1 /* Copyright (c) 2015, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 // A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
16 //
17 // Inspired by Daniel J. Bernstein's public domain nistp224 implementation
18 // and Adam Langley's public domain 64-bit C implementation of curve25519.
19
20 #include <openssl/base.h>
21
22 #include <openssl/bn.h>
23 #include <openssl/ec.h>
24 #include <openssl/err.h>
25 #include <openssl/mem.h>
26
27 #include <string.h>
28
29 #include "internal.h"
30 #include "../delocate.h"
31 #include "../../internal.h"
32
33
34 #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
35
36 // Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
37 // using 64-bit coefficients called 'limbs', and sometimes (for multiplication
38 // results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
39 // 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
40 // representation is an 'p224_felem'; a 7-p224_widelimb representation is a
41 // 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
42 // don't always reduce the representations: we ensure that inputs to each
43 // p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
44 // 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
45 // are then again partially reduced to obtain an p224_felem satisfying a_i <
46 // 2^57. We only reduce to the unique minimal representation at the end of the
47 // computation.
48
49 typedef uint64_t p224_limb;
50 typedef uint128_t p224_widelimb;
51
52 typedef p224_limb p224_felem[4];
53 typedef p224_widelimb p224_widefelem[7];
54
55 // Precomputed multiples of the standard generator
56 // Points are given in coordinates (X, Y, Z) where Z normally is 1
57 // (0 for the point at infinity).
58 // For each field element, slice a_0 is word 0, etc.
59 //
60 // The table has 2 * 16 elements, starting with the following:
61 // index | bits | point
62 // ------+---------+------------------------------
63 // 0 | 0 0 0 0 | 0G
64 // 1 | 0 0 0 1 | 1G
65 // 2 | 0 0 1 0 | 2^56G
66 // 3 | 0 0 1 1 | (2^56 + 1)G
67 // 4 | 0 1 0 0 | 2^112G
68 // 5 | 0 1 0 1 | (2^112 + 1)G
69 // 6 | 0 1 1 0 | (2^112 + 2^56)G
70 // 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
71 // 8 | 1 0 0 0 | 2^168G
72 // 9 | 1 0 0 1 | (2^168 + 1)G
73 // 10 | 1 0 1 0 | (2^168 + 2^56)G
74 // 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
75 // 12 | 1 1 0 0 | (2^168 + 2^112)G
76 // 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
77 // 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
78 // 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
79 // followed by a copy of this with each element multiplied by 2^28.
80 //
81 // The reason for this is so that we can clock bits into four different
82 // locations when doing simple scalar multiplies against the base point,
83 // and then another four locations using the second 16 elements.
84 static const p224_felem g_p224_pre_comp[2][16][3] = {
85 {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
86 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
87 {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
88 {1, 0, 0, 0}},
89 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
90 {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
91 {1, 0, 0, 0}},
92 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
93 {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
94 {1, 0, 0, 0}},
95 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
96 {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
97 {1, 0, 0, 0}},
98 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
99 {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
100 {1, 0, 0, 0}},
101 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
102 {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
103 {1, 0, 0, 0}},
104 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
105 {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
106 {1, 0, 0, 0}},
107 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
108 {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
109 {1, 0, 0, 0}},
110 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
111 {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
112 {1, 0, 0, 0}},
113 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
114 {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
115 {1, 0, 0, 0}},
116 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
117 {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
118 {1, 0, 0, 0}},
119 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
120 {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
121 {1, 0, 0, 0}},
122 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
123 {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
124 {1, 0, 0, 0}},
125 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
126 {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
127 {1, 0, 0, 0}},
128 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
129 {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
130 {1, 0, 0, 0}}},
131 {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
132 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
133 {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
134 {1, 0, 0, 0}},
135 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
136 {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
137 {1, 0, 0, 0}},
138 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
139 {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
140 {1, 0, 0, 0}},
141 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
142 {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
143 {1, 0, 0, 0}},
144 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
145 {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
146 {1, 0, 0, 0}},
147 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
148 {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
149 {1, 0, 0, 0}},
150 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
151 {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
152 {1, 0, 0, 0}},
153 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
154 {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
155 {1, 0, 0, 0}},
156 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
157 {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
158 {1, 0, 0, 0}},
159 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
160 {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
161 {1, 0, 0, 0}},
162 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
163 {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
164 {1, 0, 0, 0}},
165 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
166 {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
167 {1, 0, 0, 0}},
168 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
169 {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
170 {1, 0, 0, 0}},
171 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
172 {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
173 {1, 0, 0, 0}},
174 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
175 {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
176 {1, 0, 0, 0}}}};
177
178
179 // Helper functions to convert field elements to/from internal representation
180
p224_generic_to_felem(p224_felem out,const EC_FELEM * in)181 static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) {
182 // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
183 // uses four 64-bit words. (The top-most word only has 32 bits.)
184 out[0] = in->words[0] & 0x00ffffffffffffff;
185 out[1] = ((in->words[0] >> 56) | (in->words[1] << 8)) & 0x00ffffffffffffff;
186 out[2] = ((in->words[1] >> 48) | (in->words[2] << 16)) & 0x00ffffffffffffff;
187 out[3] = ((in->words[2] >> 40) | (in->words[3] << 24)) & 0x00ffffffffffffff;
188 }
189
190 // Requires 0 <= in < 2*p (always call p224_felem_reduce first)
p224_felem_to_generic(EC_FELEM * out,const p224_felem in)191 static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) {
192 // Reduce to unique minimal representation.
