1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 *
113 * Portions of the attached software ("Contribution") are developed by
114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115 *
116 * The Contribution is licensed pursuant to the OpenSSL open source
117 * license provided above.
118 *
119 * ECC cipher suite support in OpenSSL originally written by
120 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
121 *
122 */
123 /* ====================================================================
124 * Copyright 2005 Nokia. All rights reserved.
125 *
126 * The portions of the attached software ("Contribution") is developed by
127 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
128 * license.
129 *
130 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
131 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
132 * support (see RFC 4279) to OpenSSL.
133 *
134 * No patent licenses or other rights except those expressly stated in
135 * the OpenSSL open source license shall be deemed granted or received
136 * expressly, by implication, estoppel, or otherwise.
137 *
138 * No assurances are provided by Nokia that the Contribution does not
139 * infringe the patent or other intellectual property rights of any third
140 * party or that the license provides you with all the necessary rights
141 * to make use of the Contribution.
142 *
143 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
144 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
145 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
146 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
147 * OTHERWISE.
148 */
149
150 #include <openssl/ssl.h>
151
152 #include <assert.h>
153 #include <limits.h>
154 #include <string.h>
155
156 #include <utility>
157
158 #include <openssl/aead.h>
159 #include <openssl/bn.h>
160 #include <openssl/bytestring.h>
161 #include <openssl/ec_key.h>
162 #include <openssl/ecdsa.h>
163 #include <openssl/err.h>
164 #include <openssl/evp.h>
165 #include <openssl/hpke.h>
166 #include <openssl/md5.h>
167 #include <openssl/mem.h>
168 #include <openssl/rand.h>
169 #include <openssl/sha.h>
170
171 #include "../crypto/internal.h"
172 #include "internal.h"
173
174
175 BSSL_NAMESPACE_BEGIN
176
177 enum ssl_client_hs_state_t {
178 state_start_connect = 0,
179 state_enter_early_data,
180 state_early_reverify_server_certificate,
181 state_read_hello_verify_request,
182 state_read_server_hello,
183 state_tls13,
184 state_read_server_certificate,
185 state_read_certificate_status,
186 state_verify_server_certificate,
187 state_reverify_server_certificate,
188 state_read_server_key_exchange,
189 state_read_certificate_request,
190 state_read_server_hello_done,
191 state_send_client_certificate,
192 state_send_client_key_exchange,
193 state_send_client_certificate_verify,
194 state_send_client_finished,
195 state_finish_flight,
196 state_read_session_ticket,
197 state_process_change_cipher_spec,
198 state_read_server_finished,
199 state_finish_client_handshake,
200 state_done,
201 };
202
203 // ssl_get_client_disabled sets |*out_mask_a| and |*out_mask_k| to masks of
204 // disabled algorithms.
ssl_get_client_disabled(const SSL_HANDSHAKE * hs,uint32_t * out_mask_a,uint32_t * out_mask_k)205 static void ssl_get_client_disabled(const SSL_HANDSHAKE *hs,
206 uint32_t *out_mask_a,
207 uint32_t *out_mask_k) {
208 *out_mask_a = 0;
209 *out_mask_k = 0;
210
211 // PSK requires a client callback.
212 if (hs->config->psk_client_callback == NULL) {
213 *out_mask_a |= SSL_aPSK;
214 *out_mask_k |= SSL_kPSK;
215 }
216 }
217
ssl_add_tls13_cipher(CBB * cbb,uint16_t cipher_id,ssl_compliance_policy_t policy)218 static bool ssl_add_tls13_cipher(CBB *cbb, uint16_t cipher_id,
219 ssl_compliance_policy_t policy) {
220 if (ssl_tls13_cipher_meets_policy(cipher_id, policy)) {
221 return CBB_add_u16(cbb, cipher_id);
222 }
223 return true;
224 }
225
ssl_write_client_cipher_list(const SSL_HANDSHAKE * hs,CBB * out,ssl_client_hello_type_t type)226 static bool ssl_write_client_cipher_list(const SSL_HANDSHAKE *hs, CBB *out,
227 ssl_client_hello_type_t type) {
228 const SSL *const ssl = hs->ssl;
229 uint32_t mask_a, mask_k;
230 ssl_get_client_disabled(hs, &mask_a, &mask_k);
231
232 CBB child;
233 if (!CBB_add_u16_length_prefixed(out, &child)) {
234 return false;
235 }
236
237 // Add a fake cipher suite. See RFC 8701.
238 if (ssl->ctx->grease_enabled &&
239 !CBB_add_u16(&child, ssl_get_grease_value(hs, ssl_grease_cipher))) {
240 return false;
241 }
242
243 // Add TLS 1.3 ciphers. Order ChaCha20-Poly1305 relative to AES-GCM based on
244 // hardware support.
245 if (hs->max_version >= TLS1_3_VERSION) {
246 const bool has_aes_hw = ssl->config->aes_hw_override
247 ? ssl->config->aes_hw_override_value
248 : EVP_has_aes_hardware();
249
250 if ((!has_aes_hw && //
251 !ssl_add_tls13_cipher(&child,
252 TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff,
253 ssl->config->tls13_cipher_policy)) ||
254 !ssl_add_tls13_cipher(&child, TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff,
255 ssl->config->tls13_cipher_policy) ||
256 !ssl_add_tls13_cipher(&child, TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff,
257 ssl->config->tls13_cipher_policy) ||
258 (has_aes_hw && //
259 !ssl_add_tls13_cipher(&child,
260 TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff,
261 ssl->config->tls13_cipher_policy))) {
262 return false;
263 }
264 }
265
266 if (hs->min_version < TLS1_3_VERSION && type != ssl_client_hello_inner) {
267 bool any_enabled = false;
268 for (const SSL_CIPHER *cipher : SSL_get_ciphers(ssl)) {
269 // Skip disabled ciphers
270 if ((cipher->algorithm_mkey & mask_k) ||
271 (cipher->algorithm_auth & mask_a)) {
272 continue;
273 }
274 if (SSL_CIPHER_get_min_version(cipher) > hs->max_version ||
275 SSL_CIPHER_get_max_version(cipher) < hs->min_version) {
276 continue;
277 }
278 any_enabled = true;
279 if (!CBB_add_u16(&child, SSL_CIPHER_get_protocol_id(cipher))) {
280 return false;
281 }
282 }
283
284 // If all ciphers were disabled, return the error to the caller.
285 if (!any_enabled && hs->max_version < TLS1_3_VERSION) {
286 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE);
287 return false;
288 }
289 }
290
291 if (ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) {
292 if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) {
293 return false;
294 }
295 }
296
297 return CBB_flush(out);
298 }
299
ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE * hs,CBB * cbb,ssl_client_hello_type_t type,bool empty_session_id)300 bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
301 CBB *cbb,
302 ssl_client_hello_type_t type,
303 bool empty_session_id) {
304 const SSL *const ssl = hs->ssl;
305 CBB child;
306 if (!CBB_add_u16(cbb, hs->client_version) ||
307 !CBB_add_bytes(cbb,
308 type == ssl_client_hello_inner ? hs->inner_client_random
309 : ssl->s3->client_random,
310 SSL3_RANDOM_SIZE) ||
311 !CBB_add_u8_length_prefixed(cbb, &child)) {
312 return false;
313 }
314
315 // Do not send a session ID on renegotiation.
316 if (!ssl->s3->initial_handshake_complete &&
317 !empty_session_id &&
318 !CBB_add_bytes(&child, hs->session_id, hs->session_id_len)) {
319 return false;
320 }
321
322 if (SSL_is_dtls(ssl)) {
323 if (!CBB_add_u8_length_prefixed(cbb, &child) ||
324 !CBB_add_bytes(&child, hs->dtls_cookie.data(),
325 hs->dtls_cookie.size())) {
326 return false;
327 }
328 }
329
330 if (!ssl_write_client_cipher_list(hs, cbb, type) ||
331 !CBB_add_u8(cbb, 1 /* one compression method */) ||
332 !CBB_add_u8(cbb, 0 /* null compression */)) {
333 return false;
334 }
335 return true;
336 }
337
ssl_add_client_hello(SSL_HANDSHAKE * hs)338 bool ssl_add_client_hello(SSL_HANDSHAKE *hs) {
339 SSL *const ssl = hs->ssl;
340 ScopedCBB cbb;
341 CBB body;
342 ssl_client_hello_type_t type = hs->selected_ech_config
343 ? ssl_client_hello_outer
344 : ssl_client_hello_unencrypted;
345 bool needs_psk_binder;
346 Array<uint8_t> msg;
347 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CLIENT_HELLO) ||
348 !ssl_write_client_hello_without_extensions(hs, &body, type,
349 /*empty_session_id=*/false) ||
350 !ssl_add_clienthello_tlsext(hs, &body, /*out_encoded=*/nullptr,
351 &needs_psk_binder, type, CBB_len(&body)) ||
352 !ssl->method->finish_message(ssl, cbb.get(), &msg)) {
353 return false;
354 }
355
356 // Now that the length prefixes have been computed, fill in the placeholder
357 // PSK binder.
