• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  *
57  * The DSS routines are based on patches supplied by
58  * Steven Schoch <schoch@sheba.arc.nasa.gov>. */
59 
60 #include <openssl/dsa.h>
61 
62 #include <string.h>
63 
64 #include <openssl/bn.h>
65 #include <openssl/dh.h>
66 #include <openssl/digest.h>
67 #include <openssl/engine.h>
68 #include <openssl/err.h>
69 #include <openssl/ex_data.h>
70 #include <openssl/mem.h>
71 #include <openssl/rand.h>
72 #include <openssl/sha.h>
73 #include <openssl/thread.h>
74 
75 #include "internal.h"
76 #include "../fipsmodule/bn/internal.h"
77 #include "../fipsmodule/dh/internal.h"
78 #include "../internal.h"
79 
80 
81 // Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of
82 // Miller-Rabin.
83 #define DSS_prime_checks 50
84 
85 static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv,
86                           BIGNUM **out_r);
87 
88 static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT;
89 
DSA_new(void)90 DSA *DSA_new(void) {
91   DSA *dsa = OPENSSL_zalloc(sizeof(DSA));
92   if (dsa == NULL) {
93     return NULL;
94   }
95 
96   dsa->references = 1;
97   CRYPTO_MUTEX_init(&dsa->method_mont_lock);
98   CRYPTO_new_ex_data(&dsa->ex_data);
99   return dsa;
100 }
101 
DSA_free(DSA * dsa)102 void DSA_free(DSA *dsa) {
103   if (dsa == NULL) {
104     return;
105   }
106 
107   if (!CRYPTO_refcount_dec_and_test_zero(&dsa->references)) {
108     return;
109   }
110 
111   CRYPTO_free_ex_data(&g_ex_data_class, dsa, &dsa->ex_data);
112 
113   BN_clear_free(dsa->p);
114   BN_clear_free(dsa->q);
115   BN_clear_free(dsa->g);
116   BN_clear_free(dsa->pub_key);
117   BN_clear_free(dsa->priv_key);
118   BN_MONT_CTX_free(dsa->method_mont_p);
119   BN_MONT_CTX_free(dsa->method_mont_q);
120   CRYPTO_MUTEX_cleanup(&dsa->method_mont_lock);
121   OPENSSL_free(dsa);
122 }
123 
DSA_up_ref(DSA * dsa)124 int DSA_up_ref(DSA *dsa) {
125   CRYPTO_refcount_inc(&dsa->references);
126   return 1;
127 }
128 
DSA_bits(const DSA * dsa)129 unsigned DSA_bits(const DSA *dsa) { return BN_num_bits(dsa->p); }
130 
DSA_get0_pub_key(const DSA * dsa)131 const BIGNUM *DSA_get0_pub_key(const DSA *dsa) { return dsa->pub_key; }
132 
DSA_get0_priv_key(const DSA * dsa)133 const BIGNUM *DSA_get0_priv_key(const DSA *dsa) { return dsa->priv_key; }
134 
DSA_get0_p(const DSA * dsa)135 const BIGNUM *DSA_get0_p(const DSA *dsa) { return dsa->p; }
136 
DSA_get0_q(const DSA * dsa)137 const BIGNUM *DSA_get0_q(const DSA *dsa) { return dsa->q; }
138 
DSA_get0_g(const DSA * dsa)139 const BIGNUM *DSA_get0_g(const DSA *dsa) { return dsa->g; }
140 
DSA_get0_key(const DSA * dsa,const BIGNUM ** out_pub_key,const BIGNUM ** out_priv_key)141 void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key,
142                   const BIGNUM **out_priv_key) {
143   if (out_pub_key != NULL) {
144     *out_pub_key = dsa->pub_key;
145   }
146   if (out_priv_key != NULL) {
147     *out_priv_key = dsa->priv_key;
148   }
149 }
150 
DSA_get0_pqg(const DSA * dsa,const BIGNUM ** out_p,const BIGNUM ** out_q,const BIGNUM ** out_g)151 void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q,
