• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112  * ECC cipher suite support in OpenSSL originally developed by
113  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */
114 
115 #include <openssl/ssl.h>
116 
117 #include <assert.h>
118 #include <limits.h>
119 #include <string.h>
120 
121 #include <utility>
122 
123 #include <openssl/bn.h>
124 #include <openssl/bytestring.h>
125 #include <openssl/ec_key.h>
126 #include <openssl/err.h>
127 #include <openssl/mem.h>
128 #include <openssl/sha.h>
129 #include <openssl/x509.h>
130 
131 #include "../crypto/internal.h"
132 #include "internal.h"
133 
134 
135 BSSL_NAMESPACE_BEGIN
136 
CERT(const SSL_X509_METHOD * x509_method_arg)137 CERT::CERT(const SSL_X509_METHOD *x509_method_arg)
138     : x509_method(x509_method_arg) {}
139 
~CERT()140 CERT::~CERT() {
141   ssl_cert_clear_certs(this);
142   x509_method->cert_free(this);
143 }
144 
buffer_up_ref(const CRYPTO_BUFFER * buffer)145 static CRYPTO_BUFFER *buffer_up_ref(const CRYPTO_BUFFER *buffer) {
146   CRYPTO_BUFFER_up_ref(const_cast<CRYPTO_BUFFER *>(buffer));
147   return const_cast<CRYPTO_BUFFER *>(buffer);
148 }
149 
ssl_cert_dup(CERT * cert)150 UniquePtr<CERT> ssl_cert_dup(CERT *cert) {
151   UniquePtr<CERT> ret = MakeUnique<CERT>(cert->x509_method);
152   if (!ret) {
153     return nullptr;
154   }
155 
156   if (cert->chain) {
157     ret->chain.reset(sk_CRYPTO_BUFFER_deep_copy(
158         cert->chain.get(), buffer_up_ref, CRYPTO_BUFFER_free));
159     if (!ret->chain) {
160       return nullptr;
161     }
162   }
163 
164   ret->privatekey = UpRef(cert->privatekey);
165   ret->key_method = cert->key_method;
166 
167   if (!ret->sigalgs.CopyFrom(cert->sigalgs)) {
168     return nullptr;
169   }
170 
171   ret->cert_cb = cert->cert_cb;
172   ret->cert_cb_arg = cert->cert_cb_arg;
173 
174   ret->x509_method->cert_dup(ret.get(), cert);
175 
176   ret->signed_cert_timestamp_list = UpRef(cert->signed_cert_timestamp_list);
177   ret->ocsp_response = UpRef(cert->ocsp_response);
178 
179   ret->sid_ctx_length = cert->sid_ctx_length;
180   OPENSSL_memcpy(ret->sid_ctx, cert->sid_ctx, sizeof(ret->sid_ctx));
181 
182   if (cert->dc) {
183     ret->dc = cert->dc->Dup();
184     if (!ret->dc) {
185        return nullptr;
186     }
187   }
188 
189   ret->dc_privatekey = UpRef(cert->dc_privatekey);
190   ret->dc_key_method = cert->dc_key_method;
191 
192   return ret;
193 }
194 
195 // Free up and clear all certificates and chains
ssl_cert_clear_certs(CERT * cert)196 void ssl_cert_clear_certs(CERT *cert) {
197   if (cert == NULL) {
198     return;
199   }
200 
201   cert->x509_method->cert_clear(cert);
202 
203   cert->chain.reset();
204   cert->privatekey.reset();
205   cert->key_method = nullptr;
206 
207   cert->dc.reset();
208   cert->dc_privatekey.reset();
209   cert->dc_key_method = nullptr;
210 }
211 
ssl_cert_set_cert_cb(CERT * cert,int (* cb)(SSL * ssl,void * arg),void * arg)212 static void ssl_cert_set_cert_cb(CERT *cert, int (*cb)(SSL *ssl, void *arg),
213                                  void *arg) {
214   cert->cert_cb = cb;
215   cert->cert_cb_arg = arg;
216 }
217 
218 enum leaf_cert_and_privkey_result_t {
219   leaf_cert_and_privkey_error,
220   leaf_cert_and_privkey_ok,
221   leaf_cert_and_privkey_mismatch,
222 };
223 
224 // check_leaf_cert_and_privkey checks whether the certificate in |leaf_buffer|
225 // and the private key in |privkey| are suitable and coherent. It returns
226 // |leaf_cert_and_privkey_error| and pushes to the error queue if a problem is
227 // found. If the certificate and private key are valid, but incoherent, it
228 // returns |leaf_cert_and_privkey_mismatch|. Otherwise it returns
229 // |leaf_cert_and_privkey_ok|.
