constant after initialization
309   uintptr_t masked_addr;  // object at this address is called "name"
310 
311   // No explicit synchronization used.  Instead we assume that the
312   // client who enables/disables invariants/logging on a Mutex does so
313   // while the Mutex is not being concurrently accessed by others.
314   void (*invariant)(void* arg);  // called on each event
315   void* arg;                     // first arg to (*invariant)()
316   bool log;                      // logging turned on
317 
318   // Constant after initialization
319   char name[1];  // actually longer---NUL-terminated string
320 }* synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu);
321 
322 // Ensure that the object at "addr" has a SynchEvent struct associated with it,
323 // set "bits" in the word there (waiting until lockbit is clear before doing
324 // so), and return a refcounted reference that will remain valid until
325 // UnrefSynchEvent() is called.  If a new SynchEvent is allocated,
326 // the string name is copied into it.
327 // When used with a mutex, the caller should also ensure that kMuEvent
328 // is set in the mutex word, and similarly for condition variables and kCVEvent.
EnsureSynchEvent(std::atomic<intptr_t> * addr,const char * name,intptr_t bits,intptr_t lockbit)329 static SynchEvent* EnsureSynchEvent(std::atomic<intptr_t>* addr,
330                                     const char* name, intptr_t bits,
331                                     intptr_t lockbit) {
332   uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent;
333   synch_event_mu.Lock();
334   // When a Mutex/CondVar is destroyed, we don't remove the associated
335   // SynchEvent to keep destructors empty in release builds for performance
336   // reasons. If the current call is the first to set bits (kMuEvent/kCVEvent),
337   // we don't look up the existing even because (if it exists, it must be for
338   // the previous Mutex/CondVar that existed at the same address).
339   // The leaking events must not be a problem for tests, which should create
340   // bounded amount of events. And debug logging is not supposed to be enabled
341   // in production. However, if it's accidentally enabled, or briefly enabled
342   // for some debugging, we don't want to crash the program. Instead we drop
343   // all events, if we accumulated too many of them. Size of a single event
344   // is ~48 bytes, so 100K events is ~5 MB.
345   // Additionally we could delete the old event for the same address,
346   // but it would require a better hashmap (if we accumulate too many events,
347   // linked lists will grow and traversing them will be very slow).
348   constexpr size_t kMaxSynchEventCount = 100 << 10;
349   // Total number of live synch events.
350   static size_t synch_event_count ABSL_GUARDED_BY(synch_event_mu);
351   if (++synch_event_count > kMaxSynchEventCount) {
352     synch_event_count = 0;
353     ABSL_RAW_LOG(ERROR,
354                  "Accumulated %zu Mutex debug objects. If you see this"
355                  " in production, it may mean that the production code"
356                  " accidentally calls "
357                  "Mutex/CondVar::EnableDebugLog/EnableInvariantDebugging.",
358                  kMaxSynchEventCount);
359     for (auto*& head : synch_event) {
360       for (auto* e = head; e != nullptr;) {
361         SynchEvent* next = e->next;
362         if (--(e->refcount) == 0) {
363           base_internal::LowLevelAlloc::Free(e);
364         }
365         e = next;
366       }
367       head = nullptr;
368     }
369   }
370   SynchEvent* e = nullptr;
371   if (!AtomicSetBits(addr, bits, lockbit)) {
372     for (e = synch_event[h];
373          e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
374          e = e->next) {
375     }
376   }
377   if (e == nullptr) {  // no SynchEvent struct found; make one.
378     if (name == nullptr) {
379       name = "";
380     }
381     size_t l = strlen(name);
382     e = reinterpret_cast<SynchEvent*>(
383         base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
384     e->refcount = 2;  // one for return value, one for linked list
385     e->masked_addr = base_internal::HidePtr(addr);
386     e->invariant = nullptr;
387     e->arg = nullptr;
388     e->log = false;
389     strcpy(e->name, name);  // NOLINT(runtime/printf)
390     e->next = synch_event[h];
391     synch_event[h] = e;
392   } else {
393     e->refcount++;  // for return value
394   }
395   synch_event_mu.Unlock();
396   return e;
397 }
398 
399 // Decrement the reference count of *e, or do nothing if e==null.
UnrefSynchEvent(SynchEvent * e)400 static void UnrefSynchEvent(SynchEvent* e) {
401   if (e != nullptr) {
402     synch_event_mu.Lock();
403     bool del = (--(e->refcount) == 0);
404     synch_event_mu.Unlock();
405     if (del) {
406       base_internal::LowLevelAlloc::Free(e);
407     }
408   }
409 }
410 
411 // Return a refcounted reference to the SynchEvent of the object at address
412 // "addr", if any.  The pointer returned is valid until the UnrefSynchEvent() is
413 // called.
GetSynchEvent(const void * addr)414 static SynchEvent* GetSynchEvent(const void* addr) {
415   uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent;
416   SynchEvent* e;
417   synch_event_mu.Lock();
418   for (e = synch_event[h];
419        e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
420        e = e->next) {
421   }
422   if (e != nullptr) {
423     e->refcount++;
424   }
425   synch_event_mu.Unlock();
426   return e;
427 }
428 
429 // Called when an event "ev" occurs on a Mutex of CondVar "obj"
430 // if event recording is on
PostSynchEvent(void * obj,int ev)431 static void PostSynchEvent(void* obj, int ev) {
432   SynchEvent* e = GetSynchEvent(obj);
433   // logging is on if event recording is on and either there's no event struct,
434   // or it explicitly says to log
435   if (e == nullptr || e->log) {
436     void* pcs[40];
437     int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
438     // A buffer with enough space for the ASCII for all the PCs, even on a
439     // 64-bit machine.
440     char buffer[ABSL_ARRAYSIZE(pcs) * 24];
441     int pos = snprintf(buffer, sizeof(buffer), " @");
442     for (int i = 0; i != n; i++) {
443       int b = snprintf(&buffer[pos], sizeof(buffer) - static_cast<size_t>(pos),
444                        " %p", pcs[i]);
445       if (b < 0 ||
446           static_cast<size_t>(b) >= sizeof(buffer) - static_cast<size_t>(pos)) {
447         break;
448       }
449       pos += b;
450     }
451     ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
452                  (e == nullptr ? "" : e->name), buffer);
453   }
454   const int flags = event_properties[ev].flags;
455   if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) {
456     // Calling the invariant as is causes problems under ThreadSanitizer.
457     // We are currently inside of Mutex Lock/Unlock and are ignoring all
458     // memory accesses and synchronization. If the invariant transitively
459     // synchronizes something else and we ignore the synchronization, we will
460     // get false positive race reports later.
461     // Reuse EvalConditionAnnotated to properly call into user code.
462     struct local {
463       static bool pred(SynchEvent* ev) {
464         (*ev->invariant)(ev->arg);
465         return false;
466       }
467     };
468     Condition cond(&local::pred, e);
469     Mutex* mu = static_cast<Mutex*>(obj);
470     const bool locking = (flags & SYNCH_F_UNLOCK) == 0;
471     const bool trylock = (flags & SYNCH_F_TRY) != 0;
472     const bool read_lock = (flags & SYNCH_F_R) != 0;
473     EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock);
474   }
475   UnrefSynchEvent(e);
476 }
477 
478 //------------------------------------------------------------------
479 
480 // The SynchWaitParams struct encapsulates the way in which a thread is waiting:
481 // whether it has a timeout, the condition, exclusive/shared, and whether a
482 // condition variable wait has an associated Mutex (as opposed to another
483 // type of lock).  It also points to the PerThreadSynch struct of its thread.
484 // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
485 //
486 // This structure is held on the stack rather than directly in
487 // PerThreadSynch because a thread can be waiting on multiple Mutexes if,
488 // while waiting on one Mutex, the implementation calls a client callback
489 // (such as a Condition function) that acquires another Mutex. We don't
490 // strictly need to allow this, but programmers become confused if we do not
491 // allow them to use functions such a LOG() within Condition functions.  The
492 // PerThreadSynch struct points at the most recent SynchWaitParams struct when
493 // the thread is on a Mutex's waiter queue.
494 struct SynchWaitParams {
SynchWaitParamsabsl::SynchWaitParams495   SynchWaitParams(Mutex::MuHow how_arg, const Condition* cond_arg,
496                   KernelTimeout timeout_arg, Mutex* cvmu_arg,
497                   PerThreadSynch* thread_arg,
498                   std::atomic<intptr_t>* cv_word_arg)
499       : how(how_arg),
500         cond(cond_arg),
501         timeout(timeout_arg),
502         cvmu(cvmu_arg),
503         thread(thread_arg),
504         cv_word(cv_word_arg),
505         contention_start_cycles(CycleClock::Now()),
506         should_submit_contention_data(false) {}
507 
508   const Mutex::MuHow how;  // How this thread needs to wait.
509   const Condition* cond;   // The condition that this thread is waiting for.
510                            // In Mutex, this field is set to zero if a timeout
511                            // expires.
512   KernelTimeout timeout;  // timeout expiry---absolute time
513                           // In Mutex, this field is set to zero if a timeout
514                           // expires.
515   Mutex* const cvmu;      // used for transfer from cond var to mutex
516   PerThreadSynch* const thread;  // thread that is waiting
517 
518   // If not null, thread should be enqueued on the CondVar whose state
519   // word is cv_word instead of queueing normally on the Mutex.
520   std::atomic<intptr_t>* cv_word;
521 
522   int64_t contention_start_cycles;  // Time (in cycles) when this thread started
523                                     // to contend for the mutex.
524   bool should_submit_contention_data;
525 };
526 
527 struct SynchLocksHeld {
528   int n;          // number of valid entries in locks[]
529   bool overflow;  // true iff we overflowed the array at some point
530   struct {
531     Mutex* mu;      // lock acquired
532     int32_t count;  // times acquired
533     GraphId id;     // deadlock_graph id of acquired lock
534   } locks[40];
535   // If a thread overfills the array during deadlock detection, we
536   // continue, discarding information as needed.  If no overflow has
537   // taken place, we can provide more error checking, such as
538   // detecting when a thread releases a lock it does not hold.
539 };
540 
541 // A sentinel value in lists that is not 0.
542 // A 0 value is used to mean "not on a list".
543 static PerThreadSynch* const kPerThreadSynchNull =
544     reinterpret_cast<PerThreadSynch*>(1);
545 
LocksHeldAlloc()546 static SynchLocksHeld* LocksHeldAlloc() {
547   SynchLocksHeld* ret = reinterpret_cast<SynchLocksHeld*>(
548       base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
549   ret->n = 0;
550   ret->overflow = false;
551   return ret;
552 }
553 
554 // Return the PerThreadSynch-struct for this thread.
Synch_GetPerThread()555 static PerThreadSynch* Synch_GetPerThread() {
556   ThreadIdentity* identity = GetOrCreateCurrentThreadIdentity();
557   return &identity->per_thread_synch;
558 }
559 
Synch_GetPerThreadAnnotated(Mutex * mu)560 static PerThreadSynch* Synch_GetPerThreadAnnotated(Mutex* mu) {
561   if (mu) {
562     ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
563   }
564   PerThreadSynch* w = Synch_GetPerThread();
565   if (mu) {
566     ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
567   }
568   return w;
569 }
570 
Synch_GetAllLocks()571 static SynchLocksHeld* Synch_GetAllLocks() {
572   PerThreadSynch* s = Synch_GetPerThread();
573   if (s->all_locks == nullptr) {
574     s->all_locks = LocksHeldAlloc();  // Freed by ReclaimThreadIdentity.
575   }
576   return s->all_locks;
577 }
578 
579 // Post on "w"'s associated PerThreadSem.
IncrementSynchSem(Mutex * mu,PerThreadSynch * w)580 void Mutex::IncrementSynchSem(Mutex* mu, PerThreadSynch* w) {
581   static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
582   ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
583   // We miss synchronization around passing PerThreadSynch between threads
584   // since it happens inside of the Mutex code, so we need to ignore all
585   // accesses to the object.
586   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
587   PerThreadSem::Post(w->thread_identity());
588   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
589   ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
590 }
591 
592 // Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
DecrementSynchSem(Mutex * mu,PerThreadSynch * w,KernelTimeout t)593 bool Mutex::DecrementSynchSem(Mutex* mu, PerThreadSynch* w, KernelTimeout t) {
594   static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
595   ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
596   assert(w == Synch_GetPerThread());
597   static_cast<void>(w);
598   bool res = PerThreadSem::Wait(t);
599   ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
600   return res;
601 }
602 
603 // We're in a fatal signal handler that hopes to use Mutex and to get
604 // lucky by not deadlocking.  We try to improve its chances of success
605 // by effectively disabling some of the consistency checks.  This will
606 // prevent certain ABSL_RAW_CHECK() statements from being triggered when
607 // re-rentry is detected.  The ABSL_RAW_CHECK() statements are those in the
608 // Mutex code checking that the "waitp" field has not been reused.
InternalAttemptToUseMutexInFatalSignalHandler()609 void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
610   // Fix the per-thread state only if it exists.
611   ThreadIdentity* identity = CurrentThreadIdentityIfPresent();
612   if (identity != nullptr) {
613     identity->per_thread_synch.suppress_fatal_errors = true;
614   }
615   // Don't do deadlock detection when we are already failing.
616   synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
617                                  std::memory_order_release);
618 }
619 
620 // --------------------------Mutexes
621 
622 // In the layout below, the msb of the bottom byte is currently unused.  Also,
623 // the following constraints were considered in choosing the layout:
624 //  o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
625 //    0xcd) are illegal: reader and writer lock both held.
626 //  o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
627 //    bit-twiddling trick in Mutex::Unlock().
