• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  *
57  * The DSS routines are based on patches supplied by
58  * Steven Schoch <schoch@sheba.arc.nasa.gov>. */
59 
60 #include <openssl/dsa.h>
61 
62 #include <stdio.h>
63 #include <string.h>
64 
65 #include <vector>
66 
67 #include <gtest/gtest.h>
68 
69 #include <openssl/bn.h>
70 #include <openssl/crypto.h>
71 #include <openssl/err.h>
72 #include <openssl/pem.h>
73 #include <openssl/span.h>
74 
75 #include "../test/test_util.h"
76 
77 
78 // The following values are taken from the updated Appendix 5 to FIPS PUB 186
79 // and also appear in Appendix 5 to FIPS PUB 186-1.
80 
81 static const uint8_t seed[20] = {
82     0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b,
83     0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3,
84 };
85 
86 static const uint8_t fips_p[] = {
87     0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75,
88     0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d,
89     0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0,
90     0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac,
91     0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24,
92     0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91,
93 };
94 
95 static const uint8_t fips_q[] = {
96     0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f,
97     0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f,
98 };
99 
100 static const uint8_t fips_g[] = {
101     0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63,
102     0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c,
103     0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71,
104     0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95,
105     0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08,
106     0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02,
107 };
108 
109 static const uint8_t fips_x[] = {
110     0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f,
111     0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14,
112 };
113 
114 static const uint8_t fips_y[] = {
115     0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2,
116     0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6,
117     0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d,
118     0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25,
119     0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06,
120     0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33,
121 };
122 
123 static const uint8_t fips_digest[] = {
124     0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25,
125     0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d,
126 };
127 
128 // fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1.
129 static const uint8_t fips_sig[] = {
130     0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
131     0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
132     0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
133     0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
134     0xdc, 0xd8, 0xc8,
135 };
136 
137 // fips_sig_negative is fips_sig with r encoded as a negative number.
138 static const uint8_t fips_sig_negative[] = {
139     0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43,
140     0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3,
141     0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf,
142     0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc,
143     0xd8, 0xc8,
144 };
145 
146 // fip_sig_extra is fips_sig with trailing data.
147 static const uint8_t fips_sig_extra[] = {
148     0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
149     0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
150     0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
151     0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
152     0xdc, 0xd8, 0xc8, 0x00,
153 };
154 
155 // fips_sig_lengths is fips_sig with a non-minimally encoded length.
156 static const uint8_t fips_sig_bad_length[] = {
157     0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64,
158     0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c,
159     0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f,
160     0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d,
161     0xb6, 0xdc, 0xd8, 0xc8, 0x00,
162 };
163 
164 // fips_sig_bad_r is fips_sig with a bad r value.
165 static const uint8_t fips_sig_bad_r[] = {
166     0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10,
167     0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
168     0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
169     0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
170     0xdc, 0xd8, 0xc8,
171 };
172 
GetFIPSDSAGroup(void)173 static bssl::UniquePtr<DSA> GetFIPSDSAGroup(void) {
174   bssl::UniquePtr<DSA> dsa(DSA_new());
175   if (!dsa) {
176     return nullptr;
177   }
178   bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
179   bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
180   bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
181   if (!p || !q || !g || !DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())) {
182     return nullptr;
183   }
184   // |DSA_set0_pqg| takes ownership.
185   p.release();
186   q.release();
187   g.release();
188   return dsa;
189 }
190 
GetFIPSDSA(void)191 static bssl::UniquePtr<DSA> GetFIPSDSA(void) {
192   bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
193   if (!dsa) {
194     return nullptr;
195   }
196   bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
197   bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
198   if (!pub_key || !priv_key ||
199       !DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())) {
200     return nullptr;
201   }
202   // |DSA_set0_key| takes ownership.
