• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <algorithm>
16 #include <string>
17 #include <utility>
18 
19 #include <gtest/gtest.h>
20 
21 #include <openssl/bio.h>
22 #include <openssl/crypto.h>
23 #include <openssl/err.h>
24 #include <openssl/mem.h>
25 
26 #include "../internal.h"
27 #include "../test/test_util.h"
28 
29 #if !defined(OPENSSL_WINDOWS)
30 #include <arpa/inet.h>
31 #include <errno.h>
32 #include <fcntl.h>
33 #include <netinet/in.h>
34 #include <poll.h>
35 #include <string.h>
36 #include <sys/socket.h>
37 #include <unistd.h>
38 #else
39 #include <io.h>
40 OPENSSL_MSVC_PRAGMA(warning(push, 3))
41 #include <winsock2.h>
42 #include <ws2tcpip.h>
43 OPENSSL_MSVC_PRAGMA(warning(pop))
44 #endif
45 
46 #if !defined(OPENSSL_WINDOWS)
47 using Socket = int;
48 #define INVALID_SOCKET (-1)
closesocket(int sock)49 static int closesocket(int sock) { return close(sock); }
LastSocketError()50 static std::string LastSocketError() { return strerror(errno); }
51 #else
52 using Socket = SOCKET;
53 static std::string LastSocketError() {
54   char buf[DECIMAL_SIZE(int) + 1];
55   snprintf(buf, sizeof(buf), "%d", WSAGetLastError());
56   return buf;
57 }
58 #endif
59 
60 class OwnedSocket {
61  public:
62   OwnedSocket() = default;
OwnedSocket(Socket sock)63   explicit OwnedSocket(Socket sock) : sock_(sock) {}
OwnedSocket(OwnedSocket && other)64   OwnedSocket(OwnedSocket &&other) { *this = std::move(other); }
~OwnedSocket()65   ~OwnedSocket() { reset(); }
operator =(OwnedSocket && other)66   OwnedSocket &operator=(OwnedSocket &&other) {
67     reset(other.release());
68     return *this;
69   }
70 
is_valid() const71   bool is_valid() const { return sock_ != INVALID_SOCKET; }
get() const72   Socket get() const { return sock_; }
release()73   Socket release() { return std::exchange(sock_, INVALID_SOCKET); }
74 
reset(Socket sock=INVALID_SOCKET)75   void reset(Socket sock = INVALID_SOCKET) {
76     if (is_valid()) {
77       closesocket(sock_);
78     }
79 
80     sock_ = sock;
81   }
82 
83  private:
84   Socket sock_ = INVALID_SOCKET;
85 };
86 
87 struct SockaddrStorage {
familySockaddrStorage88   int family() const { return storage.ss_family; }
89 
addr_mutSockaddrStorage90   sockaddr *addr_mut() { return reinterpret_cast<sockaddr *>(&storage); }
addrSockaddrStorage91   const sockaddr *addr() const {
92     return reinterpret_cast<const sockaddr *>(&storage);
93   }
94 
ToIPv4SockaddrStorage95   sockaddr_in ToIPv4() const {
96     if (family() != AF_INET || len != sizeof(sockaddr_in)) {
97       abort();
98     }
99     // These APIs were seemingly designed before C's strict aliasing rule, and
100     // C++'s strict union handling. Make a copy so the compiler does not read
101     // this as an aliasing violation.
102     sockaddr_in ret;
103     OPENSSL_memcpy(&ret, &storage, sizeof(ret));
104     return ret;
105   }
106 
ToIPv6SockaddrStorage107   sockaddr_in6 ToIPv6() const {
108     if (family() != AF_INET6 || len != sizeof(sockaddr_in6)) {
109       abort();
110     }
111     // These APIs were seemingly designed before C's strict aliasing rule, and
112     // C++'s strict union handling. Make a copy so the compiler does not read
113     // this as an aliasing violation.