152                   const BIGNUM **out_g) {
153   if (out_p != NULL) {
154     *out_p = dsa->p;
155   }
156   if (out_q != NULL) {
157     *out_q = dsa->q;
158   }
159   if (out_g != NULL) {
160     *out_g = dsa->g;
161   }
162 }
163 
DSA_set0_key(DSA * dsa,BIGNUM * pub_key,BIGNUM * priv_key)164 int DSA_set0_key(DSA *dsa, BIGNUM *pub_key, BIGNUM *priv_key) {
165   if (dsa->pub_key == NULL && pub_key == NULL) {
166     return 0;
167   }
168 
169   if (pub_key != NULL) {
170     BN_free(dsa->pub_key);
171     dsa->pub_key = pub_key;
172   }
173   if (priv_key != NULL) {
174     BN_free(dsa->priv_key);
175     dsa->priv_key = priv_key;
176   }
177 
178   return 1;
179 }
180 
DSA_set0_pqg(DSA * dsa,BIGNUM * p,BIGNUM * q,BIGNUM * g)181 int DSA_set0_pqg(DSA *dsa, BIGNUM *p, BIGNUM *q, BIGNUM *g) {
182   if ((dsa->p == NULL && p == NULL) ||
183       (dsa->q == NULL && q == NULL) ||
184       (dsa->g == NULL && g == NULL)) {
185     return 0;
186   }
187 
188   if (p != NULL) {
189     BN_free(dsa->p);
190     dsa->p = p;
191   }
192   if (q != NULL) {
193     BN_free(dsa->q);
194     dsa->q = q;
195   }
196   if (g != NULL) {
197     BN_free(dsa->g);
198     dsa->g = g;
199   }
200 
201   BN_MONT_CTX_free(dsa->method_mont_p);
202   dsa->method_mont_p = NULL;
203   BN_MONT_CTX_free(dsa->method_mont_q);
204   dsa->method_mont_q = NULL;
205   return 1;
206 }
207 
DSA_generate_parameters_ex(DSA * dsa,unsigned bits,const uint8_t * seed_in,size_t seed_len,int * out_counter,unsigned long * out_h,BN_GENCB * cb)208 int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed_in,
209                                size_t seed_len, int *out_counter,
210                                unsigned long *out_h, BN_GENCB *cb) {
211   int ok = 0;
212   unsigned char seed[SHA256_DIGEST_LENGTH];
213   unsigned char md[SHA256_DIGEST_LENGTH];
214   unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH];
215   BIGNUM *r0, *W, *X, *c, *test;
216   BIGNUM *g = NULL, *q = NULL, *p = NULL;
217   BN_MONT_CTX *mont = NULL;
218   int k, n = 0, m = 0;
219   int counter = 0;
220   int r = 0;
221   BN_CTX *ctx = NULL;
222   unsigned int h = 2;
223   const EVP_MD *evpmd;
224 
225   evpmd = (bits >= 2048) ? EVP_sha256() : EVP_sha1();
226   size_t qsize = EVP_MD_size(evpmd);
227 
228   if (bits < 512) {
229     bits = 512;
230   }
231 
232   bits = (bits + 63) / 64 * 64;
233 
234   if (seed_in != NULL) {
235     if (seed_len < qsize) {
236       return 0;
237     }
238     if (seed_len > qsize) {
239       // Only consume as much seed as is expected.
240       seed_len = qsize;
241     }
242     OPENSSL_memcpy(seed, seed_in, seed_len);
243   }
244 
245   ctx = BN_CTX_new();
246   if (ctx == NULL) {
247     goto err;
248   }
249   BN_CTX_start(ctx);
250 
251   r0 = BN_CTX_get(ctx);
252   g = BN_CTX_get(ctx);
253   W = BN_CTX_get(ctx);
254   q = BN_CTX_get(ctx);
255   X = BN_CTX_get(ctx);
256   c = BN_CTX_get(ctx);
257   p = BN_CTX_get(ctx);
258   test = BN_CTX_get(ctx);
259 
260   if (test == NULL || !BN_lshift(test, BN_value_one(), bits - 1)) {
261     goto err;
262   }
263 
264   for (;;) {
265     // Find q.