203   pub_key.release();
204   priv_key.release();
205   return dsa;
206 }
207 
TEST(DSATest,Generate)208 TEST(DSATest, Generate) {
209   bssl::UniquePtr<DSA> dsa(DSA_new());
210   ASSERT_TRUE(dsa);
211   int counter;
212   unsigned long h;
213   ASSERT_TRUE(DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h,
214                                          nullptr));
215   EXPECT_EQ(counter, 105);
216   EXPECT_EQ(h, 2u);
217 
218   auto expect_bn_bytes = [](const char *msg, const BIGNUM *bn,
219                             bssl::Span<const uint8_t> bytes) {
220     std::vector<uint8_t> buf(BN_num_bytes(bn));
221     BN_bn2bin(bn, buf.data());
222     EXPECT_EQ(Bytes(buf), Bytes(bytes)) << msg;
223   };
224   expect_bn_bytes("q value is wrong", DSA_get0_q(dsa.get()), fips_q);
225   expect_bn_bytes("p value is wrong", DSA_get0_p(dsa.get()), fips_p);
226   expect_bn_bytes("g value is wrong", DSA_get0_g(dsa.get()), fips_g);
227 
228   ASSERT_TRUE(DSA_generate_key(dsa.get()));
229 
230   std::vector<uint8_t> sig(DSA_size(dsa.get()));
231   unsigned sig_len;
232   ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
233                        &sig_len, dsa.get()));
234 
235   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
236                           sig_len, dsa.get()));
237 }
238 
TEST(DSATest,Verify)239 TEST(DSATest, Verify) {
240   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
241   ASSERT_TRUE(dsa);
242 
243   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
244                           sizeof(fips_sig), dsa.get()));
245   EXPECT_EQ(-1,
246             DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_negative,
247                        sizeof(fips_sig_negative), dsa.get()));
248   EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_extra,
249                            sizeof(fips_sig_extra), dsa.get()));
250   EXPECT_EQ(-1,
251             DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_length,
252                        sizeof(fips_sig_bad_length), dsa.get()));
253   EXPECT_EQ(0, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_r,
254                           sizeof(fips_sig_bad_r), dsa.get()));
255 }
256 
TEST(DSATest,InvalidGroup)257 TEST(DSATest, InvalidGroup) {
258   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
259   ASSERT_TRUE(dsa);
260   bssl::UniquePtr<BIGNUM> zero(BN_new());
261   ASSERT_TRUE(zero);
262   ASSERT_TRUE(DSA_set0_pqg(dsa.get(), /*p=*/nullptr, /*q=*/nullptr,
263                            /*g=*/zero.release()));
264 
265   std::vector<uint8_t> sig(DSA_size(dsa.get()));
266   unsigned sig_len;
267   static const uint8_t kDigest[32] = {0};
268   EXPECT_FALSE(
269       DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get()));
270   uint32_t err = ERR_get_error();
271   EXPECT_EQ(ERR_LIB_DSA, ERR_GET_LIB(err));
272   EXPECT_EQ(DSA_R_INVALID_PARAMETERS, ERR_GET_REASON(err));
273 }
274 
275 // Signing and verifying should cleanly fail when the DSA object is empty.
TEST(DSATest,MissingParameters)276 TEST(DSATest, MissingParameters) {
277   bssl::UniquePtr<DSA> dsa(DSA_new());
278   ASSERT_TRUE(dsa);
279   EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
280                            sizeof(fips_sig), dsa.get()));
281 
282   std::vector<uint8_t> sig(DSA_size(dsa.get()));
283   unsigned sig_len;
284   EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
285                         &sig_len, dsa.get()));
286 }
287 
288 // Verifying should cleanly fail when the public key is missing.
TEST(DSATest,MissingPublic)289 TEST(DSATest, MissingPublic) {
290   bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
291   ASSERT_TRUE(dsa);
292   EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
293                            sizeof(fips_sig), dsa.get()));
294 }
295 
296 // Signing should cleanly fail when the private key is missing.
TEST(DSATest,MissingPrivate)297 TEST(DSATest, MissingPrivate) {
298   bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup();
299   ASSERT_TRUE(dsa);
300 
301   std::vector<uint8_t> sig(DSA_size(dsa.get()));
302   unsigned sig_len;
303   EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
304                         &sig_len, dsa.get()));
305 }
306 
307 // A zero private key is invalid and can cause signing to loop forever.
TEST(DSATest,ZeroPrivateKey)308 TEST(DSATest, ZeroPrivateKey) {
309   bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
310   ASSERT_TRUE(dsa);
311   bssl::UniquePtr<BIGNUM> zero(BN_new());
312   ASSERT_TRUE(zero);
313   ASSERT_TRUE(DSA_set0_key(dsa.get(), /*pub_key=*/nullptr,
314                            /*priv_key=*/zero.release()));
315 
316   static const uint8_t kZeroDigest[32] = {0};
317   std::vector<uint8_t> sig(DSA_size(dsa.get()));
318   unsigned sig_len;
319   EXPECT_FALSE(DSA_sign(0, kZeroDigest, sizeof(kZeroDigest), sig.data(),
320                         &sig_len, dsa.get()));
321 }
322 
323 // If the "field" is actually a ring and the "generator" of the multiplicative
324 // subgroup is actually nilpotent with low degree, DSA signing never completes.
325 // Test that we give up in the infinite loop.
TEST(DSATest,NilpotentGenerator)326 TEST(DSATest, NilpotentGenerator) {
327   static const char kPEM[] = R"(
328 -----BEGIN DSA PRIVATE KEY-----
329 MGECAQACFQHH+MnFXh4NNlZiV/zUVb5a5ib3kwIVAOP8ZOKvDwabKzEr/moq3y1z
330 E3vJAhUAl/2Ylx9fWbzHdh1URsc/c6IM/TECAQECFCsjU4AZRcuks45g1NMOUeCB
331 Epvg
332 -----END DSA PRIVATE KEY-----
333 )";
334   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
335   ASSERT_TRUE(bio);
336   bssl::UniquePtr<DSA> dsa(
337       PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
338   ASSERT_TRUE(dsa);
339 
340   std::vector<uint8_t> sig(DSA_size(dsa.get()));
341   unsigned sig_len;
342   EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
343                         &sig_len, dsa.get()));
344 }
345 
TEST(DSATest,Overwrite)346 TEST(DSATest, Overwrite) {
347   // Load an arbitrary DSA private key and use it.