114     sockaddr_in6 ret;
115     OPENSSL_memcpy(&ret, &storage, sizeof(ret));
116     return ret;
117   }
118 
119   sockaddr_storage storage = {};
120   socklen_t len = sizeof(storage);
121 };
122 
Bind(int family,const sockaddr * addr,socklen_t addr_len)123 static OwnedSocket Bind(int family, const sockaddr *addr, socklen_t addr_len) {
124   OwnedSocket sock(socket(family, SOCK_STREAM, 0));
125   if (!sock.is_valid()) {
126     return OwnedSocket();
127   }
128 
129   if (bind(sock.get(), addr, addr_len) != 0) {
130     return OwnedSocket();
131   }
132 
133   return sock;
134 }
135 
ListenLoopback(int backlog)136 static OwnedSocket ListenLoopback(int backlog) {
137   // Try binding to IPv6.
138   sockaddr_in6 sin6;
139   OPENSSL_memset(&sin6, 0, sizeof(sin6));
140   sin6.sin6_family = AF_INET6;
141   if (inet_pton(AF_INET6, "::1", &sin6.sin6_addr) != 1) {
142     return OwnedSocket();
143   }
144   OwnedSocket sock =
145       Bind(AF_INET6, reinterpret_cast<const sockaddr *>(&sin6), sizeof(sin6));
146   if (!sock.is_valid()) {
147     // Try binding to IPv4.
148     sockaddr_in sin;
149     OPENSSL_memset(&sin, 0, sizeof(sin));
150     sin.sin_family = AF_INET;
151     if (inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr) != 1) {
152       return OwnedSocket();
153     }
154     sock = Bind(AF_INET, reinterpret_cast<const sockaddr *>(&sin), sizeof(sin));
155   }
156   if (!sock.is_valid()) {
157     return OwnedSocket();
158   }
159 
160   if (listen(sock.get(), backlog) != 0) {
161     return OwnedSocket();
162   }
163 
164   return sock;
165 }
166 
SocketSetNonBlocking(Socket sock)167 static bool SocketSetNonBlocking(Socket sock) {
168 #if defined(OPENSSL_WINDOWS)
169   u_long arg = 1;
170   return ioctlsocket(sock, FIONBIO, &arg) == 0;
171 #else
172   int flags = fcntl(sock, F_GETFL, 0);
173   if (flags < 0) {
174     return false;
175   }
176   flags |= O_NONBLOCK;
177   return fcntl(sock, F_SETFL, flags) == 0;
178 #endif
179 }
180 
181 enum class WaitType { kRead, kWrite };
182 
WaitForSocket(Socket sock,WaitType wait_type)183 static bool WaitForSocket(Socket sock, WaitType wait_type) {
184   // Use an arbitrary 5 second timeout, so the test doesn't hang indefinitely if
185   // there's an issue.
186   static const int kTimeoutSeconds = 5;
187 #if defined(OPENSSL_WINDOWS)
188   fd_set read_set, write_set;
189   FD_ZERO(&read_set);
190   FD_ZERO(&write_set);
191   fd_set *wait_set = wait_type == WaitType::kRead ? &read_set : &write_set;
192   FD_SET(sock, wait_set);
193   timeval timeout;
194   timeout.tv_sec = kTimeoutSeconds;
195   timeout.tv_usec = 0;
196   if (select(0 /* unused on Windows */, &read_set, &write_set, nullptr,
197              &timeout) <= 0) {
198     return false;
199   }
200   return FD_ISSET(sock, wait_set);
201 #else
202   short events = wait_type == WaitType::kRead ? POLLIN : POLLOUT;
203   pollfd fd = {/*fd=*/sock, events, /*revents=*/0};
204   return poll(&fd, 1, kTimeoutSeconds * 1000) == 1 && (fd.revents & events);
205 #endif
206 }
207 
TEST(BIOTest,SocketConnect)208 TEST(BIOTest, SocketConnect) {
209   static const char kTestMessage[] = "test";
210   OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1);
211   ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError();
212 
213   SockaddrStorage addr;
214   ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0)
215       << LastSocketError();
216 
217   char hostname[80];
218   if (addr.family() == AF_INET6) {
219     snprintf(hostname, sizeof(hostname), "[::1]:%d",
220              ntohs(addr.ToIPv6().sin6_port));
221   } else {
222     snprintf(hostname, sizeof(hostname), "127.0.0.1:%d",
223              ntohs(addr.ToIPv4().sin_port));
224   }
225 
226   // Connect to it with a connect BIO.
