• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2  * project 1999.
3  */
4 /* ====================================================================
5  * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgment:
21  *    "This product includes software developed by the OpenSSL Project
22  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  *    endorse or promote products derived from this software without
26  *    prior written permission. For written permission, please contact
27  *    licensing@OpenSSL.org.
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  *    nor may "OpenSSL" appear in their names without prior written
31  *    permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  *    acknowledgment:
35  *    "This product includes software developed by the OpenSSL Project
36  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * (eay@cryptsoft.com).  This product includes software written by Tim
54  * Hudson (tjh@cryptsoft.com). */
55 
56 #include <openssl/pkcs8.h>
57 
58 #include <limits.h>
59 
60 #include <openssl/asn1t.h>
61 #include <openssl/asn1.h>
62 #include <openssl/bio.h>
63 #include <openssl/buf.h>
64 #include <openssl/bytestring.h>
65 #include <openssl/err.h>
66 #include <openssl/evp.h>
67 #include <openssl/digest.h>
68 #include <openssl/hmac.h>
69 #include <openssl/mem.h>
70 #include <openssl/rand.h>
71 #include <openssl/x509.h>
72 
73 #include "internal.h"
74 #include "../bytestring/internal.h"
75 #include "../internal.h"
76 
77 
pkcs12_iterations_acceptable(uint64_t iterations)78 int pkcs12_iterations_acceptable(uint64_t iterations) {
79 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
80   static const uint64_t kIterationsLimit = 2048;
81 #else
82   // Windows imposes a limit of 600K. Mozilla say: “so them increasing
83   // maximum to something like 100M or 1G (to have few decades of breathing
84   // room) would be very welcome”[1]. So here we set the limit to 100M.
85   //
86   // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14
87   static const uint64_t kIterationsLimit = 100 * 1000000;
88 #endif
89 
90   assert(kIterationsLimit <= UINT32_MAX);
91   return 0 < iterations && iterations <= kIterationsLimit;
92 }
93 
94 ASN1_SEQUENCE(PKCS8_PRIV_KEY_INFO) = {
95     ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER),
96     ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR),
97     ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_OCTET_STRING),
98     ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0),
99 } ASN1_SEQUENCE_END(PKCS8_PRIV_KEY_INFO)
100 
101 IMPLEMENT_ASN1_FUNCTIONS_const(PKCS8_PRIV_KEY_INFO)
102 
103 EVP_PKEY *EVP_PKCS82PKEY(const PKCS8_PRIV_KEY_INFO *p8) {
104   uint8_t *der = NULL;
105   int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der);
106   if (der_len < 0) {
107     return NULL;
108   }
109 
110   CBS cbs;
111   CBS_init(&cbs, der, (size_t)der_len);
112   EVP_PKEY *ret = EVP_parse_private_key(&cbs);
113   if (ret == NULL || CBS_len(&cbs) != 0) {
114     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
115     EVP_PKEY_free(ret);
116     OPENSSL_free(der);
117     return NULL;
118   }
119 
120   OPENSSL_free(der);
121   return ret;
122 }
123 
EVP_PKEY2PKCS8(const EVP_PKEY * pkey)124 PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(const EVP_PKEY *pkey) {
125   CBB cbb;
126   uint8_t *der = NULL;
127   size_t der_len;
128   if (!CBB_init(&cbb, 0) ||
129       !EVP_marshal_private_key(&cbb, pkey) ||
130       !CBB_finish(&cbb, &der, &der_len) ||
131       der_len > LONG_MAX) {
132     CBB_cleanup(&cbb);
133     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR);
134     goto err;
135   }
136 
137   const uint8_t *p = der;
138   PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len);
139   if (p8 == NULL || p != der + der_len) {
140     PKCS8_PRIV_KEY_INFO_free(p8);
141     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
142     goto err;
143   }
144 
145   OPENSSL_free(der);
146   return p8;
147 
148 err:
149   OPENSSL_free(der);
150   return NULL;
151 }
152 
PKCS8_decrypt(X509_SIG * pkcs8,const char * pass,int pass_len_in)153 PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass,
154                                    int pass_len_in) {
155   size_t pass_len;
156   if (pass_len_in == -1 && pass != NULL) {
157     pass_len = strlen(pass);
158   } else {
159     pass_len = (size_t)pass_len_in;
160   }
161 
162   PKCS8_PRIV_KEY_INFO *ret = NULL;
163   EVP_PKEY *pkey = NULL;
164   uint8_t *in = NULL;
165 
166   // Convert the legacy ASN.1 object to a byte string.
167   int in_len = i2d_X509_SIG(pkcs8, &in);
168   if (in_len < 0) {
169     goto err;
170   }
171 
172   CBS cbs;
173   CBS_init(&cbs, in, in_len);
174   pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len);
175   if (pkey == NULL || CBS_len(&cbs) != 0) {
176     goto err;
177   }
178 
179   ret = EVP_PKEY2PKCS8(pkey);
180 
181 err:
182   OPENSSL_free(in);
183   EVP_PKEY_free(pkey);
184   return ret;
185 }
186 
PKCS8_encrypt(int pbe_nid,const EVP_CIPHER * cipher,const char * pass,int pass_len_in,const uint8_t * salt,size_t salt_len,int iterations,PKCS8_PRIV_KEY_INFO * p8inf)187 X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
188                         int pass_len_in, const uint8_t *salt, size_t salt_len,
189                         int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
190   size_t pass_len;
191   if (pass_len_in == -1 && pass != NULL) {
192     pass_len = strlen(pass);
193   } else {
194     pass_len = (size_t)pass_len_in;
195   }
196 
197   // Parse out the private key.
