• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3  * project.
4  */
5 /* ====================================================================
6  * Copyright (c) 2015 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    licensing@OpenSSL.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  */
53 
54 #include <openssl/evp.h>
55 
56 #include <stdio.h>
57 #include <stdint.h>
58 #include <stdlib.h>
59 #include <string.h>
60 
61 OPENSSL_MSVC_PRAGMA(warning(push))
62 OPENSSL_MSVC_PRAGMA(warning(disable: 4702))
63 
64 #include <map>
65 #include <string>
66 #include <utility>
67 #include <vector>
68 
OPENSSL_MSVC_PRAGMA(warning (pop)) const69 OPENSSL_MSVC_PRAGMA(warning(pop))
70 
71 #include <gtest/gtest.h>
72 
73 #include <openssl/bytestring.h>
74 #include <openssl/crypto.h>
75 #include <openssl/digest.h>
76 #include <openssl/dsa.h>
77 #include <openssl/err.h>
78 #include <openssl/rsa.h>
79 
80 #include "../test/file_test.h"
81 #include "../test/test_util.h"
82 #include "../test/wycheproof_util.h"
83 
84 
85 // evp_test dispatches between multiple test types. PrivateKey tests take a key
86 // name parameter and single block, decode it as a PEM private key, and save it
87 // under that key name. Decrypt, Sign, and Verify tests take a previously
88 // imported key name as parameter and test their respective operations.
89 
90 static const EVP_MD *GetDigest(FileTest *t, const std::string &name) {
91   if (name == "MD5") {
92     return EVP_md5();
93   } else if (name == "SHA1") {
94     return EVP_sha1();
95   } else if (name == "SHA224") {
96     return EVP_sha224();
97   } else if (name == "SHA256") {
98     return EVP_sha256();
99   } else if (name == "SHA384") {
100     return EVP_sha384();
101   } else if (name == "SHA512") {
102     return EVP_sha512();
103   }
104   ADD_FAILURE() << "Unknown digest: " << name;
105   return nullptr;
106 }
107 
GetKeyType(FileTest * t,const std::string & name)108 static int GetKeyType(FileTest *t, const std::string &name) {
109   if (name == "RSA") {
110     return EVP_PKEY_RSA;
111   }
112   if (name == "EC") {
113     return EVP_PKEY_EC;
114   }
115   if (name == "DSA") {
116     return EVP_PKEY_DSA;
117   }
118   if (name == "Ed25519") {
119     return EVP_PKEY_ED25519;
120   }
121   if (name == "X25519") {
122     return EVP_PKEY_X25519;
123   }
124   ADD_FAILURE() << "Unknown key type: " << name;
125   return EVP_PKEY_NONE;
126 }
127 
GetRSAPadding(FileTest * t,int * out,const std::string & name)128 static bool GetRSAPadding(FileTest *t, int *out, const std::string &name) {
129   if (name == "PKCS1") {
130     *out = RSA_PKCS1_PADDING;
131     return true;
132   }
133   if (name == "PSS") {
134     *out = RSA_PKCS1_PSS_PADDING;
135     return true;
136   }
137   if (name == "OAEP") {
138     *out = RSA_PKCS1_OAEP_PADDING;
139     return true;
140   }
141   if (name == "None") {
142     *out = RSA_NO_PADDING;
143     return true;
144   }
145   ADD_FAILURE() << "Unknown RSA padding mode: " << name;
146   return false;
147 }
148 
149 using KeyMap = std::map<std::string, bssl::UniquePtr<EVP_PKEY>>;
150 
ImportKey(FileTest * t,KeyMap * key_map,EVP_PKEY * (* parse_func)(CBS * cbs),int (* marshal_func)(CBB * cbb,const EVP_PKEY * key))151 static bool ImportKey(FileTest *t, KeyMap *key_map,
152                       EVP_PKEY *(*parse_func)(CBS *cbs),
153                       int (*marshal_func)(CBB *cbb, const EVP_PKEY *key)) {
154   std::vector<uint8_t> input;
155   if (!t->GetBytes(&input, "Input")) {
156     return false;
157   }
158 
159   CBS cbs;
160   CBS_init(&cbs, input.data(), input.size());
161   bssl::UniquePtr<EVP_PKEY> pkey(parse_func(&cbs));
162   if (!pkey) {
163     return false;
164   }
165 
166   std::string key_type;
167   if (!t->GetAttribute(&key_type, "Type")) {
168     return false;
169   }
170   EXPECT_EQ(GetKeyType(t, key_type), EVP_PKEY_id(pkey.get()));
171 
172   // The key must re-encode correctly.