227   bssl::UniquePtr<BIO> bio(BIO_new_connect(hostname));
228   ASSERT_TRUE(bio);
229 
230   // Write a test message to the BIO. This is assumed to be smaller than the
231   // transport buffer.
232   ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)),
233             BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage)))
234       << LastSocketError();
235 
236   // Accept the socket.
237   OwnedSocket sock(accept(listening_sock.get(), addr.addr_mut(), &addr.len));
238   ASSERT_TRUE(sock.is_valid()) << LastSocketError();
239 
240   // Check the same message is read back out.
241   char buf[sizeof(kTestMessage)];
242   ASSERT_EQ(static_cast<int>(sizeof(kTestMessage)),
243             recv(sock.get(), buf, sizeof(buf), 0))
244       << LastSocketError();
245   EXPECT_EQ(Bytes(kTestMessage, sizeof(kTestMessage)), Bytes(buf, sizeof(buf)));
246 }
247 
TEST(BIOTest,SocketNonBlocking)248 TEST(BIOTest, SocketNonBlocking) {
249   OwnedSocket listening_sock = ListenLoopback(/*backlog=*/1);
250   ASSERT_TRUE(listening_sock.is_valid()) << LastSocketError();
251 
252   // Connect to |listening_sock|.
253   SockaddrStorage addr;
254   ASSERT_EQ(getsockname(listening_sock.get(), addr.addr_mut(), &addr.len), 0)
255       << LastSocketError();
256   OwnedSocket connect_sock(socket(addr.family(), SOCK_STREAM, 0));
257   ASSERT_TRUE(connect_sock.is_valid()) << LastSocketError();
258   ASSERT_EQ(connect(connect_sock.get(), addr.addr(), addr.len), 0)
259       << LastSocketError();
260   ASSERT_TRUE(SocketSetNonBlocking(connect_sock.get())) << LastSocketError();
261   bssl::UniquePtr<BIO> connect_bio(
262       BIO_new_socket(connect_sock.get(), BIO_NOCLOSE));
263   ASSERT_TRUE(connect_bio);
264 
265   // Make a corresponding accepting socket.
266   OwnedSocket accept_sock(
267       accept(listening_sock.get(), addr.addr_mut(), &addr.len));
268   ASSERT_TRUE(accept_sock.is_valid()) << LastSocketError();
269   ASSERT_TRUE(SocketSetNonBlocking(accept_sock.get())) << LastSocketError();
270   bssl::UniquePtr<BIO> accept_bio(
271       BIO_new_socket(accept_sock.get(), BIO_NOCLOSE));
272   ASSERT_TRUE(accept_bio);
273 
274   // Exchange data through the socket.
275   static const char kTestMessage[] = "hello, world";
276 
277   // Reading from |accept_bio| should not block.
278   char buf[sizeof(kTestMessage)];
279   int ret = BIO_read(accept_bio.get(), buf, sizeof(buf));
280   EXPECT_EQ(ret, -1);
281   EXPECT_TRUE(BIO_should_read(accept_bio.get())) << LastSocketError();
282 
283   // Writing to |connect_bio| should eventually overflow the transport buffers
284   // and also give a retryable error.
285   int bytes_written = 0;
286   for (;;) {
287     ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage));
288     if (ret <= 0) {
289       EXPECT_EQ(ret, -1);
290       EXPECT_TRUE(BIO_should_write(connect_bio.get())) << LastSocketError();
291       break;
292     }
293     bytes_written += ret;
294   }
295   EXPECT_GT(bytes_written, 0);
296 
297   // |accept_bio| should readable. Drain it. Note data is not always available
298   // from loopback immediately, notably on macOS, so wait for the socket first.
299   int bytes_read = 0;
300   while (bytes_read < bytes_written) {
301     ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead))
302         << LastSocketError();
303     ret = BIO_read(accept_bio.get(), buf, sizeof(buf));
304     ASSERT_GT(ret, 0);
305     bytes_read += ret;
306   }
307 
308   // |connect_bio| should become writeable again.