358 if (needs_psk_binder) {
359 // ClientHelloOuter cannot have a PSK binder. Otherwise the
360 // ClientHellOuterAAD computation would break.
361 assert(type != ssl_client_hello_outer);
362 if (!tls13_write_psk_binder(hs, hs->transcript, MakeSpan(msg),
363 /*out_binder_len=*/0)) {
364 return false;
365 }
366 }
367
368 return ssl->method->add_message(ssl, std::move(msg));
369 }
370
parse_server_version(const SSL_HANDSHAKE * hs,uint16_t * out_version,uint8_t * out_alert,const ParsedServerHello & server_hello)371 static bool parse_server_version(const SSL_HANDSHAKE *hs, uint16_t *out_version,
372 uint8_t *out_alert,
373 const ParsedServerHello &server_hello) {
374 // If the outer version is not TLS 1.2, use it.
375 // TODO(davidben): This function doesn't quite match the RFC8446 formulation.
376 if (server_hello.legacy_version != TLS1_2_VERSION) {
377 *out_version = server_hello.legacy_version;
378 return true;
379 }
380
381 SSLExtension supported_versions(TLSEXT_TYPE_supported_versions);
382 CBS extensions = server_hello.extensions;
383 if (!ssl_parse_extensions(&extensions, out_alert, {&supported_versions},
384 /*ignore_unknown=*/true)) {
385 return false;
386 }
387
388 if (!supported_versions.present) {
389 *out_version = server_hello.legacy_version;
390 return true;
391 }
392
393 if (!CBS_get_u16(&supported_versions.data, out_version) ||
394 CBS_len(&supported_versions.data) != 0) {
395 *out_alert = SSL_AD_DECODE_ERROR;
396 return false;
397 }
398
399 return true;
400 }
401
402 // should_offer_early_data returns |ssl_early_data_accepted| if |hs| should
403 // offer early data, and some other reason code otherwise.
should_offer_early_data(const SSL_HANDSHAKE * hs)404 static ssl_early_data_reason_t should_offer_early_data(
405 const SSL_HANDSHAKE *hs) {
406 const SSL *const ssl = hs->ssl;
407 assert(!ssl->server);
408 if (!ssl->enable_early_data) {
409 return ssl_early_data_disabled;
410 }
411
412 if (hs->max_version < TLS1_3_VERSION) {
413 // We discard inapplicable sessions, so this is redundant with the session
414 // checks below, but reporting that TLS 1.3 was disabled is more useful.
415 return ssl_early_data_protocol_version;
416 }
417
418 if (ssl->session == nullptr) {
419 return ssl_early_data_no_session_offered;
420 }
421
422 if (ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION ||
423 ssl->session->ticket_max_early_data == 0) {
424 return ssl_early_data_unsupported_for_session;
425 }
426
427 if (!ssl->session->early_alpn.empty()) {
428 if (!ssl_is_alpn_protocol_allowed(hs, ssl->session->early_alpn)) {
429 // Avoid reporting a confusing value in |SSL_get0_alpn_selected|.
430 return ssl_early_data_alpn_mismatch;
431 }
432
433 // If the previous connection negotiated ALPS, only offer 0-RTT when the
434 // local are settings are consistent with what we'd offer for this
435 // connection.
436 if (ssl->session->has_application_settings) {
437 Span<const uint8_t> settings;
438 if (!ssl_get_local_application_settings(hs, &settings,
439 ssl->session->early_alpn) ||
440 settings != ssl->session->local_application_settings) {
441 return ssl_early_data_alps_mismatch;
442 }
443 }
444 }
445
446 // Early data has not yet been accepted, but we use it as a success code.
447 return ssl_early_data_accepted;
448 }
449
ssl_done_writing_client_hello(SSL_HANDSHAKE * hs)450 void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs) {
451 hs->ech_client_outer.Reset();
452 hs->cookie.Reset();
453 hs->key_share_bytes.Reset();
454 }
455
do_start_connect(SSL_HANDSHAKE * hs)456 static enum ssl_hs_wait_t do_start_connect(SSL_HANDSHAKE *hs) {
457 SSL *const ssl = hs->ssl;
458
459 ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1);
460 // |session_reused| must be reset in case this is a renegotiation.
461 ssl->s3->session_reused = false;
462
463 // Freeze the version range.
464 if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) {
465 return ssl_hs_error;
466 }
467
468 uint8_t ech_enc[EVP_HPKE_MAX_ENC_LENGTH];
469 size_t ech_enc_len;
470 if (!ssl_select_ech_config(hs, ech_enc, &ech_enc_len)) {
471 return ssl_hs_error;
472 }
473
474 // Always advertise the ClientHello version from the original maximum version,
475 // even on renegotiation. The static RSA key exchange uses this field, and
476 // some servers fail when it changes across handshakes.
477 if (SSL_is_dtls(hs->ssl)) {
478 hs->client_version =
479 hs->max_version >= TLS1_2_VERSION ? DTLS1_2_VERSION : DTLS1_VERSION;
480 } else {
481 hs->client_version =
482 hs->max_version >= TLS1_2_VERSION ? TLS1_2_VERSION : hs->max_version;
483 }
484
485 // If the configured session has expired or is not usable, drop it. We also do
486 // not offer sessions on renegotiation.
487 if (ssl->session != nullptr) {
488 if (ssl->session->is_server ||
489 !ssl_supports_version(hs, ssl->session->ssl_version) ||
490 // Do not offer TLS 1.2 sessions with ECH. ClientHelloInner does not
491 // offer TLS 1.2, and the cleartext session ID may leak the server
492 // identity.
493 (hs->selected_ech_config &&
494 ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) ||
495 !SSL_SESSION_is_resumable(ssl->session.get()) ||
496 !ssl_session_is_time_valid(ssl, ssl->session.get()) ||
497 (ssl->quic_method != nullptr) != ssl->session->is_quic ||
498 ssl->s3->initial_handshake_complete) {
499 ssl_set_session(ssl, nullptr);
500 }
501 }
502
503 if (!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) {
504 return ssl_hs_error;
505 }
506 if (hs->selected_ech_config &&
507 !RAND_bytes(hs->inner_client_random, sizeof(hs->inner_client_random))) {
508 return ssl_hs_error;
509 }
510
511 // Never send a session ID in QUIC. QUIC uses TLS 1.3 at a minimum and
512 // disables TLS 1.3 middlebox compatibility mode.
513 if (ssl->quic_method == nullptr) {
514 const bool has_id_session = ssl->session != nullptr &&
515 ssl->session->session_id_length > 0 &&
516 ssl->session->ticket.empty();
517 const bool has_ticket_session =
518 ssl->session != nullptr && !ssl->session->ticket.empty();
519 if (has_id_session) {
520 hs->session_id_len = ssl->session->session_id_length;
521 OPENSSL_memcpy(hs->session_id, ssl->session->session_id,
522 hs->session_id_len);
523 } else if (has_ticket_session || hs->max_version >= TLS1_3_VERSION) {
524 // Send a random session ID. TLS 1.3 always sends one, and TLS 1.2 session
525 // tickets require a placeholder value to signal resumption.
526 hs->session_id_len = sizeof(hs->session_id);
527 if (!RAND_bytes(hs->session_id, hs->session_id_len)) {
528 return ssl_hs_error;
529 }
530 }
531 }
532
533 ssl_early_data_reason_t reason = should_offer_early_data(hs);
534 if (reason != ssl_early_data_accepted) {
535 ssl->s3->early_data_reason = reason;
536 } else {
537 hs->early_data_offered = true;
538 }
539
540 if (!ssl_setup_key_shares(hs, /*override_group_id=*/0) ||
541 !ssl_setup_extension_permutation(hs) ||
542 !ssl_encrypt_client_hello(hs, MakeConstSpan(ech_enc, ech_enc_len)) ||
543 !ssl_add_client_hello(hs)) {
544 return ssl_hs_error;
545 }
546
547 hs->state = state_enter_early_data;
548 return ssl_hs_flush;
549 }
550
do_enter_early_data(SSL_HANDSHAKE * hs)551 static enum ssl_hs_wait_t do_enter_early_data(SSL_HANDSHAKE *hs) {
552 SSL *const ssl = hs->ssl;
553
554 if (SSL_is_dtls(ssl)) {
555 hs->state = state_read_hello_verify_request;
556 return ssl_hs_ok;
557 }
558
559 if (!hs->early_data_offered) {
560 hs->state = state_read_server_hello;
561 return ssl_hs_ok;
562 }
563
564 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->session->ssl_version);
565 if (!ssl->method->add_change_cipher_spec(ssl)) {
566 return ssl_hs_error;
567 }
568
569 if (!tls13_init_early_key_schedule(hs, ssl->session.get()) ||
570 !tls13_derive_early_secret(hs)) {
571 return ssl_hs_error;
572 }
573
574 // Stash the early data session, so connection properties may be queried out
575 // of it.