173   bssl::ScopedCBB cbb;
174   uint8_t *der;
175   size_t der_len;
176   if (!CBB_init(cbb.get(), 0) ||
177       !marshal_func(cbb.get(), pkey.get()) ||
178       !CBB_finish(cbb.get(), &der, &der_len)) {
179     return false;
180   }
181   bssl::UniquePtr<uint8_t> free_der(der);
182 
183   std::vector<uint8_t> output = input;
184   if (t->HasAttribute("Output") &&
185       !t->GetBytes(&output, "Output")) {
186     return false;
187   }
188   EXPECT_EQ(Bytes(output), Bytes(der, der_len))
189       << "Re-encoding the key did not match.";
190 
191   if (t->HasAttribute("ExpectNoRawPrivate")) {
192     size_t len;
193     EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len));
194   } else if (t->HasAttribute("ExpectRawPrivate")) {
195     std::vector<uint8_t> expected;
196     if (!t->GetBytes(&expected, "ExpectRawPrivate")) {
197       return false;
198     }
199 
200     std::vector<uint8_t> raw;
201     size_t len;
202     if (!EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)) {
203       return false;
204     }
205     raw.resize(len);
206     if (!EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)) {
207       return false;
208     }
209     raw.resize(len);
210     EXPECT_EQ(Bytes(raw), Bytes(expected));
211 
212     // Short buffers should be rejected.
213     raw.resize(len - 1);
214     len = raw.size();
215     EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len));
216   }
217 
218   if (t->HasAttribute("ExpectNoRawPublic")) {
219     size_t len;
220     EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len));
221   } else if (t->HasAttribute("ExpectRawPublic")) {
222     std::vector<uint8_t> expected;
223     if (!t->GetBytes(&expected, "ExpectRawPublic")) {
224       return false;
225     }
226 
227     std::vector<uint8_t> raw;
228     size_t len;
229     if (!EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)) {
230       return false;
231     }
232     raw.resize(len);
233     if (!EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)) {
234       return false;
235     }
236     raw.resize(len);
237     EXPECT_EQ(Bytes(raw), Bytes(expected));
238 
239     // Short buffers should be rejected.
240     raw.resize(len - 1);
241     len = raw.size();
242     EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len));
243   }
244 
245   // Save the key for future tests.
246   const std::string &key_name = t->GetParameter();
247   EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name;
248   (*key_map)[key_name] = std::move(pkey);
249   return true;
250 }
251 
252 // SetupContext configures |ctx| based on attributes in |t|, with the exception
253 // of the signing digest which must be configured externally.
SetupContext(FileTest * t,KeyMap * key_map,EVP_PKEY_CTX * ctx)254 static bool SetupContext(FileTest *t, KeyMap *key_map, EVP_PKEY_CTX *ctx) {
255   if (t->HasAttribute("RSAPadding")) {
256     int padding;
257     if (!GetRSAPadding(t, &padding, t->GetAttributeOrDie("RSAPadding")) ||
258         !EVP_PKEY_CTX_set_rsa_padding(ctx, padding)) {
259       return false;
260     }
261   }
262   if (t->HasAttribute("PSSSaltLength") &&
263       !EVP_PKEY_CTX_set_rsa_pss_saltlen(
264           ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) {
265     return false;
266   }
267   if (t->HasAttribute("MGF1Digest")) {
268     const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("MGF1Digest"));
269     if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) {
270       return false;
271     }
272   }
273   if (t->HasAttribute("OAEPDigest")) {
274     const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("OAEPDigest"));
275     if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_oaep_md(ctx, digest)) {
276       return false;
277     }
278   }
279   if (t->HasAttribute("OAEPLabel")) {
280     std::vector<uint8_t> label;
281     if (!t->GetBytes(&label, "OAEPLabel")) {
282       return false;
283     }
284     // For historical reasons, |EVP_PKEY_CTX_set0_rsa_oaep_label| expects to be
285     // take ownership of the input.