309   ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kWrite))
310       << LastSocketError();
311   ret = BIO_write(connect_bio.get(), kTestMessage, sizeof(kTestMessage));
312   EXPECT_EQ(static_cast<int>(sizeof(kTestMessage)), ret);
313 
314   ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead))
315       << LastSocketError();
316   ret = BIO_read(accept_bio.get(), buf, sizeof(buf));
317   EXPECT_EQ(static_cast<int>(sizeof(kTestMessage)), ret);
318   EXPECT_EQ(Bytes(buf), Bytes(kTestMessage));
319 
320   // Close one socket. We should get an EOF out the other.
321   connect_bio.reset();
322   connect_sock.reset();
323 
324   ASSERT_TRUE(WaitForSocket(accept_sock.get(), WaitType::kRead))
325       << LastSocketError();
326   ret = BIO_read(accept_bio.get(), buf, sizeof(buf));
327   EXPECT_EQ(ret, 0) << LastSocketError();
328   EXPECT_FALSE(BIO_should_read(accept_bio.get()));
329 }
330 
TEST(BIOTest,Printf)331 TEST(BIOTest, Printf) {
332   // Test a short output, a very long one, and various sizes around
333   // 256 (the size of the buffer) to ensure edge cases are correct.
334   static const size_t kLengths[] = {5, 250, 251, 252, 253, 254, 1023};
335 
336   bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
337   ASSERT_TRUE(bio);
338 
339   for (size_t length : kLengths) {
340     SCOPED_TRACE(length);
341 
342     std::string in(length, 'a');
343 
344     int ret = BIO_printf(bio.get(), "test %s", in.c_str());
345     ASSERT_GE(ret, 0);
346     EXPECT_EQ(5 + length, static_cast<size_t>(ret));
347 
348     const uint8_t *contents;
349     size_t len;
350     ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
351     EXPECT_EQ("test " + in,
352               std::string(reinterpret_cast<const char *>(contents), len));
353 
354     ASSERT_TRUE(BIO_reset(bio.get()));
355   }
356 }
357 
TEST(BIOTest,ReadASN1)358 TEST(BIOTest, ReadASN1) {
359   static const size_t kLargeASN1PayloadLen = 8000;
360 
361   struct ASN1Test {
362     bool should_succeed;
363     std::vector<uint8_t> input;
364     // suffix_len is the number of zeros to append to |input|.
365     size_t suffix_len;
366     // expected_len, if |should_succeed| is true, is the expected length of the
367     // ASN.1 element.
368     size_t expected_len;
369     size_t max_len;
370   } kASN1Tests[] = {
371       {true, {0x30, 2, 1, 2, 0, 0}, 0, 4, 100},
372       {false /* truncated */, {0x30, 3, 1, 2}, 0, 0, 100},
373       {false /* should be short len */, {0x30, 0x81, 1, 1}, 0, 0, 100},
374       {false /* zero padded */, {0x30, 0x82, 0, 1, 1}, 0, 0, 100},
375 
376       // Test a large payload.
377       {true,
378        {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff},
379        kLargeASN1PayloadLen,
380        4 + kLargeASN1PayloadLen,
381        kLargeASN1PayloadLen * 2},
382       {false /* max_len too short */,
383        {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff},
384        kLargeASN1PayloadLen,
385        4 + kLargeASN1PayloadLen,
386        3 + kLargeASN1PayloadLen},
387 
388       // Test an indefinite-length input.
389       {true,
390        {0x30, 0x80},
391        kLargeASN1PayloadLen + 2,
392        2 + kLargeASN1PayloadLen + 2,
393        kLargeASN1PayloadLen * 2},
394       {false /* max_len too short */,
395        {0x30, 0x80},
396        kLargeASN1PayloadLen + 2,
397        2 + kLargeASN1PayloadLen + 2,
398        2 + kLargeASN1PayloadLen + 1},
399   };
400 
401   for (const auto &t : kASN1Tests) {
402     std::vector<uint8_t> input = t.input;
403     input.resize(input.size() + t.suffix_len, 0);
404 
405     bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(input.data(), input.size()));
406     ASSERT_TRUE(bio);
407 
408     uint8_t *out;
409     size_t out_len;
410     int ok = BIO_read_asn1(bio.get(), &out, &out_len, t.max_len);
411     if (!ok) {
412       out = nullptr;
413     }
414     bssl::UniquePtr<uint8_t> out_storage(out);
415 
416     ASSERT_EQ(t.should_succeed, (ok == 1));
417     if (t.should_succeed) {
418       EXPECT_EQ(Bytes(input.data(), t.expected_len), Bytes(out, out_len));
419     }
420   }
421 }
422 
TEST(BIOTest,MemReadOnly)423 TEST(BIOTest, MemReadOnly) {
424   // A memory BIO created from |BIO_new_mem_buf| is a read-only buffer.