576 hs->early_session = UpRef(ssl->session);
577 hs->state = state_early_reverify_server_certificate;
578 return ssl_hs_ok;
579 }
580
do_early_reverify_server_certificate(SSL_HANDSHAKE * hs)581 static enum ssl_hs_wait_t do_early_reverify_server_certificate(SSL_HANDSHAKE *hs) {
582 if (hs->ssl->ctx->reverify_on_resume) {
583 // Don't send an alert on error. The alert be in early data, which the
584 // server may not accept anyway. It would also be a mismatch between QUIC
585 // and TCP because the QUIC early keys are deferred below.
586 //
587 // TODO(davidben): The client behavior should be to verify the certificate
588 // before deciding whether to offer the session and, if invalid, decline to
589 // send the session.
590 switch (ssl_reverify_peer_cert(hs, /*send_alert=*/false)) {
591 case ssl_verify_ok:
592 break;
593 case ssl_verify_invalid:
594 return ssl_hs_error;
595 case ssl_verify_retry:
596 hs->state = state_early_reverify_server_certificate;
597 return ssl_hs_certificate_verify;
598 }
599 }
600
601 // Defer releasing the 0-RTT key to after certificate reverification, so the
602 // QUIC implementation does not accidentally write data too early.
603 if (!tls13_set_traffic_key(hs->ssl, ssl_encryption_early_data, evp_aead_seal,
604 hs->early_session.get(),
605 hs->early_traffic_secret())) {
606 return ssl_hs_error;
607 }
608
609 hs->in_early_data = true;
610 hs->can_early_write = true;
611 hs->state = state_read_server_hello;
612 return ssl_hs_early_return;
613 }
614
do_read_hello_verify_request(SSL_HANDSHAKE * hs)615 static enum ssl_hs_wait_t do_read_hello_verify_request(SSL_HANDSHAKE *hs) {
616 SSL *const ssl = hs->ssl;
617
618 assert(SSL_is_dtls(ssl));
619
620 // When implementing DTLS 1.3, we need to handle the interactions between
621 // HelloVerifyRequest, DTLS 1.3's HelloVerifyRequest removal, and ECH.
622 assert(hs->max_version < TLS1_3_VERSION);
623
624 SSLMessage msg;
625 if (!ssl->method->get_message(ssl, &msg)) {
626 return ssl_hs_read_message;
627 }
628
629 if (msg.type != DTLS1_MT_HELLO_VERIFY_REQUEST) {
630 hs->state = state_read_server_hello;
631 return ssl_hs_ok;
632 }
633
634 CBS hello_verify_request = msg.body, cookie;
635 uint16_t server_version;
636 if (!CBS_get_u16(&hello_verify_request, &server_version) ||
637 !CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) ||
638 CBS_len(&hello_verify_request) != 0) {
639 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
640 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
641 return ssl_hs_error;
642 }
643
644 if (!hs->dtls_cookie.CopyFrom(cookie)) {
645 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
646 return ssl_hs_error;
647 }
648
649 ssl->method->next_message(ssl);
650
651 // DTLS resets the handshake buffer after HelloVerifyRequest.
652 if (!hs->transcript.Init()) {
653 return ssl_hs_error;
654 }
655
656 if (!ssl_add_client_hello(hs)) {
657 return ssl_hs_error;
658 }
659
660 hs->state = state_read_server_hello;
661 return ssl_hs_flush;
662 }
663
ssl_parse_server_hello(ParsedServerHello * out,uint8_t * out_alert,const SSLMessage & msg)664 bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
665 const SSLMessage &msg) {
666 if (msg.type != SSL3_MT_SERVER_HELLO) {
667 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
668 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
669 return false;
670 }
671 out->raw = msg.raw;
672 CBS body = msg.body;
673 if (!CBS_get_u16(&body, &out->legacy_version) ||
674 !CBS_get_bytes(&body, &out->random, SSL3_RANDOM_SIZE) ||
675 !CBS_get_u8_length_prefixed(&body, &out->session_id) ||
676 CBS_len(&out->session_id) > SSL3_SESSION_ID_SIZE ||
677 !CBS_get_u16(&body, &out->cipher_suite) ||
678 !CBS_get_u8(&body, &out->compression_method)) {
679 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
680 *out_alert = SSL_AD_DECODE_ERROR;
681 return false;
682 }
683 // In TLS 1.2 and below, empty extensions blocks may be omitted. In TLS 1.3,
684 // ServerHellos always have extensions, so this can be applied generically.
685 CBS_init(&out->extensions, nullptr, 0);
686 if ((CBS_len(&body) != 0 &&
687 !CBS_get_u16_length_prefixed(&body, &out->extensions)) ||
688 CBS_len(&body) != 0) {
689 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
690 *out_alert = SSL_AD_DECODE_ERROR;
691 return false;
692 }
693 return true;
694 }
695
do_read_server_hello(SSL_HANDSHAKE * hs)696 static enum ssl_hs_wait_t do_read_server_hello(SSL_HANDSHAKE *hs) {
697 SSL *const ssl = hs->ssl;
698 SSLMessage msg;
699 if (!ssl->method->get_message(ssl, &msg)) {
700 return ssl_hs_read_server_hello;
701 }
702
703 ParsedServerHello server_hello;
704 uint16_t server_version;
705 uint8_t alert = SSL_AD_DECODE_ERROR;
706 if (!ssl_parse_server_hello(&server_hello, &alert, msg) ||
707 !parse_server_version(hs, &server_version, &alert, server_hello)) {
708 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
709 return ssl_hs_error;
710 }
711
712 if (!ssl_supports_version(hs, server_version)) {
713 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL);
714 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
715 return ssl_hs_error;
716 }
717
718 assert(ssl->s3->have_version == ssl->s3->initial_handshake_complete);
719 if (!ssl->s3->have_version) {
720 ssl->version = server_version;
721 // At this point, the connection's version is known and ssl->version is
722 // fixed. Begin enforcing the record-layer version.
723 ssl->s3->have_version = true;
724 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version);
725 } else if (server_version != ssl->version) {
726 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
727 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
728 return ssl_hs_error;
729 }
730
731 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
732 hs->state = state_tls13;
733 return ssl_hs_ok;
734 }
735
736 // Clear some TLS 1.3 state that no longer needs to be retained.
737 hs->key_shares[0].reset();
738 hs->key_shares[1].reset();
739 ssl_done_writing_client_hello(hs);
740
741 // A TLS 1.2 server would not know to skip the early data we offered. Report
742 // an error code sooner. The caller may use this error code to implement the
743 // fallback described in RFC 8446 appendix D.3.
744 if (hs->early_data_offered) {
745 // Disconnect early writes. This ensures subsequent |SSL_write| calls query
746 // the handshake which, in turn, will replay the error code rather than fail
747 // at the |write_shutdown| check. See https://crbug.com/1078515.
748 // TODO(davidben): Should all handshake errors do this? What about record
749 // decryption failures?
750 hs->can_early_write = false;
751 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_ON_EARLY_DATA);
752 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
753 return ssl_hs_error;
754 }
755
756 // TLS 1.2 handshakes cannot accept ECH.
757 if (hs->selected_ech_config) {
758 ssl->s3->ech_status = ssl_ech_rejected;
759 }
760
761 // Copy over the server random.
762 OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_hello.random),
763 SSL3_RANDOM_SIZE);
764
765 // Enforce the TLS 1.3 anti-downgrade feature.
766 if (!ssl->s3->initial_handshake_complete &&
767 ssl_supports_version(hs, TLS1_3_VERSION)) {
768 static_assert(
769 sizeof(kTLS12DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
770 "downgrade signals have different size");
771 static_assert(
772 sizeof(kJDK11DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
773 "downgrade signals have different size");
774 auto suffix =
775 MakeConstSpan(ssl->s3->server_random, sizeof(ssl->s3->server_random))
776 .subspan(SSL3_RANDOM_SIZE - sizeof(kTLS13DowngradeRandom));
777 if (suffix == kTLS12DowngradeRandom || suffix == kTLS13DowngradeRandom ||
778 suffix == kJDK11DowngradeRandom) {
779 OPENSSL_PUT_ERROR(SSL, SSL_R_TLS13_DOWNGRADE);
780 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
781 return ssl_hs_error;
782 }
783 }
784
785 // The cipher must be allowed in the selected version and enabled.