198   EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf);
199   if (pkey == NULL) {
200     return NULL;
201   }
202 
203   X509_SIG *ret = NULL;
204   uint8_t *der = NULL;
205   size_t der_len;
206   CBB cbb;
207   if (!CBB_init(&cbb, 128) ||
208       !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass,
209                                            pass_len, salt, salt_len, iterations,
210                                            pkey) ||
211       !CBB_finish(&cbb, &der, &der_len)) {
212     CBB_cleanup(&cbb);
213     goto err;
214   }
215 
216   // Convert back to legacy ASN.1 objects.
217   const uint8_t *ptr = der;
218   ret = d2i_X509_SIG(NULL, &ptr, der_len);
219   if (ret == NULL || ptr != der + der_len) {
220     OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR);
221     X509_SIG_free(ret);
222     ret = NULL;
223   }
224 
225 err:
226   OPENSSL_free(der);
227   EVP_PKEY_free(pkey);
228   return ret;
229 }
230 
231 struct pkcs12_context {
232   EVP_PKEY **out_key;
233   STACK_OF(X509) *out_certs;
234   const char *password;
235   size_t password_len;
236 };
237 
238 // PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12
239 // structure.
PKCS12_handle_sequence(CBS * sequence,struct pkcs12_context * ctx,int (* handle_element)(CBS * cbs,struct pkcs12_context * ctx))240 static int PKCS12_handle_sequence(
241     CBS *sequence, struct pkcs12_context *ctx,
242     int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) {
243   uint8_t *storage = NULL;
244   CBS in;
245   int ret = 0;
246 
247   // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|,
248   // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the
249   // conversion cannot see through those wrappings. So each time we step
250   // through one we need to convert to DER again.
251   if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) {
252     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
253     return 0;
254   }
255 
256   CBS child;
257   if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) ||
258       CBS_len(&in) != 0) {
259     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
260     goto err;
261   }
262 
263   while (CBS_len(&child) > 0) {
264     CBS element;
265     if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) {
266       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
267       goto err;
268     }
269 
270     if (!handle_element(&element, ctx)) {
271       goto err;
272     }
273   }
274 
275   ret = 1;
276 
277 err:
278   OPENSSL_free(storage);
279   return ret;
280 }
281 
282 // 1.2.840.113549.1.12.10.1.1
283 static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
284                                   0x01, 0x0c, 0x0a, 0x01, 0x01};
285 
286 // 1.2.840.113549.1.12.10.1.2
287 static const uint8_t kPKCS8ShroudedKeyBag[] = {
288     0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02};
289 
290 // 1.2.840.113549.1.12.10.1.3
291 static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
292                                    0x01, 0x0c, 0x0a, 0x01, 0x03};
293 
294 // 1.2.840.113549.1.9.20
295 static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
296                                         0x0d, 0x01, 0x09, 0x14};
297 
298 // 1.2.840.113549.1.9.21
299 static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
300                                       0x0d, 0x01, 0x09, 0x15};
301 
302 // 1.2.840.113549.1.9.22.1
303 static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
304                                            0x0d, 0x01, 0x09, 0x16, 0x01};
305 
306 // parse_bag_attributes parses the bagAttributes field of a SafeBag structure.
307 // It sets |*out_friendly_name| to a newly-allocated copy of the friendly name,
308 // encoded as a UTF-8 string, or NULL if there is none. It returns one on
309 // success and zero on error.
parse_bag_attributes(CBS * attrs,uint8_t ** out_friendly_name,size_t * out_friendly_name_len)310 static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name,
311                                 size_t *out_friendly_name_len) {
312   *out_friendly_name = NULL;
313   *out_friendly_name_len = 0;
314 
315   // See https://tools.ietf.org/html/rfc7292#section-4.2.
316   while (CBS_len(attrs) != 0) {
317     CBS attr, oid, values;
318     if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) ||
319         !CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
320         !CBS_get_asn1(&attr, &values, CBS_ASN1_SET) ||
321         CBS_len(&attr) != 0) {
322       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
323       goto err;
324     }
325     if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) {
326       // See https://tools.ietf.org/html/rfc2985, section 5.5.1.
327       CBS value;
328       if (*out_friendly_name != NULL ||
329           !CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) ||
330           CBS_len(&values) != 0 ||
331           CBS_len(&value) == 0) {
332         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
333         goto err;
334       }
335       // Convert the friendly name to UTF-8.
336       CBB cbb;
337       if (!CBB_init(&cbb, CBS_len(&value))) {
338         goto err;
339       }
340       while (CBS_len(&value) != 0) {
341         uint32_t c;
342         if (!CBS_get_ucs2_be(&value, &c) ||
343             !CBB_add_utf8(&cbb, c)) {
344           OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
345           CBB_cleanup(&cbb);
346           goto err;
347         }
348       }
349       if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) {
350         CBB_cleanup(&cbb);
351         goto err;
352       }
353     }
354   }
355 
356   return 1;
357 
358 err:
359   OPENSSL_free(*out_friendly_name);
360   *out_friendly_name = NULL;
361   *out_friendly_name_len = 0;
362   return 0;
363 }
364 
365 // PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12
366 // structure.
PKCS12_handle_safe_bag(CBS * safe_bag,struct pkcs12_context * ctx)367 static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) {
368   CBS bag_id, wrapped_value, bag_attrs;
369   if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) ||
370       !CBS_get_asn1(safe_bag, &wrapped_value,
371                     CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
372     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
373     return 0;
374   }
375   if (CBS_len(safe_bag) == 0) {
376     CBS_init(&bag_attrs, NULL, 0);
377   } else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) ||
378              CBS_len(safe_bag) != 0) {
379     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
380     return 0;
381   }
382 
383   const int is_key_bag = CBS_mem_equal(&bag_id, kKeyBag, sizeof(kKeyBag));
384   const int is_shrouded_key_bag = CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag,
385                                                 sizeof(kPKCS8ShroudedKeyBag));
386   if (is_key_bag || is_shrouded_key_bag) {
387     // See RFC 7292, section 4.2.1 and 4.2.2.