193 static const int64_t two56 = ((p224_limb)1) << 56;
194 // 0 <= in < 2*p, p = 2^224 - 2^96 + 1
195 // if in > p , reduce in = in - 2^224 + 2^96 - 1
196 int64_t tmp[4], a;
197 tmp[0] = in[0];
198 tmp[1] = in[1];
199 tmp[2] = in[2];
200 tmp[3] = in[3];
201 // Case 1: a = 1 iff in >= 2^224
202 a = (in[3] >> 56);
203 tmp[0] -= a;
204 tmp[1] += a << 40;
205 tmp[3] &= 0x00ffffffffffffff;
206 // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
207 // the lower part is non-zero
208 a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
209 (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
210 a &= 0x00ffffffffffffff;
211 // turn a into an all-one mask (if a = 0) or an all-zero mask
212 a = (a - 1) >> 63;
213 // subtract 2^224 - 2^96 + 1 if a is all-one
214 tmp[3] &= a ^ 0xffffffffffffffff;
215 tmp[2] &= a ^ 0xffffffffffffffff;
216 tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
217 tmp[0] -= 1 & a;
218
219 // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
220 // be non-zero, so we only need one step
221 a = tmp[0] >> 63;
222 tmp[0] += two56 & a;
223 tmp[1] -= 1 & a;
224
225 // carry 1 -> 2 -> 3
226 tmp[2] += tmp[1] >> 56;
227 tmp[1] &= 0x00ffffffffffffff;
228
229 tmp[3] += tmp[2] >> 56;
230 tmp[2] &= 0x00ffffffffffffff;
231
232 // Now 0 <= tmp < p
233 p224_felem tmp2;
234 tmp2[0] = tmp[0];
235 tmp2[1] = tmp[1];
236 tmp2[2] = tmp[2];
237 tmp2[3] = tmp[3];
238
239 // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
240 // uses four 64-bit words. (The top-most word only has 32 bits.)
241 out->words[0] = tmp2[0] | (tmp2[1] << 56);
242 out->words[1] = (tmp2[1] >> 8) | (tmp2[2] << 48);
243 out->words[2] = (tmp2[2] >> 16) | (tmp2[3] << 40);
244 out->words[3] = tmp2[3] >> 24;
245 }
246
247
248 // Field operations, using the internal representation of field elements.
249 // NB! These operations are specific to our point multiplication and cannot be
250 // expected to be correct in general - e.g., multiplication with a large scalar
251 // will cause an overflow.
252
p224_felem_assign(p224_felem out,const p224_felem in)253 static void p224_felem_assign(p224_felem out, const p224_felem in) {
254 out[0] = in[0];
255 out[1] = in[1];
256 out[2] = in[2];
257 out[3] = in[3];
258 }
259
260 // Sum two field elements: out += in
p224_felem_sum(p224_felem out,const p224_felem in)261 static void p224_felem_sum(p224_felem out, const p224_felem in) {
262 out[0] += in[0];
263 out[1] += in[1];
264 out[2] += in[2];
265 out[3] += in[3];
266 }
267
268 // Subtract field elements: out -= in
269 // Assumes in[i] < 2^57
p224_felem_diff(p224_felem out,const p224_felem in)270 static void p224_felem_diff(p224_felem out, const p224_felem in) {
271 static const p224_limb two58p2 =
272 (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
273 static const p224_limb two58m2 =
274 (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
275 static const p224_limb two58m42m2 =
276 (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
277
278 // Add 0 mod 2^224-2^96+1 to ensure out > in
279 out[0] += two58p2;
280 out[1] += two58m42m2;
281 out[2] += two58m2;
282 out[3] += two58m2;
283
284 out[0] -= in[0];
285 out[1] -= in[1];
286 out[2] -= in[2];
287 out[3] -= in[3];
288 }
289
290 // Subtract in unreduced 128-bit mode: out -= in
291 // Assumes in[i] < 2^119
p224_widefelem_diff(p224_widefelem out,const p224_widefelem in)292 static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
293 static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
294 static const p224_widelimb two120m64 =
295 (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
296 static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
297 (((p224_widelimb)1) << 104) -
298 (((p224_widelimb)1) << 64);
299
300 // Add 0 mod 2^224-2^96+1 to ensure out > in
301 out[0] += two120;
302 out[1] += two120m64;
303 out[2] += two120m64;
304 out[3] += two120;
305 out[4] += two120m104m64;
306 out[5] += two120m64;
307 out[6] += two120m64;
308
309 out[0] -= in[0];
310 out[1] -= in[1];
311 out[2] -= in[2];
312 out[3] -= in[3];
313 out[4] -= in[4];
314 out[5] -= in[5];
315 out[6] -= in[6];
316 }
317
318 // Subtract in mixed mode: out128 -= in64
319 // in[i] < 2^63
p224_felem_diff_128_64(p224_widefelem out,const p224_felem in)320 static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
321 static const p224_widelimb two64p8 =
322 (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
323 static const p224_widelimb two64m8 =
324 (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
325 static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
326 (((p224_widelimb)1) << 48) -
327 (((p224_widelimb)1) << 8);
328
329 // Add 0 mod 2^224-2^96+1 to ensure out > in
330 out[0] += two64p8;
331 out[1] += two64m48m8;
332 out[2] += two64m8;
333 out[3] += two64m8;
334
335 out[0] -= in[0];
336 out[1] -= in[1];
337 out[2] -= in[2];
338 out[3] -= in[3];
339 }
340
341 // Multiply a field element by a scalar: out = out * scalar
342 // The scalars we actually use are small, so results fit without overflow
p224_felem_scalar(p224_felem out,const p224_limb scalar)343 static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
344 out[0] *= scalar;
345 out[1] *= scalar;
346 out[2] *= scalar;
347 out[3] *= scalar;
348 }
349
350 // Multiply an unreduced field element by a scalar: out = out * scalar
351 // The scalars we actually use are small, so results fit without overflow
p224_widefelem_scalar(p224_widefelem out,const p224_widelimb scalar)352 static void p224_widefelem_scalar(p224_widefelem out,
353 const p224_widelimb scalar) {
354 out[0] *= scalar;
355 out[1] *= scalar;
356 out[2] *= scalar;
357 out[3] *= scalar;
358 out[4] *= scalar;
359 out[5] *= scalar;
360 out[6] *= scalar;
361 }
362
363 // Square a field element: out = in^2
p224_felem_square(p224_widefelem out,const p224_felem in)364 static void p224_felem_square(p224_widefelem out, const p224_felem in) {
365 p224_limb tmp0, tmp1, tmp2;
366 tmp0 = 2 * in[0];
367 tmp1 = 2 * in[1];
368 tmp2 = 2 * in[2];
369 out[0] = ((p224_widelimb)in[0]) * in[0];
370 out[1] = ((p224_widelimb)in[0]) * tmp1;
371 out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
372 out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
373 out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
374 out[5] = ((p224_widelimb)in[3]) * tmp2;
375 out[6] = ((p224_widelimb)in[3]) * in[3];
376 }
377
378 // Multiply two field elements: out = in1 * in2
p224_felem_mul(p224_widefelem out,const p224_felem in1,const p224_felem in2)379 static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
380 const p224_felem in2) {
381 out[0] = ((p224_widelimb)in1[0]) * in2[0];
382 out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
383 out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
384 ((p224_widelimb)in1[2]) * in2[0];
385 out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
386 ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
387 out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
388 ((p224_widelimb)in1[3]) * in2[1];
389 out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
390 out[6] = ((p224_widelimb)in1[3]) * in2[3];
391 }
392
393 // Reduce seven 128-bit coefficients to four 64-bit coefficients.