286     bssl::UniquePtr<uint8_t> buf(reinterpret_cast<uint8_t *>(
287         OPENSSL_memdup(label.data(), label.size())));
288     if (!buf ||
289         !EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, buf.get(), label.size())) {
290       return false;
291     }
292     buf.release();
293   }
294   if (t->HasAttribute("DerivePeer")) {
295     std::string derive_peer = t->GetAttributeOrDie("DerivePeer");
296     if (key_map->count(derive_peer) == 0) {
297       ADD_FAILURE() << "Could not find key " << derive_peer;
298       return false;
299     }
300     EVP_PKEY *derive_peer_key = (*key_map)[derive_peer].get();
301     if (!EVP_PKEY_derive_set_peer(ctx, derive_peer_key)) {
302       return false;
303     }
304   }
305   return true;
306 }
307 
TestDerive(FileTest * t,KeyMap * key_map,EVP_PKEY * key)308 static bool TestDerive(FileTest *t, KeyMap *key_map, EVP_PKEY *key) {
309   bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr));
310   if (!ctx ||
311       !EVP_PKEY_derive_init(ctx.get()) ||
312       !SetupContext(t, key_map, ctx.get())) {
313     return false;
314   }
315 
316   bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get()));
317   if (!copy) {
318     return false;
319   }
320 
321   for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) {
322     size_t len;
323     std::vector<uint8_t> actual, output;
324     if (!EVP_PKEY_derive(pctx, nullptr, &len)) {
325       return false;
326     }
327     actual.resize(len);
328     if (!EVP_PKEY_derive(pctx, actual.data(), &len)) {
329       return false;
330     }
331     actual.resize(len);
332 
333     // Defer looking up the attribute so Error works properly.
334     if (!t->GetBytes(&output, "Output")) {
335       return false;
336     }
337     EXPECT_EQ(Bytes(output), Bytes(actual));
338 
339     // Test when the buffer is too large.
340     actual.resize(len + 1);
341     len = actual.size();
342     if (!EVP_PKEY_derive(pctx, actual.data(), &len)) {
343       return false;
344     }
345     actual.resize(len);
346     EXPECT_EQ(Bytes(output), Bytes(actual));
347 
348     // Test when the buffer is too small.
349     actual.resize(len - 1);
350     len = actual.size();
351     if (t->HasAttribute("SmallBufferTruncates")) {
352       if (!EVP_PKEY_derive(pctx, actual.data(), &len)) {
353         return false;
354       }
355       actual.resize(len);
356       EXPECT_EQ(Bytes(output.data(), len), Bytes(actual));
357     } else {
358       EXPECT_FALSE(EVP_PKEY_derive(pctx, actual.data(), &len));
359       ERR_clear_error();
360     }
361   }
362   return true;
363 }
364 
TestEVP(FileTest * t,KeyMap * key_map)365 static bool TestEVP(FileTest *t, KeyMap *key_map) {
366   if (t->GetType() == "PrivateKey") {
367     return ImportKey(t, key_map, EVP_parse_private_key,
368                      EVP_marshal_private_key);
369   }
370 
371   if (t->GetType() == "PublicKey") {
372     return ImportKey(t, key_map, EVP_parse_public_key, EVP_marshal_public_key);
373   }
374 
375   // Load the key.
376   const std::string &key_name = t->GetParameter();
377   if (key_map->count(key_name) == 0) {
378     ADD_FAILURE() << "Could not find key " << key_name;
379     return false;
380   }
381   EVP_PKEY *key = (*key_map)[key_name].get();
382 
383   int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr;
384   int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len,
385                 const uint8_t *in, size_t in_len) = nullptr;
386   int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type,
387                     ENGINE *e, EVP_PKEY *pkey) = nullptr;
388   bool is_verify = false;
389   if (t->GetType() == "Decrypt") {
390     key_op_init = EVP_PKEY_decrypt_init;
391     key_op = EVP_PKEY_decrypt;
392   } else if (t->GetType() == "Sign") {
393     key_op_init = EVP_PKEY_sign_init;
394     key_op = EVP_PKEY_sign;
395   } else if (t->GetType() == "Verify") {
396     key_op_init = EVP_PKEY_verify_init;
397     is_verify = true;
398   } else if (t->GetType() == "SignMessage") {
399     md_op_init = EVP_DigestSignInit;
400   } else if (t->GetType() == "VerifyMessage") {
401     md_op_init = EVP_DigestVerifyInit;
402     is_verify = true;
403   } else if (t->GetType() == "Encrypt") {
404     key_op_init = EVP_PKEY_encrypt_init;
405     key_op = EVP_PKEY_encrypt;
406   } else if (t->GetType() == "Derive") {
407     return TestDerive(t, key_map, key);
408   } else {
409     ADD_FAILURE() << "Unknown test " << t->GetType();
410     return false;
411   }
412 
413   const EVP_MD *digest = nullptr;
414   if (t->HasAttribute("Digest")) {
415     digest = GetDigest(t, t->GetAttributeOrDie("Digest"));
416     if (digest == nullptr) {
417       return false;
418     }
419   }
420 
421   // For verify tests, the "output" is the signature. Read it now so that, for
422   // tests which expect a failure in SetupContext, the attribute is still
423   // consumed.
