• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/rand.h>
16 
17 #include <assert.h>
18 #include <limits.h>
19 #include <string.h>
20 
21 #if defined(BORINGSSL_FIPS)
22 #include <unistd.h>
23 #endif
24 
25 #include <openssl/chacha.h>
26 #include <openssl/ctrdrbg.h>
27 #include <openssl/mem.h>
28 
29 #include "internal.h"
30 #include "fork_detect.h"
31 #include "../../internal.h"
32 #include "../delocate.h"
33 
34 
35 // It's assumed that the operating system always has an unfailing source of
36 // entropy which is accessed via |CRYPTO_sysrand[_for_seed]|. (If the operating
37 // system entropy source fails, it's up to |CRYPTO_sysrand| to abort the
38 // process—we don't try to handle it.)
39 //
40 // In addition, the hardware may provide a low-latency RNG. Intel's rdrand
41 // instruction is the canonical example of this. When a hardware RNG is
42 // available we don't need to worry about an RNG failure arising from fork()ing
43 // the process or moving a VM, so we can keep thread-local RNG state and use it
44 // as an additional-data input to CTR-DRBG.
45 //
46 // (We assume that the OS entropy is safe from fork()ing and VM duplication.
47 // This might be a bit of a leap of faith, esp on Windows, but there's nothing
48 // that we can do about it.)
49 
50 // kReseedInterval is the number of generate calls made to CTR-DRBG before
51 // reseeding.
52 static const unsigned kReseedInterval = 4096;
53 
54 // CRNGT_BLOCK_SIZE is the number of bytes in a “block” for the purposes of the
55 // continuous random number generator test in FIPS 140-2, section 4.9.2.
56 #define CRNGT_BLOCK_SIZE 16
57 
58 // rand_thread_state contains the per-thread state for the RNG.
59 struct rand_thread_state {
60   CTR_DRBG_STATE drbg;
61   uint64_t fork_generation;
62   // calls is the number of generate calls made on |drbg| since it was last
63   // (re)seeded. This is bound by |kReseedInterval|.
64   unsigned calls;
65   // last_block_valid is non-zero iff |last_block| contains data from
66   // |get_seed_entropy|.
67   int last_block_valid;
68   // fork_unsafe_buffering is non-zero iff, when |drbg| was last (re)seeded,
69   // fork-unsafe buffering was enabled.
70   int fork_unsafe_buffering;
71 
72 #if defined(BORINGSSL_FIPS)
73   // last_block contains the previous block from |get_seed_entropy|.
74   uint8_t last_block[CRNGT_BLOCK_SIZE];
75   // next and prev form a NULL-terminated, double-linked list of all states in
76   // a process.
77   struct rand_thread_state *next, *prev;
78   // clear_drbg_lock synchronizes between uses of |drbg| and
79   // |rand_thread_state_clear_all| clearing it. This lock should be uncontended
80   // in the common case, except on shutdown.
81   CRYPTO_MUTEX clear_drbg_lock;
82 #endif
83 };
84 
85 #if defined(BORINGSSL_FIPS)
86 // thread_states_list is the head of a linked-list of all |rand_thread_state|
87 // objects in the process, one per thread. This is needed because FIPS requires
88 // that they be zeroed on process exit, but thread-local destructors aren't
89 // called when the whole process is exiting.
90 DEFINE_BSS_GET(struct rand_thread_state *, thread_states_list);
91 DEFINE_STATIC_MUTEX(thread_states_list_lock);
92 
93 static void rand_thread_state_clear_all(void) __attribute__((destructor));
rand_thread_state_clear_all(void)94 static void rand_thread_state_clear_all(void) {
95   CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get());
96   for (struct rand_thread_state *cur = *thread_states_list_bss_get();
97        cur != NULL; cur = cur->next) {
98     CRYPTO_MUTEX_lock_write(&cur->clear_drbg_lock);
99     CTR_DRBG_clear(&cur->drbg);
100   }
101   // The locks are deliberately left locked so that any threads that are still
102   // running will hang if they try to call |RAND_bytes|. It also ensures
103   // |rand_thread_state_free| cannot free any thread state while we've taken the
104   // lock.
