1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/mem.h>
58
59 #include <assert.h>
60 #include <errno.h>
61 #include <limits.h>
62 #include <stdarg.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65
66 #include <openssl/err.h>
67
68 #if defined(OPENSSL_WINDOWS)
69 OPENSSL_MSVC_PRAGMA(warning(push, 3))
70 #include <windows.h>
71 OPENSSL_MSVC_PRAGMA(warning(pop))
72 #endif
73
74 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
75 #include <errno.h>
76 #include <signal.h>
77 #include <unistd.h>
78 #endif
79
80 #include "internal.h"
81
82
83 #define OPENSSL_MALLOC_PREFIX 8
84 static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large");
85
86 #if defined(OPENSSL_ASAN)
87 void __asan_poison_memory_region(const volatile void *addr, size_t size);
88 void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
89 #else
__asan_poison_memory_region(const void * addr,size_t size)90 static void __asan_poison_memory_region(const void *addr, size_t size) {}
__asan_unpoison_memory_region(const void * addr,size_t size)91 static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
92 #endif
93
94 // Windows doesn't really support weak symbols as of May 2019, and Clang on
95 // Windows will emit strong symbols instead. See
96 // https://bugs.llvm.org/show_bug.cgi?id=37598
97 #if defined(__ELF__) && defined(__GNUC__)
98 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
99 rettype name args __attribute__((weak));
100 #else
101 #define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL;
102 #endif
103
104 // sdallocx is a sized |free| function. By passing the size (which we happen to
105 // always know in BoringSSL), the malloc implementation can save work. We cannot
106 // depend on |sdallocx| being available, however, so it's a weak symbol.
107 //
108 // This will always be safe, but will only be overridden if the malloc
109 // implementation is statically linked with BoringSSL. So, if |sdallocx| is
110 // provided in, say, libc.so, we still won't use it because that's dynamically
111 // linked. This isn't an ideal result, but its helps in some cases.
112 WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags));
113
114 // The following three functions can be defined to override default heap
115 // allocation and freeing. If defined, it is the responsibility of
116 // |OPENSSL_memory_free| to zero out the memory before returning it to the
117 // system. |OPENSSL_memory_free| will not be passed NULL pointers.
118 //
119 // WARNING: These functions are called on every allocation and free in
120 // BoringSSL across the entire process. They may be called by any code in the
121 // process which calls BoringSSL, including in process initializers and thread
122 // destructors. When called, BoringSSL may hold pthreads locks. Any other code
123 // in the process which, directly or indirectly, calls BoringSSL may be on the
124 // call stack and may itself be using arbitrary synchronization primitives.
125 //
126 // As a result, these functions may not have the usual programming environment
127 // available to most C or C++ code. In particular, they may not call into
128 // BoringSSL, or any library which depends on BoringSSL. Any synchronization
129 // primitives used must tolerate every other synchronization primitive linked
130 // into the process, including pthreads locks. Failing to meet these constraints
131 // may result in deadlocks, crashes, or memory corruption.
132 WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size));
133 WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr));
134 WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr));
135
136 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
137 static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT;
138 static uint64_t current_malloc_count = 0;
139 static uint64_t malloc_number_to_fail = 0;
140 static int malloc_failure_enabled = 0, break_on_malloc_fail = 0,
141 any_malloc_failed = 0;
142
malloc_exit_handler(void)143 static void malloc_exit_handler(void) {
144 CRYPTO_MUTEX_lock_read(&malloc_failure_lock);
145 if (any_malloc_failed) {
146 // Signal to the test driver that some allocation failed, so it knows to
147 // increment the counter and continue.
148 _exit(88);
149 }
150 CRYPTO_MUTEX_unlock_read(&malloc_failure_lock);
151 }
152
init_malloc_failure(void)153 static void init_malloc_failure(void) {
154 const char *env = getenv("MALLOC_NUMBER_TO_FAIL");
155 if (env != NULL && env[0] != 0) {
156 char *endptr;
157 malloc_number_to_fail = strtoull(env, &endptr, 10);
158 if (*endptr == 0) {
159 malloc_failure_enabled = 1;
160 atexit(malloc_exit_handler);
161 }
162 }
163 break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL;
164 }
165
166 // should_fail_allocation returns one if the current allocation should fail and
167 // zero otherwise.
should_fail_allocation()168 static int should_fail_allocation() {
169 static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
170 CRYPTO_once(&once, init_malloc_failure);
171 if (!malloc_failure_enabled) {
172 return 0;
173 }
174
175 // We lock just so multi-threaded tests are still correct, but we won't test
176 // every malloc exhaustively.