394 // Requires in[i] < 2^126,
395 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
p224_felem_reduce(p224_felem out,const p224_widefelem in)396 static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
397 static const p224_widelimb two127p15 =
398 (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
399 static const p224_widelimb two127m71 =
400 (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
401 static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
402 (((p224_widelimb)1) << 71) -
403 (((p224_widelimb)1) << 55);
404 p224_widelimb output[5];
405
406 // Add 0 mod 2^224-2^96+1 to ensure all differences are positive
407 output[0] = in[0] + two127p15;
408 output[1] = in[1] + two127m71m55;
409 output[2] = in[2] + two127m71;
410 output[3] = in[3];
411 output[4] = in[4];
412
413 // Eliminate in[4], in[5], in[6]
414 output[4] += in[6] >> 16;
415 output[3] += (in[6] & 0xffff) << 40;
416 output[2] -= in[6];
417
418 output[3] += in[5] >> 16;
419 output[2] += (in[5] & 0xffff) << 40;
420 output[1] -= in[5];
421
422 output[2] += output[4] >> 16;
423 output[1] += (output[4] & 0xffff) << 40;
424 output[0] -= output[4];
425
426 // Carry 2 -> 3 -> 4
427 output[3] += output[2] >> 56;
428 output[2] &= 0x00ffffffffffffff;
429
430 output[4] = output[3] >> 56;
431 output[3] &= 0x00ffffffffffffff;
432
433 // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72
434
435 // Eliminate output[4]
436 output[2] += output[4] >> 16;
437 // output[2] < 2^56 + 2^56 = 2^57
438 output[1] += (output[4] & 0xffff) << 40;
439 output[0] -= output[4];
440
441 // Carry 0 -> 1 -> 2 -> 3
442 output[1] += output[0] >> 56;
443 out[0] = output[0] & 0x00ffffffffffffff;
444
445 output[2] += output[1] >> 56;
446 // output[2] < 2^57 + 2^72
447 out[1] = output[1] & 0x00ffffffffffffff;
448 output[3] += output[2] >> 56;
449 // output[3] <= 2^56 + 2^16
450 out[2] = output[2] & 0x00ffffffffffffff;
451
452 // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
453 // out[3] <= 2^56 + 2^16 (due to final carry),
454 // so out < 2*p
455 out[3] = output[3];
456 }
457
458 // Get negative value: out = -in
459 // Requires in[i] < 2^63,
460 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
p224_felem_neg(p224_felem out,const p224_felem in)461 static void p224_felem_neg(p224_felem out, const p224_felem in) {
462 p224_widefelem tmp = {0};
463 p224_felem_diff_128_64(tmp, in);
464 p224_felem_reduce(out, tmp);
465 }
466
467 // Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
468 // elements are reduced to in < 2^225, so we only need to check three cases: 0,
469 // 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
p224_felem_is_zero(const p224_felem in)470 static p224_limb p224_felem_is_zero(const p224_felem in) {
471 p224_limb zero = in[0] | in[1] | in[2] | in[3];
472 zero = (((int64_t)(zero)-1) >> 63) & 1;
473
474 p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
475 (in[2] ^ 0x00ffffffffffffff) |
476 (in[3] ^ 0x00ffffffffffffff);
477 two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
478 p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
479 (in[2] ^ 0x00ffffffffffffff) |
480 (in[3] ^ 0x01ffffffffffffff);
481 two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
482 return (zero | two224m96p1 | two225m97p2);
483 }
484
485 // Invert a field element
486 // Computation chain copied from djb's code
p224_felem_inv(p224_felem out,const p224_felem in)487 static void p224_felem_inv(p224_felem out, const p224_felem in) {
488 p224_felem ftmp, ftmp2, ftmp3, ftmp4;
489 p224_widefelem tmp;
490
491 p224_felem_square(tmp, in);
492 p224_felem_reduce(ftmp, tmp); // 2
493 p224_felem_mul(tmp, in, ftmp);
494 p224_felem_reduce(ftmp, tmp); // 2^2 - 1