388     if (*ctx->out_key) {
389       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12);
390       return 0;
391     }
392 
393     EVP_PKEY *pkey =
394         is_key_bag ? EVP_parse_private_key(&wrapped_value)
395                    : PKCS8_parse_encrypted_private_key(
396                          &wrapped_value, ctx->password, ctx->password_len);
397     if (pkey == NULL) {
398       return 0;
399     }
400 
401     if (CBS_len(&wrapped_value) != 0) {
402       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
403       EVP_PKEY_free(pkey);
404       return 0;
405     }
406 
407     *ctx->out_key = pkey;
408     return 1;
409   }
410 
411   if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) {
412     // See RFC 7292, section 4.2.3.
413     CBS cert_bag, cert_type, wrapped_cert, cert;
414     if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) ||
415         !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
416         !CBS_get_asn1(&cert_bag, &wrapped_cert,
417                       CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
418         !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) {
419       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
420       return 0;
421     }
422 
423     // Skip unknown certificate types.
424     if (!CBS_mem_equal(&cert_type, kX509Certificate,
425                        sizeof(kX509Certificate))) {
426       return 1;
427     }
428 
429     if (CBS_len(&cert) > LONG_MAX) {
430       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
431       return 0;
432     }
433 
434     const uint8_t *inp = CBS_data(&cert);
435     X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert));
436     if (!x509) {
437       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
438       return 0;
439     }
440 
441     if (inp != CBS_data(&cert) + CBS_len(&cert)) {
442       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
443       X509_free(x509);
444       return 0;
445     }
446 
447     uint8_t *friendly_name;
448     size_t friendly_name_len;
449     if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) {
450       X509_free(x509);
451       return 0;
452     }
453     int ok = friendly_name_len == 0 ||
454              X509_alias_set1(x509, friendly_name, friendly_name_len);
455     OPENSSL_free(friendly_name);
456     if (!ok ||
457         0 == sk_X509_push(ctx->out_certs, x509)) {
458       X509_free(x509);
459       return 0;
460     }
461 
462     return 1;
463   }
464 
465   // Unknown element type - ignore it.
466   return 1;
467 }
468 
469 // 1.2.840.113549.1.7.1
470 static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
471                                      0x0d, 0x01, 0x07, 0x01};
472 
473 // 1.2.840.113549.1.7.6
474 static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
475                                               0x0d, 0x01, 0x07, 0x06};
476 
477 // PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a
478 // PKCS#12 structure.
PKCS12_handle_content_info(CBS * content_info,struct pkcs12_context * ctx)479 static int PKCS12_handle_content_info(CBS *content_info,
480                                       struct pkcs12_context *ctx) {
481   CBS content_type, wrapped_contents, contents;
482   int ret = 0;
483   uint8_t *storage = NULL;
484 
485   if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) ||
486       !CBS_get_asn1(content_info, &wrapped_contents,
487                         CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
488       CBS_len(content_info) != 0) {
489     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
490     goto err;
491   }
492 
493   if (CBS_mem_equal(&content_type, kPKCS7EncryptedData,
494                     sizeof(kPKCS7EncryptedData))) {
495     // See https://tools.ietf.org/html/rfc2315#section-13.
496     //
497     // PKCS#7 encrypted data inside a PKCS#12 structure is generally an
498     // encrypted certificate bag and it's generally encrypted with 40-bit
499     // RC2-CBC.
500     CBS version_bytes, eci, contents_type, ai, encrypted_contents;
501     uint8_t *out;
502     size_t out_len;
503 
504     if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) ||
505         !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) ||
506         // EncryptedContentInfo, see
507         // https://tools.ietf.org/html/rfc2315#section-10.1
508         !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) ||
509         !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) ||
510         // AlgorithmIdentifier, see
511         // https://tools.ietf.org/html/rfc5280#section-4.1.1.2
512         !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) ||
513         !CBS_get_asn1_implicit_string(
514             &eci, &encrypted_contents, &storage,
515             CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) {
516       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
517       goto err;
518     }
519 
520     if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) {
521       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
522       goto err;
523     }
524 
525     if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password,
526                            ctx->password_len, CBS_data(&encrypted_contents),
527                            CBS_len(&encrypted_contents))) {
528       goto err;
529     }
530 
531     CBS safe_contents;
532     CBS_init(&safe_contents, out, out_len);
533     ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag);
534     OPENSSL_free(out);
535   } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
536     CBS octet_string_contents;
537 
538     if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents,
539                       CBS_ASN1_OCTETSTRING)) {
540       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
541       goto err;
542     }
543 
544     ret = PKCS12_handle_sequence(&octet_string_contents, ctx,
545                                  PKCS12_handle_safe_bag);
546   } else {
547     // Unknown element type - ignore it.