628 //  o kMuWriter / kMuReader == kMuWrWait / kMuWait,
629 //    to enable the bit-twiddling trick in CheckForMutexCorruption().
630 static const intptr_t kMuReader = 0x0001L;  // a reader holds the lock
631 // There's a designated waker.
632 // INVARIANT1:  there's a thread that was blocked on the mutex, is
633 // no longer, yet has not yet acquired the mutex.  If there's a
634 // designated waker, all threads can avoid taking the slow path in
635 // unlock because the designated waker will subsequently acquire
636 // the lock and wake someone.  To maintain INVARIANT1 the bit is
637 // set when a thread is unblocked(INV1a), and threads that were
638 // unblocked reset the bit when they either acquire or re-block (INV1b).
639 static const intptr_t kMuDesig = 0x0002L;
640 static const intptr_t kMuWait = 0x0004L;    // threads are waiting
641 static const intptr_t kMuWriter = 0x0008L;  // a writer holds the lock
642 static const intptr_t kMuEvent = 0x0010L;   // record this mutex's events
643 // Runnable writer is waiting for a reader.
644 // If set, new readers will not lock the mutex to avoid writer starvation.
645 // Note: if a reader has higher priority than the writer, it will still lock
646 // the mutex ahead of the waiting writer, but in a very inefficient manner:
647 // the reader will first queue itself and block, but then the last unlocking
648 // reader will wake it.
649 static const intptr_t kMuWrWait = 0x0020L;
650 static const intptr_t kMuSpin = 0x0040L;  // spinlock protects wait list
651 static const intptr_t kMuLow = 0x00ffL;   // mask all mutex bits
652 static const intptr_t kMuHigh = ~kMuLow;  // mask pointer/reader count
653 
654 // Hack to make constant values available to gdb pretty printer
655 enum {
656   kGdbMuSpin = kMuSpin,
657   kGdbMuEvent = kMuEvent,
658   kGdbMuWait = kMuWait,
659   kGdbMuWriter = kMuWriter,
660   kGdbMuDesig = kMuDesig,
661   kGdbMuWrWait = kMuWrWait,
662   kGdbMuReader = kMuReader,
663   kGdbMuLow = kMuLow,
664 };
665 
666 // kMuWrWait implies kMuWait.
667 // kMuReader and kMuWriter are mutually exclusive.
668 // If kMuReader is zero, there are no readers.
669 // Otherwise, if kMuWait is zero, the high order bits contain a count of the
670 // number of readers.  Otherwise, the reader count is held in
671 // PerThreadSynch::readers of the most recently queued waiter, again in the
672 // bits above kMuLow.
673 static const intptr_t kMuOne = 0x0100;  // a count of one reader
674 
675 // flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
676 static const int kMuHasBlocked = 0x01;  // already blocked (MUST == 1)
677 static const int kMuIsCond = 0x02;      // conditional waiter (CV or Condition)
678 static const int kMuIsFer = 0x04;       // wait morphing from a CondVar
679 
680 static_assert(PerThreadSynch::kAlignment > kMuLow,
681               "PerThreadSynch::kAlignment must be greater than kMuLow");
682 
683 // This struct contains various bitmasks to be used in
684 // acquiring and releasing a mutex in a particular mode.
685 struct MuHowS {
686   // if all the bits in fast_need_zero are zero, the lock can be acquired by
687   // adding fast_add and oring fast_or.  The bit kMuDesig should be reset iff
688   // this is the designated waker.
689   intptr_t fast_need_zero;
690   intptr_t fast_or;
691   intptr_t fast_add;
692 
693   intptr_t slow_need_zero;  // fast_need_zero with events (e.g. logging)
694 
695   intptr_t slow_inc_need_zero;  // if all the bits in slow_inc_need_zero are
696                                 // zero a reader can acquire a read share by
697                                 // setting the reader bit and incrementing
698                                 // the reader count (in last waiter since
699                                 // we're now slow-path).  kMuWrWait be may
700                                 // be ignored if we already waited once.
701 };
702 
703 static const MuHowS kSharedS = {
704     // shared or read lock
705     kMuWriter | kMuWait | kMuEvent,   // fast_need_zero
706     kMuReader,                        // fast_or
707     kMuOne,                           // fast_add
708     kMuWriter | kMuWait,              // slow_need_zero
709     kMuSpin | kMuWriter | kMuWrWait,  // slow_inc_need_zero
710 };
711 static const MuHowS kExclusiveS = {
712     // exclusive or write lock
713     kMuWriter | kMuReader | kMuEvent,  // fast_need_zero
714     kMuWriter,                         // fast_or
715     0,                                 // fast_add
716     kMuWriter | kMuReader,             // slow_need_zero
717     ~static_cast<intptr_t>(0),         // slow_inc_need_zero
718 };
719 static const Mutex::MuHow kShared = &kSharedS;        // shared lock
720 static const Mutex::MuHow kExclusive = &kExclusiveS;  // exclusive lock
721 
722 #ifdef NDEBUG
723 static constexpr bool kDebugMode = false;
724 #else
725 static constexpr bool kDebugMode = true;
726 #endif
727 
728 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
TsanFlags(Mutex::MuHow how)729 static unsigned TsanFlags(Mutex::MuHow how) {
730   return how == kShared ? __tsan_mutex_read_lock : 0;
731 }
732 #endif
733 
734 #if defined(__APPLE__) || defined(ABSL_BUILD_DLL)
735 // When building a dll symbol export lists may reference the destructor
736 // and want it to be an exported symbol rather than an inline function.
737 // Some apple builds also do dynamic library build but don't say it explicitly.
~Mutex()738 Mutex::~Mutex() { Dtor(); }
739 #endif
740 
741 #if !defined(NDEBUG) || defined(ABSL_HAVE_THREAD_SANITIZER)
Dtor()742 void Mutex::Dtor() {
743   if (kDebugMode) {
744     this->ForgetDeadlockInfo();
745   }
746   ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
747 }
748 #endif
749 
EnableDebugLog(const char * name)750 void Mutex::EnableDebugLog(const char* name) {
751   SynchEvent* e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
752   e->log = true;
753   UnrefSynchEvent(e);
754   // This prevents "error: undefined symbol: absl::Mutex::~Mutex()"
755   // in a release build (NDEBUG defined) when a test does "#undef NDEBUG"
756   // to use assert macro. In such case, the test does not get the dtor
757   // definition because it's supposed to be outline when NDEBUG is not defined,
758   // and this source file does not define one either because NDEBUG is defined.
759   // Since it's not possible to take address of a destructor, we move the
760   // actual destructor code into the separate Dtor function and force the
761   // compiler to emit this function even if it's inline by taking its address.
762   ABSL_ATTRIBUTE_UNUSED volatile auto dtor = &Mutex::Dtor;
763 }
764 
EnableMutexInvariantDebugging(bool enabled)765 void EnableMutexInvariantDebugging(bool enabled) {
766   synch_check_invariants.store(enabled, std::memory_order_release);
767 }
768 
EnableInvariantDebugging(void (* invariant)(void *),void * arg)769 void Mutex::EnableInvariantDebugging(void (*invariant)(void*), void* arg) {
770   if (synch_check_invariants.load(std::memory_order_acquire) &&
771       invariant != nullptr) {
772     SynchEvent* e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
773     e->invariant = invariant;
774     e->arg = arg;
775     UnrefSynchEvent(e);
776   }
777 }
778 
SetMutexDeadlockDetectionMode(OnDeadlockCycle mode)779 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
780   synch_deadlock_detection.store(mode, std::memory_order_release);
781 }
782 
783 // Return true iff threads x and y are part of the same equivalence
784 // class of waiters. An equivalence class is defined as the set of
785 // waiters with the same condition, type of lock, and thread priority.
786 //
787 // Requires that x and y be waiting on the same Mutex queue.
MuEquivalentWaiter(PerThreadSynch * x,PerThreadSynch * y)788 static bool MuEquivalentWaiter(PerThreadSynch* x, PerThreadSynch* y) {
789   return x->waitp->how == y->waitp->how && x->priority == y->priority &&
790          Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
791 }
792 
793 // Given the contents of a mutex word containing a PerThreadSynch pointer,
794 // return the pointer.
GetPerThreadSynch(intptr_t v)795 static inline PerThreadSynch* GetPerThreadSynch(intptr_t v) {
796   return reinterpret_cast<PerThreadSynch*>(v & kMuHigh);
797 }
798 
799 // The next several routines maintain the per-thread next and skip fields
800 // used in the Mutex waiter queue.
801 // The queue is a circular singly-linked list, of which the "head" is the
802 // last element, and head->next if the first element.
803 // The skip field has the invariant:
804 //   For thread x, x->skip is one of:
805 //     - invalid (iff x is not in a Mutex wait queue),
806 //     - null, or
807 //     - a pointer to a distinct thread waiting later in the same Mutex queue
808 //       such that all threads in [x, x->skip] have the same condition, priority
809 //       and lock type (MuEquivalentWaiter() is true for all pairs in [x,
810 //       x->skip]).
811 // In addition, if x->skip is  valid, (x->may_skip || x->skip == null)
812 //
813 // By the spec of MuEquivalentWaiter(), it is not necessary when removing the
814 // first runnable thread y from the front a Mutex queue to adjust the skip
815 // field of another thread x because if x->skip==y, x->skip must (have) become
816 // invalid before y is removed.  The function TryRemove can remove a specified
817 // thread from an arbitrary position in the queue whether runnable or not, so
818 // it fixes up skip fields that would otherwise be left dangling.
819 // The statement
820 //     if (x->may_skip && MuEquivalentWaiter(x, x->next)) { x->skip = x->next; }
821 // maintains the invariant provided x is not the last waiter in a Mutex queue
822 // The statement
823 //          if (x->skip != null) { x->skip = x->skip->skip; }
824 // maintains the invariant.
825 
826 // Returns the last thread y in a mutex waiter queue such that all threads in
827 // [x, y] inclusive share the same condition.  Sets skip fields of some threads
828 // in that range to optimize future evaluation of Skip() on x values in
829 // the range.  Requires thread x is in a mutex waiter queue.
830 // The locking is unusual.  Skip() is called under these conditions:
831 //   - spinlock is held in call from Enqueue(), with maybe_unlocking == false
832 //   - Mutex is held in call from UnlockSlow() by last unlocker, with
833 //     maybe_unlocking == true
834 //   - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
835 //     UnlockSlow()) and TryRemove()
836 // These cases are mutually exclusive, so Skip() never runs concurrently
837 // with itself on the same Mutex.   The skip chain is used in these other places
838 // that cannot occur concurrently:
839 //   - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
840 //   - Dequeue() (with spinlock and Mutex held)
841 //   - UnlockSlow() (with spinlock and Mutex held)
842 // A more complex case is Enqueue()
843 //   - Enqueue() (with spinlock held and maybe_unlocking == false)
844 //               This is the first case in which Skip is called, above.
845 //   - Enqueue() (without spinlock held; but queue is empty and being freshly
846 //                formed)
847 //   - Enqueue() (with spinlock held and maybe_unlocking == true)
848 // The first case has mutual exclusion, and the second isolation through
849 // working on an otherwise unreachable data structure.
850 // In the last case, Enqueue() is required to change no skip/next pointers
851 // except those in the added node and the former "head" node.  This implies
852 // that the new node is added after head, and so must be the new head or the
853 // new front of the queue.
Skip(PerThreadSynch * x)854 static PerThreadSynch* Skip(PerThreadSynch* x) {
855   PerThreadSynch* x0 = nullptr;
856   PerThreadSynch* x1 = x;
857   PerThreadSynch* x2 = x->skip;
858   if (x2 != nullptr) {
859     // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
860     // such that   x1 == x0->skip && x2 == x1->skip
861     while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
862       x0->skip = x2;  // short-circuit skip from x0 to x2
863     }
864     x->skip = x1;  // short-circuit skip from x to result
865   }
866   return x1;
867 }
868 
869 // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
870 // The latter is going to be removed out of order, because of a timeout.
871 // Check whether "ancestor" has a skip field pointing to "to_be_removed",
872 // and fix it if it does.
FixSkip(PerThreadSynch * ancestor,PerThreadSynch * to_be_removed)873 static void FixSkip(PerThreadSynch* ancestor, PerThreadSynch* to_be_removed) {
874   if (ancestor->skip == to_be_removed) {  // ancestor->skip left dangling
875     if (to_be_removed->skip != nullptr) {
876       ancestor->skip = to_be_removed->skip;  // can skip past to_be_removed
877     } else if (ancestor->next != to_be_removed) {  // they are not adjacent
878       ancestor->skip = ancestor->next;             // can skip one past ancestor
879     } else {
880       ancestor->skip = nullptr;  // can't skip at all
881     }
882   }
883 }
884 
885 static void CondVarEnqueue(SynchWaitParams* waitp);
886 
887 // Enqueue thread "waitp->thread" on a waiter queue.
888 // Called with mutex spinlock held if head != nullptr
889 // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
890 // idempotent; it alters no state associated with the existing (empty)
891 // queue.
892 //
893 // If waitp->cv_word == nullptr, queue the thread at either the front or
894 // the end (according to its priority) of the circular mutex waiter queue whose
895 // head is "head", and return the new head.  mu is the previous mutex state,
896 // which contains the reader count (perhaps adjusted for the operation in
897 // progress) if the list was empty and a read lock held, and the holder hint if
898 // the list was empty and a write lock held.  (flags & kMuIsCond) indicates
899 // whether this thread was transferred from a CondVar or is waiting for a
900 // non-trivial condition.  In this case, Enqueue() never returns nullptr
901 //
902 // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
903 // returned. This mechanism is used by CondVar to queue a thread on the
904 // condition variable queue instead of the mutex queue in implementing Wait().