495 p224_felem_square(tmp, ftmp);
496 p224_felem_reduce(ftmp, tmp); // 2^3 - 2
497 p224_felem_mul(tmp, in, ftmp);
498 p224_felem_reduce(ftmp, tmp); // 2^3 - 1
499 p224_felem_square(tmp, ftmp);
500 p224_felem_reduce(ftmp2, tmp); // 2^4 - 2
501 p224_felem_square(tmp, ftmp2);
502 p224_felem_reduce(ftmp2, tmp); // 2^5 - 4
503 p224_felem_square(tmp, ftmp2);
504 p224_felem_reduce(ftmp2, tmp); // 2^6 - 8
505 p224_felem_mul(tmp, ftmp2, ftmp);
506 p224_felem_reduce(ftmp, tmp); // 2^6 - 1
507 p224_felem_square(tmp, ftmp);
508 p224_felem_reduce(ftmp2, tmp); // 2^7 - 2
509 for (size_t i = 0; i < 5; ++i) { // 2^12 - 2^6
510 p224_felem_square(tmp, ftmp2);
511 p224_felem_reduce(ftmp2, tmp);
512 }
513 p224_felem_mul(tmp, ftmp2, ftmp);
514 p224_felem_reduce(ftmp2, tmp); // 2^12 - 1
515 p224_felem_square(tmp, ftmp2);
516 p224_felem_reduce(ftmp3, tmp); // 2^13 - 2
517 for (size_t i = 0; i < 11; ++i) { // 2^24 - 2^12
518 p224_felem_square(tmp, ftmp3);
519 p224_felem_reduce(ftmp3, tmp);
520 }
521 p224_felem_mul(tmp, ftmp3, ftmp2);
522 p224_felem_reduce(ftmp2, tmp); // 2^24 - 1
523 p224_felem_square(tmp, ftmp2);
524 p224_felem_reduce(ftmp3, tmp); // 2^25 - 2
525 for (size_t i = 0; i < 23; ++i) { // 2^48 - 2^24
526 p224_felem_square(tmp, ftmp3);
527 p224_felem_reduce(ftmp3, tmp);
528 }
529 p224_felem_mul(tmp, ftmp3, ftmp2);
530 p224_felem_reduce(ftmp3, tmp); // 2^48 - 1
531 p224_felem_square(tmp, ftmp3);
532 p224_felem_reduce(ftmp4, tmp); // 2^49 - 2
533 for (size_t i = 0; i < 47; ++i) { // 2^96 - 2^48
534 p224_felem_square(tmp, ftmp4);
535 p224_felem_reduce(ftmp4, tmp);
536 }
537 p224_felem_mul(tmp, ftmp3, ftmp4);
538 p224_felem_reduce(ftmp3, tmp); // 2^96 - 1
539 p224_felem_square(tmp, ftmp3);
540 p224_felem_reduce(ftmp4, tmp); // 2^97 - 2
541 for (size_t i = 0; i < 23; ++i) { // 2^120 - 2^24
542 p224_felem_square(tmp, ftmp4);
543 p224_felem_reduce(ftmp4, tmp);
544 }
545 p224_felem_mul(tmp, ftmp2, ftmp4);
546 p224_felem_reduce(ftmp2, tmp); // 2^120 - 1
547 for (size_t i = 0; i < 6; ++i) { // 2^126 - 2^6
548 p224_felem_square(tmp, ftmp2);
549 p224_felem_reduce(ftmp2, tmp);
550 }
551 p224_felem_mul(tmp, ftmp2, ftmp);
552 p224_felem_reduce(ftmp, tmp); // 2^126 - 1
553 p224_felem_square(tmp, ftmp);
554 p224_felem_reduce(ftmp, tmp); // 2^127 - 2
555 p224_felem_mul(tmp, ftmp, in);
556 p224_felem_reduce(ftmp, tmp); // 2^127 - 1
557 for (size_t i = 0; i < 97; ++i) { // 2^224 - 2^97
558 p224_felem_square(tmp, ftmp);
559 p224_felem_reduce(ftmp, tmp);
560 }
561 p224_felem_mul(tmp, ftmp, ftmp3);
562 p224_felem_reduce(out, tmp); // 2^224 - 2^96 - 1
563 }
564
565 // Copy in constant time:
566 // if icopy == 1, copy in to out,
567 // if icopy == 0, copy out to itself.
p224_copy_conditional(p224_felem out,const p224_felem in,p224_limb icopy)568 static void p224_copy_conditional(p224_felem out, const p224_felem in,
569 p224_limb icopy) {
570 // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
571 const p224_limb copy = -icopy;
572 for (size_t i = 0; i < 4; ++i) {
573 const p224_limb tmp = copy & (in[i] ^ out[i]);
574 out[i] ^= tmp;
575 }
576 }
577
578 // ELLIPTIC CURVE POINT OPERATIONS
579 //
580 // Points are represented in Jacobian projective coordinates:
581 // (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
582 // or to the point at infinity if Z == 0.
583
584 // Double an elliptic curve point:
585 // (X', Y', Z') = 2 * (X, Y, Z), where
586 // X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
587 // Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
588 // Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
589 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
590 // while x_out == y_in is not (maybe this works, but it's not tested).