548     ret = 1;
549   }
550 
551 err:
552   OPENSSL_free(storage);
553   return ret;
554 }
555 
pkcs12_check_mac(int * out_mac_ok,const char * password,size_t password_len,const CBS * salt,uint32_t iterations,const EVP_MD * md,const CBS * authsafes,const CBS * expected_mac)556 static int pkcs12_check_mac(int *out_mac_ok, const char *password,
557                             size_t password_len, const CBS *salt,
558                             uint32_t iterations, const EVP_MD *md,
559                             const CBS *authsafes, const CBS *expected_mac) {
560   int ret = 0;
561   uint8_t hmac_key[EVP_MAX_MD_SIZE];
562   if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt),
563                       PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key,
564                       md)) {
565     goto err;
566   }
567 
568   uint8_t hmac[EVP_MAX_MD_SIZE];
569   unsigned hmac_len;
570   if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes),
571                    CBS_len(authsafes), hmac, &hmac_len)) {
572     goto err;
573   }
574 
575   *out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len);
576 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
577   *out_mac_ok = 1;
578 #endif
579   ret = 1;
580 
581 err:
582   OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
583   return ret;
584 }
585 
586 
PKCS12_get_key_and_certs(EVP_PKEY ** out_key,STACK_OF (X509)* out_certs,CBS * ber_in,const char * password)587 int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs,
588                              CBS *ber_in, const char *password) {
589   uint8_t *storage = NULL;
590   CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes;
591   uint64_t version;
592   int ret = 0;
593   struct pkcs12_context ctx;
594   const size_t original_out_certs_len = sk_X509_num(out_certs);
595 
596   // The input may be in BER format.
597   if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) {
598     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
599     return 0;
600   }
601 
602   *out_key = NULL;
603   OPENSSL_memset(&ctx, 0, sizeof(ctx));
604 
605   // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section
606   // four.
607   if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) ||
608       CBS_len(&in) != 0 ||
609       !CBS_get_asn1_uint64(&pfx, &version)) {
610     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
611     goto err;
612   }
613 
614   if (version < 3) {
615     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION);
616     goto err;
617   }
618 
619   if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) {
620     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
621     goto err;
622   }
623 
624   if (CBS_len(&pfx) == 0) {
625     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC);
626     goto err;
627   }
628 
629   if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) {
630     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
631     goto err;
632   }
633 
634   // authsafe is a PKCS#7 ContentInfo. See
635   // https://tools.ietf.org/html/rfc2315#section-7.
636   if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) ||
637       !CBS_get_asn1(&authsafe, &wrapped_authsafes,
638                         CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
639     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
640     goto err;
641   }
642 
643   // The content type can either be data or signedData. The latter indicates
644   // that it's signed by a public key, which isn't supported.
645   if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
646     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED);
647     goto err;
648   }
649 
650   if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) {
651     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
652     goto err;
653   }
654 
655   ctx.out_key = out_key;
656   ctx.out_certs = out_certs;
657   ctx.password = password;
658   ctx.password_len = password != NULL ? strlen(password) : 0;
659 
660   // Verify the MAC.
661   {
662     CBS mac, salt, expected_mac;
663     if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) {
664       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
665       goto err;
666     }
667 
668     const EVP_MD *md = EVP_parse_digest_algorithm(&mac);
669     if (md == NULL) {
670       goto err;
671     }
672 
673     if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) ||
674         !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) {
675       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
676       goto err;
677     }
678 
679     // The iteration count is optional and the default is one.
680     uint32_t iterations = 1;
681     if (CBS_len(&mac_data) > 0) {
682       uint64_t iterations_u64;
683       if (!CBS_get_asn1_uint64(&mac_data, &iterations_u64) ||
684           !pkcs12_iterations_acceptable(iterations_u64)) {
685         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
686         goto err;
687       }
688       iterations = (uint32_t)iterations_u64;
689     }
690 
691     int mac_ok;
692     if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
693                           iterations, md, &authsafes, &expected_mac)) {
694       goto err;
695     }
696     if (!mac_ok && ctx.password_len == 0) {
697       // PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty
698       // password is encoded as {0, 0}. Some implementations use the empty byte
699       // array for "no password". OpenSSL considers a non-NULL password as {0,
700       // 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing
701       // code, tries both options. We match this behavior.
702       ctx.password = ctx.password != NULL ? NULL : "";
703       if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
704                             iterations, md, &authsafes, &expected_mac)) {
705         goto err;
706       }
707     }
708     if (!mac_ok) {
709       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD);
710       goto err;
711     }
712   }
713 
714   // authsafes contains a series of PKCS#7 ContentInfos.
715   if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) {
716     goto err;
717   }
718 
719   ret = 1;
720 
721 err:
722   OPENSSL_free(storage);
723   if (!ret) {
724     EVP_PKEY_free(*out_key);
725     *out_key = NULL;
726     while (sk_X509_num(out_certs) > original_out_certs_len) {
727       X509 *x509 = sk_X509_pop(out_certs);
728       X509_free(x509);
729     }
730   }
731 
732   return ret;
733 }
734 
PKCS12_PBE_add(void)735 void PKCS12_PBE_add(void) {}
736 
737 struct pkcs12_st {
738   uint8_t *ber_bytes;
739   size_t ber_len;
740 };
741 
d2i_PKCS12(PKCS12 ** out_p12,const uint8_t ** ber_bytes,size_t ber_len)742 PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes,
743                    size_t ber_len) {
744   PKCS12 *p12 = OPENSSL_malloc(sizeof(PKCS12));
745   if (!p12) {
746     return NULL;
747   }
748 
749   p12->ber_bytes = OPENSSL_memdup(*ber_bytes, ber_len);
750   if (!p12->ber_bytes) {
751     OPENSSL_free(p12);
752     return NULL;
753   }
754 
755   p12->ber_len = ber_len;
756   *ber_bytes += ber_len;
757 
758   if (out_p12) {
759     PKCS12_free(*out_p12);
760     *out_p12 = p12;
761   }
762 
763   return p12;
764 }
765 
d2i_PKCS12_bio(BIO * bio,PKCS12 ** out_p12)766 PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) {
767   size_t used = 0;
768   BUF_MEM *buf;
769   const uint8_t *dummy;
770   static const size_t kMaxSize = 256 * 1024;
771   PKCS12 *ret = NULL;
772 
773   buf = BUF_MEM_new();
774   if (buf == NULL) {
775     return NULL;
776   }
777   if (BUF_MEM_grow(buf, 8192) == 0) {
778     goto out;
779   }
780 
781   for (;;) {
782     size_t max_read = buf->length - used;
783     int n = BIO_read(bio, &buf->data[used],
784                      max_read > INT_MAX ? INT_MAX : (int)max_read);
785     if (n < 0) {
786       if (used == 0) {
787         goto out;
788       }
789       // Workaround a bug in node.js. It uses a memory BIO for this in the wrong
790       // mode.