105 }
106 #endif
107 
108 // rand_thread_state_free frees a |rand_thread_state|. This is called when a
109 // thread exits.
rand_thread_state_free(void * state_in)110 static void rand_thread_state_free(void *state_in) {
111   struct rand_thread_state *state = state_in;
112 
113   if (state_in == NULL) {
114     return;
115   }
116 
117 #if defined(BORINGSSL_FIPS)
118   CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get());
119 
120   if (state->prev != NULL) {
121     state->prev->next = state->next;
122   } else {
123     *thread_states_list_bss_get() = state->next;
124   }
125 
126   if (state->next != NULL) {
127     state->next->prev = state->prev;
128   }
129 
130   CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get());
131 
132   CTR_DRBG_clear(&state->drbg);
133 #endif
134 
135   OPENSSL_free(state);
136 }
137 
138 #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
139     !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
140 // rdrand should only be called if either |have_rdrand| or |have_fast_rdrand|
141 // returned true.
rdrand(uint8_t * buf,const size_t len)142 static int rdrand(uint8_t *buf, const size_t len) {
143   const size_t len_multiple8 = len & ~7;
144   if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) {
145     return 0;
146   }
147   const size_t remainder = len - len_multiple8;
148 
149   if (remainder != 0) {
150     assert(remainder < 8);
151 
152     uint8_t rand_buf[8];
153     if (!CRYPTO_rdrand(rand_buf)) {
154       return 0;
155     }
156     OPENSSL_memcpy(buf + len_multiple8, rand_buf, remainder);
157   }
158 
159   return 1;
160 }
161 
162 #else
163 
rdrand(uint8_t * buf,size_t len)164 static int rdrand(uint8_t *buf, size_t len) {
165   return 0;
166 }
167 
168 #endif
169 
170 #if defined(BORINGSSL_FIPS)
171 
CRYPTO_get_seed_entropy(uint8_t * out_entropy,size_t out_entropy_len,int * out_want_additional_input)172 void CRYPTO_get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
173                              int *out_want_additional_input) {
174   *out_want_additional_input = 0;
175   if (have_rdrand() && rdrand(out_entropy, out_entropy_len)) {
176     *out_want_additional_input = 1;
177   } else {
178     CRYPTO_sysrand_for_seed(out_entropy, out_entropy_len);
179   }
180 }
181 
182 // In passive entropy mode, entropy is supplied from outside of the module via
183 // |RAND_load_entropy| and is stored in global instance of the following
184 // structure.
185 
186 struct entropy_buffer {
187   // bytes contains entropy suitable for seeding a DRBG.
188   uint8_t
189       bytes[CRNGT_BLOCK_SIZE + CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
190   // bytes_valid indicates the number of bytes of |bytes| that contain valid
191   // data.
192   size_t bytes_valid;
193   // want_additional_input is true if any of the contents of |bytes| were
194   // obtained via a method other than from the kernel. In these cases entropy
195   // from the kernel is also provided via an additional input to the DRBG.
196   int want_additional_input;
197 };
198 
199 DEFINE_BSS_GET(struct entropy_buffer, entropy_buffer);
200 DEFINE_STATIC_MUTEX(entropy_buffer_lock);
201 
RAND_load_entropy(const uint8_t * entropy,size_t entropy_len,int want_additional_input)202 void RAND_load_entropy(const uint8_t *entropy, size_t entropy_len,
203                        int want_additional_input) {
204   struct entropy_buffer *const buffer = entropy_buffer_bss_get();
205 
206   CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get());
207   const size_t space = sizeof(buffer->bytes) - buffer->bytes_valid;
208   if (entropy_len > space) {
209     entropy_len = space;
210   }
211 
212   OPENSSL_memcpy(&buffer->bytes[buffer->bytes_valid], entropy, entropy_len);
213   buffer->bytes_valid += entropy_len;
214   buffer->want_additional_input |=
215       want_additional_input && (entropy_len != 0);
216   CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
217 }
218 
219 // get_seed_entropy fills |out_entropy_len| bytes of |out_entropy| from the
220 // global |entropy_buffer|.