177 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
178 int should_fail = current_malloc_count == malloc_number_to_fail;
179 current_malloc_count++;
180 any_malloc_failed = any_malloc_failed || should_fail;
181 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
182
183 if (should_fail && break_on_malloc_fail) {
184 raise(SIGTRAP);
185 }
186 if (should_fail) {
187 errno = ENOMEM;
188 }
189 return should_fail;
190 }
191
OPENSSL_reset_malloc_counter_for_testing(void)192 void OPENSSL_reset_malloc_counter_for_testing(void) {
193 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
194 current_malloc_count = 0;
195 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
196 }
197
198 #else
should_fail_allocation(void)199 static int should_fail_allocation(void) { return 0; }
200 #endif
201
OPENSSL_malloc(size_t size)202 void *OPENSSL_malloc(size_t size) {
203 if (should_fail_allocation()) {
204 goto err;
205 }
206
207 if (OPENSSL_memory_alloc != NULL) {
208 assert(OPENSSL_memory_free != NULL);
209 assert(OPENSSL_memory_get_size != NULL);
210 void *ptr = OPENSSL_memory_alloc(size);
211 if (ptr == NULL && size != 0) {
212 goto err;
213 }
214 return ptr;
215 }
216
217 if (size + OPENSSL_MALLOC_PREFIX < size) {
218 goto err;
219 }
220
221 void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
222 if (ptr == NULL) {
223 goto err;
224 }
225
226 *(size_t *)ptr = size;
227
228 __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
229 return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
230
231 err:
232 // This only works because ERR does not call OPENSSL_malloc.
233 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
234 return NULL;
235 }
236
OPENSSL_zalloc(size_t size)237 void *OPENSSL_zalloc(size_t size) {
238 void *ret = OPENSSL_malloc(size);
239 if (ret != NULL) {
240 OPENSSL_memset(ret, 0, size);
241 }
242 return ret;
243 }
244
OPENSSL_calloc(size_t num,size_t size)245 void *OPENSSL_calloc(size_t num, size_t size) {
246 if (size != 0 && num > SIZE_MAX / size) {
247 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
248 return NULL;
249 }
250
251 return OPENSSL_zalloc(num * size);
252 }
253
OPENSSL_free(void * orig_ptr)254 void OPENSSL_free(void *orig_ptr) {
255 if (orig_ptr == NULL) {
256 return;
257 }
258
259 if (OPENSSL_memory_free != NULL) {
260 OPENSSL_memory_free(orig_ptr);
261 return;
262 }
263
264 void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
265 __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
266
267 size_t size = *(size_t *)ptr;
268 OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
269
270 // ASan knows to intercept malloc and free, but not sdallocx.
271 #if defined(OPENSSL_ASAN)
272 (void)sdallocx;
273 free(ptr);
274 #else
275 if (sdallocx) {
276 sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
277 } else {
278 free(ptr);
279 }
280 #endif
281 }
282
OPENSSL_realloc(void * orig_ptr,size_t new_size)283 void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
284 if (orig_ptr == NULL) {
285 return OPENSSL_malloc(new_size);
286 }
287
288 size_t old_size;
289 if (OPENSSL_memory_get_size != NULL) {
290 old_size = OPENSSL_memory_get_size(orig_ptr);
291 } else {
292 void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
293 __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
294 old_size = *(size_t *)ptr;
295 __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
296 }
297
298 void *ret = OPENSSL_malloc(new_size);
299 if (ret == NULL) {
300 return NULL;
301 }
302
303 size_t to_copy = new_size;
304 if (old_size < to_copy) {
305 to_copy = old_size;
306 }
307
308 memcpy(ret, orig_ptr, to_copy);
309 OPENSSL_free(orig_ptr);
310
311 return ret;
312 }
313
OPENSSL_cleanse(void * ptr,size_t len)314 void OPENSSL_cleanse(void *ptr, size_t len) {
315 #if defined(OPENSSL_WINDOWS)
316 SecureZeroMemory(ptr, len);
317 #else
318 OPENSSL_memset(ptr, 0, len);
319
320 #if !defined(OPENSSL_NO_ASM)
321 /* As best as we can tell, this is sufficient to break any optimisations that
322 might try to eliminate "superfluous" memsets. If there's an easy way to
323 detect memset_s, it would be better to use that. */
324 __asm__ __volatile__("" : : "r"(ptr) : "memory");
325 #endif
326 #endif // !OPENSSL_NO_ASM
327 }
328
OPENSSL_clear_free(void * ptr,size_t unused)329 void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
330
CRYPTO_secure_malloc_init(size_t size,size_t min_size)331 int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
332
CRYPTO_secure_malloc_initialized(void)333 int CRYPTO_secure_malloc_initialized(void) { return 0; }
334
CRYPTO_secure_used(void)335 size_t CRYPTO_secure_used(void) { return 0; }
336
OPENSSL_secure_malloc(size_t size)337 void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
338
OPENSSL_secure_clear_free(void * ptr,size_t len)339 void OPENSSL_secure_clear_free(void *ptr, size_t len) {
340 OPENSSL_clear_free(ptr, len);
341 }
342
CRYPTO_memcmp(const void * in_a,const void * in_b,size_t len)343 int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
344 const uint8_t *a = in_a;
345 const uint8_t *b = in_b;
346 uint8_t x = 0;
347
348 for (size_t i = 0; i < len; i++) {
349 x |= a[i] ^ b[i];
350 }
351
352 return x;
353 }
354
OPENSSL_hash32(const void * ptr,size_t len)355 uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
356 // These are the FNV-1a parameters for 32 bits.