786 const SSL_CIPHER *cipher = SSL_get_cipher_by_value(server_hello.cipher_suite);
787 uint32_t mask_a, mask_k;
788 ssl_get_client_disabled(hs, &mask_a, &mask_k);
789 if (cipher == nullptr ||
790 (cipher->algorithm_mkey & mask_k) ||
791 (cipher->algorithm_auth & mask_a) ||
792 SSL_CIPHER_get_min_version(cipher) > ssl_protocol_version(ssl) ||
793 SSL_CIPHER_get_max_version(cipher) < ssl_protocol_version(ssl) ||
794 !sk_SSL_CIPHER_find(SSL_get_ciphers(ssl), nullptr, cipher)) {
795 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
796 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
797 return ssl_hs_error;
798 }
799
800 hs->new_cipher = cipher;
801
802 if (hs->session_id_len != 0 &&
803 CBS_mem_equal(&server_hello.session_id, hs->session_id,
804 hs->session_id_len)) {
805 // Echoing the ClientHello session ID in TLS 1.2, whether from the session
806 // or a synthetic one, indicates resumption. If there was no session (or if
807 // the session was only offered in ECH ClientHelloInner), this was the
808 // TLS 1.3 compatibility mode session ID. As we know this is not a session
809 // the server knows about, any server resuming it is in error. Reject the
810 // first connection deterministicly, rather than installing an invalid
811 // session into the session cache. https://crbug.com/796910
812 if (ssl->session == nullptr || ssl->s3->ech_status == ssl_ech_rejected) {
813 OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_ECHOED_INVALID_SESSION_ID);
814 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
815 return ssl_hs_error;
816 }
817 if (ssl->session->ssl_version != ssl->version) {
818 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED);
819 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
820 return ssl_hs_error;
821 }
822 if (ssl->session->cipher != hs->new_cipher) {
823 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED);
824 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
825 return ssl_hs_error;
826 }
827 if (!ssl_session_is_context_valid(hs, ssl->session.get())) {
828 // This is actually a client application bug.
829 OPENSSL_PUT_ERROR(SSL,
830 SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
831 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
832 return ssl_hs_error;
833 }
834 // We never offer sessions on renegotiation.
835 assert(!ssl->s3->initial_handshake_complete);
836 ssl->s3->session_reused = true;
837 } else {
838 // The session wasn't resumed. Create a fresh SSL_SESSION to fill out.
839 ssl_set_session(ssl, NULL);
840 if (!ssl_get_new_session(hs)) {
841 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
842 return ssl_hs_error;
843 }
844
845 // Save the session ID from the server. This may be empty if the session
846 // isn't resumable, or if we'll receive a session ticket later.
847 assert(CBS_len(&server_hello.session_id) <= SSL3_SESSION_ID_SIZE);
848 static_assert(SSL3_SESSION_ID_SIZE <= UINT8_MAX,
849 "max session ID is too large");
850 hs->new_session->session_id_length =
851 static_cast<uint8_t>(CBS_len(&server_hello.session_id));
852 OPENSSL_memcpy(hs->new_session->session_id,
853 CBS_data(&server_hello.session_id),
854 CBS_len(&server_hello.session_id));
855
856 hs->new_session->cipher = hs->new_cipher;
857 }
858
859 // Now that the cipher is known, initialize the handshake hash and hash the
860 // ServerHello.
861 if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) ||
862 !ssl_hash_message(hs, msg)) {
863 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
864 return ssl_hs_error;
865 }
866
867 // If doing a full handshake, the server may request a client certificate
868 // which requires hashing the handshake transcript. Otherwise, the handshake
869 // buffer may be released.
870 if (ssl->session != NULL ||
871 !ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
872 hs->transcript.FreeBuffer();
873 }
874
875 // Only the NULL compression algorithm is supported.
876 if (server_hello.compression_method != 0) {
877 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
878 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
879 return ssl_hs_error;
880 }
881
882 if (!ssl_parse_serverhello_tlsext(hs, &server_hello.extensions)) {
883 OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
884 return ssl_hs_error;
885 }
886
887 if (ssl->session != NULL &&
888 hs->extended_master_secret != ssl->session->extended_master_secret) {
889 if (ssl->session->extended_master_secret) {
890 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
891 } else {
892 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION);
893 }
894 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
895 return ssl_hs_error;
896 }
897
898 ssl->method->next_message(ssl);
899
900 if (ssl->session != NULL) {
901 if (ssl->ctx->reverify_on_resume &&
902 ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
903 hs->state = state_reverify_server_certificate;
904 } else {
905 hs->state = state_read_session_ticket;
906 }
907 return ssl_hs_ok;
908 }
909
910 hs->state = state_read_server_certificate;
911 return ssl_hs_ok;
912 }
913
do_tls13(SSL_HANDSHAKE * hs)914 static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) {
915 enum ssl_hs_wait_t wait = tls13_client_handshake(hs);
916 if (wait == ssl_hs_ok) {
917 hs->state = state_finish_client_handshake;
918 return ssl_hs_ok;
919 }
920
921 return wait;
922 }
923
do_read_server_certificate(SSL_HANDSHAKE * hs)924 static enum ssl_hs_wait_t do_read_server_certificate(SSL_HANDSHAKE *hs) {
925 SSL *const ssl = hs->ssl;
926
927 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
928 hs->state = state_read_certificate_status;
929 return ssl_hs_ok;
930 }
931
932 SSLMessage msg;
933 if (!ssl->method->get_message(ssl, &msg)) {
934 return ssl_hs_read_message;
935 }
936
937 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE) ||
938 !ssl_hash_message(hs, msg)) {
939 return ssl_hs_error;
940 }
941
942 CBS body = msg.body;
943 uint8_t alert = SSL_AD_DECODE_ERROR;
944 if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey,
945 NULL, &body, ssl->ctx->pool)) {
946 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
947 return ssl_hs_error;
948 }
949
950 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0 ||
951 CBS_len(&body) != 0 ||
952 !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) {
953 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
954 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
955 return ssl_hs_error;
956 }
957
958 if (!ssl_check_leaf_certificate(
959 hs, hs->peer_pubkey.get(),
960 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0))) {
961 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
962 return ssl_hs_error;
963 }
964
965 ssl->method->next_message(ssl);
966
967 hs->state = state_read_certificate_status;
968 return ssl_hs_ok;
969 }
970
do_read_certificate_status(SSL_HANDSHAKE * hs)971 static enum ssl_hs_wait_t do_read_certificate_status(SSL_HANDSHAKE *hs) {
972 SSL *const ssl = hs->ssl;
973
974 if (!hs->certificate_status_expected) {
975 hs->state = state_verify_server_certificate;
976 return ssl_hs_ok;
977 }
978
979 SSLMessage msg;
980 if (!ssl->method->get_message(ssl, &msg)) {
981 return ssl_hs_read_message;
982 }
983
984 if (msg.type != SSL3_MT_CERTIFICATE_STATUS) {
985 // A server may send status_request in ServerHello and then change its mind
986 // about sending CertificateStatus.
987 hs->state = state_verify_server_certificate;
988 return ssl_hs_ok;
989 }
990
991 if (!ssl_hash_message(hs, msg)) {
992 return ssl_hs_error;
993 }
994
995 CBS certificate_status = msg.body, ocsp_response;
996 uint8_t status_type;
997 if (!CBS_get_u8(&certificate_status, &status_type) ||
998 status_type != TLSEXT_STATUSTYPE_ocsp ||
999 !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) ||
1000 CBS_len(&ocsp_response) == 0 ||
1001 CBS_len(&certificate_status) != 0) {
1002 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1003 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1004 return ssl_hs_error;
1005 }
1006
1007 hs->new_session->ocsp_response.reset(
1008 CRYPTO_BUFFER_new_from_CBS(&ocsp_response, ssl->ctx->pool));
1009 if (hs->new_session->ocsp_response == nullptr) {
1010 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1011 return ssl_hs_error;
1012 }
1013
1014 ssl->method->next_message(ssl);
1015
1016 hs->state = state_verify_server_certificate;
1017 return ssl_hs_ok;
1018 }
1019
do_verify_server_certificate(SSL_HANDSHAKE * hs)1020 static enum ssl_hs_wait_t do_verify_server_certificate(SSL_HANDSHAKE *hs) {
1021 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1022 hs->state = state_read_server_key_exchange;
1023 return ssl_hs_ok;
1024 }
1025
1026 switch (ssl_verify_peer_cert(hs)) {
1027 case ssl_verify_ok:
1028 break;
1029 case ssl_verify_invalid:
1030 return ssl_hs_error;
1031 case ssl_verify_retry:
1032 hs->state = state_verify_server_certificate;
1033 return ssl_hs_certificate_verify;
1034 }
1035
1036 hs->state = state_read_server_key_exchange;
1037 return ssl_hs_ok;
1038 }
1039
do_reverify_server_certificate(SSL_HANDSHAKE * hs)1040 static enum ssl_hs_wait_t do_reverify_server_certificate(SSL_HANDSHAKE *hs) {
1041 assert(hs->ssl->ctx->reverify_on_resume);
1042
1043 switch (ssl_reverify_peer_cert(hs, /*send_alert=*/true)) {
1044 case ssl_verify_ok:
1045 break;
1046 case ssl_verify_invalid:
1047 return ssl_hs_error;
1048 case ssl_verify_retry:
1049 hs->state = state_reverify_server_certificate;
1050 return ssl_hs_certificate_verify;
1051 }
1052
1053 hs->state = state_read_session_ticket;
1054 return ssl_hs_ok;
1055 }
1056
do_read_server_key_exchange(SSL_HANDSHAKE * hs)1057 static enum ssl_hs_wait_t do_read_server_key_exchange(SSL_HANDSHAKE *hs) {
1058 SSL *const ssl = hs->ssl;
1059 SSLMessage msg;
1060 if (!ssl->method->get_message(ssl, &msg)) {
1061 return ssl_hs_read_message;
1062 }
1063
1064 if (msg.type != SSL3_MT_SERVER_KEY_EXCHANGE) {
1065 // Some ciphers (pure PSK) have an optional ServerKeyExchange message.