266     for (;;) {
267       // step 1
268       if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, m++)) {
269         goto err;
270       }
271 
272       int use_random_seed = (seed_in == NULL);
273       if (use_random_seed) {
274         if (!RAND_bytes(seed, qsize)) {
275           goto err;
276         }
277       } else {
278         // If we come back through, use random seed next time.
279         seed_in = NULL;
280       }
281       OPENSSL_memcpy(buf, seed, qsize);
282       OPENSSL_memcpy(buf2, seed, qsize);
283       // precompute "SEED + 1" for step 7:
284       for (size_t i = qsize - 1; i < qsize; i--) {
285         buf[i]++;
286         if (buf[i] != 0) {
287           break;
288         }
289       }
290 
291       // step 2
292       if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL) ||
293           !EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL)) {
294         goto err;
295       }
296       for (size_t i = 0; i < qsize; i++) {
297         md[i] ^= buf2[i];
298       }
299 
300       // step 3
301       md[0] |= 0x80;
302       md[qsize - 1] |= 0x01;
303       if (!BN_bin2bn(md, qsize, q)) {
304         goto err;
305       }
306 
307       // step 4
308       r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx, use_random_seed, cb);
309       if (r > 0) {
310         break;
311       }
312       if (r != 0) {
313         goto err;
314       }
315 
316       // do a callback call
317       // step 5
318     }
319 
320     if (!BN_GENCB_call(cb, 2, 0) || !BN_GENCB_call(cb, 3, 0)) {
321       goto err;
322     }
323 
324     // step 6
325     counter = 0;
326     // "offset = 2"
327 
328     n = (bits - 1) / 160;
329 
330     for (;;) {
331       if ((counter != 0) && !BN_GENCB_call(cb, BN_GENCB_GENERATED, counter)) {
332         goto err;
333       }
334 
335       // step 7
336       BN_zero(W);
337       // now 'buf' contains "SEED + offset - 1"
338       for (k = 0; k <= n; k++) {
339         // obtain "SEED + offset + k" by incrementing:
340         for (size_t i = qsize - 1; i < qsize; i--) {
341           buf[i]++;
342           if (buf[i] != 0) {
343             break;
344           }
345         }
346 
347         if (!EVP_Digest(buf, qsize, md, NULL, evpmd, NULL)) {
348           goto err;
349         }
350 
351         // step 8
352         if (!BN_bin2bn(md, qsize, r0) ||
353             !BN_lshift(r0, r0, (qsize << 3) * k) ||
354             !BN_add(W, W, r0)) {
355           goto err;
356         }
357       }
358 
359       // more of step 8
360       if (!BN_mask_bits(W, bits - 1) ||
361           !BN_copy(X, W) ||
362           !BN_add(X, X, test)) {
363         goto err;
364       }
365 
366       // step 9
367       if (!BN_lshift1(r0, q) ||
368           !BN_mod(c, X, r0, ctx) ||
369           !BN_sub(r0, c, BN_value_one()) ||
370           !BN_sub(p, X, r0)) {
371         goto err;
372       }
373 
374       // step 10
375       if (BN_cmp(p, test) >= 0) {
376         // step 11
377         r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb);
378         if (r > 0) {
379           goto end;  // found it
380         }
381         if (r != 0) {
382           goto err;
383         }
384       }
385 
386       // step 13
387       counter++;
388       // "offset = offset + n + 1"
389 
390       // step 14
391       if (counter >= 4096) {
392         break;
393       }
394     }
395   }
396 end:
397   if (!BN_GENCB_call(cb, 2, 1)) {
398     goto err;
399   }
400 
401   // We now need to generate g
402   // Set r0=(p-1)/q
403   if (!BN_sub(test, p, BN_value_one()) ||
404       !BN_div(r0, NULL, test, q, ctx)) {
405     goto err;
406   }
407 
408   mont = BN_MONT_CTX_new_for_modulus(p, ctx);
409   if (mont == NULL ||
410       !BN_set_word(test, h)) {