357 static const uint32_t kPrime = 16777619u;
358 static const uint32_t kOffsetBasis = 2166136261u;
359
360 const uint8_t *in = ptr;
361 uint32_t h = kOffsetBasis;
362
363 for (size_t i = 0; i < len; i++) {
364 h ^= in[i];
365 h *= kPrime;
366 }
367
368 return h;
369 }
370
OPENSSL_strhash(const char * s)371 uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
372
OPENSSL_strnlen(const char * s,size_t len)373 size_t OPENSSL_strnlen(const char *s, size_t len) {
374 for (size_t i = 0; i < len; i++) {
375 if (s[i] == 0) {
376 return i;
377 }
378 }
379
380 return len;
381 }
382
OPENSSL_strdup(const char * s)383 char *OPENSSL_strdup(const char *s) {
384 if (s == NULL) {
385 return NULL;
386 }
387 const size_t len = strlen(s) + 1;
388 char *ret = OPENSSL_malloc(len);
389 if (ret == NULL) {
390 return NULL;
391 }
392 OPENSSL_memcpy(ret, s, len);
393 return ret;
394 }
395
OPENSSL_isalpha(int c)396 int OPENSSL_isalpha(int c) {
397 return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
398 }
399
OPENSSL_isdigit(int c)400 int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
401
OPENSSL_isxdigit(int c)402 int OPENSSL_isxdigit(int c) {
403 return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
404 }
405
OPENSSL_fromxdigit(uint8_t * out,int c)406 int OPENSSL_fromxdigit(uint8_t *out, int c) {
407 if (OPENSSL_isdigit(c)) {
408 *out = c - '0';
409 return 1;
410 }
411 if ('a' <= c && c <= 'f') {
412 *out = c - 'a' + 10;
413 return 1;
414 }
415 if ('A' <= c && c <= 'F') {
416 *out = c - 'A' + 10;
417 return 1;
418 }
419 return 0;
420 }
421
OPENSSL_isalnum(int c)422 int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
423
OPENSSL_tolower(int c)424 int OPENSSL_tolower(int c) {
425 if (c >= 'A' && c <= 'Z') {
426 return c + ('a' - 'A');
427 }
428 return c;
429 }
430
OPENSSL_isspace(int c)431 int OPENSSL_isspace(int c) {
432 return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
433 c == ' ';
434 }
435
OPENSSL_strcasecmp(const char * a,const char * b)436 int OPENSSL_strcasecmp(const char *a, const char *b) {
437 for (size_t i = 0;; i++) {
438 const int aa = OPENSSL_tolower(a[i]);
439 const int bb = OPENSSL_tolower(b[i]);
440
441 if (aa < bb) {
442 return -1;
443 } else if (aa > bb) {
444 return 1;
445 } else if (aa == 0) {
446 return 0;
447 }
448 }
449 }
450
OPENSSL_strncasecmp(const char * a,const char * b,size_t n)451 int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
452 for (size_t i = 0; i < n; i++) {
453 const int aa = OPENSSL_tolower(a[i]);
454 const int bb = OPENSSL_tolower(b[i]);
455
456 if (aa < bb) {
457 return -1;
458 } else if (aa > bb) {
459 return 1;
460 } else if (aa == 0) {
461 return 0;
462 }
463 }
464
465 return 0;
466 }
467
BIO_snprintf(char * buf,size_t n,const char * format,...)468 int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
469 va_list args;
470 va_start(args, format);
471 int ret = BIO_vsnprintf(buf, n, format, args);
472 va_end(args);
473 return ret;
474 }
475
BIO_vsnprintf(char * buf,size_t n,const char * format,va_list args)476 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
477 return vsnprintf(buf, n, format, args);
478 }
479
OPENSSL_vasprintf_internal(char ** str,const char * format,va_list args,int system_malloc)480 int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
481 int system_malloc) {
482 void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
483 void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
484 void *(*reallocate)(void *, size_t) =
485 system_malloc ? realloc : OPENSSL_realloc;
486 char *candidate = NULL;
487 size_t candidate_len = 64; // TODO(bbe) what's the best initial size?