check_leaf_cert_and_privkey(CRYPTO_BUFFER * leaf_buffer,EVP_PKEY * privkey)230 static enum leaf_cert_and_privkey_result_t check_leaf_cert_and_privkey(
231     CRYPTO_BUFFER *leaf_buffer, EVP_PKEY *privkey) {
232   CBS cert_cbs;
233   CRYPTO_BUFFER_init_CBS(leaf_buffer, &cert_cbs);
234   UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs);
235   if (!pubkey) {
236     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
237     return leaf_cert_and_privkey_error;
238   }
239 
240   if (!ssl_is_key_type_supported(EVP_PKEY_id(pubkey.get()))) {
241     OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
242     return leaf_cert_and_privkey_error;
243   }
244 
245   // An ECC certificate may be usable for ECDH or ECDSA. We only support ECDSA
246   // certificates, so sanity-check the key usage extension.
247   if (EVP_PKEY_id(pubkey.get()) == EVP_PKEY_EC &&
248       !ssl_cert_check_key_usage(&cert_cbs, key_usage_digital_signature)) {
249     OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
250     return leaf_cert_and_privkey_error;
251   }
252 
253   if (privkey != NULL &&
254       // Sanity-check that the private key and the certificate match.
255       !ssl_compare_public_and_private_key(pubkey.get(), privkey)) {
256     ERR_clear_error();
257     return leaf_cert_and_privkey_mismatch;
258   }
259 
260   return leaf_cert_and_privkey_ok;
261 }
262 
cert_set_chain_and_key(CERT * cert,CRYPTO_BUFFER * const * certs,size_t num_certs,EVP_PKEY * privkey,const SSL_PRIVATE_KEY_METHOD * privkey_method)263 static int cert_set_chain_and_key(
264     CERT *cert, CRYPTO_BUFFER *const *certs, size_t num_certs,
265     EVP_PKEY *privkey, const SSL_PRIVATE_KEY_METHOD *privkey_method) {
266   if (num_certs == 0 ||
267       (privkey == NULL && privkey_method == NULL)) {
268     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
269     return 0;
270   }
271 
272   if (privkey != NULL && privkey_method != NULL) {
273     OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD);
274     return 0;
275   }
276 
277   switch (check_leaf_cert_and_privkey(certs[0], privkey)) {
278     case leaf_cert_and_privkey_error:
279       return 0;
280     case leaf_cert_and_privkey_mismatch:
281       OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH);
282       return 0;
283     case leaf_cert_and_privkey_ok:
284       break;
285   }
286 
287   UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs_sk(sk_CRYPTO_BUFFER_new_null());
288   if (!certs_sk) {
289     return 0;
290   }
291 
292   for (size_t i = 0; i < num_certs; i++) {
293     if (!PushToStack(certs_sk.get(), UpRef(certs[i]))) {
294       return 0;
295     }
296   }
297 
298   cert->privatekey = UpRef(privkey);
299   cert->key_method = privkey_method;
300 
301   cert->chain = std::move(certs_sk);
302   return 1;
303 }
304 
ssl_set_cert(CERT * cert,UniquePtr<CRYPTO_BUFFER> buffer)305 bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer) {
306   switch (check_leaf_cert_and_privkey(buffer.get(), cert->privatekey.get())) {
307     case leaf_cert_and_privkey_error:
308       return false;
309     case leaf_cert_and_privkey_mismatch:
310       // don't fail for a cert/key mismatch, just free current private key
311       // (when switching to a different cert & key, first this function should
312       // be used, then |ssl_set_pkey|.