425   static const char kData[] = "abcdefghijklmno";
426   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kData, strlen(kData)));
427   ASSERT_TRUE(bio);
428 
429   // Writing to read-only buffers should fail.
430   EXPECT_EQ(BIO_write(bio.get(), kData, strlen(kData)), -1);
431 
432   const uint8_t *contents;
433   size_t len;
434   ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
435   EXPECT_EQ(Bytes(contents, len), Bytes(kData));
436   EXPECT_EQ(BIO_eof(bio.get()), 0);
437 
438   // Read less than the whole buffer.
439   char buf[6];
440   int ret = BIO_read(bio.get(), buf, sizeof(buf));
441   ASSERT_GT(ret, 0);
442   EXPECT_EQ(Bytes(buf, ret), Bytes("abcdef"));
443 
444   ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
445   EXPECT_EQ(Bytes(contents, len), Bytes("ghijklmno"));
446   EXPECT_EQ(BIO_eof(bio.get()), 0);
447 
448   ret = BIO_read(bio.get(), buf, sizeof(buf));
449   ASSERT_GT(ret, 0);
450   EXPECT_EQ(Bytes(buf, ret), Bytes("ghijkl"));
451 
452   ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
453   EXPECT_EQ(Bytes(contents, len), Bytes("mno"));
454   EXPECT_EQ(BIO_eof(bio.get()), 0);
455 
456   // Read the remainder of the buffer.
457   ret = BIO_read(bio.get(), buf, sizeof(buf));
458   ASSERT_GT(ret, 0);
459   EXPECT_EQ(Bytes(buf, ret), Bytes("mno"));
460 
461   ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
462   EXPECT_EQ(Bytes(contents, len), Bytes(""));
463   EXPECT_EQ(BIO_eof(bio.get()), 1);
464 
465   // By default, reading from a consumed read-only buffer returns EOF.
466   EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0);
467   EXPECT_FALSE(BIO_should_read(bio.get()));
468 
469   // A memory BIO can be configured to return an error instead of EOF. This is
470   // error is returned as retryable. (This is not especially useful here. It
471   // makes more sense for a writable BIO.)
472   EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1);
473   EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1);
474   EXPECT_TRUE(BIO_should_read(bio.get()));
475 
476   // Read exactly the right number of bytes, to test the boundary condition is
477   // correct.
478   bio.reset(BIO_new_mem_buf("abc", 3));
479   ASSERT_TRUE(bio);
480   ret = BIO_read(bio.get(), buf, 3);
481   ASSERT_GT(ret, 0);
482   EXPECT_EQ(Bytes(buf, ret), Bytes("abc"));
483   EXPECT_EQ(BIO_eof(bio.get()), 1);
484 }
485 
TEST(BIOTest,MemWritable)486 TEST(BIOTest, MemWritable) {
487   // A memory BIO created from |BIO_new| is writable.
488   bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
489   ASSERT_TRUE(bio);
490 
491   auto check_bio_contents = [&](Bytes b) {
492     const uint8_t *contents;
493     size_t len;
494     ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
495     EXPECT_EQ(Bytes(contents, len), b);
496 
497     char *contents_c;
498     long len_l = BIO_get_mem_data(bio.get(), &contents_c);
499     ASSERT_GE(len_l, 0);
500     EXPECT_EQ(Bytes(contents_c, len_l), b);
501 
502     BUF_MEM *buf;
503     ASSERT_EQ(BIO_get_mem_ptr(bio.get(), &buf), 1);
504     EXPECT_EQ(Bytes(buf->data, buf->length), b);
505   };
506 
507   // It is initially empty.
508   check_bio_contents(Bytes(""));
509   EXPECT_EQ(BIO_eof(bio.get()), 1);
510 
511   // Reading from it should default to returning a retryable error.