905 // In this case, Enqueue() can return nullptr (if head==nullptr).
Enqueue(PerThreadSynch * head,SynchWaitParams * waitp,intptr_t mu,int flags)906 static PerThreadSynch* Enqueue(PerThreadSynch* head, SynchWaitParams* waitp,
907                                intptr_t mu, int flags) {
908   // If we have been given a cv_word, call CondVarEnqueue() and return
909   // the previous head of the Mutex waiter queue.
910   if (waitp->cv_word != nullptr) {
911     CondVarEnqueue(waitp);
912     return head;
913   }
914 
915   PerThreadSynch* s = waitp->thread;
916   ABSL_RAW_CHECK(
917       s->waitp == nullptr ||    // normal case
918           s->waitp == waitp ||  // Fer()---transfer from condition variable
919           s->suppress_fatal_errors,
920       "detected illegal recursion into Mutex code");
921   s->waitp = waitp;
922   s->skip = nullptr;   // maintain skip invariant (see above)
923   s->may_skip = true;  // always true on entering queue
924   s->wake = false;     // not being woken
925   s->cond_waiter = ((flags & kMuIsCond) != 0);
926 #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
927   if ((flags & kMuIsFer) == 0) {
928     assert(s == Synch_GetPerThread());
929     int64_t now_cycles = CycleClock::Now();
930     if (s->next_priority_read_cycles < now_cycles) {
931       // Every so often, update our idea of the thread's priority.
932       // pthread_getschedparam() is 5% of the block/wakeup time;
933       // CycleClock::Now() is 0.5%.
934       int policy;
935       struct sched_param param;
936       const int err = pthread_getschedparam(pthread_self(), &policy, &param);
937       if (err != 0) {
938         ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err);
939       } else {
940         s->priority = param.sched_priority;
941         s->next_priority_read_cycles =
942             now_cycles + static_cast<int64_t>(CycleClock::Frequency());
943       }
944     }
945   }
946 #endif
947   if (head == nullptr) {         // s is the only waiter
948     s->next = s;                 // it's the only entry in the cycle
949     s->readers = mu;             // reader count is from mu word
950     s->maybe_unlocking = false;  // no one is searching an empty list
951     head = s;                    // s is new head
952   } else {
953     PerThreadSynch* enqueue_after = nullptr;  // we'll put s after this element
954 #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
955     if (s->priority > head->priority) {  // s's priority is above head's
956       // try to put s in priority-fifo order, or failing that at the front.
957       if (!head->maybe_unlocking) {
958         // No unlocker can be scanning the queue, so we can insert into the
959         // middle of the queue.
960         //
961         // Within a skip chain, all waiters have the same priority, so we can
962         // skip forward through the chains until we find one with a lower
963         // priority than the waiter to be enqueued.
964         PerThreadSynch* advance_to = head;  // next value of enqueue_after
965         do {
966           enqueue_after = advance_to;
967           // (side-effect: optimizes skip chain)
968           advance_to = Skip(enqueue_after->next);
969         } while (s->priority <= advance_to->priority);
970         // termination guaranteed because s->priority > head->priority
971         // and head is the end of a skip chain
972       } else if (waitp->how == kExclusive && waitp->cond == nullptr) {
973         // An unlocker could be scanning the queue, but we know it will recheck
974         // the queue front for writers that have no condition, which is what s
975         // is, so an insert at front is safe.
976         enqueue_after = head;  // add after head, at front
977       }
978     }
979 #endif
980     if (enqueue_after != nullptr) {
981       s->next = enqueue_after->next;
982       enqueue_after->next = s;
983 
984       // enqueue_after can be: head, Skip(...), or cur.
985       // The first two imply enqueue_after->skip == nullptr, and
986       // the last is used only if MuEquivalentWaiter(s, cur).
987       // We require this because clearing enqueue_after->skip
988       // is impossible; enqueue_after's predecessors might also
989       // incorrectly skip over s if we were to allow other
990       // insertion points.
991       ABSL_RAW_CHECK(enqueue_after->skip == nullptr ||
992                          MuEquivalentWaiter(enqueue_after, s),
993                      "Mutex Enqueue failure");
994 
995       if (enqueue_after != head && enqueue_after->may_skip &&
996           MuEquivalentWaiter(enqueue_after, enqueue_after->next)) {
997         // enqueue_after can skip to its new successor, s
998         enqueue_after->skip = enqueue_after->next;
999       }
1000       if (MuEquivalentWaiter(s, s->next)) {  // s->may_skip is known to be true
1001         s->skip = s->next;                   // s may skip to its successor
1002       }
1003     } else if ((flags & kMuHasBlocked) &&
1004                (s->priority >= head->next->priority) &&
1005                (!head->maybe_unlocking ||
1006                 (waitp->how == kExclusive &&
1007                  Condition::GuaranteedEqual(waitp->cond, nullptr)))) {
1008       // This thread has already waited, then was woken, then failed to acquire
1009       // the mutex and now tries to requeue. Try to requeue it at head,
1010       // otherwise it can suffer bad latency (wait whole queue several times).
1011       // However, we need to be conservative. First, we need to ensure that we
1012       // respect priorities. Then, we need to be careful to not break wait
1013       // queue invariants: we require either that unlocker is not scanning
1014       // the queue or that the current thread is a writer with no condition
1015       // (unlocker will recheck the queue for such waiters).
1016       s->next = head->next;
1017       head->next = s;
1018       if (MuEquivalentWaiter(s, s->next)) {  // s->may_skip is known to be true
1019         s->skip = s->next;                   // s may skip to its successor
1020       }
1021     } else {  // enqueue not done any other way, so
1022               // we're inserting s at the back
1023       // s will become new head; copy data from head into it
1024       s->next = head->next;  // add s after head
1025       head->next = s;
1026       s->readers = head->readers;  // reader count is from previous head
1027       s->maybe_unlocking = head->maybe_unlocking;  // same for unlock hint
1028       if (head->may_skip && MuEquivalentWaiter(head, s)) {
1029         // head now has successor; may skip
1030         head->skip = s;
1031       }
1032       head = s;  // s is new head
1033     }
1034   }
1035   s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
1036   return head;
1037 }
1038 
1039 // Dequeue the successor pw->next of thread pw from the Mutex waiter queue
1040 // whose last element is head.  The new head element is returned, or null
1041 // if the list is made empty.
1042 // Dequeue is called with both spinlock and Mutex held.
Dequeue(PerThreadSynch * head,PerThreadSynch * pw)1043 static PerThreadSynch* Dequeue(PerThreadSynch* head, PerThreadSynch* pw) {
1044   PerThreadSynch* w = pw->next;
1045   pw->next = w->next;                 // snip w out of list
1046   if (head == w) {                    // we removed the head
1047     head = (pw == w) ? nullptr : pw;  // either emptied list, or pw is new head
1048   } else if (pw != head && MuEquivalentWaiter(pw, pw->next)) {
1049     // pw can skip to its new successor
1050     if (pw->next->skip !=
1051         nullptr) {  // either skip to its successors skip target
1052       pw->skip = pw->next->skip;
1053     } else {  // or to pw's successor
1054       pw->skip = pw->next;
1055     }
1056   }
1057   return head;
1058 }
1059 
1060 // Traverse the elements [ pw->next, h] of the circular list whose last element
1061 // is head.
1062 // Remove all elements with wake==true and place them in the
1063 // singly-linked list wake_list in the order found.   Assumes that
1064 // there is only one such element if the element has how == kExclusive.
1065 // Return the new head.
DequeueAllWakeable(PerThreadSynch * head,PerThreadSynch * pw,PerThreadSynch ** wake_tail)1066 static PerThreadSynch* DequeueAllWakeable(PerThreadSynch* head,
1067                                           PerThreadSynch* pw,
1068                                           PerThreadSynch** wake_tail) {
1069   PerThreadSynch* orig_h = head;
1070   PerThreadSynch* w = pw->next;
1071   bool skipped = false;
1072   do {
1073     if (w->wake) {  // remove this element
1074       ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
1075       // we're removing pw's successor so either pw->skip is zero or we should
1076       // already have removed pw since if pw->skip!=null, pw has the same
1077       // condition as w.
1078       head = Dequeue(head, pw);
1079       w->next = *wake_tail;               // keep list terminated
1080       *wake_tail = w;                     // add w to wake_list;
1081       wake_tail = &w->next;               // next addition to end
1082       if (w->waitp->how == kExclusive) {  // wake at most 1 writer
1083         break;
1084       }
1085     } else {         // not waking this one; skip
1086       pw = Skip(w);  // skip as much as possible
1087       skipped = true;
1088     }
1089     w = pw->next;
1090     // We want to stop processing after we've considered the original head,
1091     // orig_h.  We can't test for w==orig_h in the loop because w may skip over
1092     // it; we are guaranteed only that w's predecessor will not skip over
1093     // orig_h.  When we've considered orig_h, either we've processed it and
1094     // removed it (so orig_h != head), or we considered it and skipped it (so
1095     // skipped==true && pw == head because skipping from head always skips by
1096     // just one, leaving pw pointing at head).  So we want to
1097     // continue the loop with the negation of that expression.
1098   } while (orig_h == head && (pw != head || !skipped));
1099   return head;
1100 }
1101 
1102 // Try to remove thread s from the list of waiters on this mutex.
1103 // Does nothing if s is not on the waiter list.
TryRemove(PerThreadSynch * s)1104 void Mutex::TryRemove(PerThreadSynch* s) {
1105   SchedulingGuard::ScopedDisable disable_rescheduling;
1106   intptr_t v = mu_.load(std::memory_order_relaxed);
1107   // acquire spinlock & lock
1108   if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
1109       mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
1110                                   std::memory_order_acquire,
1111                                   std::memory_order_relaxed)) {
1112     PerThreadSynch* h = GetPerThreadSynch(v);
1113     if (h != nullptr) {
1114       PerThreadSynch* pw = h;  // pw is w's predecessor
1115       PerThreadSynch* w;
1116       if ((w = pw->next) != s) {  // search for thread,
1117         do {                      // processing at least one element
1118           // If the current element isn't equivalent to the waiter to be
1119           // removed, we can skip the entire chain.
1120           if (!MuEquivalentWaiter(s, w)) {
1121             pw = Skip(w);  // so skip all that won't match
1122             // we don't have to worry about dangling skip fields
1123             // in the threads we skipped; none can point to s
1124             // because they are in a different equivalence class.
1125           } else {          // seeking same condition
1126             FixSkip(w, s);  // fix up any skip pointer from w to s
1127             pw = w;
1128           }
1129           // don't search further if we found the thread, or we're about to
1130           // process the first thread again.
1131         } while ((w = pw->next) != s && pw != h);
1132       }
1133       if (w == s) {  // found thread; remove it
1134         // pw->skip may be non-zero here; the loop above ensured that
1135         // no ancestor of s can skip to s, so removal is safe anyway.
1136         h = Dequeue(h, pw);
1137         s->next = nullptr;
1138         s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1139       }
1140     }
1141     intptr_t nv;
1142     do {  // release spinlock and lock
1143       v = mu_.load(std::memory_order_relaxed);
1144       nv = v & (kMuDesig | kMuEvent);
1145       if (h != nullptr) {
1146         nv |= kMuWait | reinterpret_cast<intptr_t>(h);
1147         h->readers = 0;              // we hold writer lock
1148         h->maybe_unlocking = false;  // finished unlocking
1149       }
1150     } while (!mu_.compare_exchange_weak(v, nv, std::memory_order_release,
1151                                         std::memory_order_relaxed));
1152   }
1153 }
1154 
1155 // Wait until thread "s", which must be the current thread, is removed from the
1156 // this mutex's waiter queue.  If "s->waitp->timeout" has a timeout, wake up
1157 // if the wait extends past the absolute time specified, even if "s" is still
1158 // on the mutex queue.  In this case, remove "s" from the queue and return
1159 // true, otherwise return false.
Block(PerThreadSynch * s)1160 void Mutex::Block(PerThreadSynch* s) {
1161   while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
1162     if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
1163       // After a timeout, we go into a spin loop until we remove ourselves
1164       // from the queue, or someone else removes us.  We can't be sure to be
1165       // able to remove ourselves in a single lock acquisition because this
1166       // mutex may be held, and the holder has the right to read the centre
1167       // of the waiter queue without holding the spinlock.
1168       this->TryRemove(s);
1169       int c = 0;
1170       while (s->next != nullptr) {
1171         c = synchronization_internal::MutexDelay(c, GENTLE);
1172         this->TryRemove(s);
1173       }
1174       if (kDebugMode) {
1175         // This ensures that we test the case that TryRemove() is called when s
1176         // is not on the queue.
1177         this->TryRemove(s);
1178       }
1179       s->waitp->timeout = KernelTimeout::Never();  // timeout is satisfied
1180       s->waitp->cond = nullptr;  // condition no longer relevant for wakeups
1181     }
1182   }
1183   ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
1184                  "detected illegal recursion in Mutex code");
1185   s->waitp = nullptr;
1186 }
1187 
1188 // Wake thread w, and return the next thread in the list.
Wakeup(PerThreadSynch * w)1189 PerThreadSynch* Mutex::Wakeup(PerThreadSynch* w) {
1190   PerThreadSynch* next = w->next;
1191   w->next = nullptr;
1192   w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1193   IncrementSynchSem(this, w);
1194 
1195   return next;
1196 }
1197 
GetGraphIdLocked(Mutex * mu)1198 static GraphId GetGraphIdLocked(Mutex* mu)
1199     ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
1200   if (!deadlock_graph) {  // (re)create the deadlock graph.