313       cert->privatekey.reset();
314       break;
315     case leaf_cert_and_privkey_ok:
316       break;
317   }
318 
319   cert->x509_method->cert_flush_cached_leaf(cert);
320 
321   if (cert->chain != nullptr) {
322     CRYPTO_BUFFER_free(sk_CRYPTO_BUFFER_value(cert->chain.get(), 0));
323     sk_CRYPTO_BUFFER_set(cert->chain.get(), 0, buffer.release());
324     return true;
325   }
326 
327   cert->chain.reset(sk_CRYPTO_BUFFER_new_null());
328   if (cert->chain == nullptr) {
329     return false;
330   }
331 
332   if (!PushToStack(cert->chain.get(), std::move(buffer))) {
333     cert->chain.reset();
334     return false;
335   }
336 
337   return true;
338 }
339 
ssl_has_certificate(const SSL_HANDSHAKE * hs)340 bool ssl_has_certificate(const SSL_HANDSHAKE *hs) {
341   return hs->config->cert->chain != nullptr &&
342          sk_CRYPTO_BUFFER_value(hs->config->cert->chain.get(), 0) != nullptr &&
343          ssl_has_private_key(hs);
344 }
345 
ssl_parse_cert_chain(uint8_t * out_alert,UniquePtr<STACK_OF (CRYPTO_BUFFER)> * out_chain,UniquePtr<EVP_PKEY> * out_pubkey,uint8_t * out_leaf_sha256,CBS * cbs,CRYPTO_BUFFER_POOL * pool)346 bool ssl_parse_cert_chain(uint8_t *out_alert,
347                           UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
348                           UniquePtr<EVP_PKEY> *out_pubkey,
349                           uint8_t *out_leaf_sha256, CBS *cbs,
350                           CRYPTO_BUFFER_POOL *pool) {
351   out_chain->reset();
352   out_pubkey->reset();
353 
354   CBS certificate_list;
355   if (!CBS_get_u24_length_prefixed(cbs, &certificate_list)) {
356     *out_alert = SSL_AD_DECODE_ERROR;
357     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
358     return false;
359   }
360 
361   if (CBS_len(&certificate_list) == 0) {
362     return true;
363   }
364 
365   UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain(sk_CRYPTO_BUFFER_new_null());
366   if (!chain) {
367     *out_alert = SSL_AD_INTERNAL_ERROR;
368     return false;
369   }
370 
371   UniquePtr<EVP_PKEY> pubkey;
372   while (CBS_len(&certificate_list) > 0) {
373     CBS certificate;
374     if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate) ||
375         CBS_len(&certificate) == 0) {
376       *out_alert = SSL_AD_DECODE_ERROR;
377       OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH);
378       return false;
379     }
380 
381     if (sk_CRYPTO_BUFFER_num(chain.get()) == 0) {
382       pubkey = ssl_cert_parse_pubkey(&certificate);
383       if (!pubkey) {
384         *out_alert = SSL_AD_DECODE_ERROR;
385         return false;
386       }
387 
388       // Retain the hash of the leaf certificate if requested.
389       if (out_leaf_sha256 != NULL) {
390         SHA256(CBS_data(&certificate), CBS_len(&certificate), out_leaf_sha256);
391       }
392     }
393 
394     UniquePtr<CRYPTO_BUFFER> buf(
395         CRYPTO_BUFFER_new_from_CBS(&certificate, pool));
396     if (!buf ||
397         !PushToStack(chain.get(), std::move(buf))) {
398       *out_alert = SSL_AD_INTERNAL_ERROR;
399       return false;
400     }
401   }
402 
403   *out_chain = std::move(chain);
404   *out_pubkey = std::move(pubkey);
405   return true;
406 }
407 
ssl_add_cert_chain(SSL_HANDSHAKE * hs,CBB * cbb)408 bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb) {
409   if (!ssl_has_certificate(hs)) {
410     return CBB_add_u24(cbb, 0);
411   }
412 
413   CBB certs;
414   if (!CBB_add_u24_length_prefixed(cbb, &certs)) {
415     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
416     return false;
417   }
418 
419   STACK_OF(CRYPTO_BUFFER) *chain = hs->config->cert->chain.get();
420   for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(chain); i++) {
421     CRYPTO_BUFFER *buffer = sk_CRYPTO_BUFFER_value(chain, i);
422     CBB child;
423     if (!CBB_add_u24_length_prefixed(&certs, &child) ||
424         !CBB_add_bytes(&child, CRYPTO_BUFFER_data(buffer),
425                        CRYPTO_BUFFER_len(buffer)) ||
426         !CBB_flush(&certs)) {
427       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
428       return false;
429     }
430   }
431 
432   return CBB_flush(cbb);
433 }
434 
435 // ssl_cert_skip_to_spki parses a DER-encoded, X.509 certificate from |in| and
436 // positions |*out_tbs_cert| to cover the TBSCertificate, starting at the
437 // subjectPublicKeyInfo.