512   char buf[32];
513   EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1);
514   EXPECT_TRUE(BIO_should_read(bio.get()));
515 
516   // This can be configured to return an EOF.
517   EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), 0), 1);
518   EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), 0);
519   EXPECT_FALSE(BIO_should_read(bio.get()));
520 
521   // Restore the default. A writable memory |BIO| is typically used in this mode
522   // so additional data can be written when exhausted.
523   EXPECT_EQ(BIO_set_mem_eof_return(bio.get(), -1), 1);
524 
525   // Writes append to the buffer.
526   ASSERT_EQ(BIO_write(bio.get(), "abcdef", 6), 6);
527   check_bio_contents(Bytes("abcdef"));
528   EXPECT_EQ(BIO_eof(bio.get()), 0);
529 
530   // Writes can include embedded NULs.
531   ASSERT_EQ(BIO_write(bio.get(), "\0ghijk", 6), 6);
532   check_bio_contents(Bytes("abcdef\0ghijk", 12));
533   EXPECT_EQ(BIO_eof(bio.get()), 0);
534 
535   // Do a partial read.
536   int ret = BIO_read(bio.get(), buf, 4);
537   ASSERT_GT(ret, 0);
538   EXPECT_EQ(Bytes(buf, ret), Bytes("abcd"));
539   check_bio_contents(Bytes("ef\0ghijk", 8));
540   EXPECT_EQ(BIO_eof(bio.get()), 0);
541 
542   // Reads and writes may alternate.
543   ASSERT_EQ(BIO_write(bio.get(), "lmnopq", 6), 6);
544   check_bio_contents(Bytes("ef\0ghijklmnopq", 14));
545   EXPECT_EQ(BIO_eof(bio.get()), 0);
546 
547   // Reads may consume embedded NULs.
548   ret = BIO_read(bio.get(), buf, 4);
549   ASSERT_GT(ret, 0);
550   EXPECT_EQ(Bytes(buf, ret), Bytes("ef\0g", 4));
551   check_bio_contents(Bytes("hijklmnopq"));
552   EXPECT_EQ(BIO_eof(bio.get()), 0);
553 
554   // The read buffer exceeds the |BIO|, so we consume everything.
555   ret = BIO_read(bio.get(), buf, sizeof(buf));
556   ASSERT_GT(ret, 0);
557   EXPECT_EQ(Bytes(buf, ret), Bytes("hijklmnopq"));
558   check_bio_contents(Bytes(""));
559   EXPECT_EQ(BIO_eof(bio.get()), 1);
560 
561   // The |BIO| is now empty.
562   EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1);
563   EXPECT_TRUE(BIO_should_read(bio.get()));
564 
565   // Repeat the above, reading exactly the right number of bytes, to test the
566   // boundary condition is correct.
567   ASSERT_EQ(BIO_write(bio.get(), "abc", 3), 3);
568   ret = BIO_read(bio.get(), buf, 3);
569   EXPECT_EQ(Bytes(buf, ret), Bytes("abc"));
570   EXPECT_EQ(BIO_read(bio.get(), buf, sizeof(buf)), -1);
571   EXPECT_TRUE(BIO_should_read(bio.get()));
572   EXPECT_EQ(BIO_eof(bio.get()), 1);
573 }
574 
TEST(BIOTest,Gets)575 TEST(BIOTest, Gets) {
576   const struct {
577     std::string bio;
578     int gets_len;
579     std::string gets_result;
580   } kGetsTests[] = {
581       // BIO_gets should stop at the first newline. If the buffer is too small,
582       // stop there instead. Note the buffer size
583       // includes a trailing NUL.
584       {"123456789\n123456789", 5, "1234"},
585       {"123456789\n123456789", 9, "12345678"},
586       {"123456789\n123456789", 10, "123456789"},
587       {"123456789\n123456789", 11, "123456789\n"},
588       {"123456789\n123456789", 12, "123456789\n"},
589       {"123456789\n123456789", 256, "123456789\n"},
590 
591       // If we run out of buffer, read the whole buffer.
592       {"12345", 5, "1234"},
593       {"12345", 6, "12345"},
594       {"12345", 10, "12345"},
595 
596       // NUL bytes do not terminate gets.