411     goto err;
412   }
413 
414   for (;;) {
415     // g=test^r0%p
416     if (!BN_mod_exp_mont(g, test, r0, p, ctx, mont)) {
417       goto err;
418     }
419     if (!BN_is_one(g)) {
420       break;
421     }
422     if (!BN_add(test, test, BN_value_one())) {
423       goto err;
424     }
425     h++;
426   }
427 
428   if (!BN_GENCB_call(cb, 3, 1)) {
429     goto err;
430   }
431 
432   ok = 1;
433 
434 err:
435   if (ok) {
436     BN_free(dsa->p);
437     BN_free(dsa->q);
438     BN_free(dsa->g);
439     dsa->p = BN_dup(p);
440     dsa->q = BN_dup(q);
441     dsa->g = BN_dup(g);
442     if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
443       ok = 0;
444       goto err;
445     }
446     if (out_counter != NULL) {
447       *out_counter = counter;
448     }
449     if (out_h != NULL) {
450       *out_h = h;
451     }
452   }
453 
454   if (ctx) {
455     BN_CTX_end(ctx);
456     BN_CTX_free(ctx);
457   }
458 
459   BN_MONT_CTX_free(mont);
460 
461   return ok;
462 }
463 
DSAparams_dup(const DSA * dsa)464 DSA *DSAparams_dup(const DSA *dsa) {
465   DSA *ret = DSA_new();
466   if (ret == NULL) {
467     return NULL;
468   }
469   ret->p = BN_dup(dsa->p);
470   ret->q = BN_dup(dsa->q);
471   ret->g = BN_dup(dsa->g);
472   if (ret->p == NULL || ret->q == NULL || ret->g == NULL) {
473     DSA_free(ret);
474     return NULL;
475   }
476   return ret;
477 }
478 
DSA_generate_key(DSA * dsa)479 int DSA_generate_key(DSA *dsa) {
480   int ok = 0;
481   BN_CTX *ctx = NULL;
482   BIGNUM *pub_key = NULL, *priv_key = NULL;
483 
484   ctx = BN_CTX_new();
485   if (ctx == NULL) {
486     goto err;
487   }
488 
489   priv_key = dsa->priv_key;
490   if (priv_key == NULL) {
491     priv_key = BN_new();
492     if (priv_key == NULL) {
493       goto err;
494     }
495   }
496 
497   if (!BN_rand_range_ex(priv_key, 1, dsa->q)) {
498     goto err;
499   }
500 
501   pub_key = dsa->pub_key;
502   if (pub_key == NULL) {
503     pub_key = BN_new();
504     if (pub_key == NULL) {
505       goto err;
506     }
507   }
508 
509   if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, &dsa->method_mont_lock,
510                               dsa->p, ctx) ||
511       !BN_mod_exp_mont_consttime(pub_key, dsa->g, priv_key, dsa->p, ctx,
512                                  dsa->method_mont_p)) {
513     goto err;
514   }
515 
516   dsa->priv_key = priv_key;
517   dsa->pub_key = pub_key;
518   ok = 1;
519 
520 err:
521   if (dsa->pub_key == NULL) {
522     BN_free(pub_key);
523   }
524   if (dsa->priv_key == NULL) {
525     BN_free(priv_key);
526   }
527   BN_CTX_free(ctx);
528 
529   return ok;
530 }
531 
DSA_SIG_new(void)532 DSA_SIG *DSA_SIG_new(void) { return OPENSSL_zalloc(sizeof(DSA_SIG)); }
533 
DSA_SIG_free(DSA_SIG * sig)534 void DSA_SIG_free(DSA_SIG *sig) {
535   if (!sig) {
536     return;
537   }
538 
539   BN_free(sig->r);
540   BN_free(sig->s);
541   OPENSSL_free(sig);
542 }
543 
DSA_SIG_get0(const DSA_SIG * sig,const BIGNUM ** out_r,const BIGNUM ** out_s)544 void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **out_r,
545                   const BIGNUM **out_s) {
546   if (out_r != NULL) {
547     *out_r = sig->r;
548   }
549   if (out_s != NULL) {
550     *out_s = sig->s;
551   }
552 }
553 
DSA_SIG_set0(DSA_SIG * sig,BIGNUM * r,BIGNUM * s)554 int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
555   if (r == NULL || s == NULL) {
556     return 0;
557   }
558   BN_free(sig->r);
559   BN_free(sig->s);
560   sig->r = r;
561   sig->s = s;
562   return 1;
563 }
564 
565 // mod_mul_consttime sets |r| to |a| * |b| modulo |mont->N|, treating |a| and
566 // |b| as secret. This function internally uses Montgomery reduction, but
567 // neither inputs nor outputs are in Montgomery form.