791       n = 0;
792     }
793 
794     if (n == 0) {
795       break;
796     }
797     used += n;
798 
799     if (used < buf->length) {
800       continue;
801     }
802 
803     if (buf->length > kMaxSize ||
804         BUF_MEM_grow(buf, buf->length * 2) == 0) {
805       goto out;
806     }
807   }
808 
809   dummy = (uint8_t*) buf->data;
810   ret = d2i_PKCS12(out_p12, &dummy, used);
811 
812 out:
813   BUF_MEM_free(buf);
814   return ret;
815 }
816 
d2i_PKCS12_fp(FILE * fp,PKCS12 ** out_p12)817 PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) {
818   BIO *bio;
819   PKCS12 *ret;
820 
821   bio = BIO_new_fp(fp, 0 /* don't take ownership */);
822   if (!bio) {
823     return NULL;
824   }
825 
826   ret = d2i_PKCS12_bio(bio, out_p12);
827   BIO_free(bio);
828   return ret;
829 }
830 
i2d_PKCS12(const PKCS12 * p12,uint8_t ** out)831 int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) {
832   if (p12->ber_len > INT_MAX) {
833     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
834     return -1;
835   }
836 
837   if (out == NULL) {
838     return (int)p12->ber_len;
839   }
840 
841   if (*out == NULL) {
842     *out = OPENSSL_memdup(p12->ber_bytes, p12->ber_len);
843     if (*out == NULL) {
844       return -1;
845     }
846   } else {
847     OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len);
848     *out += p12->ber_len;
849   }
850   return (int)p12->ber_len;
851 }
852 
i2d_PKCS12_bio(BIO * bio,const PKCS12 * p12)853 int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) {
854   return BIO_write_all(bio, p12->ber_bytes, p12->ber_len);
855 }
856 
i2d_PKCS12_fp(FILE * fp,const PKCS12 * p12)857 int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) {
858   BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */);
859   if (bio == NULL) {
860     return 0;
861   }
862 
863   int ret = i2d_PKCS12_bio(bio, p12);
864   BIO_free(bio);
865   return ret;
866 }
867 
PKCS12_parse(const PKCS12 * p12,const char * password,EVP_PKEY ** out_pkey,X509 ** out_cert,STACK_OF (X509)** out_ca_certs)868 int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey,
869                  X509 **out_cert, STACK_OF(X509) **out_ca_certs) {
870   CBS ber_bytes;
871   STACK_OF(X509) *ca_certs = NULL;
872   char ca_certs_alloced = 0;
873 
874   if (out_ca_certs != NULL && *out_ca_certs != NULL) {
875     ca_certs = *out_ca_certs;
876   }
877 
878   if (!ca_certs) {
879     ca_certs = sk_X509_new_null();
880     if (ca_certs == NULL) {
881       return 0;
882     }
883     ca_certs_alloced = 1;
884   }
885 
886   CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len);
887   if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) {
888     if (ca_certs_alloced) {
889       sk_X509_free(ca_certs);
890     }
891     return 0;
892   }
893 
894   // OpenSSL selects the last certificate which matches the private key as
895   // |out_cert|.
896   *out_cert = NULL;
897   size_t num_certs = sk_X509_num(ca_certs);
898   if (*out_pkey != NULL && num_certs > 0) {
899     for (size_t i = num_certs - 1; i < num_certs; i--) {
900       X509 *cert = sk_X509_value(ca_certs, i);
901       if (X509_check_private_key(cert, *out_pkey)) {
902         *out_cert = cert;
903         sk_X509_delete(ca_certs, i);
904         break;
905       }
906       ERR_clear_error();
907     }
908   }
909 
910   if (out_ca_certs) {
911     *out_ca_certs = ca_certs;
912   } else {
913     sk_X509_pop_free(ca_certs, X509_free);
914   }
915 
916   return 1;
917 }
918 
PKCS12_verify_mac(const PKCS12 * p12,const char * password,int password_len)919 int PKCS12_verify_mac(const PKCS12 *p12, const char *password,
920                       int password_len) {
921   if (password == NULL) {
922     if (password_len != 0) {
923       return 0;
924     }
925   } else if (password_len != -1 &&
926              (password[password_len] != 0 ||
927               OPENSSL_memchr(password, 0, password_len) != NULL)) {
928     return 0;
929   }
930 
931   EVP_PKEY *pkey = NULL;
932   X509 *cert = NULL;
933   if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) {
934     ERR_clear_error();
935     return 0;
936   }
937 
938   EVP_PKEY_free(pkey);
939   X509_free(cert);
940 
941   return 1;
942 }
943 
944 // add_bag_attributes adds the bagAttributes field of a SafeBag structure,
945 // containing the specified friendlyName and localKeyId attributes.
add_bag_attributes(CBB * bag,const char * name,size_t name_len,const uint8_t * key_id,size_t key_id_len)946 static int add_bag_attributes(CBB *bag, const char *name, size_t name_len,
947                               const uint8_t *key_id, size_t key_id_len) {
948   if (name == NULL && key_id_len == 0) {
949     return 1;  // Omit the OPTIONAL SET.