597       {std::string("abc\0def\nghi", 11), 256, std::string("abc\0def\n", 8)},
598 
599       // An output size of one means we cannot read any bytes. Only the trailing
600       // NUL is included.
601       {"12345", 1, ""},
602 
603       // Empty line.
604       {"\nabcdef", 256, "\n"},
605       // Empty BIO.
606       {"", 256, ""},
607   };
608   for (const auto& t : kGetsTests) {
609     SCOPED_TRACE(t.bio);
610     SCOPED_TRACE(t.gets_len);
611 
612     auto check_bio_gets = [&](BIO *bio) {
613       std::vector<char> buf(t.gets_len, 'a');
614       int ret = BIO_gets(bio, buf.data(), t.gets_len);
615       ASSERT_GE(ret, 0);
616       // |BIO_gets| should write a NUL terminator, not counted in the return
617       // value.
618       EXPECT_EQ(Bytes(buf.data(), ret + 1),
619                 Bytes(t.gets_result.data(), t.gets_result.size() + 1));
620 
621       // The remaining data should still be in the BIO.
622       buf.resize(t.bio.size() + 1);
623       ret = BIO_read(bio, buf.data(), static_cast<int>(buf.size()));
624       ASSERT_GE(ret, 0);
625       EXPECT_EQ(Bytes(buf.data(), ret),
626                 Bytes(t.bio.substr(t.gets_result.size())));
627     };
628 
629     {
630       SCOPED_TRACE("memory");
631       bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(t.bio.data(), t.bio.size()));
632       ASSERT_TRUE(bio);
633       check_bio_gets(bio.get());
634     }
635 
636     struct FileCloser {
637       void operator()(FILE *f) const { fclose(f); }
638     };
639     using ScopedFILE = std::unique_ptr<FILE, FileCloser>;
640     ScopedFILE file(tmpfile());
641 #if defined(OPENSSL_ANDROID)
642     // On Android, when running from an APK, |tmpfile| does not work. See
643     // b/36991167#comment8.
644     if (!file) {
645       fprintf(stderr, "tmpfile failed: %s (%d). Skipping file-based tests.\n",
646               strerror(errno), errno);
647       continue;
648     }
649 #else
650     ASSERT_TRUE(file);
651 #endif
652 
653     if (!t.bio.empty()) {
654       ASSERT_EQ(1u,
655                 fwrite(t.bio.data(), t.bio.size(), /*nitems=*/1, file.get()));
656       ASSERT_EQ(0, fseek(file.get(), 0, SEEK_SET));
657     }
658 
659     // TODO(crbug.com/boringssl/585): If the line has an embedded NUL, file
660     // BIOs do not currently report the answer correctly.
661     if (t.bio.find('\0') == std::string::npos) {
662       SCOPED_TRACE("file");
663       bssl::UniquePtr<BIO> bio(BIO_new_fp(file.get(), BIO_NOCLOSE));
664       ASSERT_TRUE(bio);
665       check_bio_gets(bio.get());
666     }
667 
668     ASSERT_EQ(0, fseek(file.get(), 0, SEEK_SET));
669 
670     {
671       SCOPED_TRACE("fd");
672 #if defined(OPENSSL_WINDOWS)
673       int fd = _fileno(file.get());
674 #else
675       int fd = fileno(file.get());
676 #endif
677       bssl::UniquePtr<BIO> bio(BIO_new_fd(fd, BIO_NOCLOSE));
678       ASSERT_TRUE(bio);
679       check_bio_gets(bio.get());
680     }
681   }
682 
683   // Negative and zero lengths should not output anything, even a trailing NUL.
684   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf("12345", -1));
685   ASSERT_TRUE(bio);
686   char c = 'a';
687   EXPECT_EQ(0, BIO_gets(bio.get(), &c, -1));
688   EXPECT_EQ(0, BIO_gets(bio.get(), &c, 0));
689   EXPECT_EQ(c, 'a');
690 }
691 
692 // Run through the tests twice, swapping |bio1| and |bio2|, for symmetry.