1201     deadlock_graph =
1202         new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
1203             GraphCycles;
1204   }
1205   return deadlock_graph->GetId(mu);
1206 }
1207 
GetGraphId(Mutex * mu)1208 static GraphId GetGraphId(Mutex* mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) {
1209   deadlock_graph_mu.Lock();
1210   GraphId id = GetGraphIdLocked(mu);
1211   deadlock_graph_mu.Unlock();
1212   return id;
1213 }
1214 
1215 // Record a lock acquisition.  This is used in debug mode for deadlock
1216 // detection.  The held_locks pointer points to the relevant data
1217 // structure for each case.
LockEnter(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1218 static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld* held_locks) {
1219   int n = held_locks->n;
1220   int i = 0;
1221   while (i != n && held_locks->locks[i].id != id) {
1222     i++;
1223   }
1224   if (i == n) {
1225     if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
1226       held_locks->overflow = true;  // lost some data
1227     } else {                        // we have room for lock
1228       held_locks->locks[i].mu = mu;
1229       held_locks->locks[i].count = 1;
1230       held_locks->locks[i].id = id;
1231       held_locks->n = n + 1;
1232     }
1233   } else {
1234     held_locks->locks[i].count++;
1235   }
1236 }
1237 
1238 // Record a lock release.  Each call to LockEnter(mu, id, x) should be
1239 // eventually followed by a call to LockLeave(mu, id, x) by the same thread.
1240 // It does not process the event if is not needed when deadlock detection is
1241 // disabled.
LockLeave(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1242 static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld* held_locks) {
1243   int n = held_locks->n;
1244   int i = 0;
1245   while (i != n && held_locks->locks[i].id != id) {
1246     i++;
1247   }
1248   if (i == n) {
1249     if (!held_locks->overflow) {
1250       // The deadlock id may have been reassigned after ForgetDeadlockInfo,
1251       // but in that case mu should still be present.
1252       i = 0;
1253       while (i != n && held_locks->locks[i].mu != mu) {
1254         i++;
1255       }
1256       if (i == n) {  // mu missing means releasing unheld lock
1257         SynchEvent* mu_events = GetSynchEvent(mu);
1258         ABSL_RAW_LOG(FATAL,
1259                      "thread releasing lock it does not hold: %p %s; "
1260                      ,
1261                      static_cast<void*>(mu),
1262                      mu_events == nullptr ? "" : mu_events->name);
1263       }
1264     }
1265   } else if (held_locks->locks[i].count == 1) {
1266     held_locks->n = n - 1;
1267     held_locks->locks[i] = held_locks->locks[n - 1];
1268     held_locks->locks[n - 1].id = InvalidGraphId();
1269     held_locks->locks[n - 1].mu =
1270         nullptr;  // clear mu to please the leak detector.
1271   } else {
1272     assert(held_locks->locks[i].count > 0);
1273     held_locks->locks[i].count--;
1274   }
1275 }
1276 
1277 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu)1278 static inline void DebugOnlyLockEnter(Mutex* mu) {
1279   if (kDebugMode) {
1280     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1281         OnDeadlockCycle::kIgnore) {
1282       LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
1283     }
1284   }
1285 }
1286 
1287 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu,GraphId id)1288 static inline void DebugOnlyLockEnter(Mutex* mu, GraphId id) {
1289   if (kDebugMode) {
1290     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1291         OnDeadlockCycle::kIgnore) {
1292       LockEnter(mu, id, Synch_GetAllLocks());
1293     }
1294   }
1295 }
1296 
1297 // Call LockLeave() if in debug mode and deadlock detection is enabled.
DebugOnlyLockLeave(Mutex * mu)1298 static inline void DebugOnlyLockLeave(Mutex* mu) {
1299   if (kDebugMode) {
1300     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1301         OnDeadlockCycle::kIgnore) {
1302       LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
1303     }
1304   }
1305 }
1306 
StackString(void ** pcs,int n,char * buf,int maxlen,bool symbolize)1307 static char* StackString(void** pcs, int n, char* buf, int maxlen,
1308                          bool symbolize) {
1309   static constexpr int kSymLen = 200;
1310   char sym[kSymLen];
1311   int len = 0;
1312   for (int i = 0; i != n; i++) {
1313     if (len >= maxlen)
1314       return buf;
1315     size_t count = static_cast<size_t>(maxlen - len);
1316     if (symbolize) {
1317       if (!absl::Symbolize(pcs[i], sym, kSymLen)) {
1318         sym[0] = '\0';
1319       }
1320       snprintf(buf + len, count, "%s\t@ %p %s\n", (i == 0 ? "\n" : ""), pcs[i],
1321                sym);
1322     } else {
1323       snprintf(buf + len, count, " %p", pcs[i]);
1324     }
1325     len += strlen(&buf[len]);
1326   }
1327   return buf;
1328 }
1329 
CurrentStackString(char * buf,int maxlen,bool symbolize)1330 static char* CurrentStackString(char* buf, int maxlen, bool symbolize) {
1331   void* pcs[40];
1332   return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
1333                      maxlen, symbolize);
1334 }
1335 
1336 namespace {
1337 enum {
1338   kMaxDeadlockPathLen = 10
1339 };  // maximum length of a deadlock cycle;
1340     // a path this long would be remarkable
1341 // Buffers required to report a deadlock.
1342 // We do not allocate them on stack to avoid large stack frame.
1343 struct DeadlockReportBuffers {
1344   char buf[6100];
1345   GraphId path[kMaxDeadlockPathLen];
1346 };
1347 
1348 struct ScopedDeadlockReportBuffers {
ScopedDeadlockReportBuffersabsl::__anonde02e7400a11::ScopedDeadlockReportBuffers1349   ScopedDeadlockReportBuffers() {
1350     b = reinterpret_cast<DeadlockReportBuffers*>(
1351         base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
1352   }
~ScopedDeadlockReportBuffersabsl::__anonde02e7400a11::ScopedDeadlockReportBuffers1353   ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
1354   DeadlockReportBuffers* b;
1355 };
1356 
1357 // Helper to pass to GraphCycles::UpdateStackTrace.
GetStack(void ** stack,int max_depth)1358 int GetStack(void** stack, int max_depth) {
1359   return absl::GetStackTrace(stack, max_depth, 3);
1360 }
1361 }  // anonymous namespace
1362 
1363 // Called in debug mode when a thread is about to acquire a lock in a way that
1364 // may block.
DeadlockCheck(Mutex * mu)1365 static GraphId DeadlockCheck(Mutex* mu) {
1366   if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1367       OnDeadlockCycle::kIgnore) {
1368     return InvalidGraphId();
1369   }
1370 
1371   SynchLocksHeld* all_locks = Synch_GetAllLocks();
1372 
1373   absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
1374   const GraphId mu_id = GetGraphIdLocked(mu);
1375 
1376   if (all_locks->n == 0) {
1377     // There are no other locks held. Return now so that we don't need to
1378     // call GetSynchEvent(). This way we do not record the stack trace
1379     // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
1380     // it can't always be the first lock acquired by a thread.
1381     return mu_id;
1382   }
1383 
1384   // We prefer to keep stack traces that show a thread holding and acquiring
1385   // as many locks as possible.  This increases the chances that a given edge
1386   // in the acquires-before graph will be represented in the stack traces
1387   // recorded for the locks.
1388   deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
1389 
1390   // For each other mutex already held by this thread:
1391   for (int i = 0; i != all_locks->n; i++) {
1392     const GraphId other_node_id = all_locks->locks[i].id;
1393     const Mutex* other =
1394         static_cast<const Mutex*>(deadlock_graph->Ptr(other_node_id));
1395     if (other == nullptr) {
1396       // Ignore stale lock
1397       continue;
1398     }
1399 
1400     // Add the acquired-before edge to the graph.
1401     if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
1402       ScopedDeadlockReportBuffers scoped_buffers;
1403       DeadlockReportBuffers* b = scoped_buffers.b;
1404       static int number_of_reported_deadlocks = 0;
1405       number_of_reported_deadlocks++;
1406       // Symbolize only 2 first deadlock report to avoid huge slowdowns.
1407       bool symbolize = number_of_reported_deadlocks <= 2;
1408       ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
1409                    CurrentStackString(b->buf, sizeof (b->buf), symbolize));
1410       size_t len = 0;
1411       for (int j = 0; j != all_locks->n; j++) {
1412         void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
1413         if (pr != nullptr) {
1414           snprintf(b->buf + len, sizeof(b->buf) - len, " %p", pr);
1415           len += strlen(&b->buf[len]);
1416         }
1417       }
1418       ABSL_RAW_LOG(ERROR,
1419                    "Acquiring absl::Mutex %p while holding %s; a cycle in the "
1420                    "historical lock ordering graph has been observed",
1421                    static_cast<void*>(mu), b->buf);
1422       ABSL_RAW_LOG(ERROR, "Cycle: ");
1423       int path_len = deadlock_graph->FindPath(mu_id, other_node_id,
1424                                               ABSL_ARRAYSIZE(b->path), b->path);
1425       for (int j = 0; j != path_len && j != ABSL_ARRAYSIZE(b->path); j++) {
1426         GraphId id = b->path[j];
1427         Mutex* path_mu = static_cast<Mutex*>(deadlock_graph->Ptr(id));
1428         if (path_mu == nullptr) continue;
1429         void** stack;
1430         int depth = deadlock_graph->GetStackTrace(id, &stack);
1431         snprintf(b->buf, sizeof(b->buf),
1432                  "mutex@%p stack: ", static_cast<void*>(path_mu));
1433         StackString(stack, depth, b->buf + strlen(b->buf),
1434                     static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
1435                     symbolize);
1436         ABSL_RAW_LOG(ERROR, "%s", b->buf);
1437       }
1438       if (path_len > static_cast<int>(ABSL_ARRAYSIZE(b->path))) {
1439         ABSL_RAW_LOG(ERROR, "(long cycle; list truncated)");
1440       }
1441       if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1442           OnDeadlockCycle::kAbort) {
1443         deadlock_graph_mu.Unlock();  // avoid deadlock in fatal sighandler
1444         ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
1445         return mu_id;
1446       }
1447       break;  // report at most one potential deadlock per acquisition
1448     }
1449   }
1450 
1451   return mu_id;
1452 }
1453 
1454 // Invoke DeadlockCheck() iff we're in debug mode and
1455 // deadlock checking has been enabled.
DebugOnlyDeadlockCheck(Mutex * mu)1456 static inline GraphId DebugOnlyDeadlockCheck(Mutex* mu) {
1457   if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1458                         OnDeadlockCycle::kIgnore) {
1459     return DeadlockCheck(mu);
1460   } else {
1461     return InvalidGraphId();
1462   }
1463 }
1464 
ForgetDeadlockInfo()1465 void Mutex::ForgetDeadlockInfo() {
1466   if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1467                         OnDeadlockCycle::kIgnore) {
1468     deadlock_graph_mu.Lock();
1469     if (deadlock_graph != nullptr) {
1470       deadlock_graph->RemoveNode(this);
1471     }
1472     deadlock_graph_mu.Unlock();
1473   }
1474 }
1475 
AssertNotHeld() const1476 void Mutex::AssertNotHeld() const {
1477   // We have the data to allow this check only if in debug mode and deadlock
1478   // detection is enabled.
1479   if (kDebugMode &&
1480       (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
1481       synch_deadlock_detection.load(std::memory_order_acquire) !=
1482           OnDeadlockCycle::kIgnore) {
1483     GraphId id = GetGraphId(const_cast<Mutex*>(this));
1484     SynchLocksHeld* locks = Synch_GetAllLocks();
1485     for (int i = 0; i != locks->n; i++) {
1486       if (locks->locks[i].id == id) {
1487         SynchEvent* mu_events = GetSynchEvent(this);
1488         ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
1489                      static_cast<const void*>(this),
1490                      (mu_events == nullptr ? "" : mu_events->name));
1491       }
1492     }
1493   }
1494 }
1495 
1496 // Attempt to acquire *mu, and return whether successful.  The implementation
1497 // may spin for a short while if the lock cannot be acquired immediately.
TryAcquireWithSpinning(std::atomic<intptr_t> * mu)1498 static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
1499   int c = globals.spinloop_iterations.load(std::memory_order_relaxed);
1500   do {  // do/while somewhat faster on AMD
1501     intptr_t v = mu->load(std::memory_order_relaxed);
1502     if ((v & (kMuReader | kMuEvent)) != 0) {
1503       return false;                       // a reader or tracing -> give up
1504     } else if (((v & kMuWriter) == 0) &&  // no holder -> try to acquire
1505                mu->compare_exchange_strong(v, kMuWriter | v,
1506                                            std::memory_order_acquire,
1507                                            std::memory_order_relaxed)) {
1508       return true;
1509     }
1510   } while (--c > 0);
1511   return false;
1512 }
1513 
Lock()1514 void Mutex::Lock() {
1515   ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1516   GraphId id = DebugOnlyDeadlockCheck(this);
1517   intptr_t v = mu_.load(std::memory_order_relaxed);
1518   // try fast acquire, then spin loop
1519   if (ABSL_PREDICT_FALSE((v & (kMuWriter | kMuReader | kMuEvent)) != 0) ||
1520       ABSL_PREDICT_FALSE(!mu_.compare_exchange_strong(
1521           v, kMuWriter | v, std::memory_order_acquire,
1522           std::memory_order_relaxed))) {
1523     // try spin acquire, then slow loop
1524     if (ABSL_PREDICT_FALSE(!TryAcquireWithSpinning(&this->mu_))) {
1525       this->LockSlow(kExclusive, nullptr, 0);
1526     }
1527   }
1528   DebugOnlyLockEnter(this, id);
1529   ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1530 }
1531 
ReaderLock()1532 void Mutex::ReaderLock() {
1533   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1534   GraphId id = DebugOnlyDeadlockCheck(this);
1535   intptr_t v = mu_.load(std::memory_order_relaxed);
1536   for (;;) {
1537     // If there are non-readers holding the lock, use the slow loop.
