• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/mem.h>
58 
59 #include <assert.h>
60 #include <errno.h>
61 #include <limits.h>
62 #include <stdarg.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65 
66 #include <openssl/err.h>
67 
68 #if defined(OPENSSL_WINDOWS)
69 OPENSSL_MSVC_PRAGMA(warning(push, 3))
70 #include <windows.h>
71 OPENSSL_MSVC_PRAGMA(warning(pop))
72 #endif
73 
74 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
75 #include <errno.h>
76 #include <signal.h>
77 #include <unistd.h>
78 #endif
79 
80 #include "internal.h"
81 
82 
83 #define OPENSSL_MALLOC_PREFIX 8
84 static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large");
85 
86 #if defined(OPENSSL_ASAN)
87 void __asan_poison_memory_region(const volatile void *addr, size_t size);
88 void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
89 #else
__asan_poison_memory_region(const void * addr,size_t size)90 static void __asan_poison_memory_region(const void *addr, size_t size) {}
__asan_unpoison_memory_region(const void * addr,size_t size)91 static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
92 #endif
93 
94 // Windows doesn't really support weak symbols as of May 2019, and Clang on
95 // Windows will emit strong symbols instead. See
96 // https://bugs.llvm.org/show_bug.cgi?id=37598
97 #if defined(__ELF__) && defined(__GNUC__)
98 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
99   rettype name args __attribute__((weak));
100 #else
101 #define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL;
102 #endif
103 
104 // sdallocx is a sized |free| function. By passing the size (which we happen to
105 // always know in BoringSSL), the malloc implementation can save work. We cannot
106 // depend on |sdallocx| being available, however, so it's a weak symbol.
107 //
108 // This will always be safe, but will only be overridden if the malloc
109 // implementation is statically linked with BoringSSL. So, if |sdallocx| is
110 // provided in, say, libc.so, we still won't use it because that's dynamically
111 // linked. This isn't an ideal result, but its helps in some cases.
112 WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags));
113 
114 // The following three functions can be defined to override default heap
115 // allocation and freeing. If defined, it is the responsibility of
116 // |OPENSSL_memory_free| to zero out the memory before returning it to the
117 // system. |OPENSSL_memory_free| will not be passed NULL pointers.
118 //
119 // WARNING: These functions are called on every allocation and free in
120 // BoringSSL across the entire process. They may be called by any code in the
121 // process which calls BoringSSL, including in process initializers and thread
122 // destructors. When called, BoringSSL may hold pthreads locks. Any other code
123 // in the process which, directly or indirectly, calls BoringSSL may be on the
124 // call stack and may itself be using arbitrary synchronization primitives.
125 //
126 // As a result, these functions may not have the usual programming environment
127 // available to most C or C++ code. In particular, they may not call into
128 // BoringSSL, or any library which depends on BoringSSL. Any synchronization
129 // primitives used must tolerate every other synchronization primitive linked
130 // into the process, including pthreads locks. Failing to meet these constraints
131 // may result in deadlocks, crashes, or memory corruption.
132 WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size));
133 WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr));
134 WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr));
135 
136 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
137 static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT;
138 static uint64_t current_malloc_count = 0;
139 static uint64_t malloc_number_to_fail = 0;
140 static int malloc_failure_enabled = 0, break_on_malloc_fail = 0,
141            any_malloc_failed = 0;
142 
malloc_exit_handler(void)143 static void malloc_exit_handler(void) {
144   CRYPTO_MUTEX_lock_read(&malloc_failure_lock);
145   if (any_malloc_failed) {
146     // Signal to the test driver that some allocation failed, so it knows to
147     // increment the counter and continue.
148     _exit(88);
149   }
150   CRYPTO_MUTEX_unlock_read(&malloc_failure_lock);
151 }
152 
init_malloc_failure(void)153 static void init_malloc_failure(void) {
154   const char *env = getenv("MALLOC_NUMBER_TO_FAIL");
155   if (env != NULL && env[0] != 0) {
156     char *endptr;
157     malloc_number_to_fail = strtoull(env, &endptr, 10);
158     if (*endptr == 0) {
159       malloc_failure_enabled = 1;
160       atexit(malloc_exit_handler);
161     }
162   }
163   break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL;
164 }
165 
166 // should_fail_allocation returns one if the current allocation should fail and
167 // zero otherwise.
should_fail_allocation()168 static int should_fail_allocation() {
169   static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
170   CRYPTO_once(&once, init_malloc_failure);
171   if (!malloc_failure_enabled) {
172     return 0;
173   }
174 
175   // We lock just so multi-threaded tests are still correct, but we won't test
176   // every malloc exhaustively.