mod_mul_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BN_MONT_CTX * mont,BN_CTX * ctx)568 static int mod_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
569                              const BN_MONT_CTX *mont, BN_CTX *ctx) {
570   BN_CTX_start(ctx);
571   BIGNUM *tmp = BN_CTX_get(ctx);
572   // |BN_mod_mul_montgomery| removes a factor of R, so we cancel it with a
573   // single |BN_to_montgomery| which adds one factor of R.
574   int ok = tmp != NULL &&
575            BN_to_montgomery(tmp, a, mont, ctx) &&
576            BN_mod_mul_montgomery(r, tmp, b, mont, ctx);
577   BN_CTX_end(ctx);
578   return ok;
579 }
580 
DSA_do_sign(const uint8_t * digest,size_t digest_len,const DSA * dsa)581 DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, const DSA *dsa) {
582   if (!dsa_check_key(dsa)) {
583     return NULL;
584   }
585 
586   if (dsa->priv_key == NULL) {
587     OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
588     return NULL;
589   }
590 
591   BIGNUM *kinv = NULL, *r = NULL, *s = NULL;
592   BIGNUM m;
593   BIGNUM xr;
594   BN_CTX *ctx = NULL;
595   DSA_SIG *ret = NULL;
596 
597   BN_init(&m);
598   BN_init(&xr);
599   s = BN_new();
600   if (s == NULL) {
601     goto err;
602   }
603   ctx = BN_CTX_new();
604   if (ctx == NULL) {
605     goto err;
606   }
607 
608   // Cap iterations so that invalid parameters do not infinite loop. This does
609   // not impact valid parameters because the probability of requiring even one
610   // retry is negligible, let alone 32. Unfortunately, DSA was mis-specified, so
611   // invalid parameters are reachable from most callers handling untrusted
612   // private keys. (The |dsa_check_key| call above is not sufficient. Checking
613   // whether arbitrary paremeters form a valid DSA group is expensive.)
614   static const int kMaxIterations = 32;
615   int iters = 0;
616 redo:
617   if (!dsa_sign_setup(dsa, ctx, &kinv, &r)) {
618     goto err;
619   }
620 
621   if (digest_len > BN_num_bytes(dsa->q)) {
622     // If the digest length is greater than the size of |dsa->q| use the
623     // BN_num_bits(dsa->q) leftmost bits of the digest, see FIPS 186-3, 4.2.
624     // Note the above check that |dsa->q| is a multiple of 8 bits.
625     digest_len = BN_num_bytes(dsa->q);
626   }
627 
628   if (BN_bin2bn(digest, digest_len, &m) == NULL) {
629     goto err;
630   }
631 
632   // |m| is bounded by 2^(num_bits(q)), which is slightly looser than q. This
633   // violates |bn_mod_add_consttime| and |mod_mul_consttime|'s preconditions.
634   // (The underlying algorithms could accept looser bounds, but we reduce for
635   // simplicity.)
636   size_t q_width = bn_minimal_width(dsa->q);
637   if (!bn_resize_words(&m, q_width) ||
638       !bn_resize_words(&xr, q_width)) {
639     goto err;
640   }
641   bn_reduce_once_in_place(m.d, 0 /* no carry word */, dsa->q->d,
642                           xr.d /* scratch space */, q_width);
643 
644   // Compute s = inv(k) (m + xr) mod q. Note |dsa->method_mont_q| is
645   // initialized by |dsa_sign_setup|.