1538     if (ABSL_PREDICT_FALSE(v & (kMuWriter | kMuWait | kMuEvent)) != 0) {
1539       this->LockSlow(kShared, nullptr, 0);
1540       break;
1541     }
1542     // We can avoid the loop and only use the CAS when the lock is free or
1543     // only held by readers.
1544     if (ABSL_PREDICT_TRUE(mu_.compare_exchange_strong(
1545             v, (kMuReader | v) + kMuOne, std::memory_order_acquire,
1546             std::memory_order_relaxed))) {
1547       break;
1548     }
1549   }
1550   DebugOnlyLockEnter(this, id);
1551   ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1552 }
1553 
LockWhenCommon(const Condition & cond,synchronization_internal::KernelTimeout t,bool write)1554 bool Mutex::LockWhenCommon(const Condition& cond,
1555                            synchronization_internal::KernelTimeout t,
1556                            bool write) {
1557   MuHow how = write ? kExclusive : kShared;
1558   ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
1559   GraphId id = DebugOnlyDeadlockCheck(this);
1560   bool res = LockSlowWithDeadline(how, &cond, t, 0);
1561   DebugOnlyLockEnter(this, id);
1562   ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
1563   return res;
1564 }
1565 
AwaitCommon(const Condition & cond,KernelTimeout t)1566 bool Mutex::AwaitCommon(const Condition& cond, KernelTimeout t) {
1567   if (kDebugMode) {
1568     this->AssertReaderHeld();
1569   }
1570   if (cond.Eval()) {  // condition already true; nothing to do
1571     return true;
1572   }
1573   MuHow how =
1574       (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
1575   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
1576   SynchWaitParams waitp(how, &cond, t, nullptr /*no cvmu*/,
1577                         Synch_GetPerThreadAnnotated(this),
1578                         nullptr /*no cv_word*/);
1579   this->UnlockSlow(&waitp);
1580   this->Block(waitp.thread);
1581   ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
1582   ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
1583   this->LockSlowLoop(&waitp, kMuHasBlocked | kMuIsCond);
1584   bool res = waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
1585              EvalConditionAnnotated(&cond, this, true, false, how == kShared);
1586   ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
1587   ABSL_RAW_CHECK(res || t.has_timeout(),
1588                  "condition untrue on return from Await");
1589   return res;
1590 }
1591 
TryLock()1592 bool Mutex::TryLock() {
1593   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
1594   intptr_t v = mu_.load(std::memory_order_relaxed);
1595   // Try fast acquire.
1596   if (ABSL_PREDICT_TRUE((v & (kMuWriter | kMuReader | kMuEvent)) == 0)) {
1597     if (ABSL_PREDICT_TRUE(mu_.compare_exchange_strong(
1598             v, kMuWriter | v, std::memory_order_acquire,
1599             std::memory_order_relaxed))) {
1600       DebugOnlyLockEnter(this);
1601       ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1602       return true;
1603     }
1604   } else if (ABSL_PREDICT_FALSE((v & kMuEvent) != 0)) {
1605     // We're recording events.
1606     return TryLockSlow();
1607   }
1608   ABSL_TSAN_MUTEX_POST_LOCK(
1609       this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
1610   return false;
1611 }
1612 
TryLockSlow()1613 ABSL_ATTRIBUTE_NOINLINE bool Mutex::TryLockSlow() {
1614   intptr_t v = mu_.load(std::memory_order_relaxed);
1615   if ((v & kExclusive->slow_need_zero) == 0 &&  // try fast acquire
1616       mu_.compare_exchange_strong(
1617           v, (kExclusive->fast_or | v) + kExclusive->fast_add,
1618           std::memory_order_acquire, std::memory_order_relaxed)) {
1619     DebugOnlyLockEnter(this);
1620     PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
1621     ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1622     return true;
1623   }
1624   PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
1625   ABSL_TSAN_MUTEX_POST_LOCK(
1626       this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
1627   return false;
1628 }
1629 
ReaderTryLock()1630 bool Mutex::ReaderTryLock() {
1631   ABSL_TSAN_MUTEX_PRE_LOCK(this,
1632                            __tsan_mutex_read_lock | __tsan_mutex_try_lock);
1633   intptr_t v = mu_.load(std::memory_order_relaxed);
1634   // Clang tends to unroll the loop when compiling with optimization.
1635   // But in this case it just unnecessary increases code size.
1636   // If CAS is failing due to contention, the jump cost is negligible.
1637 #if defined(__clang__)
1638 #pragma nounroll
1639 #endif
1640   // The while-loops (here and below) iterate only if the mutex word keeps
1641   // changing (typically because the reader count changes) under the CAS.
1642   // We limit the number of attempts to avoid having to think about livelock.
1643   for (int loop_limit = 5; loop_limit != 0; loop_limit--) {
1644     if (ABSL_PREDICT_FALSE((v & (kMuWriter | kMuWait | kMuEvent)) != 0)) {
1645       break;
1646     }
1647     if (ABSL_PREDICT_TRUE(mu_.compare_exchange_strong(
1648             v, (kMuReader | v) + kMuOne, std::memory_order_acquire,
1649             std::memory_order_relaxed))) {
1650       DebugOnlyLockEnter(this);
1651       ABSL_TSAN_MUTEX_POST_LOCK(
1652           this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1653       return true;
1654     }
1655   }
1656   if (ABSL_PREDICT_TRUE((v & kMuEvent) == 0)) {
1657     ABSL_TSAN_MUTEX_POST_LOCK(this,
1658                               __tsan_mutex_read_lock | __tsan_mutex_try_lock |
1659                                   __tsan_mutex_try_lock_failed,
1660                               0);
1661     return false;
1662   }
1663   // we're recording events
1664   return ReaderTryLockSlow();
1665 }
1666 
ReaderTryLockSlow()1667 ABSL_ATTRIBUTE_NOINLINE bool Mutex::ReaderTryLockSlow() {
1668   intptr_t v = mu_.load(std::memory_order_relaxed);
1669 #if defined(__clang__)
1670 #pragma nounroll
1671 #endif
1672   for (int loop_limit = 5; loop_limit != 0; loop_limit--) {
1673     if ((v & kShared->slow_need_zero) == 0 &&
1674         mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1675                                     std::memory_order_acquire,
1676                                     std::memory_order_relaxed)) {
1677       DebugOnlyLockEnter(this);
1678       PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
1679       ABSL_TSAN_MUTEX_POST_LOCK(
1680           this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1681       return true;
1682     }
1683   }
1684   PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
1685   ABSL_TSAN_MUTEX_POST_LOCK(this,
1686                             __tsan_mutex_read_lock | __tsan_mutex_try_lock |
1687                                 __tsan_mutex_try_lock_failed,
1688                             0);
1689   return false;
1690 }
1691 
Unlock()1692 void Mutex::Unlock() {
1693   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
1694   DebugOnlyLockLeave(this);
1695   intptr_t v = mu_.load(std::memory_order_relaxed);
1696 
1697   if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
1698     ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
1699                  static_cast<unsigned>(v));
1700   }
1701 
1702   // should_try_cas is whether we'll try a compare-and-swap immediately.
1703   // NOTE: optimized out when kDebugMode is false.
1704   bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
1705                          (v & (kMuWait | kMuDesig)) != kMuWait);
1706   // But, we can use an alternate computation of it, that compilers
1707   // currently don't find on their own.  When that changes, this function
1708   // can be simplified.
1709   intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
1710   intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
1711   // Claim: "x == 0 && y > 0" is equal to should_try_cas.
1712   // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
1713   // all possible non-zero values for x exceed all possible values for y.
1714   // Therefore, (x == 0 && y > 0) == (x < y).
1715   if (kDebugMode && should_try_cas != (x < y)) {
1716     // We would usually use PRIdPTR here, but is not correctly implemented
1717     // within the android toolchain.
1718     ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
1719                  static_cast<long long>(v), static_cast<long long>(x),
1720                  static_cast<long long>(y));
1721   }
1722   if (x < y && mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
1723                                            std::memory_order_release,
1724                                            std::memory_order_relaxed)) {
1725     // fast writer release (writer with no waiters or with designated waker)
1726   } else {
1727     this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
1728   }
1729   ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
1730 }
1731 
1732 // Requires v to represent a reader-locked state.
ExactlyOneReader(intptr_t v)1733 static bool ExactlyOneReader(intptr_t v) {
1734   assert((v & (kMuWriter | kMuReader)) == kMuReader);
1735   assert((v & kMuHigh) != 0);
1736   // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
1737   // on some architectures the following generates slightly smaller code.
1738   // It may be faster too.
1739   constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
1740   return (v & kMuMultipleWaitersMask) == 0;
1741 }
1742 
ReaderUnlock()1743 void Mutex::ReaderUnlock() {
1744   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
1745   DebugOnlyLockLeave(this);
1746   intptr_t v = mu_.load(std::memory_order_relaxed);
1747   assert((v & (kMuWriter | kMuReader)) == kMuReader);
1748   for (;;) {
1749     if (ABSL_PREDICT_FALSE((v & (kMuReader | kMuWait | kMuEvent)) !=
1750                            kMuReader)) {
1751       this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
1752       break;
1753     }
1754     // fast reader release (reader with no waiters)
1755     intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
1756     if (ABSL_PREDICT_TRUE(
1757             mu_.compare_exchange_strong(v, v - clear, std::memory_order_release,
1758                                         std::memory_order_relaxed))) {
1759       break;
1760     }
1761   }
1762   ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1763 }
1764 
1765 // Clears the designated waker flag in the mutex if this thread has blocked, and
1766 // therefore may be the designated waker.
ClearDesignatedWakerMask(int flag)1767 static intptr_t ClearDesignatedWakerMask(int flag) {
1768   assert(flag >= 0);
1769   assert(flag <= 1);
1770   switch (flag) {
1771     case 0:  // not blocked
1772       return ~static_cast<intptr_t>(0);
1773     case 1:  // blocked; turn off the designated waker bit
1774       return ~static_cast<intptr_t>(kMuDesig);
1775   }
1776   ABSL_UNREACHABLE();
1777 }
1778 
1779 // Conditionally ignores the existence of waiting writers if a reader that has
1780 // already blocked once wakes up.
IgnoreWaitingWritersMask(int flag)1781 static intptr_t IgnoreWaitingWritersMask(int flag) {
1782   assert(flag >= 0);
1783   assert(flag <= 1);
1784   switch (flag) {
1785     case 0:  // not blocked
1786       return ~static_cast<intptr_t>(0);
1787     case 1:  // blocked; pretend there are no waiting writers
1788       return ~static_cast<intptr_t>(kMuWrWait);
1789   }
1790   ABSL_UNREACHABLE();
1791 }
1792 
1793 // Internal version of LockWhen().  See LockSlowWithDeadline()
LockSlow(MuHow how,const Condition * cond,int flags)1794 ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition* cond,
1795                                              int flags) {
1796   // Note: we specifically initialize spinloop_iterations after the first use
1797   // in TryAcquireWithSpinning so that Lock function does not have any non-tail
1798   // calls and consequently a stack frame. It's fine to have spinloop_iterations
1799   // uninitialized (meaning no spinning) in all initial uncontended Lock calls
1800   // and in the first contended call. After that we will have
1801   // spinloop_iterations properly initialized.
1802   if (ABSL_PREDICT_FALSE(
1803           globals.spinloop_iterations.load(std::memory_order_relaxed) == 0)) {
1804     if (absl::base_internal::NumCPUs() > 1) {
1805       // If this is multiprocessor, allow spinning.
1806       globals.spinloop_iterations.store(1500, std::memory_order_relaxed);
1807     } else {
1808       // If this a uniprocessor, only yield/sleep.
1809       globals.spinloop_iterations.store(-1, std::memory_order_relaxed);
1810     }
1811   }
1812   ABSL_RAW_CHECK(
1813       this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
1814       "condition untrue on return from LockSlow");
1815 }
1816 
1817 // Compute cond->Eval() and tell race detectors that we do it under mutex mu.
EvalConditionAnnotated(const Condition * cond,Mutex * mu,bool locking,bool trylock,bool read_lock)1818 static inline bool EvalConditionAnnotated(const Condition* cond, Mutex* mu,
1819                                           bool locking, bool trylock,
1820                                           bool read_lock) {
1821   // Delicate annotation dance.
1822   // We are currently inside of read/write lock/unlock operation.
1823   // All memory accesses are ignored inside of mutex operations + for unlock
1824   // operation tsan considers that we've already released the mutex.
1825   bool res = false;
1826 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
1827   const uint32_t flags = read_lock ? __tsan_mutex_read_lock : 0;
1828   const uint32_t tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0);
1829 #endif
1830   if (locking) {
1831     // For lock we pretend that we have finished the operation,
1832     // evaluate the predicate, then unlock the mutex and start locking it again
1833     // to match the annotation at the end of outer lock operation.
1834     // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
1835     // will think the lock acquisition is recursive which will trigger
1836     // deadlock detector.
1837     ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0);
1838     res = cond->Eval();
1839     // There is no "try" version of Unlock, so use flags instead of tryflags.
1840     ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1841     ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1842     ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags);
1843   } else {
1844     // Similarly, for unlock we pretend that we have unlocked the mutex,
1845     // lock the mutex, evaluate the predicate, and start unlocking it again
1846     // to match the annotation at the end of outer unlock operation.
1847     ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1848     ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags);
1849     ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0);
1850     res = cond->Eval();
1851     ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1852   }
1853   // Prevent unused param warnings in non-TSAN builds.