ssl_cert_skip_to_spki(const CBS * in,CBS * out_tbs_cert)438 static bool ssl_cert_skip_to_spki(const CBS *in, CBS *out_tbs_cert) {
439   /* From RFC 5280, section 4.1
440    *    Certificate  ::=  SEQUENCE  {
441    *      tbsCertificate       TBSCertificate,
442    *      signatureAlgorithm   AlgorithmIdentifier,
443    *      signatureValue       BIT STRING  }
444 
445    * TBSCertificate  ::=  SEQUENCE  {
446    *      version         [0]  EXPLICIT Version DEFAULT v1,
447    *      serialNumber         CertificateSerialNumber,
448    *      signature            AlgorithmIdentifier,
449    *      issuer               Name,
450    *      validity             Validity,
451    *      subject              Name,
452    *      subjectPublicKeyInfo SubjectPublicKeyInfo,
453    *      ... } */
454   CBS buf = *in;
455 
456   CBS toplevel;
457   if (!CBS_get_asn1(&buf, &toplevel, CBS_ASN1_SEQUENCE) ||
458       CBS_len(&buf) != 0 ||
459       !CBS_get_asn1(&toplevel, out_tbs_cert, CBS_ASN1_SEQUENCE) ||
460       // version
461       !CBS_get_optional_asn1(
462           out_tbs_cert, NULL, NULL,
463           CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
464       // serialNumber
465       !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_INTEGER) ||
466       // signature algorithm
467       !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
468       // issuer
469       !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
470       // validity
471       !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
472       // subject
473       !CBS_get_asn1(out_tbs_cert, NULL, CBS_ASN1_SEQUENCE)) {
474     return false;
475   }
476 
477   return true;
478 }
479 
ssl_cert_parse_pubkey(const CBS * in)480 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in) {
481   CBS buf = *in, tbs_cert;
482   if (!ssl_cert_skip_to_spki(&buf, &tbs_cert)) {
483     OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
484     return nullptr;
485   }
486 
487   return UniquePtr<EVP_PKEY>(EVP_parse_public_key(&tbs_cert));
488 }
489 
ssl_compare_public_and_private_key(const EVP_PKEY * pubkey,const EVP_PKEY * privkey)490 bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
491                                         const EVP_PKEY *privkey) {
492   if (EVP_PKEY_is_opaque(privkey)) {
493     // We cannot check an opaque private key and have to trust that it
494     // matches.
495     return true;
496   }
497 
498   switch (EVP_PKEY_cmp(pubkey, privkey)) {
499     case 1:
500       return true;
501     case 0:
502       OPENSSL_PUT_ERROR(X509, X509_R_KEY_VALUES_MISMATCH);
503       return false;
504     case -1:
505       OPENSSL_PUT_ERROR(X509, X509_R_KEY_TYPE_MISMATCH);
506       return false;
507     case -2:
508       OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE);
509       return false;
510   }
511 
512   assert(0);
513   return false;
514 }
515 
ssl_cert_check_private_key(const CERT * cert,const EVP_PKEY * privkey)516 bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey) {
517   if (privkey == nullptr) {
518     OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
519     return false;
520   }
521 
522   if (cert->chain == nullptr ||
523       sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) == nullptr) {
524     OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
525     return false;
526   }
527 
528   CBS cert_cbs;
529   CRYPTO_BUFFER_init_CBS(sk_CRYPTO_BUFFER_value(cert->chain.get(), 0),
530                          &cert_cbs);
531   UniquePtr<EVP_PKEY> pubkey = ssl_cert_parse_pubkey(&cert_cbs);
532   if (!pubkey) {
533     OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_KEY_TYPE);
534     return false;
535   }
536 
537   return ssl_compare_public_and_private_key(pubkey.get(), privkey);
538 }
539 
ssl_cert_check_key_usage(const CBS * in,enum ssl_key_usage_t bit)540 bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit) {
541   CBS buf = *in;
542 
543   CBS tbs_cert, outer_extensions;
544   int has_extensions;
545   if (!ssl_cert_skip_to_spki(&buf, &tbs_cert) ||
546       // subjectPublicKeyInfo
547       !CBS_get_asn1(&tbs_cert, NULL, CBS_ASN1_SEQUENCE) ||
548       // issuerUniqueID
549       !CBS_get_optional_asn1(&tbs_cert, NULL, NULL,
550                              CBS_ASN1_CONTEXT_SPECIFIC | 1) ||