646   if (!mod_mul_consttime(&xr, dsa->priv_key, r, dsa->method_mont_q, ctx) ||
647       !bn_mod_add_consttime(s, &xr, &m, dsa->q, ctx) ||
648       !mod_mul_consttime(s, s, kinv, dsa->method_mont_q, ctx)) {
649     goto err;
650   }
651 
652   // Redo if r or s is zero as required by FIPS 186-3: this is
653   // very unlikely.
654   if (BN_is_zero(r) || BN_is_zero(s)) {
655     iters++;
656     if (iters > kMaxIterations) {
657       OPENSSL_PUT_ERROR(DSA, DSA_R_TOO_MANY_ITERATIONS);
658       goto err;
659     }
660     goto redo;
661   }
662 
663   ret = DSA_SIG_new();
664   if (ret == NULL) {
665     goto err;
666   }
667   ret->r = r;
668   ret->s = s;
669 
670 err:
671   if (ret == NULL) {
672     OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
673     BN_free(r);
674     BN_free(s);
675   }
676   BN_CTX_free(ctx);
677   BN_clear_free(&m);
678   BN_clear_free(&xr);
679   BN_clear_free(kinv);
680 
681   return ret;
682 }
683 
DSA_do_verify(const uint8_t * digest,size_t digest_len,DSA_SIG * sig,const DSA * dsa)684 int DSA_do_verify(const uint8_t *digest, size_t digest_len, DSA_SIG *sig,
685                   const DSA *dsa) {
686   int valid;
687   if (!DSA_do_check_signature(&valid, digest, digest_len, sig, dsa)) {
688     return -1;
689   }
690   return valid;
691 }
692 
DSA_do_check_signature(int * out_valid,const uint8_t * digest,size_t digest_len,DSA_SIG * sig,const DSA * dsa)693 int DSA_do_check_signature(int *out_valid, const uint8_t *digest,
694                            size_t digest_len, DSA_SIG *sig, const DSA *dsa) {
695   *out_valid = 0;
696   if (!dsa_check_key(dsa)) {
697     return 0;
698   }
699 
700   if (dsa->pub_key == NULL) {
701     OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
702     return 0;
703   }
704 
705   int ret = 0;
706   BIGNUM u1, u2, t1;
707   BN_init(&u1);
708   BN_init(&u2);
709   BN_init(&t1);
710   BN_CTX *ctx = BN_CTX_new();
711   if (ctx == NULL) {
712     goto err;
713   }
714 
715   if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
716       BN_ucmp(sig->r, dsa->q) >= 0) {
717     ret = 1;
718     goto err;
719   }
720   if (BN_is_zero(sig->s) || BN_is_negative(sig->s) ||
721       BN_ucmp(sig->s, dsa->q) >= 0) {
722     ret = 1;
723     goto err;
724   }
725 
726   // Calculate W = inv(S) mod Q
727   // save W in u2
728   if (BN_mod_inverse(&u2, sig->s, dsa->q, ctx) == NULL) {
729     goto err;
730   }
731 
732   // save M in u1
733   unsigned q_bits = BN_num_bits(dsa->q);
734   if (digest_len > (q_bits >> 3)) {
735     // if the digest length is greater than the size of q use the
736     // BN_num_bits(dsa->q) leftmost bits of the digest, see
737     // fips 186-3, 4.2
738     digest_len = (q_bits >> 3);
739   }
740 
741   if (BN_bin2bn(digest, digest_len, &u1) == NULL) {
742     goto err;
743   }
744 
745   // u1 = M * w mod q
746   if (!BN_mod_mul(&u1, &u1, &u2, dsa->q, ctx)) {
747     goto err;
748   }
749 
750   // u2 = r * w mod q
751   if (!BN_mod_mul(&u2, sig->r, &u2, dsa->q, ctx)) {
752     goto err;
753   }
754 
755   if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
756                               (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
757                               ctx)) {
758     goto err;
759   }
760 
761   if (!BN_mod_exp2_mont(&t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p, ctx,
762                         dsa->method_mont_p)) {
763     goto err;
764   }
765 
766   // BN_copy(&u1,&t1);
767   // let u1 = u1 mod q
768   if (!BN_mod(&u1, &t1, dsa->q, ctx)) {
769     goto err;
770   }
771 
772   // V is now in u1.  If the signature is correct, it will be
773   // equal to R.