348   static const char kPEM[] = R"(
349 -----BEGIN DSA PRIVATE KEY-----
350 MIIDTgIBAAKCAQEAyH68EuravtF+7PTFBtWJkwjmp0YJmh8e2Cdpu8ci3dZf87rk
351 GwXzfqYkAEkW5H4Hp0cxdICKFiqfxjSaiEauOrNV+nXWZS634hZ9H47I8HnAVS0p
352 5MmSmPJ7NNUowymMpyB6M6hfqHl/1pZd7avbTmnzb2SZ0kw0WLWJo6vMekepYWv9
353 3o1Xove4ci00hnkr7Qo9Bh/+z84jgeT2/MTdsCVtbuMv/mbcYLhCKVWPBozDZr/D
354 qwhGTlomsTRvP3WIbem3b5eYhQaPuMsKiAzntcinoxQXWrIoZB+xJyF/sI013uBI
355 i9ePSxY3704U4QGxVM0aR/6fzORz5kh8ZjhhywIdAI9YBUR6eoGevUaLq++qXiYW
356 TgXBXlyqE32ESbkCggEBAL/c5GerO5g25D0QsfgVIJtlZHQOwYauuWoUudaQiyf6
357 VhWLBNNTAGldkFGdtxsA42uqqZSXCki25LvN6PscGGvFy8oPWaa9TGt+l9Z5ZZiV
358 ShNpg71V9YuImsPB3BrQ4L6nZLfhBt6InzJ6KqjDNdg7u6lgnFKue7l6khzqNxbM
359 RgxHWMq7PkhMcl+RzpqbiGcxSHqraxldutqCWsnZzhKh4d4GdunuRY8GiFo0Axkb
360 Kn0Il3zm81ewv08F/ocu+IZQEzxTyR8YRQ99MLVbnwhVxndEdLjjetCX82l+/uEY
361 5fdUy0thR8odcDsvUc/tT57I+yhnno80HbpUUNw2+/sCggEAdh1wp/9CifYIp6T8
362 P/rIus6KberZ2Pv/n0bl+Gv8AoToA0zhZXIfY2l0TtanKmdLqPIvjqkN0v6zGSs+
363 +ahR1QzMQnK718mcsQmB4X6iP5LKgJ/t0g8LrDOxc/cNycmHq76MmF9RN5NEBz4+
364 PAnRIftm/b0UQflP6uy3gRQP2X7P8ZebCytOPKTZC4oLyCtvPevSkCiiauq/RGjL
365 k6xqRgLxMtmuyhT+dcVbtllV1p1xd9Bppnk17/kR5VCefo/e/7DHu163izRDW8tx
366 SrEmiVyVkRijY3bVZii7LPfMz5eEAWEDJRuFwyNv3i6j7CKeZw2d/hzu370Ua28F
367 s2lmkAIcLIFUDFrbC2nViaB5ATM9ARKk6F2QwnCfGCyZ6A==
368 -----END DSA PRIVATE KEY-----
369 )";
370   bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM)));
371   ASSERT_TRUE(bio);
372   bssl::UniquePtr<DSA> dsa(
373       PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
374   ASSERT_TRUE(dsa);
375 
376   std::vector<uint8_t> sig(DSA_size(dsa.get()));
377   unsigned sig_len;
378   ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
379                        &sig_len, dsa.get()));
380   sig.resize(sig_len);
381   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
382                           sig.size(), dsa.get()));
383 
384   // Overwrite it with the sample key.
385   bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr));
386   ASSERT_TRUE(p);
387   bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr));
388   ASSERT_TRUE(q);
389   bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr));
390   ASSERT_TRUE(g);
391   ASSERT_TRUE(DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get()));
392   // |DSA_set0_pqg| takes ownership on success.
393   p.release();
394   q.release();
395   g.release();
396   bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr));
397   ASSERT_TRUE(pub_key);
398   bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr));
399   ASSERT_TRUE(priv_key);
400   ASSERT_TRUE(DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get()));
401   // |DSA_set0_key| takes ownership on success.
402   pub_key.release();
403   priv_key.release();
404 
405   // The key should now work correctly for the new parameters.
406   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig,
407                           sizeof(fips_sig), dsa.get()));
408 
409   // Test signing by verifying it round-trips through the real key.
410   sig.resize(DSA_size(dsa.get()));
411   ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(),
412                        &sig_len, dsa.get()));
413   sig.resize(sig_len);
414   dsa = GetFIPSDSA();
415   ASSERT_TRUE(dsa);
416   EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(),
417                           sig.size(), dsa.get()));
418 }
419