551       // subjectUniqueID
552       !CBS_get_optional_asn1(&tbs_cert, NULL, NULL,
553                              CBS_ASN1_CONTEXT_SPECIFIC | 2) ||
554       !CBS_get_optional_asn1(
555           &tbs_cert, &outer_extensions, &has_extensions,
556           CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 3)) {
557     OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
558     return false;
559   }
560 
561   if (!has_extensions) {
562     return true;
563   }
564 
565   CBS extensions;
566   if (!CBS_get_asn1(&outer_extensions, &extensions, CBS_ASN1_SEQUENCE)) {
567     OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
568     return false;
569   }
570 
571   while (CBS_len(&extensions) > 0) {
572     CBS extension, oid, contents;
573     if (!CBS_get_asn1(&extensions, &extension, CBS_ASN1_SEQUENCE) ||
574         !CBS_get_asn1(&extension, &oid, CBS_ASN1_OBJECT) ||
575         (CBS_peek_asn1_tag(&extension, CBS_ASN1_BOOLEAN) &&
576          !CBS_get_asn1(&extension, NULL, CBS_ASN1_BOOLEAN)) ||
577         !CBS_get_asn1(&extension, &contents, CBS_ASN1_OCTETSTRING) ||
578         CBS_len(&extension) != 0) {
579       OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
580       return false;
581     }
582 
583     static const uint8_t kKeyUsageOID[3] = {0x55, 0x1d, 0x0f};
584     if (CBS_len(&oid) != sizeof(kKeyUsageOID) ||
585         OPENSSL_memcmp(CBS_data(&oid), kKeyUsageOID, sizeof(kKeyUsageOID)) !=
586             0) {
587       continue;
588     }
589 
590     CBS bit_string;
591     if (!CBS_get_asn1(&contents, &bit_string, CBS_ASN1_BITSTRING) ||
592         CBS_len(&contents) != 0) {
593       OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
594       return false;
595     }
596 
597     // This is the KeyUsage extension. See
598     // https://tools.ietf.org/html/rfc5280#section-4.2.1.3
599     if (!CBS_is_valid_asn1_bitstring(&bit_string)) {
600       OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_PARSE_LEAF_CERT);
601       return false;
602     }
603 
604     if (!CBS_asn1_bitstring_has_bit(&bit_string, bit)) {
605       OPENSSL_PUT_ERROR(SSL, SSL_R_KEY_USAGE_BIT_INCORRECT);
606       return false;
607     }
608 
609     return true;
610   }
611 
612   // No KeyUsage extension found.
613   return true;
614 }
615 
ssl_parse_client_CA_list(SSL * ssl,uint8_t * out_alert,CBS * cbs)616 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
617                                                             uint8_t *out_alert,
618                                                             CBS *cbs) {
619   CRYPTO_BUFFER_POOL *const pool = ssl->ctx->pool;
620 
621   UniquePtr<STACK_OF(CRYPTO_BUFFER)> ret(sk_CRYPTO_BUFFER_new_null());
622   if (!ret) {
623     *out_alert = SSL_AD_INTERNAL_ERROR;
624     return nullptr;
625   }
626 
627   CBS child;
628   if (!CBS_get_u16_length_prefixed(cbs, &child)) {
629     *out_alert = SSL_AD_DECODE_ERROR;
630     OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH);
631     return nullptr;
632   }
633 
634   while (CBS_len(&child) > 0) {
635     CBS distinguished_name;
636     if (!CBS_get_u16_length_prefixed(&child, &distinguished_name)) {
637       *out_alert = SSL_AD_DECODE_ERROR;
638       OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_TOO_LONG);
639       return nullptr;
640     }
641 
642     UniquePtr<CRYPTO_BUFFER> buffer(
643         CRYPTO_BUFFER_new_from_CBS(&distinguished_name, pool));
644     if (!buffer ||
645         !PushToStack(ret.get(), std::move(buffer))) {
646       *out_alert = SSL_AD_INTERNAL_ERROR;
647       return nullptr;
648     }
649   }
650 
651   if (!ssl->ctx->x509_method->check_client_CA_list(ret.get())) {
652     *out_alert = SSL_AD_DECODE_ERROR;
653     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
654     return nullptr;
655   }
656 
657   return ret;
658 }
659 
ssl_has_client_CAs(const SSL_CONFIG * cfg)660 bool ssl_has_client_CAs(const SSL_CONFIG *cfg) {
661   const STACK_OF(CRYPTO_BUFFER) *names = cfg->client_CA.get();
662   if (names == nullptr) {
663     names = cfg->ssl->ctx->client_CA.get();
664   }
665   if (names == nullptr) {
666     return false;
667   }
668   return sk_CRYPTO_BUFFER_num(names) > 0;
669 }
670 
ssl_add_client_CA_list(SSL_HANDSHAKE * hs,CBB * cbb)671 bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb) {