1854   static_cast<void>(mu);
1855   static_cast<void>(trylock);
1856   static_cast<void>(read_lock);
1857   return res;
1858 }
1859 
1860 // Compute cond->Eval() hiding it from race detectors.
1861 // We are hiding it because inside of UnlockSlow we can evaluate a predicate
1862 // that was just added by a concurrent Lock operation; Lock adds the predicate
1863 // to the internal Mutex list without actually acquiring the Mutex
1864 // (it only acquires the internal spinlock, which is rightfully invisible for
1865 // tsan). As the result there is no tsan-visible synchronization between the
1866 // addition and this thread. So if we would enable race detection here,
1867 // it would race with the predicate initialization.
EvalConditionIgnored(Mutex * mu,const Condition * cond)1868 static inline bool EvalConditionIgnored(Mutex* mu, const Condition* cond) {
1869   // Memory accesses are already ignored inside of lock/unlock operations,
1870   // but synchronization operations are also ignored. When we evaluate the
1871   // predicate we must ignore only memory accesses but not synchronization,
1872   // because missed synchronization can lead to false reports later.
1873   // So we "divert" (which un-ignores both memory accesses and synchronization)
1874   // and then separately turn on ignores of memory accesses.
1875   ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
1876   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1877   bool res = cond->Eval();
1878   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1879   ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
1880   static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
1881   return res;
1882 }
1883 
1884 // Internal equivalent of *LockWhenWithDeadline(), where
1885 //   "t" represents the absolute timeout; !t.has_timeout() means "forever".
1886 //   "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
1887 // In flags, bits are ored together:
1888 // - kMuHasBlocked indicates that the client has already blocked on the call so
1889 //   the designated waker bit must be cleared and waiting writers should not
1890 //   obstruct this call
1891 // - kMuIsCond indicates that this is a conditional acquire (condition variable,
1892 //   Await,  LockWhen) so contention profiling should be suppressed.
LockSlowWithDeadline(MuHow how,const Condition * cond,KernelTimeout t,int flags)1893 bool Mutex::LockSlowWithDeadline(MuHow how, const Condition* cond,
1894                                  KernelTimeout t, int flags) {
1895   intptr_t v = mu_.load(std::memory_order_relaxed);
1896   bool unlock = false;
1897   if ((v & how->fast_need_zero) == 0 &&  // try fast acquire
1898       mu_.compare_exchange_strong(
1899           v,
1900           (how->fast_or |
1901            (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) +
1902               how->fast_add,
1903           std::memory_order_acquire, std::memory_order_relaxed)) {
1904     if (cond == nullptr ||
1905         EvalConditionAnnotated(cond, this, true, false, how == kShared)) {
1906       return true;
1907     }
1908     unlock = true;
1909   }
1910   SynchWaitParams waitp(how, cond, t, nullptr /*no cvmu*/,
1911                         Synch_GetPerThreadAnnotated(this),
1912                         nullptr /*no cv_word*/);
1913   if (cond != nullptr) {
1914     flags |= kMuIsCond;
1915   }
1916   if (unlock) {
1917     this->UnlockSlow(&waitp);
1918     this->Block(waitp.thread);
1919     flags |= kMuHasBlocked;
1920   }
1921   this->LockSlowLoop(&waitp, flags);
1922   return waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
1923          cond == nullptr ||
1924          EvalConditionAnnotated(cond, this, true, false, how == kShared);
1925 }
1926 
1927 // RAW_CHECK_FMT() takes a condition, a printf-style format string, and
1928 // the printf-style argument list.   The format string must be a literal.
1929 // Arguments after the first are not evaluated unless the condition is true.
1930 #define RAW_CHECK_FMT(cond, ...)                                   \
1931   do {                                                             \
1932     if (ABSL_PREDICT_FALSE(!(cond))) {                             \
1933       ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
1934     }                                                              \
1935   } while (0)
1936 
CheckForMutexCorruption(intptr_t v,const char * label)1937 static void CheckForMutexCorruption(intptr_t v, const char* label) {
1938   // Test for either of two situations that should not occur in v:
1939   //   kMuWriter and kMuReader
1940   //   kMuWrWait and !kMuWait
1941   const uintptr_t w = static_cast<uintptr_t>(v ^ kMuWait);
1942   // By flipping that bit, we can now test for:
1943   //   kMuWriter and kMuReader in w
1944   //   kMuWrWait and kMuWait in w
1945   // We've chosen these two pairs of values to be so that they will overlap,
1946   // respectively, when the word is left shifted by three.  This allows us to
1947   // save a branch in the common (correct) case of them not being coincident.
1948   static_assert(kMuReader << 3 == kMuWriter, "must match");
1949   static_assert(kMuWait << 3 == kMuWrWait, "must match");
1950   if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
1951   RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
1952                 "%s: Mutex corrupt: both reader and writer lock held: %p",
1953                 label, reinterpret_cast<void*>(v));
1954   RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
1955                 "%s: Mutex corrupt: waiting writer with no waiters: %p", label,
1956                 reinterpret_cast<void*>(v));
1957   assert(false);
1958 }
1959 
LockSlowLoop(SynchWaitParams * waitp,int flags)1960 void Mutex::LockSlowLoop(SynchWaitParams* waitp, int flags) {
1961   SchedulingGuard::ScopedDisable disable_rescheduling;
1962   int c = 0;
1963   intptr_t v = mu_.load(std::memory_order_relaxed);
1964   if ((v & kMuEvent) != 0) {
1965     PostSynchEvent(
1966         this, waitp->how == kExclusive ? SYNCH_EV_LOCK : SYNCH_EV_READERLOCK);
1967   }
1968   ABSL_RAW_CHECK(
1969       waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
1970       "detected illegal recursion into Mutex code");
1971   for (;;) {
1972     v = mu_.load(std::memory_order_relaxed);
1973     CheckForMutexCorruption(v, "Lock");
1974     if ((v & waitp->how->slow_need_zero) == 0) {
1975       if (mu_.compare_exchange_strong(
1976               v,
1977               (waitp->how->fast_or |
1978                (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) +
1979                   waitp->how->fast_add,
1980               std::memory_order_acquire, std::memory_order_relaxed)) {
1981         if (waitp->cond == nullptr ||
1982             EvalConditionAnnotated(waitp->cond, this, true, false,
1983                                    waitp->how == kShared)) {
1984           break;  // we timed out, or condition true, so return
1985         }
1986         this->UnlockSlow(waitp);  // got lock but condition false
1987         this->Block(waitp->thread);
1988         flags |= kMuHasBlocked;
1989         c = 0;
1990       }
1991     } else {  // need to access waiter list
1992       bool dowait = false;
1993       if ((v & (kMuSpin | kMuWait)) == 0) {  // no waiters
1994         // This thread tries to become the one and only waiter.
1995         PerThreadSynch* new_h = Enqueue(nullptr, waitp, v, flags);
1996         intptr_t nv =
1997             (v & ClearDesignatedWakerMask(flags & kMuHasBlocked) & kMuLow) |
1998             kMuWait;
1999         ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
2000         if (waitp->how == kExclusive && (v & kMuReader) != 0) {
2001           nv |= kMuWrWait;
2002         }
2003         if (mu_.compare_exchange_strong(
2004                 v, reinterpret_cast<intptr_t>(new_h) | nv,
2005                 std::memory_order_release, std::memory_order_relaxed)) {
2006           dowait = true;
2007         } else {  // attempted Enqueue() failed
2008           // zero out the waitp field set by Enqueue()
2009           waitp->thread->waitp = nullptr;
2010         }
2011       } else if ((v & waitp->how->slow_inc_need_zero &
2012                   IgnoreWaitingWritersMask(flags & kMuHasBlocked)) == 0) {
2013         // This is a reader that needs to increment the reader count,
2014         // but the count is currently held in the last waiter.
2015         if (mu_.compare_exchange_strong(
2016                 v,
2017                 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) |
2018                     kMuSpin | kMuReader,
2019                 std::memory_order_acquire, std::memory_order_relaxed)) {
2020           PerThreadSynch* h = GetPerThreadSynch(v);
2021           h->readers += kMuOne;  // inc reader count in waiter
2022           do {                   // release spinlock
2023             v = mu_.load(std::memory_order_relaxed);
2024           } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
2025                                               std::memory_order_release,
2026                                               std::memory_order_relaxed));
2027           if (waitp->cond == nullptr ||
2028               EvalConditionAnnotated(waitp->cond, this, true, false,
2029                                      waitp->how == kShared)) {
2030             break;  // we timed out, or condition true, so return
2031           }
2032           this->UnlockSlow(waitp);  // got lock but condition false
2033           this->Block(waitp->thread);
2034           flags |= kMuHasBlocked;
2035           c = 0;
2036         }
2037       } else if ((v & kMuSpin) == 0 &&  // attempt to queue ourselves
2038                  mu_.compare_exchange_strong(
2039                      v,
2040                      (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) |
2041                          kMuSpin | kMuWait,
2042                      std::memory_order_acquire, std::memory_order_relaxed)) {
2043         PerThreadSynch* h = GetPerThreadSynch(v);
2044         PerThreadSynch* new_h = Enqueue(h, waitp, v, flags);
2045         intptr_t wr_wait = 0;
2046         ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
2047         if (waitp->how == kExclusive && (v & kMuReader) != 0) {
2048           wr_wait = kMuWrWait;  // give priority to a waiting writer
2049         }
2050         do {  // release spinlock
2051           v = mu_.load(std::memory_order_relaxed);
2052         } while (!mu_.compare_exchange_weak(
2053             v,
2054             (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
2055                 reinterpret_cast<intptr_t>(new_h),
2056             std::memory_order_release, std::memory_order_relaxed));
2057         dowait = true;
2058       }
2059       if (dowait) {
2060         this->Block(waitp->thread);  // wait until removed from list or timeout
2061         flags |= kMuHasBlocked;
2062         c = 0;
2063       }
2064     }
2065     ABSL_RAW_CHECK(
2066         waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2067         "detected illegal recursion into Mutex code");
2068     // delay, then try again
2069     c = synchronization_internal::MutexDelay(c, GENTLE);
2070   }
2071   ABSL_RAW_CHECK(
2072       waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2073       "detected illegal recursion into Mutex code");
2074   if ((v & kMuEvent) != 0) {
2075     PostSynchEvent(this, waitp->how == kExclusive
2076                              ? SYNCH_EV_LOCK_RETURNING
2077                              : SYNCH_EV_READERLOCK_RETURNING);
2078   }
2079 }
2080 
2081 // Unlock this mutex, which is held by the current thread.
2082 // If waitp is non-zero, it must be the wait parameters for the current thread
2083 // which holds the lock but is not runnable because its condition is false
2084 // or it is in the process of blocking on a condition variable; it must requeue
2085 // itself on the mutex/condvar to wait for its condition to become true.
UnlockSlow(SynchWaitParams * waitp)2086 ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams* waitp) {
2087   SchedulingGuard::ScopedDisable disable_rescheduling;
2088   intptr_t v = mu_.load(std::memory_order_relaxed);
2089   this->AssertReaderHeld();
2090   CheckForMutexCorruption(v, "Unlock");
2091   if ((v & kMuEvent) != 0) {
2092     PostSynchEvent(
2093         this, (v & kMuWriter) != 0 ? SYNCH_EV_UNLOCK : SYNCH_EV_READERUNLOCK);
2094   }
2095   int c = 0;
2096   // the waiter under consideration to wake, or zero
2097   PerThreadSynch* w = nullptr;
2098   // the predecessor to w or zero
2099   PerThreadSynch* pw = nullptr;
2100   // head of the list searched previously, or zero
2101   PerThreadSynch* old_h = nullptr;
2102   // a condition that's known to be false.
2103   PerThreadSynch* wake_list = kPerThreadSynchNull;  // list of threads to wake
2104   intptr_t wr_wait = 0;  // set to kMuWrWait if we wake a reader and a
2105                          // later writer could have acquired the lock
2106                          // (starvation avoidance)
2107   ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
2108                      waitp->thread->suppress_fatal_errors,
2109                  "detected illegal recursion into Mutex code");
2110   // This loop finds threads wake_list to wakeup if any, and removes them from
2111   // the list of waiters.  In addition, it places waitp.thread on the queue of
2112   // waiters if waitp is non-zero.
2113   for (;;) {
2114     v = mu_.load(std::memory_order_relaxed);
2115     if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
2116         waitp == nullptr) {
2117       // fast writer release (writer with no waiters or with designated waker)
2118       if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
2119                                       std::memory_order_release,
2120                                       std::memory_order_relaxed)) {
2121         return;
2122       }
2123     } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
2124       // fast reader release (reader with no waiters)
2125       intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
2126       if (mu_.compare_exchange_strong(v, v - clear, std::memory_order_release,
2127                                       std::memory_order_relaxed)) {
2128         return;
2129       }
2130     } else if ((v & kMuSpin) == 0 &&  // attempt to get spinlock
2131                mu_.compare_exchange_strong(v, v | kMuSpin,
2132                                            std::memory_order_acquire,
2133                                            std::memory_order_relaxed)) {
2134       if ((v & kMuWait) == 0) {  // no one to wake
2135         intptr_t nv;
2136         bool do_enqueue = true;  // always Enqueue() the first time
2137         ABSL_RAW_CHECK(waitp != nullptr,
2138                        "UnlockSlow is confused");  // about to sleep
2139         do {  // must loop to release spinlock as reader count may change
2140           v = mu_.load(std::memory_order_relaxed);
2141           // decrement reader count if there are readers
2142           intptr_t new_readers = (v >= kMuOne) ? v - kMuOne : v;
2143           PerThreadSynch* new_h = nullptr;
2144           if (do_enqueue) {
2145             // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
2146             // we must not retry here.  The initial attempt will always have
2147             // succeeded, further attempts would enqueue us against *this due to
2148             // Fer() handling.