177   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
178   int should_fail = current_malloc_count == malloc_number_to_fail;
179   current_malloc_count++;
180   any_malloc_failed = any_malloc_failed || should_fail;
181   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
182 
183   if (should_fail && break_on_malloc_fail) {
184     raise(SIGTRAP);
185   }
186   if (should_fail) {
187     errno = ENOMEM;
188   }
189   return should_fail;
190 }
191 
OPENSSL_reset_malloc_counter_for_testing(void)192 void OPENSSL_reset_malloc_counter_for_testing(void) {
193   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
194   current_malloc_count = 0;
195   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
196 }
197 
198 #else
should_fail_allocation(void)199 static int should_fail_allocation(void) { return 0; }
200 #endif
201 
OPENSSL_malloc(size_t size)202 void *OPENSSL_malloc(size_t size) {
203   if (should_fail_allocation()) {
204     goto err;
205   }
206 
207   if (OPENSSL_memory_alloc != NULL) {
208     assert(OPENSSL_memory_free != NULL);
209     assert(OPENSSL_memory_get_size != NULL);
210     void *ptr = OPENSSL_memory_alloc(size);
211     if (ptr == NULL && size != 0) {
212       goto err;
213     }
214     return ptr;
215   }
216 
217   if (size + OPENSSL_MALLOC_PREFIX < size) {
218     goto err;
219   }
220 
221   void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
222   if (ptr == NULL) {
223     goto err;
224   }
225 
226   *(size_t *)ptr = size;
227 
228   __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
229   return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
230 
231  err:
232   // This only works because ERR does not call OPENSSL_malloc.
233   OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
234   return NULL;
235 }
236 
OPENSSL_zalloc(size_t size)237 void *OPENSSL_zalloc(size_t size) {
238   void *ret = OPENSSL_malloc(size);
239   if (ret != NULL) {
240     OPENSSL_memset(ret, 0, size);
241   }
242   return ret;
243 }
244 
OPENSSL_calloc(size_t num,size_t size)245 void *OPENSSL_calloc(size_t num, size_t size) {
246   if (size != 0 && num > SIZE_MAX / size) {
247     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
248     return NULL;
249   }
250 
251   return OPENSSL_zalloc(num * size);
252 }
253 
OPENSSL_free(void * orig_ptr)254 void OPENSSL_free(void *orig_ptr) {
255   if (orig_ptr == NULL) {
256     return;
257   }
258 
259   if (OPENSSL_memory_free != NULL) {
260     OPENSSL_memory_free(orig_ptr);
261     return;
262   }
263 
264   void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
265   __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
266 
267   size_t size = *(size_t *)ptr;
268   OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
269 
270 // ASan knows to intercept malloc and free, but not sdallocx.
271 #if defined(OPENSSL_ASAN)
272   (void)sdallocx;
273   free(ptr);
274 #else
275   if (sdallocx) {
276     sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
277   } else {
278     free(ptr);
279   }
280 #endif
281 }
282 
OPENSSL_realloc(void * orig_ptr,size_t new_size)283 void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
284   if (orig_ptr == NULL) {
285     return OPENSSL_malloc(new_size);
286   }
287 
288   size_t old_size;
289   if (OPENSSL_memory_get_size != NULL) {
290     old_size = OPENSSL_memory_get_size(orig_ptr);
291   } else {
292     void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
293     __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
294     old_size = *(size_t *)ptr;
295     __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
296   }
297 
298   void *ret = OPENSSL_malloc(new_size);
299   if (ret == NULL) {
300     return NULL;
301   }
302 
303   size_t to_copy = new_size;
304   if (old_size < to_copy) {
305     to_copy = old_size;
306   }
307 
308   memcpy(ret, orig_ptr, to_copy);
309   OPENSSL_free(orig_ptr);
310 
311   return ret;
312 }
313 
OPENSSL_cleanse(void * ptr,size_t len)314 void OPENSSL_cleanse(void *ptr, size_t len) {
315 #if defined(OPENSSL_WINDOWS)
316   SecureZeroMemory(ptr, len);
317 #else
318   OPENSSL_memset(ptr, 0, len);
319 
320 #if !defined(OPENSSL_NO_ASM)
321   /* As best as we can tell, this is sufficient to break any optimisations that
322      might try to eliminate "superfluous" memsets. If there's an easy way to
323      detect memset_s, it would be better to use that. */
324   __asm__ __volatile__("" : : "r"(ptr) : "memory");
325 #endif
326 #endif  // !OPENSSL_NO_ASM
327 }
328 
OPENSSL_clear_free(void * ptr,size_t unused)329 void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
330 
CRYPTO_secure_malloc_init(size_t size,size_t min_size)331 int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
332 
CRYPTO_secure_malloc_initialized(void)333 int CRYPTO_secure_malloc_initialized(void) { return 0; }
334 
CRYPTO_secure_used(void)335 size_t CRYPTO_secure_used(void) { return 0; }
336 
OPENSSL_secure_malloc(size_t size)337 void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
338 
OPENSSL_secure_clear_free(void * ptr,size_t len)339 void OPENSSL_secure_clear_free(void *ptr, size_t len) {
340   OPENSSL_clear_free(ptr, len);
341 }
342 
CRYPTO_memcmp(const void * in_a,const void * in_b,size_t len)343 int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
344   const uint8_t *a = in_a;
345   const uint8_t *b = in_b;
346   uint8_t x = 0;
347 
348   for (size_t i = 0; i < len; i++) {
349     x |= a[i] ^ b[i];
350   }
351 
352   return x;
353 }
354 
OPENSSL_hash32(const void * ptr,size_t len)355 uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
356   // These are the FNV-1a parameters for 32 bits.