774   *out_valid = BN_ucmp(&u1, sig->r) == 0;
775   ret = 1;
776 
777 err:
778   if (ret != 1) {
779     OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
780   }
781   BN_CTX_free(ctx);
782   BN_free(&u1);
783   BN_free(&u2);
784   BN_free(&t1);
785 
786   return ret;
787 }
788 
DSA_sign(int type,const uint8_t * digest,size_t digest_len,uint8_t * out_sig,unsigned int * out_siglen,const DSA * dsa)789 int DSA_sign(int type, const uint8_t *digest, size_t digest_len,
790              uint8_t *out_sig, unsigned int *out_siglen, const DSA *dsa) {
791   DSA_SIG *s;
792 
793   s = DSA_do_sign(digest, digest_len, dsa);
794   if (s == NULL) {
795     *out_siglen = 0;
796     return 0;
797   }
798 
799   *out_siglen = i2d_DSA_SIG(s, &out_sig);
800   DSA_SIG_free(s);
801   return 1;
802 }
803 
DSA_verify(int type,const uint8_t * digest,size_t digest_len,const uint8_t * sig,size_t sig_len,const DSA * dsa)804 int DSA_verify(int type, const uint8_t *digest, size_t digest_len,
805                const uint8_t *sig, size_t sig_len, const DSA *dsa) {
806   int valid;
807   if (!DSA_check_signature(&valid, digest, digest_len, sig, sig_len, dsa)) {
808     return -1;
809   }
810   return valid;
811 }
812 
DSA_check_signature(int * out_valid,const uint8_t * digest,size_t digest_len,const uint8_t * sig,size_t sig_len,const DSA * dsa)813 int DSA_check_signature(int *out_valid, const uint8_t *digest,
814                         size_t digest_len, const uint8_t *sig, size_t sig_len,
815                         const DSA *dsa) {
816   DSA_SIG *s = NULL;
817   int ret = 0;
818   uint8_t *der = NULL;
819 
820   s = DSA_SIG_new();
821   if (s == NULL) {
822     goto err;
823   }
824 
825   const uint8_t *sigp = sig;
826   if (d2i_DSA_SIG(&s, &sigp, sig_len) == NULL || sigp != sig + sig_len) {
827     goto err;
828   }
829 
830   // Ensure that the signature uses DER and doesn't have trailing garbage.
831   int der_len = i2d_DSA_SIG(s, &der);
832   if (der_len < 0 || (size_t)der_len != sig_len ||
833       OPENSSL_memcmp(sig, der, sig_len)) {
834     goto err;
835   }
836 
837   ret = DSA_do_check_signature(out_valid, digest, digest_len, s, dsa);
838 
839 err:
840   OPENSSL_free(der);
841   DSA_SIG_free(s);
842   return ret;
843 }
844 
845 // der_len_len returns the number of bytes needed to represent a length of |len|
846 // in DER.
der_len_len(size_t len)847 static size_t der_len_len(size_t len) {
848   if (len < 0x80) {
849     return 1;
850   }
851   size_t ret = 1;
852   while (len > 0) {
853     ret++;
854     len >>= 8;
855   }
856   return ret;
857 }
858 
DSA_size(const DSA * dsa)859 int DSA_size(const DSA *dsa) {
860   if (dsa->q == NULL) {
861     return 0;
862   }
863 
864   size_t order_len = BN_num_bytes(dsa->q);
865   // Compute the maximum length of an |order_len| byte integer. Defensively
866   // assume that the leading 0x00 is included.
867   size_t integer_len = 1 /* tag */ + der_len_len(order_len + 1) + 1 + order_len;
868   if (integer_len < order_len) {
869     return 0;
870   }
871   // A DSA signature is two INTEGERs.
872   size_t value_len = 2 * integer_len;
873   if (value_len < integer_len) {
874     return 0;
875   }
876   // Add the header.