2149             do_enqueue = (waitp->cv_word == nullptr);
2150             new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
2151           }
2152           intptr_t clear = kMuWrWait | kMuWriter;  // by default clear write bit
2153           if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) {  // last reader
2154             clear = kMuWrWait | kMuReader;                    // clear read bit
2155           }
2156           nv = (v & kMuLow & ~clear & ~kMuSpin);
2157           if (new_h != nullptr) {
2158             nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2159           } else {  // new_h could be nullptr if we queued ourselves on a
2160                     // CondVar
2161             // In that case, we must place the reader count back in the mutex
2162             // word, as Enqueue() did not store it in the new waiter.
2163             nv |= new_readers & kMuHigh;
2164           }
2165           // release spinlock & our lock; retry if reader-count changed
2166           // (writer count cannot change since we hold lock)
2167         } while (!mu_.compare_exchange_weak(v, nv, std::memory_order_release,
2168                                             std::memory_order_relaxed));
2169         break;
2170       }
2171 
2172       // There are waiters.
2173       // Set h to the head of the circular waiter list.
2174       PerThreadSynch* h = GetPerThreadSynch(v);
2175       if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
2176         // a reader but not the last
2177         h->readers -= kMuOne;    // release our lock
2178         intptr_t nv = v;         // normally just release spinlock
2179         if (waitp != nullptr) {  // but waitp!=nullptr => must queue ourselves
2180           PerThreadSynch* new_h = Enqueue(h, waitp, v, kMuIsCond);
2181           ABSL_RAW_CHECK(new_h != nullptr,
2182                          "waiters disappeared during Enqueue()!");
2183           nv &= kMuLow;
2184           nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2185         }
2186         mu_.store(nv, std::memory_order_release);  // release spinlock
2187         // can release with a store because there were waiters
2188         break;
2189       }
2190 
2191       // Either we didn't search before, or we marked the queue
2192       // as "maybe_unlocking" and no one else should have changed it.
2193       ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
2194                      "Mutex queue changed beneath us");
2195 
2196       // The lock is becoming free, and there's a waiter
2197       if (old_h != nullptr &&
2198           !old_h->may_skip) {    // we used old_h as a terminator
2199         old_h->may_skip = true;  // allow old_h to skip once more
2200         ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
2201         if (h != old_h && MuEquivalentWaiter(old_h, old_h->next)) {
2202           old_h->skip = old_h->next;  // old_h not head & can skip to successor
2203         }
2204       }
2205       if (h->next->waitp->how == kExclusive &&
2206           h->next->waitp->cond == nullptr) {
2207         // easy case: writer with no condition; no need to search
2208         pw = h;  // wake w, the successor of h (=pw)
2209         w = h->next;
2210         w->wake = true;
2211         // We are waking up a writer.  This writer may be racing against
2212         // an already awake reader for the lock.  We want the
2213         // writer to usually win this race,
2214         // because if it doesn't, we can potentially keep taking a reader
2215         // perpetually and writers will starve.  Worse than
2216         // that, this can also starve other readers if kMuWrWait gets set
2217         // later.
2218         wr_wait = kMuWrWait;
2219       } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
2220         // we found a waiter w to wake on a previous iteration and either it's
2221         // a writer, or we've searched the entire list so we have all the
2222         // readers.
2223         if (pw == nullptr) {  // if w's predecessor is unknown, it must be h
2224           pw = h;
2225         }
2226       } else {
2227         // At this point we don't know all the waiters to wake, and the first
2228         // waiter has a condition or is a reader.  We avoid searching over
2229         // waiters we've searched on previous iterations by starting at
2230         // old_h if it's set.  If old_h==h, there's no one to wakeup at all.
2231         if (old_h == h) {  // we've searched before, and nothing's new
2232                            // so there's no one to wake.
2233           intptr_t nv = (v & ~(kMuReader | kMuWriter | kMuWrWait));
2234           h->readers = 0;
2235           h->maybe_unlocking = false;  // finished unlocking
2236           if (waitp != nullptr) {      // we must queue ourselves and sleep
2237             PerThreadSynch* new_h = Enqueue(h, waitp, v, kMuIsCond);
2238             nv &= kMuLow;
2239             if (new_h != nullptr) {
2240               nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2241             }  // else new_h could be nullptr if we queued ourselves on a
2242                // CondVar
2243           }
2244           // release spinlock & lock
2245           // can release with a store because there were waiters
2246           mu_.store(nv, std::memory_order_release);
2247           break;
2248         }
2249 
2250         // set up to walk the list
2251         PerThreadSynch* w_walk;   // current waiter during list walk
2252         PerThreadSynch* pw_walk;  // previous waiter during list walk
2253         if (old_h != nullptr) {  // we've searched up to old_h before
2254           pw_walk = old_h;
2255           w_walk = old_h->next;
2256         } else {  // no prior search, start at beginning
2257           pw_walk =
2258               nullptr;  // h->next's predecessor may change; don't record it
2259           w_walk = h->next;
2260         }
2261 
2262         h->may_skip = false;  // ensure we never skip past h in future searches
2263                               // even if other waiters are queued after it.
2264         ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
2265 
2266         h->maybe_unlocking = true;  // we're about to scan the waiter list
2267                                     // without the spinlock held.
2268                                     // Enqueue must be conservative about
2269                                     // priority queuing.
2270 
2271         // We must release the spinlock to evaluate the conditions.
2272         mu_.store(v, std::memory_order_release);  // release just spinlock
2273         // can release with a store because there were waiters
2274 
2275         // h is the last waiter queued, and w_walk the first unsearched waiter.
2276         // Without the spinlock, the locations mu_ and h->next may now change
2277         // underneath us, but since we hold the lock itself, the only legal
2278         // change is to add waiters between h and w_walk.  Therefore, it's safe
2279         // to walk the path from w_walk to h inclusive. (TryRemove() can remove
2280         // a waiter anywhere, but it acquires both the spinlock and the Mutex)
2281 
2282         old_h = h;  // remember we searched to here
2283 
2284         // Walk the path upto and including h looking for waiters we can wake.
2285         while (pw_walk != h) {
2286           w_walk->wake = false;
2287           if (w_walk->waitp->cond ==
2288                   nullptr ||  // no condition => vacuously true OR
2289                               // this thread's condition is true
2290               EvalConditionIgnored(this, w_walk->waitp->cond)) {
2291             if (w == nullptr) {
2292               w_walk->wake = true;  // can wake this waiter
2293               w = w_walk;
2294               pw = pw_walk;
2295               if (w_walk->waitp->how == kExclusive) {
2296                 wr_wait = kMuWrWait;
2297                 break;  // bail if waking this writer
2298               }
2299             } else if (w_walk->waitp->how == kShared) {  // wake if a reader
2300               w_walk->wake = true;
2301             } else {  // writer with true condition
2302               wr_wait = kMuWrWait;
2303             }
2304           }
2305           if (w_walk->wake) {  // we're waking reader w_walk
2306             pw_walk = w_walk;  // don't skip similar waiters
2307           } else {             // not waking; skip as much as possible
2308             pw_walk = Skip(w_walk);
2309           }
2310           // If pw_walk == h, then load of pw_walk->next can race with
2311           // concurrent write in Enqueue(). However, at the same time
2312           // we do not need to do the load, because we will bail out
2313           // from the loop anyway.
2314           if (pw_walk != h) {
2315             w_walk = pw_walk->next;
2316           }
2317         }
2318 
2319         continue;  // restart for(;;)-loop to wakeup w or to find more waiters
2320       }
2321       ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
2322       // The first (and perhaps only) waiter we've chosen to wake is w, whose
2323       // predecessor is pw.  If w is a reader, we must wake all the other
2324       // waiters with wake==true as well.  We may also need to queue
2325       // ourselves if waitp != null.  The spinlock and the lock are still
2326       // held.
2327 
2328       // This traverses the list in [ pw->next, h ], where h is the head,
2329       // removing all elements with wake==true and placing them in the
2330       // singly-linked list wake_list.  Returns the new head.
2331       h = DequeueAllWakeable(h, pw, &wake_list);
2332 
2333       intptr_t nv = (v & kMuEvent) | kMuDesig;
2334       // assume no waiters left,
2335       // set kMuDesig for INV1a
2336 
2337       if (waitp != nullptr) {  // we must queue ourselves and sleep
2338         h = Enqueue(h, waitp, v, kMuIsCond);
2339         // h is new last waiter; could be null if we queued ourselves on a
2340         // CondVar
2341       }
2342 
2343       ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
2344                      "unexpected empty wake list");
2345 
2346       if (h != nullptr) {  // there are waiters left
2347         h->readers = 0;
2348         h->maybe_unlocking = false;  // finished unlocking
2349         nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
2350       }
2351 
2352       // release both spinlock & lock
2353       // can release with a store because there were waiters
2354       mu_.store(nv, std::memory_order_release);
2355       break;  // out of for(;;)-loop
2356     }
2357     // aggressive here; no one can proceed till we do
2358     c = synchronization_internal::MutexDelay(c, AGGRESSIVE);
2359   }  // end of for(;;)-loop
2360 
2361   if (wake_list != kPerThreadSynchNull) {
2362     int64_t total_wait_cycles = 0;
2363     int64_t max_wait_cycles = 0;
2364     int64_t now = CycleClock::Now();
2365     do {
2366       // Profile lock contention events only if the waiter was trying to acquire
2367       // the lock, not waiting on a condition variable or Condition.
2368       if (!wake_list->cond_waiter) {
2369         int64_t cycles_waited =
2370             (now - wake_list->waitp->contention_start_cycles);
2371         total_wait_cycles += cycles_waited;
2372         if (max_wait_cycles == 0) max_wait_cycles = cycles_waited;
2373         wake_list->waitp->contention_start_cycles = now;
2374         wake_list->waitp->should_submit_contention_data = true;
2375       }
2376       wake_list = Wakeup(wake_list);  // wake waiters
2377     } while (wake_list != kPerThreadSynchNull);
2378     if (total_wait_cycles > 0) {
2379       mutex_tracer("slow release", this, total_wait_cycles);
2380       ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
2381       submit_profile_data(total_wait_cycles);
2382       ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
2383     }
2384   }
2385 }
2386 
2387 // Used by CondVar implementation to reacquire mutex after waking from
2388 // condition variable.  This routine is used instead of Lock() because the
2389 // waiting thread may have been moved from the condition variable queue to the
2390 // mutex queue without a wakeup, by Trans().  In that case, when the thread is
2391 // finally woken, the woken thread will believe it has been woken from the
2392 // condition variable (i.e. its PC will be in when in the CondVar code), when
2393 // in fact it has just been woken from the mutex.  Thus, it must enter the slow
2394 // path of the mutex in the same state as if it had just woken from the mutex.
2395 // That is, it must ensure to clear kMuDesig (INV1b).
Trans(MuHow how)2396 void Mutex::Trans(MuHow how) {
2397   this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
2398 }
2399 
2400 // Used by CondVar implementation to effectively wake thread w from the
2401 // condition variable.  If this mutex is free, we simply wake the thread.
2402 // It will later acquire the mutex with high probability.  Otherwise, we
2403 // enqueue thread w on this mutex.
Fer(PerThreadSynch * w)2404 void Mutex::Fer(PerThreadSynch* w) {
2405   SchedulingGuard::ScopedDisable disable_rescheduling;
2406   int c = 0;
2407   ABSL_RAW_CHECK(w->waitp->cond == nullptr,
2408                  "Mutex::Fer while waiting on Condition");
2409   ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
2410                  "Mutex::Fer with pending CondVar queueing");
2411   // The CondVar timeout is not relevant for the Mutex wait.
2412   w->waitp->timeout = {};
2413   for (;;) {
2414     intptr_t v = mu_.load(std::memory_order_relaxed);
2415     // Note: must not queue if the mutex is unlocked (nobody will wake it).
2416     // For example, we can have only kMuWait (conditional) or maybe
2417     // kMuWait|kMuWrWait.
2418     // conflicting != 0 implies that the waking thread cannot currently take
2419     // the mutex, which in turn implies that someone else has it and can wake
2420     // us if we queue.
2421     const intptr_t conflicting =
2422         kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
2423     if ((v & conflicting) == 0) {
2424       w->next = nullptr;
2425       w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2426       IncrementSynchSem(this, w);
2427       return;
2428     } else {
2429       if ((v & (kMuSpin | kMuWait)) == 0) {  // no waiters
2430         // This thread tries to become the one and only waiter.