p224_point_double(p224_felem x_out,p224_felem y_out,p224_felem z_out,const p224_felem x_in,const p224_felem y_in,const p224_felem z_in)591 static void p224_point_double(p224_felem x_out, p224_felem y_out,
592 p224_felem z_out, const p224_felem x_in,
593 const p224_felem y_in, const p224_felem z_in) {
594 p224_widefelem tmp, tmp2;
595 p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
596
597 p224_felem_assign(ftmp, x_in);
598 p224_felem_assign(ftmp2, x_in);
599
600 // delta = z^2
601 p224_felem_square(tmp, z_in);
602 p224_felem_reduce(delta, tmp);
603
604 // gamma = y^2
605 p224_felem_square(tmp, y_in);
606 p224_felem_reduce(gamma, tmp);
607
608 // beta = x*gamma
609 p224_felem_mul(tmp, x_in, gamma);
610 p224_felem_reduce(beta, tmp);
611
612 // alpha = 3*(x-delta)*(x+delta)
613 p224_felem_diff(ftmp, delta);
614 // ftmp[i] < 2^57 + 2^58 + 2 < 2^59
615 p224_felem_sum(ftmp2, delta);
616 // ftmp2[i] < 2^57 + 2^57 = 2^58
617 p224_felem_scalar(ftmp2, 3);
618 // ftmp2[i] < 3 * 2^58 < 2^60
619 p224_felem_mul(tmp, ftmp, ftmp2);
620 // tmp[i] < 2^60 * 2^59 * 4 = 2^121
621 p224_felem_reduce(alpha, tmp);
622
623 // x' = alpha^2 - 8*beta
624 p224_felem_square(tmp, alpha);
625 // tmp[i] < 4 * 2^57 * 2^57 = 2^116
626 p224_felem_assign(ftmp, beta);
627 p224_felem_scalar(ftmp, 8);
628 // ftmp[i] < 8 * 2^57 = 2^60
629 p224_felem_diff_128_64(tmp, ftmp);
630 // tmp[i] < 2^116 + 2^64 + 8 < 2^117
631 p224_felem_reduce(x_out, tmp);
632
633 // z' = (y + z)^2 - gamma - delta
634 p224_felem_sum(delta, gamma);
635 // delta[i] < 2^57 + 2^57 = 2^58
636 p224_felem_assign(ftmp, y_in);
637 p224_felem_sum(ftmp, z_in);
638 // ftmp[i] < 2^57 + 2^57 = 2^58
639 p224_felem_square(tmp, ftmp);
640 // tmp[i] < 4 * 2^58 * 2^58 = 2^118
641 p224_felem_diff_128_64(tmp, delta);
642 // tmp[i] < 2^118 + 2^64 + 8 < 2^119
643 p224_felem_reduce(z_out, tmp);
644
645 // y' = alpha*(4*beta - x') - 8*gamma^2
646 p224_felem_scalar(beta, 4);
647 // beta[i] < 4 * 2^57 = 2^59
648 p224_felem_diff(beta, x_out);
649 // beta[i] < 2^59 + 2^58 + 2 < 2^60
650 p224_felem_mul(tmp, alpha, beta);
651 // tmp[i] < 4 * 2^57 * 2^60 = 2^119
652 p224_felem_square(tmp2, gamma);
653 // tmp2[i] < 4 * 2^57 * 2^57 = 2^116
654 p224_widefelem_scalar(tmp2, 8);
655 // tmp2[i] < 8 * 2^116 = 2^119
656 p224_widefelem_diff(tmp, tmp2);
657 // tmp[i] < 2^119 + 2^120 < 2^121
658 p224_felem_reduce(y_out, tmp);
659 }
660
661 // Add two elliptic curve points:
662 // (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
663 // X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
664 // 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
665 // Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
666 // X_1)^2 - X_3) -
667 // Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
668 // Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
669 //
670 // This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
671
672 // This function is not entirely constant-time: it includes a branch for
673 // checking whether the two input points are equal, (while not equal to the
674 // point at infinity). This case never happens during single point
675 // multiplication, so there is no timing leak for ECDH or ECDSA signing.
p224_point_add(p224_felem x3,p224_felem y3,p224_felem z3,const p224_felem x1,const p224_felem y1,const p224_felem z1,const int mixed,const p224_felem x2,const p224_felem y2,const p224_felem z2)676 static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
677 const p224_felem x1, const p224_felem y1,
678 const p224_felem z1, const int mixed,
679 const p224_felem x2, const p224_felem y2,
680 const p224_felem z2) {
681 p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
682 p224_widefelem tmp, tmp2;
683 p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
684
685 if (!mixed) {
686 // ftmp2 = z2^2
687 p224_felem_square(tmp, z2);
688 p224_felem_reduce(ftmp2, tmp);
689
690 // ftmp4 = z2^3
691 p224_felem_mul(tmp, ftmp2, z2);
692 p224_felem_reduce(ftmp4, tmp);
693
694 // ftmp4 = z2^3*y1
695 p224_felem_mul(tmp2, ftmp4, y1);
696 p224_felem_reduce(ftmp4, tmp2);
697
698 // ftmp2 = z2^2*x1
699 p224_felem_mul(tmp2, ftmp2, x1);
700 p224_felem_reduce(ftmp2, tmp2);
701 } else {
702 // We'll assume z2 = 1 (special case z2 = 0 is handled later)
703
704 // ftmp4 = z2^3*y1
705 p224_felem_assign(ftmp4, y1);
706
707 // ftmp2 = z2^2*x1
708 p224_felem_assign(ftmp2, x1);
709 }
710
711 // ftmp = z1^2
712 p224_felem_square(tmp, z1);
713 p224_felem_reduce(ftmp, tmp);
714
715 // ftmp3 = z1^3
716 p224_felem_mul(tmp, ftmp, z1);
717 p224_felem_reduce(ftmp3, tmp);
718
719 // tmp = z1^3*y2
720 p224_felem_mul(tmp, ftmp3, y2);
721 // tmp[i] < 4 * 2^57 * 2^57 = 2^116
722
723 // ftmp3 = z1^3*y2 - z2^3*y1
724 p224_felem_diff_128_64(tmp, ftmp4);
725 // tmp[i] < 2^116 + 2^64 + 8 < 2^117
726 p224_felem_reduce(ftmp3, tmp);
727
728 // tmp = z1^2*x2
729 p224_felem_mul(tmp, ftmp, x2);
730 // tmp[i] < 4 * 2^57 * 2^57 = 2^116
731
732 // ftmp = z1^2*x2 - z2^2*x1
733 p224_felem_diff_128_64(tmp, ftmp2);
734 // tmp[i] < 2^116 + 2^64 + 8 < 2^117
735 p224_felem_reduce(ftmp, tmp);
736
737 // The formulae are incorrect if the points are equal, so we check for this
738 // and do doubling if this happens.