1066 if (ssl_cipher_requires_server_key_exchange(hs->new_cipher)) {
1067 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1068 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1069 return ssl_hs_error;
1070 }
1071
1072 hs->state = state_read_certificate_request;
1073 return ssl_hs_ok;
1074 }
1075
1076 if (!ssl_hash_message(hs, msg)) {
1077 return ssl_hs_error;
1078 }
1079
1080 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1081 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1082 CBS server_key_exchange = msg.body;
1083 if (alg_a & SSL_aPSK) {
1084 CBS psk_identity_hint;
1085
1086 // Each of the PSK key exchanges begins with a psk_identity_hint.
1087 if (!CBS_get_u16_length_prefixed(&server_key_exchange,
1088 &psk_identity_hint)) {
1089 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1090 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1091 return ssl_hs_error;
1092 }
1093
1094 // Store the PSK identity hint for the ClientKeyExchange. Assume that the
1095 // maximum length of a PSK identity hint can be as long as the maximum
1096 // length of a PSK identity. Also do not allow NULL characters; identities
1097 // are saved as C strings.
1098 //
1099 // TODO(davidben): Should invalid hints be ignored? It's a hint rather than
1100 // a specific identity.
1101 if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN ||
1102 CBS_contains_zero_byte(&psk_identity_hint)) {
1103 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
1104 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1105 return ssl_hs_error;
1106 }
1107
1108 // Save non-empty identity hints as a C string. Empty identity hints we
1109 // treat as missing. Plain PSK makes it possible to send either no hint
1110 // (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell
1111 // empty hint. Having different capabilities is odd, so we interpret empty
1112 // and missing as identical.
1113 char *raw = nullptr;
1114 if (CBS_len(&psk_identity_hint) != 0 &&
1115 !CBS_strdup(&psk_identity_hint, &raw)) {
1116 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1117 return ssl_hs_error;
1118 }
1119 hs->peer_psk_identity_hint.reset(raw);
1120 }
1121
1122 if (alg_k & SSL_kECDHE) {
1123 // Parse the server parameters.
1124 uint8_t group_type;
1125 uint16_t group_id;
1126 CBS point;
1127 if (!CBS_get_u8(&server_key_exchange, &group_type) ||
1128 group_type != NAMED_CURVE_TYPE ||
1129 !CBS_get_u16(&server_key_exchange, &group_id) ||
1130 !CBS_get_u8_length_prefixed(&server_key_exchange, &point)) {
1131 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1132 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1133 return ssl_hs_error;
1134 }
1135
1136 // Ensure the group is consistent with preferences.
1137 if (!tls1_check_group_id(hs, group_id)) {
1138 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
1139 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
1140 return ssl_hs_error;
1141 }
1142
1143 // Save the group and peer public key for later.
1144 hs->new_session->group_id = group_id;
1145 if (!hs->peer_key.CopyFrom(point)) {
1146 return ssl_hs_error;
1147 }
1148 } else if (!(alg_k & SSL_kPSK)) {
1149 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1150 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1151 return ssl_hs_error;
1152 }
1153
1154 // At this point, |server_key_exchange| contains the signature, if any, while
1155 // |msg.body| contains the entire message. From that, derive a CBS containing
1156 // just the parameter.
1157 CBS parameter;
1158 CBS_init(¶meter, CBS_data(&msg.body),
1159 CBS_len(&msg.body) - CBS_len(&server_key_exchange));
1160
1161 // ServerKeyExchange should be signed by the server's public key.
1162 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1163 uint16_t signature_algorithm = 0;
1164 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1165 if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) {
1166 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1167 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1168 return ssl_hs_error;
1169 }
1170 uint8_t alert = SSL_AD_DECODE_ERROR;
1171 if (!tls12_check_peer_sigalg(hs, &alert, signature_algorithm)) {
1172 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1173 return ssl_hs_error;
1174 }
1175 hs->new_session->peer_signature_algorithm = signature_algorithm;
1176 } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm,
1177 hs->peer_pubkey.get())) {
1178 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
1179 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE);
1180 return ssl_hs_error;
1181 }
1182
1183 // The last field in |server_key_exchange| is the signature.
1184 CBS signature;
1185 if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) ||
1186 CBS_len(&server_key_exchange) != 0) {
1187 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1188 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1189 return ssl_hs_error;
1190 }
1191
1192 ScopedCBB transcript;
1193 Array<uint8_t> transcript_data;
1194 if (!CBB_init(transcript.get(),
1195 2 * SSL3_RANDOM_SIZE + CBS_len(¶meter)) ||
1196 !CBB_add_bytes(transcript.get(), ssl->s3->client_random,
1197 SSL3_RANDOM_SIZE) ||
1198 !CBB_add_bytes(transcript.get(), ssl->s3->server_random,
1199 SSL3_RANDOM_SIZE) ||
1200 !CBB_add_bytes(transcript.get(), CBS_data(¶meter),
1201 CBS_len(¶meter)) ||
1202 !CBBFinishArray(transcript.get(), &transcript_data)) {
1203 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1204 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1205 return ssl_hs_error;
1206 }
1207
1208 if (!ssl_public_key_verify(ssl, signature, signature_algorithm,
1209 hs->peer_pubkey.get(), transcript_data)) {
1210 // bad signature
1211 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
1212 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1213 return ssl_hs_error;
1214 }
1215 } else {
1216 // PSK ciphers are the only supported certificate-less ciphers.
1217 assert(alg_a == SSL_aPSK);
1218
1219 if (CBS_len(&server_key_exchange) > 0) {
1220 OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE);
1221 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1222 return ssl_hs_error;
1223 }
1224 }
1225
1226 ssl->method->next_message(ssl);
1227 hs->state = state_read_certificate_request;
1228 return ssl_hs_ok;
1229 }
1230
do_read_certificate_request(SSL_HANDSHAKE * hs)1231 static enum ssl_hs_wait_t do_read_certificate_request(SSL_HANDSHAKE *hs) {
1232 SSL *const ssl = hs->ssl;
1233
1234 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1235 hs->state = state_read_server_hello_done;
1236 return ssl_hs_ok;
1237 }
1238
1239 SSLMessage msg;
1240 if (!ssl->method->get_message(ssl, &msg)) {
1241 return ssl_hs_read_message;
1242 }
1243
1244 if (msg.type == SSL3_MT_SERVER_HELLO_DONE) {
1245 // If we get here we don't need the handshake buffer as we won't be doing
1246 // client auth.
1247 hs->transcript.FreeBuffer();
1248 hs->state = state_read_server_hello_done;
1249 return ssl_hs_ok;
1250 }
1251
1252 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_REQUEST) ||
1253 !ssl_hash_message(hs, msg)) {
1254 return ssl_hs_error;
1255 }
1256
1257 // Get the certificate types.
1258 CBS body = msg.body, certificate_types;
1259 if (!CBS_get_u8_length_prefixed(&body, &certificate_types)) {
1260 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1261 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1262 return ssl_hs_error;
1263 }
1264
1265 if (!hs->certificate_types.CopyFrom(certificate_types)) {
1266 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1267 return ssl_hs_error;
1268 }
1269
1270 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1271 CBS supported_signature_algorithms;
1272 if (!CBS_get_u16_length_prefixed(&body, &supported_signature_algorithms) ||
1273 !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) {
1274 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1275 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1276 return ssl_hs_error;
1277 }
1278 }
1279
1280 uint8_t alert = SSL_AD_DECODE_ERROR;
1281 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names =
1282 ssl_parse_client_CA_list(ssl, &alert, &body);
1283 if (!ca_names) {
1284 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1285 return ssl_hs_error;
1286 }
1287
1288 if (CBS_len(&body) != 0) {
1289 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1290 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1291 return ssl_hs_error;
1292 }
1293
1294 hs->cert_request = true;
1295 hs->ca_names = std::move(ca_names);
1296 ssl->ctx->x509_method->hs_flush_cached_ca_names(hs);
1297
1298 ssl->method->next_message(ssl);
1299 hs->state = state_read_server_hello_done;
1300 return ssl_hs_ok;
1301 }
1302
do_read_server_hello_done(SSL_HANDSHAKE * hs)1303 static enum ssl_hs_wait_t do_read_server_hello_done(SSL_HANDSHAKE *hs) {
1304 SSL *const ssl = hs->ssl;
1305 SSLMessage msg;
1306 if (!ssl->method->get_message(ssl, &msg)) {
1307 return ssl_hs_read_message;
1308 }
1309
1310 if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO_DONE) ||
1311 !ssl_hash_message(hs, msg)) {
1312 return ssl_hs_error;
1313 }
1314
1315 // ServerHelloDone is empty.