get_seed_entropy(uint8_t * out_entropy,size_t out_entropy_len,int * out_want_additional_input)221 static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
222                              int *out_want_additional_input) {
223   struct entropy_buffer *const buffer = entropy_buffer_bss_get();
224   if (out_entropy_len > sizeof(buffer->bytes)) {
225     abort();
226   }
227 
228   CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get());
229   while (buffer->bytes_valid < out_entropy_len) {
230     CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
231     RAND_need_entropy(out_entropy_len - buffer->bytes_valid);
232     CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get());
233   }
234 
235   *out_want_additional_input = buffer->want_additional_input;
236   OPENSSL_memcpy(out_entropy, buffer->bytes, out_entropy_len);
237   OPENSSL_memmove(buffer->bytes, &buffer->bytes[out_entropy_len],
238                   buffer->bytes_valid - out_entropy_len);
239   buffer->bytes_valid -= out_entropy_len;
240   if (buffer->bytes_valid == 0) {
241     buffer->want_additional_input = 0;
242   }
243 
244   CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
245 }
246 
247 // rand_get_seed fills |seed| with entropy. In some cases, it will additionally
248 // fill |additional_input| with entropy to supplement |seed|. It sets
249 // |*out_additional_input_len| to the number of extra bytes.
rand_get_seed(struct rand_thread_state * state,uint8_t seed[CTR_DRBG_ENTROPY_LEN],uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],size_t * out_additional_input_len)250 static void rand_get_seed(struct rand_thread_state *state,
251                           uint8_t seed[CTR_DRBG_ENTROPY_LEN],
252                           uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],
253                           size_t *out_additional_input_len) {
254   uint8_t entropy_bytes[sizeof(state->last_block) +
255                         CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
256   uint8_t *entropy = entropy_bytes;
257   size_t entropy_len = sizeof(entropy_bytes);
258 
259   if (state->last_block_valid) {
260     // No need to fill |state->last_block| with entropy from the read.
261     entropy += sizeof(state->last_block);
262     entropy_len -= sizeof(state->last_block);
263   }
264 
265   int want_additional_input;
266   get_seed_entropy(entropy, entropy_len, &want_additional_input);
267 
268   if (!state->last_block_valid) {
269     OPENSSL_memcpy(state->last_block, entropy, sizeof(state->last_block));
270     entropy += sizeof(state->last_block);
271     entropy_len -= sizeof(state->last_block);
272   }
273 
274   // See FIPS 140-2, section 4.9.2. This is the “continuous random number
275   // generator test” which causes the program to randomly abort. Hopefully the
276   // rate of failure is small enough not to be a problem in practice.
277   if (CRYPTO_memcmp(state->last_block, entropy, sizeof(state->last_block)) ==
278       0) {
279     fprintf(stderr, "CRNGT failed.\n");
280     BORINGSSL_FIPS_abort();
281   }
282 
283   assert(entropy_len % CRNGT_BLOCK_SIZE == 0);
284   for (size_t i = CRNGT_BLOCK_SIZE; i < entropy_len; i += CRNGT_BLOCK_SIZE) {
285     if (CRYPTO_memcmp(entropy + i - CRNGT_BLOCK_SIZE, entropy + i,
286                       CRNGT_BLOCK_SIZE) == 0) {
287       fprintf(stderr, "CRNGT failed.\n");
288       BORINGSSL_FIPS_abort();
289     }
290   }
291   OPENSSL_memcpy(state->last_block, entropy + entropy_len - CRNGT_BLOCK_SIZE,
292                  CRNGT_BLOCK_SIZE);
293 
294   assert(entropy_len == BORINGSSL_FIPS_OVERREAD * CTR_DRBG_ENTROPY_LEN);
295   OPENSSL_memcpy(seed, entropy, CTR_DRBG_ENTROPY_LEN);
296 
297   for (size_t i = 1; i < BORINGSSL_FIPS_OVERREAD; i++) {
298     for (size_t j = 0; j < CTR_DRBG_ENTROPY_LEN; j++) {
299       seed[j] ^= entropy[CTR_DRBG_ENTROPY_LEN * i + j];
300     }
301   }
302 
303   // If we used something other than system entropy then also
304   // opportunistically read from the system. This avoids solely relying on the
305   // hardware once the entropy pool has been initialized.