950   }
951   // See https://tools.ietf.org/html/rfc7292#section-4.2.
952   CBB attrs, attr, oid, values, value;
953   if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) {
954     return 0;
955   }
956   if (name_len != 0) {
957     // See https://tools.ietf.org/html/rfc2985, section 5.5.1.
958     if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
959         !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
960         !CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) ||
961         !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
962         !CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) {
963       return 0;
964     }
965     // Convert the friendly name to a BMPString.
966     CBS name_cbs;
967     CBS_init(&name_cbs, (const uint8_t *)name, name_len);
968     while (CBS_len(&name_cbs) != 0) {
969       uint32_t c;
970       if (!CBS_get_utf8(&name_cbs, &c) ||
971           !CBB_add_ucs2_be(&value, c)) {
972         OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
973         return 0;
974       }
975     }
976   }
977   if (key_id_len != 0) {
978     // See https://tools.ietf.org/html/rfc2985, section 5.5.2.
979     if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
980         !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
981         !CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) ||
982         !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
983         !CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) ||
984         !CBB_add_bytes(&value, key_id, key_id_len)) {
985       return 0;
986     }
987   }
988   return CBB_flush_asn1_set_of(&attrs) &&
989          CBB_flush(bag);
990 }
991 
add_cert_bag(CBB * cbb,X509 * cert,const char * name,const uint8_t * key_id,size_t key_id_len)992 static int add_cert_bag(CBB *cbb, X509 *cert, const char *name,
993                         const uint8_t *key_id, size_t key_id_len) {
994   CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value;
995   if (// See https://tools.ietf.org/html/rfc7292#section-4.2.
996       !CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) ||
997       !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) ||
998       !CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) ||
999       !CBB_add_asn1(&bag, &bag_contents,
1000                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1001       // See https://tools.ietf.org/html/rfc7292#section-4.2.3.
1002       !CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) ||
1003       !CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
1004       !CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) ||
1005       !CBB_add_asn1(&cert_bag, &wrapped_cert,
1006                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1007       !CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) {
1008     return 0;
1009   }
1010   uint8_t *buf;
1011   int len = i2d_X509(cert, NULL);
1012 
1013   int int_name_len = 0;
1014   const char *cert_name = (const char *)X509_alias_get0(cert, &int_name_len);
1015   size_t name_len = int_name_len;
1016   if (name) {
1017     if (name_len != 0) {
1018       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_AMBIGUOUS_FRIENDLY_NAME);
1019       return 0;
1020     }
1021     name_len = strlen(name);
1022   } else {
1023     name = cert_name;
1024   }
1025 
1026   if (len < 0 ||
1027       !CBB_add_space(&cert_value, &buf, (size_t)len) ||
1028       i2d_X509(cert, &buf) < 0 ||
1029       !add_bag_attributes(&bag, name, name_len, key_id, key_id_len) ||
1030       !CBB_flush(cbb)) {
1031     return 0;
1032   }
1033   return 1;
1034 }
1035 
add_cert_safe_contents(CBB * cbb,X509 * cert,const STACK_OF (X509)* chain,const char * name,const uint8_t * key_id,size_t key_id_len)1036 static int add_cert_safe_contents(CBB *cbb, X509 *cert,
1037                                   const STACK_OF(X509) *chain, const char *name,
1038                                   const uint8_t *key_id, size_t key_id_len) {
1039   CBB safe_contents;
1040   if (!CBB_add_asn1(cbb, &safe_contents, CBS_ASN1_SEQUENCE) ||
1041       (cert != NULL &&
1042        !add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) {
1043     return 0;
1044   }
1045 
1046   for (size_t i = 0; i < sk_X509_num(chain); i++) {
1047     // Only the leaf certificate gets attributes.
1048     if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) {
1049       return 0;
1050     }
1051   }
1052 
1053   return CBB_flush(cbb);
1054 }
1055 
add_encrypted_data(CBB * out,int pbe_nid,const char * password,size_t password_len,uint32_t iterations,const uint8_t * in,size_t in_len)1056 static int add_encrypted_data(CBB *out, int pbe_nid, const char *password,
1057                               size_t password_len, uint32_t iterations,
1058                               const uint8_t *in, size_t in_len) {
1059   uint8_t salt[PKCS5_SALT_LEN];
1060   if (!RAND_bytes(salt, sizeof(salt))) {
1061     return 0;
1062   }
1063 
1064   int ret = 0;
1065   EVP_CIPHER_CTX ctx;
1066   EVP_CIPHER_CTX_init(&ctx);
1067   CBB content_info, type, wrapper, encrypted_data, encrypted_content_info,
1068       inner_type, encrypted_content;
1069   if (// Add the ContentInfo wrapping.
1070       !CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) ||
1071       !CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) ||
1072       !CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) ||
1073       !CBB_add_asn1(&content_info, &wrapper,
1074                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1075       // See https://tools.ietf.org/html/rfc2315#section-13.
1076       !CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) ||
1077       !CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) ||
1078       // See https://tools.ietf.org/html/rfc2315#section-10.1.
1079       !CBB_add_asn1(&encrypted_data, &encrypted_content_info,
1080                     CBS_ASN1_SEQUENCE) ||
1081       !CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) ||
1082       !CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) ||
1083       // Set up encryption and fill in contentEncryptionAlgorithm.