739 x_equal = p224_felem_is_zero(ftmp);
740 y_equal = p224_felem_is_zero(ftmp3);
741 z1_is_zero = p224_felem_is_zero(z1);
742 z2_is_zero = p224_felem_is_zero(z2);
743 // In affine coordinates, (X_1, Y_1) == (X_2, Y_2)
744 p224_limb is_nontrivial_double =
745 x_equal & y_equal & (1 - z1_is_zero) & (1 - z2_is_zero);
746 if (constant_time_declassify_w(is_nontrivial_double)) {
747 p224_point_double(x3, y3, z3, x1, y1, z1);
748 return;
749 }
750
751 // ftmp5 = z1*z2
752 if (!mixed) {
753 p224_felem_mul(tmp, z1, z2);
754 p224_felem_reduce(ftmp5, tmp);
755 } else {
756 // special case z2 = 0 is handled later
757 p224_felem_assign(ftmp5, z1);
758 }
759
760 // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2)
761 p224_felem_mul(tmp, ftmp, ftmp5);
762 p224_felem_reduce(z_out, tmp);
763
764 // ftmp = (z1^2*x2 - z2^2*x1)^2
765 p224_felem_assign(ftmp5, ftmp);
766 p224_felem_square(tmp, ftmp);
767 p224_felem_reduce(ftmp, tmp);
768
769 // ftmp5 = (z1^2*x2 - z2^2*x1)^3
770 p224_felem_mul(tmp, ftmp, ftmp5);
771 p224_felem_reduce(ftmp5, tmp);
772
773 // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2
774 p224_felem_mul(tmp, ftmp2, ftmp);
775 p224_felem_reduce(ftmp2, tmp);
776
777 // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3
778 p224_felem_mul(tmp, ftmp4, ftmp5);
779 // tmp[i] < 4 * 2^57 * 2^57 = 2^116
780
781 // tmp2 = (z1^3*y2 - z2^3*y1)^2
782 p224_felem_square(tmp2, ftmp3);
783 // tmp2[i] < 4 * 2^57 * 2^57 < 2^116
784
785 // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3
786 p224_felem_diff_128_64(tmp2, ftmp5);
787 // tmp2[i] < 2^116 + 2^64 + 8 < 2^117
788
789 // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
790 p224_felem_assign(ftmp5, ftmp2);
791 p224_felem_scalar(ftmp5, 2);
792 // ftmp5[i] < 2 * 2^57 = 2^58
793
794 /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
795 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
796 p224_felem_diff_128_64(tmp2, ftmp5);
797 // tmp2[i] < 2^117 + 2^64 + 8 < 2^118
798 p224_felem_reduce(x_out, tmp2);
799
800 // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out
801 p224_felem_diff(ftmp2, x_out);
802 // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59
803
804 // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
805 p224_felem_mul(tmp2, ftmp3, ftmp2);
806 // tmp2[i] < 4 * 2^57 * 2^59 = 2^118
807
808 /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
809 z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
810 p224_widefelem_diff(tmp2, tmp);
811 // tmp2[i] < 2^118 + 2^120 < 2^121
812 p224_felem_reduce(y_out, tmp2);
813
814 // the result (x_out, y_out, z_out) is incorrect if one of the inputs is
815 // the point at infinity, so we need to check for this separately
816
817 // if point 1 is at infinity, copy point 2 to output, and vice versa
818 p224_copy_conditional(x_out, x2, z1_is_zero);
819 p224_copy_conditional(x_out, x1, z2_is_zero);
820 p224_copy_conditional(y_out, y2, z1_is_zero);
821 p224_copy_conditional(y_out, y1, z2_is_zero);
822 p224_copy_conditional(z_out, z2, z1_is_zero);
823 p224_copy_conditional(z_out, z1, z2_is_zero);
824 p224_felem_assign(x3, x_out);
825 p224_felem_assign(y3, y_out);
826 p224_felem_assign(z3, z_out);
827 }
828
829 // p224_select_point selects the |idx|th point from a precomputation table and
830 // copies it to out.
p224_select_point(const uint64_t idx,size_t size,const p224_felem pre_comp[][3],p224_felem out[3])831 static void p224_select_point(const uint64_t idx, size_t size,
832 const p224_felem pre_comp[/*size*/][3],
833 p224_felem out[3]) {
834 p224_limb *outlimbs = &out[0][0];
835 OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
836
837 for (size_t i = 0; i < size; i++) {
838 const p224_limb *inlimbs = &pre_comp[i][0][0];
839 uint64_t mask = i ^ idx;
840 mask |= mask >> 4;
841 mask |= mask >> 2;
842 mask |= mask >> 1;
843 mask &= 1;
844 mask--;
845 for (size_t j = 0; j < 4 * 3; j++) {
846 outlimbs[j] |= inlimbs[j] & mask;
847 }
848 }
849 }
850
851 // p224_get_bit returns the |i|th bit in |in|.
p224_get_bit(const EC_SCALAR * in,size_t i)852 static crypto_word_t p224_get_bit(const EC_SCALAR *in, size_t i) {
853 if (i >= 224) {
854 return 0;
855 }
856 static_assert(sizeof(in->words[0]) == 8, "BN_ULONG is not 64-bit");
857 return (in->words[i >> 6] >> (i & 63)) & 1;
858 }
859
860 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns
861 // (X', Y') = (X/Z^2, Y/Z^3)
ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP * group,const EC_JACOBIAN * point,EC_FELEM * x,EC_FELEM * y)862 static int ec_GFp_nistp224_point_get_affine_coordinates(
863 const EC_GROUP *group, const EC_JACOBIAN *point, EC_FELEM *x,
864 EC_FELEM *y) {
865 if (constant_time_declassify_int(
866 ec_GFp_simple_is_at_infinity(group, point))) {
867 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
868 return 0;
869 }
870
871 p224_felem z1, z2;
872 p224_widefelem tmp;
873 p224_generic_to_felem(z1, &point->Z);
874 p224_felem_inv(z2, z1);
875 p224_felem_square(tmp, z2);
876 p224_felem_reduce(z1, tmp);
877
878 if (x != NULL) {
879 p224_felem x_in, x_out;
880 p224_generic_to_felem(x_in, &point->X);
881 p224_felem_mul(tmp, x_in, z1);
882 p224_felem_reduce(x_out, tmp);
883 p224_felem_to_generic(x, x_out);
884 }
885
886 if (y != NULL) {
887 p224_felem y_in, y_out;
888 p224_generic_to_felem(y_in, &point->Y);
889 p224_felem_mul(tmp, z1, z2);
890 p224_felem_reduce(z1, tmp);
891 p224_felem_mul(tmp, y_in, z1);
892 p224_felem_reduce(y_out, tmp);
893 p224_felem_to_generic(y, y_out);
894 }
895
896 return 1;
897 }
898
ec_GFp_nistp224_add(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * a,const EC_JACOBIAN * b)899 static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_JACOBIAN *r,
900 const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
901 p224_felem x1, y1, z1, x2, y2, z2;
902 p224_generic_to_felem(x1, &a->X);
903 p224_generic_to_felem(y1, &a->Y);
904 p224_generic_to_felem(z1, &a->Z);
905 p224_generic_to_felem(x2, &b->X);
906 p224_generic_to_felem(y2, &b->Y);
907 p224_generic_to_felem(z2, &b->Z);
908 p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
909 // The outputs are already reduced, but still need to be contracted.