306   *out_additional_input_len = 0;
307   if (want_additional_input &&
308       CRYPTO_sysrand_if_available(additional_input, CTR_DRBG_ENTROPY_LEN)) {
309     *out_additional_input_len = CTR_DRBG_ENTROPY_LEN;
310   }
311 }
312 
313 #else
314 
315 // rand_get_seed fills |seed| with entropy. In some cases, it will additionally
316 // fill |additional_input| with entropy to supplement |seed|. It sets
317 // |*out_additional_input_len| to the number of extra bytes.
rand_get_seed(struct rand_thread_state * state,uint8_t seed[CTR_DRBG_ENTROPY_LEN],uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],size_t * out_additional_input_len)318 static void rand_get_seed(struct rand_thread_state *state,
319                           uint8_t seed[CTR_DRBG_ENTROPY_LEN],
320                           uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],
321                           size_t *out_additional_input_len) {
322   // If not in FIPS mode, we don't overread from the system entropy source and
323   // we don't depend only on the hardware RDRAND.
324   CRYPTO_sysrand_for_seed(seed, CTR_DRBG_ENTROPY_LEN);
325   *out_additional_input_len = 0;
326 }
327 
328 #endif
329 
RAND_bytes_with_additional_data(uint8_t * out,size_t out_len,const uint8_t user_additional_data[32])330 void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len,
331                                      const uint8_t user_additional_data[32]) {
332   if (out_len == 0) {
333     return;
334   }
335 
336   const uint64_t fork_generation = CRYPTO_get_fork_generation();
337   const int fork_unsafe_buffering = rand_fork_unsafe_buffering_enabled();
338 
339   // Additional data is mixed into every CTR-DRBG call to protect, as best we
340   // can, against forks & VM clones. We do not over-read this information and
341   // don't reseed with it so, from the point of view of FIPS, this doesn't
342   // provide “prediction resistance”. But, in practice, it does.
343   uint8_t additional_data[32];
344   // Intel chips have fast RDRAND instructions while, in other cases, RDRAND can
345   // be _slower_ than a system call.
346   if (!have_fast_rdrand() ||
347       !rdrand(additional_data, sizeof(additional_data))) {
348     // Without a hardware RNG to save us from address-space duplication, the OS
349     // entropy is used. This can be expensive (one read per |RAND_bytes| call)
350     // and so is disabled when we have fork detection, or if the application has
351     // promised not to fork.
352     if (fork_generation != 0 || fork_unsafe_buffering) {
353       OPENSSL_memset(additional_data, 0, sizeof(additional_data));
354     } else if (!have_rdrand()) {
355       // No alternative so block for OS entropy.
356       CRYPTO_sysrand(additional_data, sizeof(additional_data));
357     } else if (!CRYPTO_sysrand_if_available(additional_data,
358                                             sizeof(additional_data)) &&
359                !rdrand(additional_data, sizeof(additional_data))) {
360       // RDRAND failed: block for OS entropy.
361       CRYPTO_sysrand(additional_data, sizeof(additional_data));
362     }
363   }
364 
365   for (size_t i = 0; i < sizeof(additional_data); i++) {
366     additional_data[i] ^= user_additional_data[i];
367   }
368 
369   struct rand_thread_state stack_state;
370   struct rand_thread_state *state =
371       CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND);
372 
373   if (state == NULL) {
374     state = OPENSSL_malloc(sizeof(struct rand_thread_state));
375     if (state == NULL ||
376         !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state,
377                                  rand_thread_state_free)) {
378       // If the system is out of memory, use an ephemeral state on the
379       // stack.