1316 if (CBS_len(&msg.body) != 0) {
1317 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1318 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1319 return ssl_hs_error;
1320 }
1321
1322 // ServerHelloDone should be the end of the flight.
1323 if (ssl->method->has_unprocessed_handshake_data(ssl)) {
1324 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1325 OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
1326 return ssl_hs_error;
1327 }
1328
1329 ssl->method->next_message(ssl);
1330 hs->state = state_send_client_certificate;
1331 return ssl_hs_ok;
1332 }
1333
do_send_client_certificate(SSL_HANDSHAKE * hs)1334 static enum ssl_hs_wait_t do_send_client_certificate(SSL_HANDSHAKE *hs) {
1335 SSL *const ssl = hs->ssl;
1336
1337 // The peer didn't request a certificate.
1338 if (!hs->cert_request) {
1339 hs->state = state_send_client_key_exchange;
1340 return ssl_hs_ok;
1341 }
1342
1343 if (ssl->s3->ech_status == ssl_ech_rejected) {
1344 // Do not send client certificates on ECH reject. We have not authenticated
1345 // the server for the name that can learn the certificate.
1346 SSL_certs_clear(ssl);
1347 } else if (hs->config->cert->cert_cb != nullptr) {
1348 // Call cert_cb to update the certificate.
1349 int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg);
1350 if (rv == 0) {
1351 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1352 OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
1353 return ssl_hs_error;
1354 }
1355 if (rv < 0) {
1356 hs->state = state_send_client_certificate;
1357 return ssl_hs_x509_lookup;
1358 }
1359 }
1360
1361 if (!ssl_has_certificate(hs)) {
1362 // Without a client certificate, the handshake buffer may be released.
1363 hs->transcript.FreeBuffer();
1364 }
1365
1366 if (!ssl_on_certificate_selected(hs) ||
1367 !ssl_output_cert_chain(hs)) {
1368 return ssl_hs_error;
1369 }
1370
1371
1372 hs->state = state_send_client_key_exchange;
1373 return ssl_hs_ok;
1374 }
1375
1376 static_assert(sizeof(size_t) >= sizeof(unsigned),
1377 "size_t is smaller than unsigned");
1378
do_send_client_key_exchange(SSL_HANDSHAKE * hs)1379 static enum ssl_hs_wait_t do_send_client_key_exchange(SSL_HANDSHAKE *hs) {
1380 SSL *const ssl = hs->ssl;
1381 ScopedCBB cbb;
1382 CBB body;
1383 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1384 SSL3_MT_CLIENT_KEY_EXCHANGE)) {
1385 return ssl_hs_error;
1386 }
1387
1388 Array<uint8_t> pms;
1389 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1390 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1391 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1392 const CRYPTO_BUFFER *leaf =
1393 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0);
1394 CBS leaf_cbs;
1395 CRYPTO_BUFFER_init_CBS(leaf, &leaf_cbs);
1396
1397 // Check the key usage matches the cipher suite. We do this unconditionally
1398 // for non-RSA certificates. In particular, it's needed to distinguish ECDH
1399 // certificates, which we do not support, from ECDSA certificates.
1400 // Historically, we have not checked RSA key usages, so it is controlled by
1401 // a flag for now. See https://crbug.com/795089.
1402 ssl_key_usage_t intended_use = (alg_k & SSL_kRSA)
1403 ? key_usage_encipherment
1404 : key_usage_digital_signature;
1405 if (!ssl_cert_check_key_usage(&leaf_cbs, intended_use)) {
1406 if (hs->config->enforce_rsa_key_usage ||
1407 EVP_PKEY_id(hs->peer_pubkey.get()) != EVP_PKEY_RSA) {
1408 return ssl_hs_error;
1409 }
1410 ERR_clear_error();
1411 ssl->s3->was_key_usage_invalid = true;
1412 }
1413 }
1414
1415 // If using a PSK key exchange, prepare the pre-shared key.
1416 unsigned psk_len = 0;
1417 uint8_t psk[PSK_MAX_PSK_LEN];
1418 if (alg_a & SSL_aPSK) {
1419 if (hs->config->psk_client_callback == NULL) {
1420 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB);
1421 return ssl_hs_error;
1422 }
1423
1424 char identity[PSK_MAX_IDENTITY_LEN + 1];
1425 OPENSSL_memset(identity, 0, sizeof(identity));
1426 psk_len = hs->config->psk_client_callback(
1427 ssl, hs->peer_psk_identity_hint.get(), identity, sizeof(identity), psk,
1428 sizeof(psk));
1429 if (psk_len == 0) {
1430 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
1431 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1432 return ssl_hs_error;
1433 }
1434 assert(psk_len <= PSK_MAX_PSK_LEN);
1435
1436 hs->new_session->psk_identity.reset(OPENSSL_strdup(identity));
1437 if (hs->new_session->psk_identity == nullptr) {
1438 return ssl_hs_error;
1439 }
1440
1441 // Write out psk_identity.
1442 CBB child;
1443 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1444 !CBB_add_bytes(&child, (const uint8_t *)identity,
1445 OPENSSL_strnlen(identity, sizeof(identity))) ||
1446 !CBB_flush(&body)) {
1447 return ssl_hs_error;
1448 }
1449 }
1450
1451 // Depending on the key exchange method, compute |pms|.
1452 if (alg_k & SSL_kRSA) {
1453 if (!pms.Init(SSL_MAX_MASTER_KEY_LENGTH)) {
1454 return ssl_hs_error;
1455 }
1456
1457 RSA *rsa = EVP_PKEY_get0_RSA(hs->peer_pubkey.get());
1458 if (rsa == NULL) {
1459 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1460 return ssl_hs_error;
1461 }
1462
1463 pms[0] = hs->client_version >> 8;
1464 pms[1] = hs->client_version & 0xff;
1465 if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) {
1466 return ssl_hs_error;
1467 }
1468
1469 CBB enc_pms;
1470 uint8_t *ptr;
1471 size_t enc_pms_len;
1472 if (!CBB_add_u16_length_prefixed(&body, &enc_pms) ||
1473 !CBB_reserve(&enc_pms, &ptr, RSA_size(rsa)) ||
1474 !RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms.data(),
1475 pms.size(), RSA_PKCS1_PADDING) ||
1476 !CBB_did_write(&enc_pms, enc_pms_len) ||
1477 !CBB_flush(&body)) {
1478 return ssl_hs_error;
1479 }
1480 } else if (alg_k & SSL_kECDHE) {
1481 CBB child;
1482 if (!CBB_add_u8_length_prefixed(&body, &child)) {
1483 return ssl_hs_error;
1484 }
1485
1486 // Generate a premaster secret and encapsulate it.
1487 bssl::UniquePtr<SSLKeyShare> kem =
1488 SSLKeyShare::Create(hs->new_session->group_id);
1489 uint8_t alert = SSL_AD_DECODE_ERROR;
1490 if (!kem || !kem->Encap(&child, &pms, &alert, hs->peer_key)) {
1491 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1492 return ssl_hs_error;
1493 }
1494 if (!CBB_flush(&body)) {
1495 return ssl_hs_error;
1496 }
1497
1498 // The peer key can now be discarded.
1499 hs->peer_key.Reset();
1500 } else if (alg_k & SSL_kPSK) {
1501 // For plain PSK, other_secret is a block of 0s with the same length as
1502 // the pre-shared key.
1503 if (!pms.Init(psk_len)) {
1504 return ssl_hs_error;
1505 }
1506 OPENSSL_memset(pms.data(), 0, pms.size());
1507 } else {
1508 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1509 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1510 return ssl_hs_error;
1511 }
1512
1513 // For a PSK cipher suite, other_secret is combined with the pre-shared
1514 // key.
1515 if (alg_a & SSL_aPSK) {
1516 ScopedCBB pms_cbb;
1517 CBB child;
1518 if (!CBB_init(pms_cbb.get(), 2 + psk_len + 2 + pms.size()) ||
1519 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1520 !CBB_add_bytes(&child, pms.data(), pms.size()) ||
1521 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1522 !CBB_add_bytes(&child, psk, psk_len) ||
1523 !CBBFinishArray(pms_cbb.get(), &pms)) {
1524 return ssl_hs_error;
1525 }
1526 }
1527
1528 // The message must be added to the finished hash before calculating the
1529 // master secret.