424   std::vector<uint8_t> input, actual, output;
425   if (!t->GetBytes(&input, "Input") ||
426       (is_verify && !t->GetBytes(&output, "Output"))) {
427     return false;
428   }
429 
430   if (md_op_init) {
431     bssl::ScopedEVP_MD_CTX ctx, copy;
432     EVP_PKEY_CTX *pctx;
433     if (!md_op_init(ctx.get(), &pctx, digest, nullptr, key) ||
434         !SetupContext(t, key_map, pctx) ||
435         !EVP_MD_CTX_copy_ex(copy.get(), ctx.get())) {
436       return false;
437     }
438 
439     if (is_verify) {
440       return EVP_DigestVerify(ctx.get(), output.data(), output.size(),
441                               input.data(), input.size()) &&
442              EVP_DigestVerify(copy.get(), output.data(), output.size(),
443                               input.data(), input.size());
444     }
445 
446     size_t len;
447     if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) {
448       return false;
449     }
450     actual.resize(len);
451     if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(),
452                         input.size()) ||
453         !t->GetBytes(&output, "Output")) {
454       return false;
455     }
456     actual.resize(len);
457     EXPECT_EQ(Bytes(output), Bytes(actual));
458 
459     // Repeat the test with |copy|, to check |EVP_MD_CTX_copy_ex| duplicated
460     // everything.
461     if (!EVP_DigestSign(copy.get(), nullptr, &len, input.data(),
462                         input.size())) {
463       return false;
464     }
465     actual.resize(len);
466     if (!EVP_DigestSign(copy.get(), actual.data(), &len, input.data(),
467                         input.size()) ||
468         !t->GetBytes(&output, "Output")) {
469       return false;
470     }
471     actual.resize(len);
472     EXPECT_EQ(Bytes(output), Bytes(actual));
473     return true;
474   }
475 
476   bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr));
477   if (!ctx ||
478       !key_op_init(ctx.get()) ||
479       (digest != nullptr &&
480        !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) ||
481       !SetupContext(t, key_map, ctx.get())) {
482     return false;
483   }
484 
485   bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get()));
486   if (!copy) {
487     return false;
488   }
489 
490   if (is_verify) {
491     return EVP_PKEY_verify(ctx.get(), output.data(), output.size(),
492                            input.data(), input.size()) &&
493            EVP_PKEY_verify(copy.get(), output.data(), output.size(),
494                            input.data(), input.size());
495   }
496 
497   for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) {
498     size_t len;
499     if (!key_op(pctx, nullptr, &len, input.data(), input.size())) {
500       return false;
501     }
502     actual.resize(len);
503     if (!key_op(pctx, actual.data(), &len, input.data(), input.size())) {
504       return false;
505     }
506 
507     if (t->HasAttribute("CheckDecrypt")) {
508       // Encryption is non-deterministic, so we check by decrypting.
509       size_t plaintext_len;
510       bssl::UniquePtr<EVP_PKEY_CTX> decrypt_ctx(EVP_PKEY_CTX_new(key, nullptr));
511       if (!decrypt_ctx ||
512           !EVP_PKEY_decrypt_init(decrypt_ctx.get()) ||
513           (digest != nullptr &&
514            !EVP_PKEY_CTX_set_signature_md(decrypt_ctx.get(), digest)) ||
515           !SetupContext(t, key_map, decrypt_ctx.get()) ||
516           !EVP_PKEY_decrypt(decrypt_ctx.get(), nullptr, &plaintext_len,
517                             actual.data(), actual.size())) {
518         return false;
519       }
520       output.resize(plaintext_len);
521       if (!EVP_PKEY_decrypt(decrypt_ctx.get(), output.data(), &plaintext_len,
522                             actual.data(), actual.size())) {
523         ADD_FAILURE() << "Could not decrypt result.";
524         return false;
525       }
526       output.resize(plaintext_len);
527       EXPECT_EQ(Bytes(input), Bytes(output)) << "Decrypted result mismatch.";
528     } else if (t->HasAttribute("CheckVerify")) {
529       // Some signature schemes are non-deterministic, so we check by verifying.