488
489 if ((candidate = allocate(candidate_len)) == NULL) {
490 goto err;
491 }
492 va_list args_copy;
493 va_copy(args_copy, args);
494 int ret = vsnprintf(candidate, candidate_len, format, args_copy);
495 va_end(args_copy);
496 if (ret < 0) {
497 goto err;
498 }
499 if ((size_t)ret >= candidate_len) {
500 // Too big to fit in allocation.
501 char *tmp;
502
503 candidate_len = (size_t)ret + 1;
504 if ((tmp = reallocate(candidate, candidate_len)) == NULL) {
505 goto err;
506 }
507 candidate = tmp;
508 ret = vsnprintf(candidate, candidate_len, format, args);
509 }
510 // At this point this should not happen unless vsnprintf is insane.
511 if (ret < 0 || (size_t)ret >= candidate_len) {
512 goto err;
513 }
514 *str = candidate;
515 return ret;
516
517 err:
518 deallocate(candidate);
519 *str = NULL;
520 errno = ENOMEM;
521 return -1;
522 }
523
OPENSSL_vasprintf(char ** str,const char * format,va_list args)524 int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
525 return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
526 }
527
OPENSSL_asprintf(char ** str,const char * format,...)528 int OPENSSL_asprintf(char **str, const char *format, ...) {
529 va_list args;
530 va_start(args, format);
531 int ret = OPENSSL_vasprintf(str, format, args);
532 va_end(args);
533 return ret;
534 }
535
OPENSSL_strndup(const char * str,size_t size)536 char *OPENSSL_strndup(const char *str, size_t size) {
537 size = OPENSSL_strnlen(str, size);
538
539 size_t alloc_size = size + 1;
540 if (alloc_size < size) {
541 // overflow
542 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
543 return NULL;
544 }
545 char *ret = OPENSSL_malloc(alloc_size);
546 if (ret == NULL) {
547 return NULL;
548 }
549
550 OPENSSL_memcpy(ret, str, size);
551 ret[size] = '\0';
552 return ret;
553 }
554
OPENSSL_strlcpy(char * dst,const char * src,size_t dst_size)555 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
556 size_t l = 0;
557
558 for (; dst_size > 1 && *src; dst_size--) {
559 *dst++ = *src++;
560 l++;
561 }
562
563 if (dst_size) {
564 *dst = 0;
565 }
566
567 return l + strlen(src);
568 }
569
OPENSSL_strlcat(char * dst,const char * src,size_t dst_size)570 size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
571 size_t l = 0;
572 for (; dst_size > 0 && *dst; dst_size--, dst++) {
573 l++;
574 }
575 return l + OPENSSL_strlcpy(dst, src, dst_size);
576 }
577
OPENSSL_memdup(const void * data,size_t size)578 void *OPENSSL_memdup(const void *data, size_t size) {
579 if (size == 0) {
580 return NULL;
581 }
582
583 void *ret = OPENSSL_malloc(size);
584 if (ret == NULL) {
585 return NULL;
586 }
587
588 OPENSSL_memcpy(ret, data, size);
589 return ret;
590 }
591
CRYPTO_malloc(size_t size,const char * file,int line)592 void *CRYPTO_malloc(size_t size, const char *file, int line) {
593 return OPENSSL_malloc(size);
594 }
595
CRYPTO_realloc(void * ptr,size_t new_size,const char * file,int line)596 void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
597 return OPENSSL_realloc(ptr, new_size);
598 }
599
CRYPTO_free(void * ptr,const char * file,int line)600 void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
601