1084       !pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid,
1085                                iterations, password, password_len, salt,
1086                                sizeof(salt)) ||
1087       // Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so
1088       // it inherits the inner tag's constructed bit.
1089       !CBB_add_asn1(&encrypted_content_info, &encrypted_content,
1090                     CBS_ASN1_CONTEXT_SPECIFIC | 0)) {
1091     goto err;
1092   }
1093 
1094   size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx);
1095   if (max_out < in_len) {
1096     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
1097     goto err;
1098   }
1099 
1100   uint8_t *ptr;
1101   int n1, n2;
1102   if (!CBB_reserve(&encrypted_content, &ptr, max_out) ||
1103       !EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) ||
1104       !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
1105       !CBB_did_write(&encrypted_content, n1 + n2) ||
1106       !CBB_flush(out)) {
1107     goto err;
1108   }
1109 
1110   ret = 1;
1111 
1112 err:
1113   EVP_CIPHER_CTX_cleanup(&ctx);
1114   return ret;
1115 }
1116 
PKCS12_create(const char * password,const char * name,const EVP_PKEY * pkey,X509 * cert,const STACK_OF (X509)* chain,int key_nid,int cert_nid,int iterations,int mac_iterations,int key_type)1117 PKCS12 *PKCS12_create(const char *password, const char *name,
1118                       const EVP_PKEY *pkey, X509 *cert,
1119                       const STACK_OF(X509)* chain, int key_nid, int cert_nid,
1120                       int iterations, int mac_iterations, int key_type) {
1121   if (key_nid == 0) {
1122     key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC;
1123   }
1124   if (cert_nid == 0) {
1125     cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC;
1126   }
1127   if (iterations == 0) {
1128     iterations = PKCS12_DEFAULT_ITER;
1129   }
1130   if (mac_iterations == 0) {
1131     mac_iterations = 1;
1132   }
1133   if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension
1134       // which we do not currently support.
1135       key_type != 0 ||
1136       // In OpenSSL, -1 here means to omit the MAC, which we do not
1137       // currently support. Omitting it is also invalid for a password-based
1138       // PKCS#12 file.
1139       mac_iterations < 0 ||
1140       // Don't encode empty objects.
1141       (pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) {
1142     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS);
1143     return 0;
1144   }
1145 
1146   // PKCS#12 is a very confusing recursive data format, built out of another
1147   // recursive data format. Section 5.1 of RFC 7292 describes the encoding
1148   // algorithm, but there is no clear overview. A quick summary:
1149   //
1150   // PKCS#7 defines a ContentInfo structure, which is a overgeneralized typed
1151   // combinator structure for applying cryptography. We care about two types. A
1152   // data ContentInfo contains an OCTET STRING and is a leaf node of the
1153   // combinator tree. An encrypted-data ContentInfo contains encryption
1154   // parameters (key derivation and encryption) and wraps another ContentInfo,
1155   // usually data.
1156   //
1157   // A PKCS#12 file is a PFX structure (section 4), which contains a single data
1158   // ContentInfo and a MAC over it. This root ContentInfo is the
1159   // AuthenticatedSafe and its payload is a SEQUENCE of other ContentInfos, so
1160   // that different parts of the PKCS#12 file can by differently protected.
1161   //
1162   // Each ContentInfo in the AuthenticatedSafe, after undoing all the PKCS#7
1163   // combinators, has SafeContents payload. A SafeContents is a SEQUENCE of
1164   // SafeBag. SafeBag is PKCS#12's typed structure, with subtypes such as KeyBag
1165   // and CertBag. Confusingly, there is a SafeContents bag type which itself
1166   // recursively contains more SafeBags, but we do not implement this. Bags also
1167   // can have attributes.
1168   //
1169   // The grouping of SafeBags into intermediate ContentInfos does not appear to
1170   // be significant, except that all SafeBags sharing a ContentInfo have the
1171   // same level of protection. Additionally, while keys may be encrypted by
1172   // placing a KeyBag in an encrypted-data ContentInfo, PKCS#12 also defines a
1173   // key-specific encryption container, PKCS8ShroudedKeyBag, which is used
1174   // instead.
1175 
1176   // Note that |password| may be NULL to specify no password, rather than the
1177   // empty string. They are encoded differently in PKCS#12. (One is the empty
1178   // byte array and the other is NUL-terminated UCS-2.)
1179   size_t password_len = password != NULL ? strlen(password) : 0;
1180 
1181   uint8_t key_id[EVP_MAX_MD_SIZE];
1182   unsigned key_id_len = 0;
1183   if (cert != NULL && pkey != NULL) {
1184     if (!X509_check_private_key(cert, pkey) ||
1185         // Matching OpenSSL, use the SHA-1 hash of the certificate as the local
1186         // key ID. Some PKCS#12 consumers require one to connect the private key
1187         // and certificate.
1188         !X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) {
1189       return 0;
1190     }
1191   }
1192 
1193   // See https://tools.ietf.org/html/rfc7292#section-4.
1194   PKCS12 *ret = NULL;
1195   CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data,
1196       content_infos;
1197   uint8_t mac_key[EVP_MAX_MD_SIZE];
1198   if (!CBB_init(&cbb, 0) ||
1199       !CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) ||
1200       !CBB_add_asn1_uint64(&pfx, 3) ||
1201       // auth_safe is a data ContentInfo.
1202       !CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) ||
1203       !CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) ||
1204       !CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1205       !CBB_add_asn1(&auth_safe, &auth_safe_wrapper,
1206                     CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1207       !CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data,
1208                     CBS_ASN1_OCTETSTRING) ||
1209       // See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s
1210       // contains a SEQUENCE of ContentInfos.