1530 if (!ssl_add_message_cbb(ssl, cbb.get())) {
1531 return ssl_hs_error;
1532 }
1533
1534 hs->new_session->secret_length =
1535 tls1_generate_master_secret(hs, hs->new_session->secret, pms);
1536 if (hs->new_session->secret_length == 0) {
1537 return ssl_hs_error;
1538 }
1539 hs->new_session->extended_master_secret = hs->extended_master_secret;
1540
1541 hs->state = state_send_client_certificate_verify;
1542 return ssl_hs_ok;
1543 }
1544
do_send_client_certificate_verify(SSL_HANDSHAKE * hs)1545 static enum ssl_hs_wait_t do_send_client_certificate_verify(SSL_HANDSHAKE *hs) {
1546 SSL *const ssl = hs->ssl;
1547
1548 if (!hs->cert_request || !ssl_has_certificate(hs)) {
1549 hs->state = state_send_client_finished;
1550 return ssl_hs_ok;
1551 }
1552
1553 assert(ssl_has_private_key(hs));
1554 ScopedCBB cbb;
1555 CBB body, child;
1556 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1557 SSL3_MT_CERTIFICATE_VERIFY)) {
1558 return ssl_hs_error;
1559 }
1560
1561 uint16_t signature_algorithm;
1562 if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) {
1563 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1564 return ssl_hs_error;
1565 }
1566 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1567 // Write out the digest type in TLS 1.2.
1568 if (!CBB_add_u16(&body, signature_algorithm)) {
1569 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1570 return ssl_hs_error;
1571 }
1572 }
1573
1574 // Set aside space for the signature.
1575 const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey.get());
1576 uint8_t *ptr;
1577 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1578 !CBB_reserve(&child, &ptr, max_sig_len)) {
1579 return ssl_hs_error;
1580 }
1581
1582 size_t sig_len = max_sig_len;
1583 switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len,
1584 signature_algorithm,
1585 hs->transcript.buffer())) {
1586 case ssl_private_key_success:
1587 break;
1588 case ssl_private_key_failure:
1589 return ssl_hs_error;
1590 case ssl_private_key_retry:
1591 hs->state = state_send_client_certificate_verify;
1592 return ssl_hs_private_key_operation;
1593 }
1594
1595 if (!CBB_did_write(&child, sig_len) ||
1596 !ssl_add_message_cbb(ssl, cbb.get())) {
1597 return ssl_hs_error;
1598 }
1599
1600 // The handshake buffer is no longer necessary.
1601 hs->transcript.FreeBuffer();
1602
1603 hs->state = state_send_client_finished;
1604 return ssl_hs_ok;
1605 }
1606
do_send_client_finished(SSL_HANDSHAKE * hs)1607 static enum ssl_hs_wait_t do_send_client_finished(SSL_HANDSHAKE *hs) {
1608 SSL *const ssl = hs->ssl;
1609 hs->can_release_private_key = true;
1610 if (!ssl->method->add_change_cipher_spec(ssl) ||
1611 !tls1_change_cipher_state(hs, evp_aead_seal)) {
1612 return ssl_hs_error;
1613 }
1614
1615 if (hs->next_proto_neg_seen) {
1616 static const uint8_t kZero[32] = {0};
1617 size_t padding_len =
1618 32 - ((ssl->s3->next_proto_negotiated.size() + 2) % 32);
1619
1620 ScopedCBB cbb;
1621 CBB body, child;
1622 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_NEXT_PROTO) ||
1623 !CBB_add_u8_length_prefixed(&body, &child) ||
1624 !CBB_add_bytes(&child, ssl->s3->next_proto_negotiated.data(),
1625 ssl->s3->next_proto_negotiated.size()) ||
1626 !CBB_add_u8_length_prefixed(&body, &child) ||
1627 !CBB_add_bytes(&child, kZero, padding_len) ||
1628 !ssl_add_message_cbb(ssl, cbb.get())) {
1629 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1630 return ssl_hs_error;
1631 }
1632 }
1633
1634 if (hs->channel_id_negotiated) {
1635 ScopedCBB cbb;
1636 CBB body;
1637 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CHANNEL_ID) ||
1638 !tls1_write_channel_id(hs, &body) ||
1639 !ssl_add_message_cbb(ssl, cbb.get())) {
1640 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1641 return ssl_hs_error;
1642 }
1643 }
1644
1645 if (!ssl_send_finished(hs)) {
1646 return ssl_hs_error;
1647 }
1648
1649 hs->state = state_finish_flight;
1650 return ssl_hs_flush;
1651 }
1652
can_false_start(const SSL_HANDSHAKE * hs)1653 static bool can_false_start(const SSL_HANDSHAKE *hs) {
1654 const SSL *const ssl = hs->ssl;
1655
1656 // False Start bypasses the Finished check's downgrade protection. This can
1657 // enable attacks where we send data under weaker settings than supported
1658 // (e.g. the Logjam attack). Thus we require TLS 1.2 with an ECDHE+AEAD
1659 // cipher, our strongest settings before TLS 1.3.
1660 //
1661 // Now that TLS 1.3 exists, we would like to avoid similar attacks between
1662 // TLS 1.2 and TLS 1.3, but there are too many TLS 1.2 deployments to
1663 // sacrifice False Start on them. Instead, we rely on the ServerHello.random
1664 // downgrade signal, which we unconditionally enforce.
1665 if (SSL_is_dtls(ssl) ||
1666 SSL_version(ssl) != TLS1_2_VERSION ||
1667 hs->new_cipher->algorithm_mkey != SSL_kECDHE ||
1668 hs->new_cipher->algorithm_mac != SSL_AEAD) {
1669 return false;
1670 }
1671
1672 // If ECH was rejected, disable False Start. We run the handshake to
1673 // completion, including the Finished downgrade check, to authenticate the
1674 // recovery flow.
1675 if (ssl->s3->ech_status == ssl_ech_rejected) {
1676 return false;
1677 }
1678
1679 // Additionally require ALPN or NPN by default.
1680 //
1681 // TODO(davidben): Can this constraint be relaxed globally now that cipher
1682 // suite requirements have been tightened?
1683 if (!ssl->ctx->false_start_allowed_without_alpn &&
1684 ssl->s3->alpn_selected.empty() &&
1685 ssl->s3->next_proto_negotiated.empty()) {
1686 return false;
1687 }
1688
1689 return true;
1690 }
1691
do_finish_flight(SSL_HANDSHAKE * hs)1692 static enum ssl_hs_wait_t do_finish_flight(SSL_HANDSHAKE *hs) {
1693 SSL *const ssl = hs->ssl;
1694 if (ssl->session != NULL) {
1695 hs->state = state_finish_client_handshake;
1696 return ssl_hs_ok;
1697 }
1698
1699 // This is a full handshake. If it involves ChannelID, then record the
1700 // handshake hashes at this point in the session so that any resumption of
1701 // this session with ChannelID can sign those hashes.
1702 if (!tls1_record_handshake_hashes_for_channel_id(hs)) {
1703 return ssl_hs_error;
1704 }
1705
1706 hs->state = state_read_session_ticket;
1707
1708 if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) &&
1709 can_false_start(hs) &&
1710 // No False Start on renegotiation (would complicate the state machine).
1711 !ssl->s3->initial_handshake_complete) {
1712 hs->in_false_start = true;
1713 hs->can_early_write = true;
1714 return ssl_hs_early_return;
1715 }
1716
1717 return ssl_hs_ok;
1718 }
1719
do_read_session_ticket(SSL_HANDSHAKE * hs)1720 static enum ssl_hs_wait_t do_read_session_ticket(SSL_HANDSHAKE *hs) {
1721 SSL *const ssl = hs->ssl;
1722
1723 if (!hs->ticket_expected) {
1724 hs->state = state_process_change_cipher_spec;
1725 return ssl_hs_read_change_cipher_spec;
1726 }
1727
1728 SSLMessage msg;
1729 if (!ssl->method->get_message(ssl, &msg)) {
1730 return ssl_hs_read_message;
1731 }
1732
1733 if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEW_SESSION_TICKET) ||
1734 !ssl_hash_message(hs, msg)) {
1735 return ssl_hs_error;
1736 }
1737
1738 CBS new_session_ticket = msg.body, ticket;
1739 uint32_t ticket_lifetime_hint;
1740 if (!CBS_get_u32(&new_session_ticket, &ticket_lifetime_hint) ||
1741 !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) ||
1742 CBS_len(&new_session_ticket) != 0) {
1743 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1744 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1745 return ssl_hs_error;
1746 }
1747
1748 if (CBS_len(&ticket) == 0) {
1749 // RFC 5077 allows a server to change its mind and send no ticket after
1750 // negotiating the extension. The value of |ticket_expected| is checked in
1751 // |ssl_update_cache| so is cleared here to avoid an unnecessary update.
1752 hs->ticket_expected = false;
1753 ssl->method->next_message(ssl);
1754 hs->state = state_process_change_cipher_spec;
1755 return ssl_hs_read_change_cipher_spec;
1756 }
1757
1758 if (ssl->session != nullptr) {
1759 // The server is sending a new ticket for an existing session. Sessions are
1760 // immutable once established, so duplicate all but the ticket of the
1761 // existing session.
1762 assert(!hs->new_session);
1763 hs->new_session =
1764 SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH);
1765 if (!hs->new_session) {
1766 return ssl_hs_error;
1767 }
1768 }
1769
1770 // |ticket_lifetime_hint| is measured from when the ticket was issued.
1771 ssl_session_rebase_time(ssl, hs->new_session.get());
1772
1773 if (!hs->new_session->ticket.CopyFrom(ticket)) {
1774 return ssl_hs_error;
1775 }
1776 hs->new_session->ticket_lifetime_hint = ticket_lifetime_hint;
1777
1778 // Historically, OpenSSL filled in fake session IDs for ticket-based sessions.