910 p224_felem_to_generic(&r->X, x1);
911 p224_felem_to_generic(&r->Y, y1);
912 p224_felem_to_generic(&r->Z, z1);
913 }
914
ec_GFp_nistp224_dbl(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * a)915 static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_JACOBIAN *r,
916 const EC_JACOBIAN *a) {
917 p224_felem x, y, z;
918 p224_generic_to_felem(x, &a->X);
919 p224_generic_to_felem(y, &a->Y);
920 p224_generic_to_felem(z, &a->Z);
921 p224_point_double(x, y, z, x, y, z);
922 // The outputs are already reduced, but still need to be contracted.
923 p224_felem_to_generic(&r->X, x);
924 p224_felem_to_generic(&r->Y, y);
925 p224_felem_to_generic(&r->Z, z);
926 }
927
ec_GFp_nistp224_make_precomp(p224_felem out[17][3],const EC_JACOBIAN * p)928 static void ec_GFp_nistp224_make_precomp(p224_felem out[17][3],
929 const EC_JACOBIAN *p) {
930 OPENSSL_memset(out[0], 0, sizeof(p224_felem) * 3);
931
932 p224_generic_to_felem(out[1][0], &p->X);
933 p224_generic_to_felem(out[1][1], &p->Y);
934 p224_generic_to_felem(out[1][2], &p->Z);
935
936 for (size_t j = 2; j <= 16; ++j) {
937 if (j & 1) {
938 p224_point_add(out[j][0], out[j][1], out[j][2], out[1][0], out[1][1],
939 out[1][2], 0, out[j - 1][0], out[j - 1][1], out[j - 1][2]);
940 } else {
941 p224_point_double(out[j][0], out[j][1], out[j][2], out[j / 2][0],
942 out[j / 2][1], out[j / 2][2]);
943 }
944 }
945 }
946
ec_GFp_nistp224_point_mul(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * p,const EC_SCALAR * scalar)947 static void ec_GFp_nistp224_point_mul(const EC_GROUP *group, EC_JACOBIAN *r,
948 const EC_JACOBIAN *p,
949 const EC_SCALAR *scalar) {
950 p224_felem p_pre_comp[17][3];
951 ec_GFp_nistp224_make_precomp(p_pre_comp, p);
952
953 // Set nq to the point at infinity.
954 p224_felem nq[3], tmp[4];
955 OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
956
957 int skip = 1; // Save two point operations in the first round.
958 for (size_t i = 220; i < 221; i--) {
959 if (!skip) {
960 p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
961 }
962
963 // Add every 5 doublings.
964 if (i % 5 == 0) {
965 crypto_word_t bits = p224_get_bit(scalar, i + 4) << 5;
966 bits |= p224_get_bit(scalar, i + 3) << 4;
967 bits |= p224_get_bit(scalar, i + 2) << 3;
968 bits |= p224_get_bit(scalar, i + 1) << 2;
969 bits |= p224_get_bit(scalar, i) << 1;
970 bits |= p224_get_bit(scalar, i - 1);
971 crypto_word_t sign, digit;
972 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
973
974 // Select the point to add or subtract.
975 p224_select_point(digit, 17, (const p224_felem(*)[3])p_pre_comp, tmp);
976 p224_felem_neg(tmp[3], tmp[1]); // (X, -Y, Z) is the negative point
977 p224_copy_conditional(tmp[1], tmp[3], sign);
978
979 if (!skip) {
980 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
981 tmp[0], tmp[1], tmp[2]);
982 } else {
983 OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
984 skip = 0;
985 }
986 }
987 }
988
989 // Reduce the output to its unique minimal representation.
990 p224_felem_to_generic(&r->X, nq[0]);
991 p224_felem_to_generic(&r->Y, nq[1]);
992 p224_felem_to_generic(&r->Z, nq[2]);
993 }
994
ec_GFp_nistp224_point_mul_base(const EC_GROUP * group,EC_JACOBIAN * r,const EC_SCALAR * scalar)995 static void ec_GFp_nistp224_point_mul_base(const EC_GROUP *group,
996 EC_JACOBIAN *r,
997 const EC_SCALAR *scalar) {
998 // Set nq to the point at infinity.
999 p224_felem nq[3], tmp[3];
1000 OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1001
1002 int skip = 1; // Save two point operations in the first round.
1003 for (size_t i = 27; i < 28; i--) {
1004 // double
1005 if (!skip) {
1006 p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1007 }
1008
1009 // First, look 28 bits upwards.
1010 crypto_word_t bits = p224_get_bit(scalar, i + 196) << 3;
1011 bits |= p224_get_bit(scalar, i + 140) << 2;
1012 bits |= p224_get_bit(scalar, i + 84) << 1;
1013 bits |= p224_get_bit(scalar, i + 28);
1014 // Select the point to add, in constant time.
1015 p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
1016
1017 if (!skip) {
1018 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1019 tmp[0], tmp[1], tmp[2]);
1020 } else {
1021 OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1022 skip = 0;
1023 }
1024
1025 // Second, look at the current position/
1026 bits = p224_get_bit(scalar, i + 168) << 3;
1027 bits |= p224_get_bit(scalar, i + 112) << 2;
1028 bits |= p224_get_bit(scalar, i + 56) << 1;
1029 bits |= p224_get_bit(scalar, i);
1030 // Select the point to add, in constant time.
1031 p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
1032 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1033 tmp[0], tmp[1], tmp[2]);
1034 }
1035
1036 // Reduce the output to its unique minimal representation.