530       bssl::UniquePtr<EVP_PKEY_CTX> verify_ctx(EVP_PKEY_CTX_new(key, nullptr));
531       if (!verify_ctx ||
532           !EVP_PKEY_verify_init(verify_ctx.get()) ||
533           (digest != nullptr &&
534            !EVP_PKEY_CTX_set_signature_md(verify_ctx.get(), digest)) ||
535           !SetupContext(t, key_map, verify_ctx.get())) {
536         return false;
537       }
538       if (t->HasAttribute("VerifyPSSSaltLength")) {
539         if (!EVP_PKEY_CTX_set_rsa_pss_saltlen(
540                 verify_ctx.get(),
541                 atoi(t->GetAttributeOrDie("VerifyPSSSaltLength").c_str()))) {
542           return false;
543         }
544       }
545       EXPECT_TRUE(EVP_PKEY_verify(verify_ctx.get(), actual.data(),
546                                   actual.size(), input.data(), input.size()))
547           << "Could not verify result.";
548     } else {
549       // By default, check by comparing the result against Output.
550       if (!t->GetBytes(&output, "Output")) {
551         return false;
552       }
553       actual.resize(len);
554       EXPECT_EQ(Bytes(output), Bytes(actual));
555     }
556   }
557   return true;
558 }
559 
TEST(EVPTest,TestVectors)560 TEST(EVPTest, TestVectors) {
561   KeyMap key_map;
562   FileTestGTest("crypto/evp/evp_tests.txt", [&](FileTest *t) {
563     bool result = TestEVP(t, &key_map);
564     if (t->HasAttribute("Error")) {
565       ASSERT_FALSE(result) << "Operation unexpectedly succeeded.";
566       uint32_t err = ERR_peek_error();
567       EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err));
568     } else if (!result) {
569       ADD_FAILURE() << "Operation unexpectedly failed.";
570     }
571   });
572 }
573 
RunWycheproofVerifyTest(const char * path)574 static void RunWycheproofVerifyTest(const char *path) {
575   SCOPED_TRACE(path);
576   FileTestGTest(path, [](FileTest *t) {
577     t->IgnoreAllUnusedInstructions();
578 
579     std::vector<uint8_t> der;
580     ASSERT_TRUE(t->GetInstructionBytes(&der, "keyDer"));
581     CBS cbs;
582     CBS_init(&cbs, der.data(), der.size());
583     bssl::UniquePtr<EVP_PKEY> key(EVP_parse_public_key(&cbs));
584     ASSERT_TRUE(key);
585 
586     const EVP_MD *md = nullptr;
587     if (t->HasInstruction("sha")) {
588       md = GetWycheproofDigest(t, "sha", true);
589       ASSERT_TRUE(md);
590     }
591 
592     bool is_pss = t->HasInstruction("mgf");
593     const EVP_MD *mgf1_md = nullptr;
594     int pss_salt_len = -1;
595     if (is_pss) {
596       ASSERT_EQ("MGF1", t->GetInstructionOrDie("mgf"));
597       mgf1_md = GetWycheproofDigest(t, "mgfSha", true);
598 
599       std::string s_len;
600       ASSERT_TRUE(t->GetInstruction(&s_len, "sLen"));
601       pss_salt_len = atoi(s_len.c_str());
602     }
603 
604     std::vector<uint8_t> msg;
605     ASSERT_TRUE(t->GetBytes(&msg, "msg"));
606     std::vector<uint8_t> sig;
607     ASSERT_TRUE(t->GetBytes(&sig, "sig"));
608     WycheproofResult result;
609     ASSERT_TRUE(GetWycheproofResult(t, &result));
610 
611     if (EVP_PKEY_id(key.get()) == EVP_PKEY_DSA) {
612       // DSA is deprecated and is not usable via EVP.
613       DSA *dsa = EVP_PKEY_get0_DSA(key.get());
614       uint8_t digest[EVP_MAX_MD_SIZE];
615       unsigned digest_len;
616       ASSERT_TRUE(
617           EVP_Digest(msg.data(), msg.size(), digest, &digest_len, md, nullptr));
618       int valid;
619       bool sig_ok = DSA_check_signature(&valid, digest, digest_len, sig.data(),
620                                         sig.size(), dsa) &&
621                     valid;
622       EXPECT_EQ(sig_ok, result.IsValid());
623     } else {
624       bssl::ScopedEVP_MD_CTX ctx;
625       EVP_PKEY_CTX *pctx;
626       ASSERT_TRUE(
627           EVP_DigestVerifyInit(ctx.get(), &pctx, md, nullptr, key.get()));
628       if (is_pss) {
629         ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING));
630         ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(pctx, mgf1_md));
631         ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, pss_salt_len));
632       }
633       int ret = EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(),
634                                  msg.size());
635       // BoringSSL does not enforce policies on weak keys and leaves it to the
636       // caller.