357   static const uint32_t kPrime = 16777619u;
358   static const uint32_t kOffsetBasis = 2166136261u;
359 
360   const uint8_t *in = ptr;
361   uint32_t h = kOffsetBasis;
362 
363   for (size_t i = 0; i < len; i++) {
364     h ^= in[i];
365     h *= kPrime;
366   }
367 
368   return h;
369 }
370 
OPENSSL_strhash(const char * s)371 uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
372 
OPENSSL_strnlen(const char * s,size_t len)373 size_t OPENSSL_strnlen(const char *s, size_t len) {
374   for (size_t i = 0; i < len; i++) {
375     if (s[i] == 0) {
376       return i;
377     }
378   }
379 
380   return len;
381 }
382 
OPENSSL_strdup(const char * s)383 char *OPENSSL_strdup(const char *s) {
384   if (s == NULL) {
385     return NULL;
386   }
387   const size_t len = strlen(s) + 1;
388   char *ret = OPENSSL_malloc(len);
389   if (ret == NULL) {
390     return NULL;
391   }
392   OPENSSL_memcpy(ret, s, len);
393   return ret;
394 }
395 
OPENSSL_isalpha(int c)396 int OPENSSL_isalpha(int c) {
397   return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
398 }
399 
OPENSSL_isdigit(int c)400 int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
401 
OPENSSL_isxdigit(int c)402 int OPENSSL_isxdigit(int c) {
403   return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
404 }
405 
OPENSSL_fromxdigit(uint8_t * out,int c)406 int OPENSSL_fromxdigit(uint8_t *out, int c) {
407   if (OPENSSL_isdigit(c)) {
408     *out = c - '0';
409     return 1;
410   }
411   if ('a' <= c && c <= 'f') {
412     *out = c - 'a' + 10;
413     return 1;
414   }
415   if ('A' <= c && c <= 'F') {
416     *out = c - 'A' + 10;
417     return 1;
418   }
419   return 0;
420 }
421 
OPENSSL_isalnum(int c)422 int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
423 
OPENSSL_tolower(int c)424 int OPENSSL_tolower(int c) {
425   if (c >= 'A' && c <= 'Z') {
426     return c + ('a' - 'A');
427   }
428   return c;
429 }
430 
OPENSSL_isspace(int c)431 int OPENSSL_isspace(int c) {
432   return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
433          c == ' ';
434 }
435 
OPENSSL_strcasecmp(const char * a,const char * b)436 int OPENSSL_strcasecmp(const char *a, const char *b) {
437   for (size_t i = 0;; i++) {
438     const int aa = OPENSSL_tolower(a[i]);
439     const int bb = OPENSSL_tolower(b[i]);
440 
441     if (aa < bb) {
442       return -1;
443     } else if (aa > bb) {
444       return 1;
445     } else if (aa == 0) {
446       return 0;
447     }
448   }
449 }
450 
OPENSSL_strncasecmp(const char * a,const char * b,size_t n)451 int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
452   for (size_t i = 0; i < n; i++) {
453     const int aa = OPENSSL_tolower(a[i]);
454     const int bb = OPENSSL_tolower(b[i]);
455 
456     if (aa < bb) {
457       return -1;
458     } else if (aa > bb) {
459       return 1;
460     } else if (aa == 0) {
461       return 0;
462     }
463   }
464 
465   return 0;
466 }
467 
BIO_snprintf(char * buf,size_t n,const char * format,...)468 int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
469   va_list args;
470   va_start(args, format);
471   int ret = BIO_vsnprintf(buf, n, format, args);
472   va_end(args);
473   return ret;
474 }
475 
BIO_vsnprintf(char * buf,size_t n,const char * format,va_list args)476 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
477   return vsnprintf(buf, n, format, args);
478 }
479 
OPENSSL_vasprintf_internal(char ** str,const char * format,va_list args,int system_malloc)480 int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
481                                int system_malloc) {
482   void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
483   void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
484   void *(*reallocate)(void *, size_t) =
485       system_malloc ? realloc : OPENSSL_realloc;
486   char *candidate = NULL;
487   size_t candidate_len = 64;  // TODO(bbe) what's the best initial size?