1211       !CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) {
1212     goto err;
1213   }
1214 
1215   // If there are any certificates, place them in CertBags wrapped in a single
1216   // encrypted ContentInfo.
1217   if (cert != NULL || sk_X509_num(chain) > 0) {
1218     if (cert_nid < 0) {
1219       // Place the certificates in an unencrypted ContentInfo. This could be
1220       // more compactly-encoded by reusing the same ContentInfo as the key, but
1221       // OpenSSL does not do this. We keep them separate for consistency. (Keys,
1222       // even when encrypted, are always placed in unencrypted ContentInfos.
1223       // PKCS#12 defines bag-level encryption for keys.)
1224       CBB content_info, oid, wrapper, data;
1225       if (!CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) ||
1226           !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) ||
1227           !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1228           !CBB_add_asn1(&content_info, &wrapper,
1229                         CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1230           !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) ||
1231           !add_cert_safe_contents(&data, cert, chain, name, key_id,
1232                                   key_id_len) ||
1233           !CBB_flush(&content_infos)) {
1234         goto err;
1235       }
1236     } else {
1237       CBB plaintext_cbb;
1238       int ok = CBB_init(&plaintext_cbb, 0) &&
1239                add_cert_safe_contents(&plaintext_cbb, cert, chain, name, key_id,
1240                                       key_id_len) &&
1241                add_encrypted_data(
1242                    &content_infos, cert_nid, password, password_len, iterations,
1243                    CBB_data(&plaintext_cbb), CBB_len(&plaintext_cbb));
1244       CBB_cleanup(&plaintext_cbb);
1245       if (!ok) {
1246         goto err;
1247       }
1248     }
1249   }
1250 
1251   // If there is a key, place it in a single KeyBag or PKCS8ShroudedKeyBag
1252   // wrapped in an unencrypted ContentInfo. (One could also place it in a KeyBag
1253   // inside an encrypted ContentInfo, but OpenSSL does not do this and some
1254   // PKCS#12 consumers do not support KeyBags.)
1255   if (pkey != NULL) {
1256     CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid,
1257         bag_contents;
1258     if (// Add another data ContentInfo.
1259         !CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) ||
1260         !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) ||
1261         !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
1262         !CBB_add_asn1(&content_info, &wrapper,
1263                       CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1264         !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) ||
1265         !CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) ||
1266         // Add a SafeBag containing a PKCS8ShroudedKeyBag.
1267         !CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) ||
1268         !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT)) {
1269       goto err;
1270     }
1271     if (key_nid < 0) {
1272       if (!CBB_add_bytes(&bag_oid, kKeyBag, sizeof(kKeyBag)) ||
1273           !CBB_add_asn1(&bag, &bag_contents,
1274                         CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1275           !EVP_marshal_private_key(&bag_contents, pkey)) {
1276         goto err;
1277       }
1278     } else {
1279       if (!CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag,
1280                          sizeof(kPKCS8ShroudedKeyBag)) ||
1281           !CBB_add_asn1(&bag, &bag_contents,
1282                         CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
1283           !PKCS8_marshal_encrypted_private_key(
1284               &bag_contents, key_nid, NULL, password, password_len,
1285               NULL /* generate a random salt */,
1286               0 /* use default salt length */, iterations, pkey)) {
1287         goto err;
1288       }
1289     }
1290     size_t name_len = 0;
1291     if (name) {
1292       name_len = strlen(name);
1293     }
1294     if (!add_bag_attributes(&bag, name, name_len, key_id, key_id_len) ||
1295         !CBB_flush(&content_infos)) {
1296       goto err;
1297     }
1298   }
1299 
1300   // Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC
1301   // covers |auth_safe_data|.
1302   const EVP_MD *mac_md = EVP_sha1();
1303   uint8_t mac_salt[PKCS5_SALT_LEN];
1304   uint8_t mac[EVP_MAX_MD_SIZE];
1305   unsigned mac_len;
1306   if (!CBB_flush(&auth_safe_data) ||
1307       !RAND_bytes(mac_salt, sizeof(mac_salt)) ||
1308       !pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt),
1309                       PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md),
1310                       mac_key, mac_md) ||
1311       !HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data),
1312             CBB_len(&auth_safe_data), mac, &mac_len)) {
1313     goto err;
1314   }
1315 
1316   CBB mac_data, digest_info, mac_cbb, mac_salt_cbb;
1317   if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) ||
1318       !CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) ||
1319       !EVP_marshal_digest_algorithm(&digest_info, mac_md) ||
1320       !CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) ||
1321       !CBB_add_bytes(&mac_cbb, mac, mac_len) ||
1322       !CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) ||
1323       !CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) ||
1324       // The iteration count has a DEFAULT of 1, but RFC 7292 says "The default
1325       // is for historical reasons and its use is deprecated." Thus we
1326       // explicitly encode the iteration count, though it is not valid DER.
1327       !CBB_add_asn1_uint64(&mac_data, mac_iterations)) {
1328     goto err;
1329   }
1330 
1331   ret = OPENSSL_malloc(sizeof(PKCS12));
1332   if (ret == NULL ||
1333       !CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) {
1334     OPENSSL_free(ret);
1335     ret = NULL;
1336     goto err;
1337   }
1338 
1339 err:
1340   OPENSSL_cleanse(mac_key, sizeof(mac_key));
1341   CBB_cleanup(&cbb);
1342   return ret;
1343 }
1344 
PKCS12_free(PKCS12 * p12)1345 void PKCS12_free(PKCS12 *p12) {
1346   if (p12 == NULL) {
1347     return;
1348   }
1349   OPENSSL_free(p12->ber_bytes);
1350   OPENSSL_free(p12);
1351 }
1352