693 class BIOPairTest : public testing::TestWithParam<bool> {};
694 
TEST_P(BIOPairTest,TestPair)695 TEST_P(BIOPairTest, TestPair) {
696   BIO *bio1, *bio2;
697   ASSERT_TRUE(BIO_new_bio_pair(&bio1, 10, &bio2, 10));
698   bssl::UniquePtr<BIO> free_bio1(bio1), free_bio2(bio2);
699 
700   if (GetParam()) {
701     std::swap(bio1, bio2);
702   }
703 
704   // Check initial states.
705   EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
706   EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1));
707 
708   // Data written in one end may be read out the other.
709   uint8_t buf[20];
710   EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
711   EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1));
712   ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf)));
713   EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
714   EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
715 
716   // Attempting to write more than 10 bytes will write partially.
717   EXPECT_EQ(10, BIO_write(bio1, "1234567890___", 13));
718   EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
719   EXPECT_EQ(-1, BIO_write(bio1, "z", 1));
720   EXPECT_TRUE(BIO_should_write(bio1));
721   ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf)));
722   EXPECT_EQ(Bytes("1234567890"), Bytes(buf, 10));
723   EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
724 
725   // Unsuccessful reads update the read request.
726   EXPECT_EQ(-1, BIO_read(bio2, buf, 5));
727   EXPECT_TRUE(BIO_should_read(bio2));
728   EXPECT_EQ(5u, BIO_ctrl_get_read_request(bio1));
729 
730   // The read request is clamped to the size of the buffer.
731   EXPECT_EQ(-1, BIO_read(bio2, buf, 20));
732   EXPECT_TRUE(BIO_should_read(bio2));
733   EXPECT_EQ(10u, BIO_ctrl_get_read_request(bio1));
734 
735   // Data may be written and read in chunks.
736   EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
737   EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1));
738   EXPECT_EQ(5, BIO_write(bio1, "67890___", 8));
739   EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
740   ASSERT_EQ(3, BIO_read(bio2, buf, 3));
741   EXPECT_EQ(Bytes("123"), Bytes(buf, 3));
742   EXPECT_EQ(3u, BIO_ctrl_get_write_guarantee(bio1));
743   ASSERT_EQ(7, BIO_read(bio2, buf, sizeof(buf)));
744   EXPECT_EQ(Bytes("4567890"), Bytes(buf, 7));
745   EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
746 
747   // Successful reads reset the read request.
748   EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1));
749 
750   // Test writes and reads starting in the middle of the ring buffer and
751   // wrapping to front.
752   EXPECT_EQ(8, BIO_write(bio1, "abcdefgh", 8));
753   EXPECT_EQ(2u, BIO_ctrl_get_write_guarantee(bio1));
754   ASSERT_EQ(3, BIO_read(bio2, buf, 3));
755   EXPECT_EQ(Bytes("abc"), Bytes(buf, 3));
756   EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1));
757   EXPECT_EQ(5, BIO_write(bio1, "ijklm___", 8));
758   EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
759   ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf)));
760   EXPECT_EQ(Bytes("defghijklm"), Bytes(buf, 10));
761   EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1));
762 
763   // Data may flow from both ends in parallel.
764   EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
765   EXPECT_EQ(5, BIO_write(bio2, "67890", 5));
766   ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf)));
767   EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
768   ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf)));
769   EXPECT_EQ(Bytes("67890"), Bytes(buf, 5));
770 
771   // Closing the write end causes an EOF on the read half, after draining.
772   EXPECT_EQ(5, BIO_write(bio1, "12345", 5));
773   EXPECT_TRUE(BIO_shutdown_wr(bio1));
774   ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf)));
775   EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
776   EXPECT_EQ(0, BIO_read(bio2, buf, sizeof(buf)));
777 
778   // A closed write end may not be written to.
779   EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1));
780   EXPECT_EQ(-1, BIO_write(bio1, "_____", 5));
781 
782   uint32_t err = ERR_get_error();
783   EXPECT_EQ(ERR_LIB_BIO, ERR_GET_LIB(err));
784   EXPECT_EQ(BIO_R_BROKEN_PIPE, ERR_GET_REASON(err));
785 
786   // The other end is still functional.
787   EXPECT_EQ(5, BIO_write(bio2, "12345", 5));
788   ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf)));
789   EXPECT_EQ(Bytes("12345"), Bytes(buf, 5));
790 }
791 
792 INSTANTIATE_TEST_SUITE_P(All, BIOPairTest, testing::Values(false, true));
793