672   CBB child, name_cbb;
673   if (!CBB_add_u16_length_prefixed(cbb, &child)) {
674     return false;
675   }
676 
677   const STACK_OF(CRYPTO_BUFFER) *names = hs->config->client_CA.get();
678   if (names == NULL) {
679     names = hs->ssl->ctx->client_CA.get();
680   }
681   if (names == NULL) {
682     return CBB_flush(cbb);
683   }
684 
685   for (const CRYPTO_BUFFER *name : names) {
686     if (!CBB_add_u16_length_prefixed(&child, &name_cbb) ||
687         !CBB_add_bytes(&name_cbb, CRYPTO_BUFFER_data(name),
688                        CRYPTO_BUFFER_len(name))) {
689       return false;
690     }
691   }
692 
693   return CBB_flush(cbb);
694 }
695 
ssl_check_leaf_certificate(SSL_HANDSHAKE * hs,EVP_PKEY * pkey,const CRYPTO_BUFFER * leaf)696 bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
697                                 const CRYPTO_BUFFER *leaf) {
698   assert(ssl_protocol_version(hs->ssl) < TLS1_3_VERSION);
699 
700   // Check the certificate's type matches the cipher.
701   if (!(hs->new_cipher->algorithm_auth & ssl_cipher_auth_mask_for_key(pkey))) {
702     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CERTIFICATE_TYPE);
703     return false;
704   }
705 
706   if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) {
707     // Check the key's group and point format are acceptable.
708     EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey);
709     uint16_t group_id;
710     if (!ssl_nid_to_group_id(
711             &group_id, EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key))) ||
712         !tls1_check_group_id(hs, group_id) ||
713         EC_KEY_get_conv_form(ec_key) != POINT_CONVERSION_UNCOMPRESSED) {
714       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECC_CERT);
715       return false;
716     }
717   }
718 
719   return true;
720 }
721 
ssl_on_certificate_selected(SSL_HANDSHAKE * hs)722 bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs) {
723   SSL *const ssl = hs->ssl;
724   if (!ssl_has_certificate(hs)) {
725     // Nothing to do.
726     return true;
727   }
728 
729   if (!ssl->ctx->x509_method->ssl_auto_chain_if_needed(hs)) {
730     return false;
731   }
732 
733   CBS leaf;
734   CRYPTO_BUFFER_init_CBS(
735       sk_CRYPTO_BUFFER_value(hs->config->cert->chain.get(), 0), &leaf);
736 
737   if (ssl_signing_with_dc(hs)) {
738     hs->local_pubkey = UpRef(hs->config->cert->dc->pkey);
739   } else {
740     hs->local_pubkey = ssl_cert_parse_pubkey(&leaf);
741   }
742   return hs->local_pubkey != NULL;
743 }
744 
745 
746 // Delegated credentials.
747 
748 DC::DC() = default;
749 DC::~DC() = default;
750 
Dup()751 UniquePtr<DC> DC::Dup() {
752   bssl::UniquePtr<DC> ret = MakeUnique<DC>();
753   if (!ret) {
754     return nullptr;
755   }
756 
757   ret->raw = UpRef(raw);
758   ret->expected_cert_verify_algorithm = expected_cert_verify_algorithm;
759   ret->pkey = UpRef(pkey);
760   return ret;
761 }
762 
763 // static
Parse(CRYPTO_BUFFER * in,uint8_t * out_alert)764 UniquePtr<DC> DC::Parse(CRYPTO_BUFFER *in, uint8_t *out_alert) {
765   UniquePtr<DC> dc = MakeUnique<DC>();
766   if (!dc) {
767     *out_alert = SSL_AD_INTERNAL_ERROR;
768     return nullptr;
769   }
770 
771   dc->raw = UpRef(in);
772 
773   CBS pubkey, deleg, sig;
774   uint32_t valid_time;
775   uint16_t algorithm;
776   CRYPTO_BUFFER_init_CBS(dc->raw.get(), &deleg);
777   if (!CBS_get_u32(&deleg, &valid_time) ||
778       !CBS_get_u16(&deleg, &dc->expected_cert_verify_algorithm) ||
779       !CBS_get_u24_length_prefixed(&deleg, &pubkey) ||
780       !CBS_get_u16(&deleg, &algorithm) ||
781       !CBS_get_u16_length_prefixed(&deleg, &sig) ||
782       CBS_len(&deleg) != 0) {
783     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
784     *out_alert = SSL_AD_DECODE_ERROR;
785     return nullptr;
786   }
787 
788   dc->pkey.reset(EVP_parse_public_key(&pubkey));
789   if (dc->pkey == nullptr) {
790     OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
791     *out_alert = SSL_AD_DECODE_ERROR;
792     return nullptr;
793   }
794 
795   return dc;
796 }
797 
798 // ssl_can_serve_dc returns true if the host has configured a DC that it can
799 // serve in the handshake. Specifically, it checks that a DC has been
800 // configured and that the DC signature algorithm is supported by the peer.