637       EXPECT_EQ(ret,
638                 result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"})
639                     ? 1
640                     : 0);
641     }
642   });
643 }
644 
TEST(EVPTest,WycheproofDSA)645 TEST(EVPTest, WycheproofDSA) {
646   RunWycheproofVerifyTest("third_party/wycheproof_testvectors/dsa_test.txt");
647 }
648 
TEST(EVPTest,WycheproofECDSAP224)649 TEST(EVPTest, WycheproofECDSAP224) {
650   RunWycheproofVerifyTest(
651       "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha224_test.txt");
652   RunWycheproofVerifyTest(
653       "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha256_test.txt");
654   RunWycheproofVerifyTest(
655       "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha512_test.txt");
656 }
657 
TEST(EVPTest,WycheproofECDSAP256)658 TEST(EVPTest, WycheproofECDSAP256) {
659   RunWycheproofVerifyTest(
660       "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha256_test.txt");
661   RunWycheproofVerifyTest(
662       "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha512_test.txt");
663 }
664 
TEST(EVPTest,WycheproofECDSAP384)665 TEST(EVPTest, WycheproofECDSAP384) {
666   RunWycheproofVerifyTest(
667       "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha384_test.txt");
668 }
669 
TEST(EVPTest,WycheproofECDSAP521)670 TEST(EVPTest, WycheproofECDSAP521) {
671   RunWycheproofVerifyTest(
672       "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha512_test.txt");
673   RunWycheproofVerifyTest(
674       "third_party/wycheproof_testvectors/ecdsa_secp521r1_sha512_test.txt");
675 }
676 
TEST(EVPTest,WycheproofEdDSA)677 TEST(EVPTest, WycheproofEdDSA) {
678   RunWycheproofVerifyTest("third_party/wycheproof_testvectors/eddsa_test.txt");
679 }
680 
TEST(EVPTest,WycheproofRSAPKCS1)681 TEST(EVPTest, WycheproofRSAPKCS1) {
682   RunWycheproofVerifyTest(
683       "third_party/wycheproof_testvectors/rsa_signature_2048_sha224_test.txt");
684   RunWycheproofVerifyTest(
685       "third_party/wycheproof_testvectors/rsa_signature_2048_sha256_test.txt");
686   RunWycheproofVerifyTest(
687       "third_party/wycheproof_testvectors/rsa_signature_2048_sha384_test.txt");
688   RunWycheproofVerifyTest(
689       "third_party/wycheproof_testvectors/rsa_signature_2048_sha512_test.txt");
690   RunWycheproofVerifyTest(
691       "third_party/wycheproof_testvectors/rsa_signature_3072_sha256_test.txt");
692   RunWycheproofVerifyTest(
693       "third_party/wycheproof_testvectors/rsa_signature_3072_sha384_test.txt");
694   RunWycheproofVerifyTest(
695       "third_party/wycheproof_testvectors/rsa_signature_3072_sha512_test.txt");
696   RunWycheproofVerifyTest(
697       "third_party/wycheproof_testvectors/rsa_signature_4096_sha384_test.txt");
698   RunWycheproofVerifyTest(
699       "third_party/wycheproof_testvectors/rsa_signature_4096_sha512_test.txt");
700   // TODO(davidben): Is this file redundant with the tests above?
701   RunWycheproofVerifyTest(
702       "third_party/wycheproof_testvectors/rsa_signature_test.txt");
703 }
704 
TEST(EVPTest,WycheproofRSAPKCS1Sign)705 TEST(EVPTest, WycheproofRSAPKCS1Sign) {
706   FileTestGTest(
707       "third_party/wycheproof_testvectors/rsa_sig_gen_misc_test.txt",
708       [](FileTest *t) {
709         t->IgnoreAllUnusedInstructions();
710 
711         std::vector<uint8_t> pkcs8;
712         ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8"));
713         CBS cbs;
714         CBS_init(&cbs, pkcs8.data(), pkcs8.size());
715         bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs));
716         ASSERT_TRUE(key);
717 
718         const EVP_MD *md = GetWycheproofDigest(t, "sha", true);
719         ASSERT_TRUE(md);
720 
721         std::vector<uint8_t> msg, sig;
722         ASSERT_TRUE(t->GetBytes(&msg, "msg"));
723         ASSERT_TRUE(t->GetBytes(&sig, "sig"));
724         WycheproofResult result;
725         ASSERT_TRUE(GetWycheproofResult(t, &result));
726 
727         bssl::ScopedEVP_MD_CTX ctx;
728         EVP_PKEY_CTX *pctx;
729         ASSERT_TRUE(
730             EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, key.get()));
731         std::vector<uint8_t> out(EVP_PKEY_size(key.get()));
732         size_t len = out.size();
733         int ret =
734             EVP_DigestSign(ctx.get(), out.data(), &len, msg.data(), msg.size());
735         // BoringSSL does not enforce policies on weak keys and leaves it to the
736         // caller.