877   size_t ret = 1 /* tag */ + der_len_len(value_len) + value_len;
878   if (ret < value_len) {
879     return 0;
880   }
881   return ret;
882 }
883 
dsa_sign_setup(const DSA * dsa,BN_CTX * ctx,BIGNUM ** out_kinv,BIGNUM ** out_r)884 static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx, BIGNUM **out_kinv,
885                           BIGNUM **out_r) {
886   int ret = 0;
887   BIGNUM k;
888   BN_init(&k);
889   BIGNUM *r = BN_new();
890   BIGNUM *kinv = BN_new();
891   if (r == NULL || kinv == NULL ||
892       // Get random k
893       !BN_rand_range_ex(&k, 1, dsa->q) ||
894       !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
895                               (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
896                               ctx) ||
897       !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q,
898                               (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q,
899                               ctx) ||
900       // Compute r = (g^k mod p) mod q
901       !BN_mod_exp_mont_consttime(r, dsa->g, &k, dsa->p, ctx,
902                                  dsa->method_mont_p) ||
903       // Note |BN_mod| below is not constant-time and may leak information about
904       // |r|. |dsa->p| may be significantly larger than |dsa->q|, so this is not
905       // easily performed in constant-time with Montgomery reduction.
906       //
907       // However, |r| at this point is g^k (mod p). It is almost the value of
908       // |r| revealed in the signature anyway (g^k (mod p) (mod q)), going from
909       // it to |k| would require computing a discrete log.
910       !BN_mod(r, r, dsa->q, ctx) ||
911       // Compute part of 's = inv(k) (m + xr) mod q' using Fermat's Little
912       // Theorem.
913       !bn_mod_inverse_prime(kinv, &k, dsa->q, ctx, dsa->method_mont_q)) {
914     OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
915     goto err;
916   }
917 
918   BN_clear_free(*out_kinv);
919   *out_kinv = kinv;
920   kinv = NULL;
921 
922   BN_clear_free(*out_r);
923   *out_r = r;
924   r = NULL;
925 
926   ret = 1;
927 
928 err:
929   BN_clear_free(&k);
930   BN_clear_free(r);
931   BN_clear_free(kinv);
932   return ret;
933 }
934 
DSA_get_ex_new_index(long argl,void * argp,CRYPTO_EX_unused * unused,CRYPTO_EX_dup * dup_unused,CRYPTO_EX_free * free_func)935 int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
936                          CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) {
937   int index;
938   if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp,
939                                free_func)) {
940     return -1;
941   }
942   return index;
943 }
944 
DSA_set_ex_data(DSA * dsa,int idx,void * arg)945 int DSA_set_ex_data(DSA *dsa, int idx, void *arg) {
946   return CRYPTO_set_ex_data(&dsa->ex_data, idx, arg);
947 }
948 
DSA_get_ex_data(const DSA * dsa,int idx)949 void *DSA_get_ex_data(const DSA *dsa, int idx) {
950   return CRYPTO_get_ex_data(&dsa->ex_data, idx);
951 }
952 
DSA_dup_DH(const DSA * dsa)953 DH *DSA_dup_DH(const DSA *dsa) {
954   if (dsa == NULL) {
955     return NULL;
956   }
957 
958   DH *ret = DH_new();
959   if (ret == NULL) {
960     goto err;
961   }
962   if (dsa->q != NULL) {
963     ret->priv_length = BN_num_bits(dsa->q);
964     if ((ret->q = BN_dup(dsa->q)) == NULL) {
965       goto err;
966     }
967   }
968   if ((dsa->p != NULL && (ret->p = BN_dup(dsa->p)) == NULL) ||
969       (dsa->g != NULL && (ret->g = BN_dup(dsa->g)) == NULL) ||
970       (dsa->pub_key != NULL && (ret->pub_key = BN_dup(dsa->pub_key)) == NULL) ||
971       (dsa->priv_key != NULL &&
972        (ret->priv_key = BN_dup(dsa->priv_key)) == NULL)) {
973     goto err;
974   }
975 
976   return ret;
977 
978 err:
979   DH_free(ret);
980   return NULL;
981 }
982