488 
489   if ((candidate = allocate(candidate_len)) == NULL) {
490     goto err;
491   }
492   va_list args_copy;
493   va_copy(args_copy, args);
494   int ret = vsnprintf(candidate, candidate_len, format, args_copy);
495   va_end(args_copy);
496   if (ret < 0) {
497     goto err;
498   }
499   if ((size_t)ret >= candidate_len) {
500     // Too big to fit in allocation.
501     char *tmp;
502 
503     candidate_len = (size_t)ret + 1;
504     if ((tmp = reallocate(candidate, candidate_len)) == NULL) {
505       goto err;
506     }
507     candidate = tmp;
508     ret = vsnprintf(candidate, candidate_len, format, args);
509   }
510   // At this point this should not happen unless vsnprintf is insane.
511   if (ret < 0 || (size_t)ret >= candidate_len) {
512     goto err;
513   }
514   *str = candidate;
515   return ret;
516 
517  err:
518   deallocate(candidate);
519   *str = NULL;
520   errno = ENOMEM;
521   return -1;
522 }
523 
OPENSSL_vasprintf(char ** str,const char * format,va_list args)524 int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
525   return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
526 }
527 
OPENSSL_asprintf(char ** str,const char * format,...)528 int OPENSSL_asprintf(char **str, const char *format, ...) {
529   va_list args;
530   va_start(args, format);
531   int ret = OPENSSL_vasprintf(str, format, args);
532   va_end(args);
533   return ret;
534 }
535 
OPENSSL_strndup(const char * str,size_t size)536 char *OPENSSL_strndup(const char *str, size_t size) {
537   size = OPENSSL_strnlen(str, size);
538 
539   size_t alloc_size = size + 1;
540   if (alloc_size < size) {
541     // overflow
542     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
543     return NULL;
544   }
545   char *ret = OPENSSL_malloc(alloc_size);
546   if (ret == NULL) {
547     return NULL;
548   }
549 
550   OPENSSL_memcpy(ret, str, size);
551   ret[size] = '\0';
552   return ret;
553 }
554 
OPENSSL_strlcpy(char * dst,const char * src,size_t dst_size)555 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
556   size_t l = 0;
557 
558   for (; dst_size > 1 && *src; dst_size--) {
559     *dst++ = *src++;
560     l++;
561   }
562 
563   if (dst_size) {
564     *dst = 0;
565   }
566 
567   return l + strlen(src);
568 }
569 
OPENSSL_strlcat(char * dst,const char * src,size_t dst_size)570 size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
571   size_t l = 0;
572   for (; dst_size > 0 && *dst; dst_size--, dst++) {
573     l++;
574   }
575   return l + OPENSSL_strlcpy(dst, src, dst_size);
576 }
577 
OPENSSL_memdup(const void * data,size_t size)578 void *OPENSSL_memdup(const void *data, size_t size) {
579   if (size == 0) {
580     return NULL;
581   }
582 
583   void *ret = OPENSSL_malloc(size);
584   if (ret == NULL) {
585     return NULL;
586   }
587 
588   OPENSSL_memcpy(ret, data, size);
589   return ret;
590 }
591 
CRYPTO_malloc(size_t size,const char * file,int line)592 void *CRYPTO_malloc(size_t size, const char *file, int line) {
593   return OPENSSL_malloc(size);
594 }
595 
CRYPTO_realloc(void * ptr,size_t new_size,const char * file,int line)596 void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
597   return OPENSSL_realloc(ptr, new_size);
598 }
599 
CRYPTO_free(void * ptr,const char * file,int line)600 void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
601