1779 // TODO(davidben): Are external callers relying on this? Try removing this.
1780 SHA256(CBS_data(&ticket), CBS_len(&ticket), hs->new_session->session_id);
1781 hs->new_session->session_id_length = SHA256_DIGEST_LENGTH;
1782
1783 ssl->method->next_message(ssl);
1784 hs->state = state_process_change_cipher_spec;
1785 return ssl_hs_read_change_cipher_spec;
1786 }
1787
do_process_change_cipher_spec(SSL_HANDSHAKE * hs)1788 static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) {
1789 if (!tls1_change_cipher_state(hs, evp_aead_open)) {
1790 return ssl_hs_error;
1791 }
1792
1793 hs->state = state_read_server_finished;
1794 return ssl_hs_ok;
1795 }
1796
do_read_server_finished(SSL_HANDSHAKE * hs)1797 static enum ssl_hs_wait_t do_read_server_finished(SSL_HANDSHAKE *hs) {
1798 SSL *const ssl = hs->ssl;
1799 enum ssl_hs_wait_t wait = ssl_get_finished(hs);
1800 if (wait != ssl_hs_ok) {
1801 return wait;
1802 }
1803
1804 if (ssl->session != NULL) {
1805 hs->state = state_send_client_finished;
1806 return ssl_hs_ok;
1807 }
1808
1809 hs->state = state_finish_client_handshake;
1810 return ssl_hs_ok;
1811 }
1812
do_finish_client_handshake(SSL_HANDSHAKE * hs)1813 static enum ssl_hs_wait_t do_finish_client_handshake(SSL_HANDSHAKE *hs) {
1814 SSL *const ssl = hs->ssl;
1815 if (ssl->s3->ech_status == ssl_ech_rejected) {
1816 // Release the retry configs.
1817 hs->ech_authenticated_reject = true;
1818 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ECH_REQUIRED);
1819 OPENSSL_PUT_ERROR(SSL, SSL_R_ECH_REJECTED);
1820 return ssl_hs_error;
1821 }
1822
1823 ssl->method->on_handshake_complete(ssl);
1824
1825 // Note TLS 1.2 resumptions with ticket renewal have both |ssl->session| (the
1826 // resumed session) and |hs->new_session| (the session with the new ticket).
1827 bool has_new_session = hs->new_session != nullptr;
1828 if (has_new_session) {
1829 // When False Start is enabled, the handshake reports completion early. The
1830 // caller may then have passed the (then unresuable) |hs->new_session| to
1831 // another thread via |SSL_get0_session| for resumption. To avoid potential
1832 // race conditions in such callers, we duplicate the session before
1833 // clearing |not_resumable|.
1834 ssl->s3->established_session =
1835 SSL_SESSION_dup(hs->new_session.get(), SSL_SESSION_DUP_ALL);
1836 if (!ssl->s3->established_session) {
1837 return ssl_hs_error;
1838 }
1839 // Renegotiations do not participate in session resumption.
1840 if (!ssl->s3->initial_handshake_complete) {
1841 ssl->s3->established_session->not_resumable = false;
1842 }
1843
1844 hs->new_session.reset();
1845 } else {
1846 assert(ssl->session != nullptr);
1847 ssl->s3->established_session = UpRef(ssl->session);
1848 }
1849
1850 hs->handshake_finalized = true;
1851 ssl->s3->initial_handshake_complete = true;
1852 if (has_new_session) {
1853 ssl_update_cache(ssl);
1854 }
1855
1856 hs->state = state_done;
1857 return ssl_hs_ok;
1858 }
1859
ssl_client_handshake(SSL_HANDSHAKE * hs)1860 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs) {
1861 while (hs->state != state_done) {
1862 enum ssl_hs_wait_t ret = ssl_hs_error;
1863 enum ssl_client_hs_state_t state =
1864 static_cast<enum ssl_client_hs_state_t>(hs->state);
1865 switch (state) {
1866 case state_start_connect:
1867 ret = do_start_connect(hs);
1868 break;
1869 case state_enter_early_data:
1870 ret = do_enter_early_data(hs);
1871 break;
1872 case state_early_reverify_server_certificate:
1873 ret = do_early_reverify_server_certificate(hs);
1874 break;
1875 case state_read_hello_verify_request:
1876 ret = do_read_hello_verify_request(hs);
1877 break;
1878 case state_read_server_hello:
1879 ret = do_read_server_hello(hs);
1880 break;
1881 case state_tls13:
1882 ret = do_tls13(hs);
1883 break;
1884 case state_read_server_certificate:
1885 ret = do_read_server_certificate(hs);
1886 break;
1887 case state_read_certificate_status:
1888 ret = do_read_certificate_status(hs);
1889 break;
1890 case state_verify_server_certificate:
1891 ret = do_verify_server_certificate(hs);
1892 break;
1893 case state_reverify_server_certificate:
1894 ret = do_reverify_server_certificate(hs);
1895 break;
1896 case state_read_server_key_exchange:
1897 ret = do_read_server_key_exchange(hs);
1898 break;
1899 case state_read_certificate_request:
1900 ret = do_read_certificate_request(hs);
1901 break;
1902 case state_read_server_hello_done:
1903 ret = do_read_server_hello_done(hs);
1904 break;
1905 case state_send_client_certificate:
1906 ret = do_send_client_certificate(hs);
1907 break;
1908 case state_send_client_key_exchange:
1909 ret = do_send_client_key_exchange(hs);
1910 break;
1911 case state_send_client_certificate_verify:
1912 ret = do_send_client_certificate_verify(hs);
1913 break;
1914 case state_send_client_finished:
1915 ret = do_send_client_finished(hs);
1916 break;
1917 case state_finish_flight:
1918 ret = do_finish_flight(hs);
1919 break;
1920 case state_read_session_ticket:
1921 ret = do_read_session_ticket(hs);
1922 break;
1923 case state_process_change_cipher_spec:
1924 ret = do_process_change_cipher_spec(hs);
1925 break;
1926 case state_read_server_finished:
1927 ret = do_read_server_finished(hs);
1928 break;
1929 case state_finish_client_handshake:
1930 ret = do_finish_client_handshake(hs);
1931 break;
1932 case state_done:
1933 ret = ssl_hs_ok;
1934 break;
1935 }
1936
1937 if (hs->state != state) {
1938 ssl_do_info_callback(hs->ssl, SSL_CB_CONNECT_LOOP, 1);
1939 }
1940
1941 if (ret != ssl_hs_ok) {
1942 return ret;
1943 }
1944 }
1945
1946 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1);
1947 return ssl_hs_ok;
1948 }
1949
ssl_client_handshake_state(SSL_HANDSHAKE * hs)1950 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs) {
1951 enum ssl_client_hs_state_t state =
1952 static_cast<enum ssl_client_hs_state_t>(hs->state);
1953 switch (state) {
1954 case state_start_connect:
1955 return "TLS client start_connect";
1956 case state_enter_early_data:
1957 return "TLS client enter_early_data";
1958 case state_early_reverify_server_certificate:
1959 return "TLS client early_reverify_server_certificate";
1960 case state_read_hello_verify_request:
1961 return "TLS client read_hello_verify_request";
1962 case state_read_server_hello:
1963 return "TLS client read_server_hello";
1964 case state_tls13:
1965 return tls13_client_handshake_state(hs);
1966 case state_read_server_certificate:
1967 return "TLS client read_server_certificate";
1968 case state_read_certificate_status:
1969 return "TLS client read_certificate_status";
1970 case state_verify_server_certificate:
1971 return "TLS client verify_server_certificate";
1972 case state_reverify_server_certificate:
1973 return "TLS client reverify_server_certificate";
1974 case state_read_server_key_exchange:
1975 return "TLS client read_server_key_exchange";
1976 case state_read_certificate_request:
1977 return "TLS client read_certificate_request";
1978 case state_read_server_hello_done:
1979 return "TLS client read_server_hello_done";
1980 case state_send_client_certificate:
1981 return "TLS client send_client_certificate";
1982 case state_send_client_key_exchange:
1983 return "TLS client send_client_key_exchange";
1984 case state_send_client_certificate_verify:
1985 return "TLS client send_client_certificate_verify";
1986 case state_send_client_finished:
1987 return "TLS client send_client_finished";
1988 case state_finish_flight:
1989 return "TLS client finish_flight";
1990 case state_read_session_ticket:
1991 return "TLS client read_session_ticket";
1992 case state_process_change_cipher_spec:
1993 return "TLS client process_change_cipher_spec";
1994 case state_read_server_finished:
1995 return "TLS client read_server_finished";
1996 case state_finish_client_handshake:
1997 return "TLS client finish_client_handshake";
1998 case state_done:
1999 return "TLS client done";
2000 }
2001
2002 return "TLS client unknown";
2003 }
2004
2005 BSSL_NAMESPACE_END
2006