380       state = &stack_state;
381     }
382 
383     state->last_block_valid = 0;
384     uint8_t seed[CTR_DRBG_ENTROPY_LEN];
385     uint8_t personalization[CTR_DRBG_ENTROPY_LEN] = {0};
386     size_t personalization_len = 0;
387     rand_get_seed(state, seed, personalization, &personalization_len);
388 
389     if (!CTR_DRBG_init(&state->drbg, seed, personalization,
390                        personalization_len)) {
391       abort();
392     }
393     state->calls = 0;
394     state->fork_generation = fork_generation;
395     state->fork_unsafe_buffering = fork_unsafe_buffering;
396 
397 #if defined(BORINGSSL_FIPS)
398     CRYPTO_MUTEX_init(&state->clear_drbg_lock);
399     if (state != &stack_state) {
400       CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get());
401       struct rand_thread_state **states_list = thread_states_list_bss_get();
402       state->next = *states_list;
403       if (state->next != NULL) {
404         state->next->prev = state;
405       }
406       state->prev = NULL;
407       *states_list = state;
408       CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get());
409     }
410 #endif
411   }
412 
413   if (state->calls >= kReseedInterval ||
414       // If we've forked since |state| was last seeded, reseed.
415       state->fork_generation != fork_generation ||
416       // If |state| was seeded from a state with different fork-safety
417       // preferences, reseed. Suppose |state| was fork-safe, then forked into
418       // two children, but each of the children never fork and disable fork
419       // safety. The children must reseed to avoid working from the same PRNG
420       // state.
421       state->fork_unsafe_buffering != fork_unsafe_buffering) {
422     uint8_t seed[CTR_DRBG_ENTROPY_LEN];
423     uint8_t reseed_additional_data[CTR_DRBG_ENTROPY_LEN] = {0};
424     size_t reseed_additional_data_len = 0;
425     rand_get_seed(state, seed, reseed_additional_data,
426                   &reseed_additional_data_len);
427 #if defined(BORINGSSL_FIPS)
428     // Take a read lock around accesses to |state->drbg|. This is needed to
429     // avoid returning bad entropy if we race with
430     // |rand_thread_state_clear_all|.
431     CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock);
432 #endif
433     if (!CTR_DRBG_reseed(&state->drbg, seed, reseed_additional_data,
434                          reseed_additional_data_len)) {
435       abort();
436     }
437     state->calls = 0;
438     state->fork_generation = fork_generation;
439     state->fork_unsafe_buffering = fork_unsafe_buffering;
440   } else {
441 #if defined(BORINGSSL_FIPS)
442     CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock);
443 #endif
444   }
445 
446   int first_call = 1;
447   while (out_len > 0) {
448     size_t todo = out_len;
449     if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) {
450       todo = CTR_DRBG_MAX_GENERATE_LENGTH;
451     }
452 
453     if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data,
454                            first_call ? sizeof(additional_data) : 0)) {
455       abort();
456     }
457 
458     out += todo;
459     out_len -= todo;
460     // Though we only check before entering the loop, this cannot add enough to
461     // overflow a |size_t|.
462     state->calls++;
463     first_call = 0;
464   }
465 
466   if (state == &stack_state) {
467     CTR_DRBG_clear(&state->drbg);
468   }
469 
470 #if defined(BORINGSSL_FIPS)
471   CRYPTO_MUTEX_unlock_read(&state->clear_drbg_lock);
472 #endif
473 }
474 
RAND_bytes(uint8_t * out,size_t out_len)475 int RAND_bytes(uint8_t *out, size_t out_len) {
476   static const uint8_t kZeroAdditionalData[32] = {0};
477   RAND_bytes_with_additional_data(out, out_len, kZeroAdditionalData);
478   return 1;
479 }
480 
RAND_pseudo_bytes(uint8_t * buf,size_t len)481 int RAND_pseudo_bytes(uint8_t *buf, size_t len) {
482   return RAND_bytes(buf, len);
483 }
484 
RAND_get_system_entropy_for_custom_prng(uint8_t * buf,size_t len)485 void RAND_get_system_entropy_for_custom_prng(uint8_t *buf, size_t len) {
486   if (len > 256) {
487     abort();
488   }
489   CRYPTO_sysrand_for_seed(buf, len);
490 }
491