ssl_can_serve_dc(const SSL_HANDSHAKE * hs)801 static bool ssl_can_serve_dc(const SSL_HANDSHAKE *hs) {
802   // Check that a DC has been configured.
803   const CERT *cert = hs->config->cert.get();
804   if (cert->dc == nullptr ||
805       cert->dc->raw == nullptr ||
806       (cert->dc_privatekey == nullptr && cert->dc_key_method == nullptr)) {
807     return false;
808   }
809 
810   // Check that 1.3 or higher has been negotiated.
811   const DC *dc = cert->dc.get();
812   assert(hs->ssl->s3->have_version);
813   if (ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) {
814     return false;
815   }
816 
817   // Check that the DC signature algorithm is supported by the peer.
818   Span<const uint16_t> peer_sigalgs = hs->peer_delegated_credential_sigalgs;
819   for (uint16_t peer_sigalg : peer_sigalgs) {
820     if (dc->expected_cert_verify_algorithm == peer_sigalg) {
821       return true;
822     }
823   }
824   return false;
825 }
826 
ssl_signing_with_dc(const SSL_HANDSHAKE * hs)827 bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs) {
828   // As of draft-ietf-tls-subcert-03, only the server may use delegated
829   // credentials to authenticate itself.
830   return hs->ssl->server &&
831          hs->delegated_credential_requested &&
832          ssl_can_serve_dc(hs);
833 }
834 
cert_set_dc(CERT * cert,CRYPTO_BUFFER * const raw,EVP_PKEY * privkey,const SSL_PRIVATE_KEY_METHOD * key_method)835 static int cert_set_dc(CERT *cert, CRYPTO_BUFFER *const raw, EVP_PKEY *privkey,
836                        const SSL_PRIVATE_KEY_METHOD *key_method) {
837   if (privkey == nullptr && key_method == nullptr) {
838     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
839     return 0;
840   }
841 
842   if (privkey != nullptr && key_method != nullptr) {
843     OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_HAVE_BOTH_PRIVKEY_AND_METHOD);
844     return 0;
845   }
846 
847   uint8_t alert;
848   UniquePtr<DC> dc = DC::Parse(raw, &alert);
849   if (dc == nullptr) {
850     OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_DELEGATED_CREDENTIAL);
851     return 0;
852   }
853 
854   if (privkey) {
855     // Check that the public and private keys match.