737         bool is_valid =
738             result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"});
739         EXPECT_EQ(ret, is_valid ? 1 : 0);
740         if (is_valid) {
741           out.resize(len);
742           EXPECT_EQ(Bytes(sig), Bytes(out));
743         }
744       });
745 }
746 
TEST(EVPTest,WycheproofRSAPSS)747 TEST(EVPTest, WycheproofRSAPSS) {
748   RunWycheproofVerifyTest(
749       "third_party/wycheproof_testvectors/rsa_pss_2048_sha1_mgf1_20_test.txt");
750   RunWycheproofVerifyTest(
751       "third_party/wycheproof_testvectors/rsa_pss_2048_sha256_mgf1_0_test.txt");
752   RunWycheproofVerifyTest(
753       "third_party/wycheproof_testvectors/"
754       "rsa_pss_2048_sha256_mgf1_32_test.txt");
755   RunWycheproofVerifyTest(
756       "third_party/wycheproof_testvectors/"
757       "rsa_pss_3072_sha256_mgf1_32_test.txt");
758   RunWycheproofVerifyTest(
759       "third_party/wycheproof_testvectors/"
760       "rsa_pss_4096_sha256_mgf1_32_test.txt");
761   RunWycheproofVerifyTest(
762       "third_party/wycheproof_testvectors/"
763       "rsa_pss_4096_sha512_mgf1_32_test.txt");
764   RunWycheproofVerifyTest(
765       "third_party/wycheproof_testvectors/rsa_pss_misc_test.txt");
766 }
767 
RunWycheproofDecryptTest(const char * path,std::function<void (FileTest *,EVP_PKEY_CTX *)> setup_cb)768 static void RunWycheproofDecryptTest(
769     const char *path,
770     std::function<void(FileTest *, EVP_PKEY_CTX *)> setup_cb) {
771   FileTestGTest(path, [&](FileTest *t) {
772     t->IgnoreAllUnusedInstructions();
773 
774     std::vector<uint8_t> pkcs8;
775     ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8"));
776     CBS cbs;
777     CBS_init(&cbs, pkcs8.data(), pkcs8.size());
778     bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs));
779     ASSERT_TRUE(key);
780 
781     std::vector<uint8_t> ct, msg;
782     ASSERT_TRUE(t->GetBytes(&ct, "ct"));
783     ASSERT_TRUE(t->GetBytes(&msg, "msg"));
784     WycheproofResult result;
785     ASSERT_TRUE(GetWycheproofResult(t, &result));
786 
787     bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key.get(), nullptr));
788     ASSERT_TRUE(ctx);
789     ASSERT_TRUE(EVP_PKEY_decrypt_init(ctx.get()));
790     ASSERT_NO_FATAL_FAILURE(setup_cb(t, ctx.get()));
791     std::vector<uint8_t> out(EVP_PKEY_size(key.get()));
792     size_t len = out.size();
793     int ret =
794         EVP_PKEY_decrypt(ctx.get(), out.data(), &len, ct.data(), ct.size());
795     // BoringSSL does not enforce policies on weak keys and leaves it to the
796     // caller.
797     bool is_valid = result.IsValid({"SmallModulus"});
798     EXPECT_EQ(ret, is_valid ? 1 : 0);
799     if (is_valid) {
800       out.resize(len);
801       EXPECT_EQ(Bytes(msg), Bytes(out));
802     }
803   });
804 }
805 
RunWycheproofOAEPTest(const char * path)806 static void RunWycheproofOAEPTest(const char *path) {
807   RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) {
808     const EVP_MD *md = GetWycheproofDigest(t, "sha", true);
809     ASSERT_TRUE(md);
810     const EVP_MD *mgf1_md = GetWycheproofDigest(t, "mgfSha", true);
811     ASSERT_TRUE(mgf1_md);
812     std::vector<uint8_t> label;
813     ASSERT_TRUE(t->GetBytes(&label, "label"));
814 
815     ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING));
816     ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md));
817     ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, mgf1_md));
818     bssl::UniquePtr<uint8_t> label_copy(
819         static_cast<uint8_t *>(OPENSSL_memdup(label.data(), label.size())));
820     ASSERT_TRUE(label_copy || label.empty());
821     ASSERT_TRUE(
822         EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, label_copy.get(), label.size()));
823     // |EVP_PKEY_CTX_set0_rsa_oaep_label| takes ownership on success.