1037 p224_felem_to_generic(&r->X, nq[0]);
1038 p224_felem_to_generic(&r->Y, nq[1]);
1039 p224_felem_to_generic(&r->Z, nq[2]);
1040 }
1041
ec_GFp_nistp224_point_mul_public(const EC_GROUP * group,EC_JACOBIAN * r,const EC_SCALAR * g_scalar,const EC_JACOBIAN * p,const EC_SCALAR * p_scalar)1042 static void ec_GFp_nistp224_point_mul_public(const EC_GROUP *group,
1043 EC_JACOBIAN *r,
1044 const EC_SCALAR *g_scalar,
1045 const EC_JACOBIAN *p,
1046 const EC_SCALAR *p_scalar) {
1047 // TODO(davidben): If P-224 ECDSA verify performance ever matters, using
1048 // |ec_compute_wNAF| for |p_scalar| would likely be an easy improvement.
1049 p224_felem p_pre_comp[17][3];
1050 ec_GFp_nistp224_make_precomp(p_pre_comp, p);
1051
1052 // Set nq to the point at infinity.
1053 p224_felem nq[3], tmp[3];
1054 OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1055
1056 // Loop over both scalars msb-to-lsb, interleaving additions of multiples of
1057 // the generator (two in each of the last 28 rounds) and additions of p (every
1058 // 5th round).
1059 int skip = 1; // Save two point operations in the first round.
1060 for (size_t i = 220; i < 221; i--) {
1061 if (!skip) {
1062 p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1063 }
1064
1065 // Add multiples of the generator.
1066 if (i <= 27) {
1067 // First, look 28 bits upwards.
1068 crypto_word_t bits = p224_get_bit(g_scalar, i + 196) << 3;
1069 bits |= p224_get_bit(g_scalar, i + 140) << 2;
1070 bits |= p224_get_bit(g_scalar, i + 84) << 1;
1071 bits |= p224_get_bit(g_scalar, i + 28);
1072
1073 size_t index = (size_t)bits;
1074 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1075 g_p224_pre_comp[1][index][0], g_p224_pre_comp[1][index][1],
1076 g_p224_pre_comp[1][index][2]);
1077 assert(!skip);
1078
1079 // Second, look at the current position.
1080 bits = p224_get_bit(g_scalar, i + 168) << 3;
1081 bits |= p224_get_bit(g_scalar, i + 112) << 2;
1082 bits |= p224_get_bit(g_scalar, i + 56) << 1;
1083 bits |= p224_get_bit(g_scalar, i);
1084 index = (size_t)bits;
1085 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1086 g_p224_pre_comp[0][index][0], g_p224_pre_comp[0][index][1],
1087 g_p224_pre_comp[0][index][2]);
1088 }
1089
1090 // Incorporate |p_scalar| every 5 doublings.
1091 if (i % 5 == 0) {
1092 crypto_word_t bits = p224_get_bit(p_scalar, i + 4) << 5;
1093 bits |= p224_get_bit(p_scalar, i + 3) << 4;
1094 bits |= p224_get_bit(p_scalar, i + 2) << 3;
1095 bits |= p224_get_bit(p_scalar, i + 1) << 2;
1096 bits |= p224_get_bit(p_scalar, i) << 1;
1097 bits |= p224_get_bit(p_scalar, i - 1);
1098 crypto_word_t sign, digit;
1099 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1100
1101 // Select the point to add or subtract.
1102 OPENSSL_memcpy(tmp, p_pre_comp[digit], 3 * sizeof(p224_felem));
1103 if (sign) {
1104 p224_felem_neg(tmp[1], tmp[1]); // (X, -Y, Z) is the negative point
1105 }
1106
1107 if (!skip) {
1108 p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
1109 tmp[0], tmp[1], tmp[2]);
1110 } else {
1111 OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1112 skip = 0;
1113 }
1114 }
1115 }
1116
1117 // Reduce the output to its unique minimal representation.
1118 p224_felem_to_generic(&r->X, nq[0]);
1119 p224_felem_to_generic(&r->Y, nq[1]);
1120 p224_felem_to_generic(&r->Z, nq[2]);
1121 }
1122
ec_GFp_nistp224_felem_mul(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a,const EC_FELEM * b)1123 static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r,
1124 const EC_FELEM *a, const EC_FELEM *b) {
1125 p224_felem felem1, felem2;
1126 p224_widefelem wide;
1127 p224_generic_to_felem(felem1, a);
1128 p224_generic_to_felem(felem2, b);
1129 p224_felem_mul(wide, felem1, felem2);
1130 p224_felem_reduce(felem1, wide);
1131 p224_felem_to_generic(r, felem1);
1132 }
1133
ec_GFp_nistp224_felem_sqr(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a)1134 static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
1135 const EC_FELEM *a) {
1136 p224_felem felem;
1137 p224_generic_to_felem(felem, a);
1138 p224_widefelem wide;
1139 p224_felem_square(wide, felem);
1140 p224_felem_reduce(felem, wide);
1141 p224_felem_to_generic(r, felem);
1142 }
1143
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistp224_method)1144 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
1145 out->point_get_affine_coordinates =
1146 ec_GFp_nistp224_point_get_affine_coordinates;
1147 out->add = ec_GFp_nistp224_add;
1148 out->dbl = ec_GFp_nistp224_dbl;
1149 out->mul = ec_GFp_nistp224_point_mul;
1150 out->mul_base = ec_GFp_nistp224_point_mul_base;
1151 out->mul_public = ec_GFp_nistp224_point_mul_public;
1152 out->felem_mul = ec_GFp_nistp224_felem_mul;
1153 out->felem_sqr = ec_GFp_nistp224_felem_sqr;
1154 out->felem_to_bytes = ec_GFp_simple_felem_to_bytes;
1155 out->felem_from_bytes = ec_GFp_simple_felem_from_bytes;
1156 out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
1157 out->scalar_to_montgomery_inv_vartime =
1158 ec_simple_scalar_to_montgomery_inv_vartime;
1159 out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate;
1160 }
1161
1162 #endif // BORINGSSL_HAS_UINT128 && !SMALL
1163