2431         PerThreadSynch* new_h =
2432             Enqueue(nullptr, w->waitp, v, kMuIsCond | kMuIsFer);
2433         ABSL_RAW_CHECK(new_h != nullptr,
2434                        "Enqueue failed");  // we must queue ourselves
2435         if (mu_.compare_exchange_strong(
2436                 v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
2437                 std::memory_order_release, std::memory_order_relaxed)) {
2438           return;
2439         }
2440       } else if ((v & kMuSpin) == 0 &&
2441                  mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
2442         PerThreadSynch* h = GetPerThreadSynch(v);
2443         PerThreadSynch* new_h = Enqueue(h, w->waitp, v, kMuIsCond | kMuIsFer);
2444         ABSL_RAW_CHECK(new_h != nullptr,
2445                        "Enqueue failed");  // we must queue ourselves
2446         do {
2447           v = mu_.load(std::memory_order_relaxed);
2448         } while (!mu_.compare_exchange_weak(
2449             v,
2450             (v & kMuLow & ~kMuSpin) | kMuWait |
2451                 reinterpret_cast<intptr_t>(new_h),
2452             std::memory_order_release, std::memory_order_relaxed));
2453         return;
2454       }
2455     }
2456     c = synchronization_internal::MutexDelay(c, GENTLE);
2457   }
2458 }
2459 
AssertHeld() const2460 void Mutex::AssertHeld() const {
2461   if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
2462     SynchEvent* e = GetSynchEvent(this);
2463     ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
2464                  static_cast<const void*>(this), (e == nullptr ? "" : e->name));
2465   }
2466 }
2467 
AssertReaderHeld() const2468 void Mutex::AssertReaderHeld() const {
2469   if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
2470     SynchEvent* e = GetSynchEvent(this);
2471     ABSL_RAW_LOG(FATAL,
2472                  "thread should hold at least a read lock on Mutex %p %s",
2473                  static_cast<const void*>(this), (e == nullptr ? "" : e->name));
2474   }
2475 }
2476 
2477 // -------------------------------- condition variables
2478 static const intptr_t kCvSpin = 0x0001L;   // spinlock protects waiter list
2479 static const intptr_t kCvEvent = 0x0002L;  // record events
2480 
2481 static const intptr_t kCvLow = 0x0003L;  // low order bits of CV
2482 
2483 // Hack to make constant values available to gdb pretty printer
2484 enum {
2485   kGdbCvSpin = kCvSpin,
2486   kGdbCvEvent = kCvEvent,
2487   kGdbCvLow = kCvLow,
2488 };
2489 
2490 static_assert(PerThreadSynch::kAlignment > kCvLow,
2491               "PerThreadSynch::kAlignment must be greater than kCvLow");
2492 
EnableDebugLog(const char * name)2493 void CondVar::EnableDebugLog(const char* name) {
2494   SynchEvent* e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
2495   e->log = true;
2496   UnrefSynchEvent(e);
2497 }
2498 
2499 // Remove thread s from the list of waiters on this condition variable.
Remove(PerThreadSynch * s)2500 void CondVar::Remove(PerThreadSynch* s) {
2501   SchedulingGuard::ScopedDisable disable_rescheduling;
2502   intptr_t v;
2503   int c = 0;
2504   for (v = cv_.load(std::memory_order_relaxed);;
2505        v = cv_.load(std::memory_order_relaxed)) {
2506     if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
2507         cv_.compare_exchange_strong(v, v | kCvSpin, std::memory_order_acquire,
2508                                     std::memory_order_relaxed)) {
2509       PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow);
2510       if (h != nullptr) {
2511         PerThreadSynch* w = h;
2512         while (w->next != s && w->next != h) {  // search for thread
2513           w = w->next;
2514         }
2515         if (w->next == s) {  // found thread; remove it
2516           w->next = s->next;
2517           if (h == s) {
2518             h = (w == s) ? nullptr : w;
2519           }
2520           s->next = nullptr;
2521           s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2522         }
2523       }
2524       // release spinlock
2525       cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2526                 std::memory_order_release);
2527       return;
2528     } else {
2529       // try again after a delay
2530       c = synchronization_internal::MutexDelay(c, GENTLE);
2531     }
2532   }
2533 }
2534 
2535 // Queue thread waitp->thread on condition variable word cv_word using
2536 // wait parameters waitp.
2537 // We split this into a separate routine, rather than simply doing it as part
2538 // of WaitCommon().  If we were to queue ourselves on the condition variable
2539 // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
2540 // the logging code, or via a Condition function) and might potentially attempt
2541 // to block this thread.  That would be a problem if the thread were already on
2542 // a condition variable waiter queue.  Thus, we use the waitp->cv_word to tell
2543 // the unlock code to call CondVarEnqueue() to queue the thread on the condition
2544 // variable queue just before the mutex is to be unlocked, and (most
2545 // importantly) after any call to an external routine that might re-enter the
2546 // mutex code.
CondVarEnqueue(SynchWaitParams * waitp)2547 static void CondVarEnqueue(SynchWaitParams* waitp) {
2548   // This thread might be transferred to the Mutex queue by Fer() when
2549   // we are woken.  To make sure that is what happens, Enqueue() doesn't
2550   // call CondVarEnqueue() again but instead uses its normal code.  We
2551   // must do this before we queue ourselves so that cv_word will be null
2552   // when seen by the dequeuer, who may wish immediately to requeue
2553   // this thread on another queue.
2554   std::atomic<intptr_t>* cv_word = waitp->cv_word;
2555   waitp->cv_word = nullptr;
2556 
2557   intptr_t v = cv_word->load(std::memory_order_relaxed);
2558   int c = 0;
2559   while ((v & kCvSpin) != 0 ||  // acquire spinlock
2560          !cv_word->compare_exchange_weak(v, v | kCvSpin,
2561                                          std::memory_order_acquire,
2562                                          std::memory_order_relaxed)) {
2563     c = synchronization_internal::MutexDelay(c, GENTLE);
2564     v = cv_word->load(std::memory_order_relaxed);
2565   }
2566   ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
2567   waitp->thread->waitp = waitp;  // prepare ourselves for waiting
2568   PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow);
2569   if (h == nullptr) {  // add this thread to waiter list
2570     waitp->thread->next = waitp->thread;
2571   } else {
2572     waitp->thread->next = h->next;
2573     h->next = waitp->thread;
2574   }
2575   waitp->thread->state.store(PerThreadSynch::kQueued,
2576                              std::memory_order_relaxed);
2577   cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
2578                  std::memory_order_release);
2579 }
2580 
WaitCommon(Mutex * mutex,KernelTimeout t)2581 bool CondVar::WaitCommon(Mutex* mutex, KernelTimeout t) {
2582   bool rc = false;  // return value; true iff we timed-out
2583 
2584   intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
2585   Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
2586   ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
2587 
2588   // maybe trace this call
2589   intptr_t v = cv_.load(std::memory_order_relaxed);
2590   cond_var_tracer("Wait", this);
2591   if ((v & kCvEvent) != 0) {
2592     PostSynchEvent(this, SYNCH_EV_WAIT);
2593   }
2594 
2595   // Release mu and wait on condition variable.
2596   SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
2597                         Synch_GetPerThreadAnnotated(mutex), &cv_);
2598   // UnlockSlow() will call CondVarEnqueue() just before releasing the
2599   // Mutex, thus queuing this thread on the condition variable.  See
2600   // CondVarEnqueue() for the reasons.
2601   mutex->UnlockSlow(&waitp);
2602 
2603   // wait for signal
2604   while (waitp.thread->state.load(std::memory_order_acquire) ==
2605          PerThreadSynch::kQueued) {
2606     if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
2607       // DecrementSynchSem returned due to timeout.
2608       // Now we will either (1) remove ourselves from the wait list in Remove
2609       // below, in which case Remove will set thread.state = kAvailable and
2610       // we will not call DecrementSynchSem again; or (2) Signal/SignalAll
2611       // has removed us concurrently and is calling Wakeup, which will set
2612       // thread.state = kAvailable and post to the semaphore.
2613       // It's important to reset the timeout for the case (2) because otherwise
2614       // we can live-lock in this loop since DecrementSynchSem will always
2615       // return immediately due to timeout, but Signal/SignalAll is not
2616       // necessary set thread.state = kAvailable yet (and is not scheduled
2617       // due to thread priorities or other scheduler artifacts).
2618       // Note this could also be resolved if Signal/SignalAll would set
2619       // thread.state = kAvailable while holding the wait list spin lock.
2620       // But this can't be easily done for SignalAll since it grabs the whole
2621       // wait list with a single compare-exchange and does not really grab
2622       // the spin lock.
2623       t = KernelTimeout::Never();
2624       this->Remove(waitp.thread);
2625       rc = true;
2626     }
2627   }
2628 
2629   ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
2630   waitp.thread->waitp = nullptr;  // cleanup
2631 
2632   // maybe trace this call
2633   cond_var_tracer("Unwait", this);
2634   if ((v & kCvEvent) != 0) {
2635     PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
2636   }
2637 
2638   // From synchronization point of view Wait is unlock of the mutex followed
2639   // by lock of the mutex. We've annotated start of unlock in the beginning
2640   // of the function. Now, finish unlock and annotate lock of the mutex.
2641   // (Trans is effectively lock).
2642   ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
2643   ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
2644   mutex->Trans(mutex_how);  // Reacquire mutex
2645   ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
2646   return rc;
2647 }
2648 
Signal()2649 void CondVar::Signal() {
2650   SchedulingGuard::ScopedDisable disable_rescheduling;
2651   ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2652   intptr_t v;
2653   int c = 0;
2654   for (v = cv_.load(std::memory_order_relaxed); v != 0;
2655        v = cv_.load(std::memory_order_relaxed)) {
2656     if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
2657         cv_.compare_exchange_strong(v, v | kCvSpin, std::memory_order_acquire,
2658                                     std::memory_order_relaxed)) {
2659       PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow);
2660       PerThreadSynch* w = nullptr;
2661       if (h != nullptr) {  // remove first waiter
2662         w = h->next;
2663         if (w == h) {
2664           h = nullptr;
2665         } else {
2666           h->next = w->next;
2667         }
2668       }
2669       // release spinlock
2670       cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2671                 std::memory_order_release);
2672       if (w != nullptr) {
2673         w->waitp->cvmu->Fer(w);  // wake waiter, if there was one
2674         cond_var_tracer("Signal wakeup", this);
2675       }
2676       if ((v & kCvEvent) != 0) {
2677         PostSynchEvent(this, SYNCH_EV_SIGNAL);
2678       }
2679       ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2680       return;
2681     } else {
2682       c = synchronization_internal::MutexDelay(c, GENTLE);
2683     }
2684   }
2685   ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2686 }
2687 
SignalAll()2688 void CondVar::SignalAll() {
2689   ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2690   intptr_t v;
2691   int c = 0;
2692   for (v = cv_.load(std::memory_order_relaxed); v != 0;
2693        v = cv_.load(std::memory_order_relaxed)) {
2694     // empty the list if spinlock free
2695     // We do this by simply setting the list to empty using
2696     // compare and swap.   We then have the entire list in our hands,
2697     // which cannot be changing since we grabbed it while no one
2698     // held the lock.
2699     if ((v & kCvSpin) == 0 &&
2700         cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
2701                                     std::memory_order_relaxed)) {
2702       PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow);
2703       if (h != nullptr) {
2704         PerThreadSynch* w;
2705         PerThreadSynch* n = h->next;
2706         do {  // for every thread, wake it up
2707           w = n;
2708           n = n->next;
2709           w->waitp->cvmu->Fer(w);
2710         } while (w != h);
2711         cond_var_tracer("SignalAll wakeup", this);
2712       }
2713       if ((v & kCvEvent) != 0) {
2714         PostSynchEvent(this, SYNCH_EV_SIGNALALL);
2715       }
2716       ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2717       return;
2718     } else {
2719       // try again after a delay
2720       c = synchronization_internal::MutexDelay(c, GENTLE);
2721     }
2722   }
2723   ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2724 }
2725 
Release()2726 void ReleasableMutexLock::Release() {
2727   ABSL_RAW_CHECK(this->mu_ != nullptr,
2728                  "ReleasableMutexLock::Release may only be called once");
2729   this->mu_->Unlock();
2730   this->mu_ = nullptr;
2731 }
2732 
2733 #ifdef ABSL_HAVE_THREAD_SANITIZER
2734 extern "C" void __tsan_read1(void* addr);
2735 #else
2736 #define __tsan_read1(addr)  // do nothing if TSan not enabled
2737 #endif
2738 
2739 // A function that just returns its argument, dereferenced
Dereference(void * arg)2740 static bool Dereference(void* arg) {
2741   // ThreadSanitizer does not instrument this file for memory accesses.
2742   // This function dereferences a user variable that can participate
2743   // in a data race, so we need to manually tell TSan about this memory access.
2744   __tsan_read1(arg);
2745   return *(static_cast<bool*>(arg));
2746 }
2747 
2748 ABSL_CONST_INIT const Condition Condition::kTrue;
2749 
Condition(bool (* func)(void *),void * arg)2750 Condition::Condition(bool (*func)(void*), void* arg)
2751     : eval_(&CallVoidPtrFunction), arg_(arg) {
2752   static_assert(sizeof(&func) <= sizeof(callback_),
2753                 "An overlarge function pointer passed to Condition.");
2754   StoreCallback(func);
2755 }
2756 
CallVoidPtrFunction(const Condition * c)2757 bool Condition::CallVoidPtrFunction(const Condition* c) {
2758   using FunctionPointer = bool (*)(void*);
2759   FunctionPointer function_pointer;
2760   std::memcpy(&function_pointer, c->callback_, sizeof(function_pointer));
2761   return (*function_pointer)(c->arg_);
2762 }
2763 
Condition(const bool * cond)2764 Condition::Condition(const bool* cond)
2765     : eval_(CallVoidPtrFunction),
2766       // const_cast is safe since Dereference does not modify arg
2767       arg_(const_cast<bool*>(cond)) {
2768   using FunctionPointer = bool (*)(void*);
2769   const FunctionPointer dereference = Dereference;
2770   StoreCallback(dereference);
2771 }
2772 
Eval() const2773 bool Condition::Eval() const { return (*this->eval_)(this); }
2774 
GuaranteedEqual(const Condition * a,const Condition * b)2775 bool Condition::GuaranteedEqual(const Condition* a, const Condition* b) {
2776   if (a == nullptr || b == nullptr) {
2777     return a == b;
2778   }
2779   // Check equality of the representative fields.
2780   return a->eval_ == b->eval_ && a->arg_ == b->arg_ &&
2781          !memcmp(a->callback_, b->callback_, sizeof(a->callback_));
2782 }
2783 
2784 ABSL_NAMESPACE_END
2785 }  // namespace absl
2786