824     label_copy.release();
825   });
826 }
827 
TEST(EVPTest,WycheproofRSAOAEP2048)828 TEST(EVPTest, WycheproofRSAOAEP2048) {
829   RunWycheproofOAEPTest(
830       "third_party/wycheproof_testvectors/"
831       "rsa_oaep_2048_sha1_mgf1sha1_test.txt");
832   RunWycheproofOAEPTest(
833       "third_party/wycheproof_testvectors/"
834       "rsa_oaep_2048_sha224_mgf1sha1_test.txt");
835   RunWycheproofOAEPTest(
836       "third_party/wycheproof_testvectors/"
837       "rsa_oaep_2048_sha224_mgf1sha224_test.txt");
838   RunWycheproofOAEPTest(
839       "third_party/wycheproof_testvectors/"
840       "rsa_oaep_2048_sha256_mgf1sha1_test.txt");
841   RunWycheproofOAEPTest(
842       "third_party/wycheproof_testvectors/"
843       "rsa_oaep_2048_sha256_mgf1sha256_test.txt");
844   RunWycheproofOAEPTest(
845       "third_party/wycheproof_testvectors/"
846       "rsa_oaep_2048_sha384_mgf1sha1_test.txt");
847   RunWycheproofOAEPTest(
848       "third_party/wycheproof_testvectors/"
849       "rsa_oaep_2048_sha384_mgf1sha384_test.txt");
850   RunWycheproofOAEPTest(
851       "third_party/wycheproof_testvectors/"
852       "rsa_oaep_2048_sha512_mgf1sha1_test.txt");
853   RunWycheproofOAEPTest(
854       "third_party/wycheproof_testvectors/"
855       "rsa_oaep_2048_sha512_mgf1sha512_test.txt");
856 }
857 
TEST(EVPTest,WycheproofRSAOAEP3072)858 TEST(EVPTest, WycheproofRSAOAEP3072) {
859   RunWycheproofOAEPTest(
860       "third_party/wycheproof_testvectors/"
861       "rsa_oaep_3072_sha256_mgf1sha1_test.txt");
862   RunWycheproofOAEPTest(
863       "third_party/wycheproof_testvectors/"
864       "rsa_oaep_3072_sha256_mgf1sha256_test.txt");
865   RunWycheproofOAEPTest(
866       "third_party/wycheproof_testvectors/"
867       "rsa_oaep_3072_sha512_mgf1sha1_test.txt");
868   RunWycheproofOAEPTest(
869       "third_party/wycheproof_testvectors/"
870       "rsa_oaep_3072_sha512_mgf1sha512_test.txt");
871 }
872 
TEST(EVPTest,WycheproofRSAOAEP4096)873 TEST(EVPTest, WycheproofRSAOAEP4096) {
874   RunWycheproofOAEPTest(
875       "third_party/wycheproof_testvectors/"
876       "rsa_oaep_4096_sha256_mgf1sha1_test.txt");
877   RunWycheproofOAEPTest(
878       "third_party/wycheproof_testvectors/"
879       "rsa_oaep_4096_sha256_mgf1sha256_test.txt");
880   RunWycheproofOAEPTest(
881       "third_party/wycheproof_testvectors/"
882       "rsa_oaep_4096_sha512_mgf1sha1_test.txt");
883   RunWycheproofOAEPTest(
884       "third_party/wycheproof_testvectors/"
885       "rsa_oaep_4096_sha512_mgf1sha512_test.txt");
886 }
887 
TEST(EVPTest,WycheproofRSAOAEPMisc)888 TEST(EVPTest, WycheproofRSAOAEPMisc) {
889   RunWycheproofOAEPTest(
890       "third_party/wycheproof_testvectors/rsa_oaep_misc_test.txt");
891 }
892 
RunWycheproofPKCS1DecryptTest(const char * path)893 static void RunWycheproofPKCS1DecryptTest(const char *path) {
894   RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) {
895     // No setup needed. PKCS#1 is, sadly, the default.
896   });
897 }
898 
TEST(EVPTest,WycheproofRSAPKCS1Decrypt)899 TEST(EVPTest, WycheproofRSAPKCS1Decrypt) {
900   RunWycheproofPKCS1DecryptTest(
901       "third_party/wycheproof_testvectors/rsa_pkcs1_2048_test.txt");
902   RunWycheproofPKCS1DecryptTest(
903       "third_party/wycheproof_testvectors/rsa_pkcs1_3072_test.txt");
904   RunWycheproofPKCS1DecryptTest(
905       "third_party/wycheproof_testvectors/rsa_pkcs1_4096_test.txt");
906 }
907