856     if (!ssl_compare_public_and_private_key(dc->pkey.get(), privkey)) {
857       OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_AND_PRIVATE_KEY_MISMATCH);
858       return 0;
859     }
860   }
861 
862   cert->dc = std::move(dc);
863   cert->dc_privatekey = UpRef(privkey);
864   cert->dc_key_method = key_method;
865 
866   return 1;
867 }
868 
869 BSSL_NAMESPACE_END
870 
871 using namespace bssl;
872 
SSL_set_chain_and_key(SSL * ssl,CRYPTO_BUFFER * const * certs,size_t num_certs,EVP_PKEY * privkey,const SSL_PRIVATE_KEY_METHOD * privkey_method)873 int SSL_set_chain_and_key(SSL *ssl, CRYPTO_BUFFER *const *certs,
874                           size_t num_certs, EVP_PKEY *privkey,
875                           const SSL_PRIVATE_KEY_METHOD *privkey_method) {
876   if (!ssl->config) {
877     return 0;
878   }
879   return cert_set_chain_and_key(ssl->config->cert.get(), certs, num_certs,
880                                 privkey, privkey_method);
881 }
882 
SSL_CTX_set_chain_and_key(SSL_CTX * ctx,CRYPTO_BUFFER * const * certs,size_t num_certs,EVP_PKEY * privkey,const SSL_PRIVATE_KEY_METHOD * privkey_method)883 int SSL_CTX_set_chain_and_key(SSL_CTX *ctx, CRYPTO_BUFFER *const *certs,
884                               size_t num_certs, EVP_PKEY *privkey,
885                               const SSL_PRIVATE_KEY_METHOD *privkey_method) {
886   return cert_set_chain_and_key(ctx->cert.get(), certs, num_certs, privkey,
887                                 privkey_method);
888 }
889 
STACK_OF(CRYPTO_BUFFER)890 const STACK_OF(CRYPTO_BUFFER)* SSL_CTX_get0_chain(const SSL_CTX *ctx) {
891   return ctx->cert->chain.get();
892 }
893 
SSL_CTX_use_certificate_ASN1(SSL_CTX * ctx,size_t der_len,const uint8_t * der)894 int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len,
895                                  const uint8_t *der) {
896   UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL));
897   if (!buffer) {
898     return 0;
899   }
900 
901   return ssl_set_cert(ctx->cert.get(), std::move(buffer));
902 }
903 
SSL_use_certificate_ASN1(SSL * ssl,const uint8_t * der,size_t der_len)904 int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
905   UniquePtr<CRYPTO_BUFFER> buffer(CRYPTO_BUFFER_new(der, der_len, NULL));
906   if (!buffer || !ssl->config) {
907     return 0;
908   }
909 
910   return ssl_set_cert(ssl->config->cert.get(), std::move(buffer));
911 }
912 
SSL_CTX_set_cert_cb(SSL_CTX * ctx,int (* cb)(SSL * ssl,void * arg),void * arg)913 void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg),
914                          void *arg) {
915   ssl_cert_set_cert_cb(ctx->cert.get(), cb, arg);
916 }
917 
SSL_set_cert_cb(SSL * ssl,int (* cb)(SSL * ssl,void * arg),void * arg)918 void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) {
919   if (!ssl->config) {
920     return;
921   }
922   ssl_cert_set_cert_cb(ssl->config->cert.get(), cb, arg);
923 }
924 
STACK_OF(CRYPTO_BUFFER)925 const STACK_OF(CRYPTO_BUFFER) *SSL_get0_peer_certificates(const SSL *ssl) {
926   SSL_SESSION *session = SSL_get_session(ssl);
927   if (session == NULL) {
928     return NULL;
929   }
930 
931   return session->certs.get();
932 }
933 
STACK_OF(CRYPTO_BUFFER)934 const STACK_OF(CRYPTO_BUFFER) *SSL_get0_server_requested_CAs(const SSL *ssl) {
935   if (ssl->s3->hs == NULL) {
936     return NULL;
937   }
938   return ssl->s3->hs->ca_names.get();
939 }
940 
set_signed_cert_timestamp_list(CERT * cert,const uint8_t * list,size_t list_len)941 static int set_signed_cert_timestamp_list(CERT *cert, const uint8_t *list,
942                                           size_t list_len) {
943   CBS sct_list;
944   CBS_init(&sct_list, list, list_len);
945   if (!ssl_is_sct_list_valid(&sct_list)) {
946     OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SCT_LIST);
947     return 0;
948   }
949 
950   cert->signed_cert_timestamp_list.reset(
951       CRYPTO_BUFFER_new(CBS_data(&sct_list), CBS_len(&sct_list), nullptr));
952   return cert->signed_cert_timestamp_list != nullptr;
953 }
954 
SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX * ctx,const uint8_t * list,size_t list_len)955 int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list,
956                                            size_t list_len) {
957   return set_signed_cert_timestamp_list(ctx->cert.get(), list, list_len);
958 }
959 
SSL_set_signed_cert_timestamp_list(SSL * ssl,const uint8_t * list,size_t list_len)960 int SSL_set_signed_cert_timestamp_list(SSL *ssl, const uint8_t *list,
961                                        size_t list_len) {
962   if (!ssl->config) {
963     return 0;
964   }
965   return set_signed_cert_timestamp_list(ssl->config->cert.get(), list,
966                                         list_len);
967 }
968 
SSL_CTX_set_ocsp_response(SSL_CTX * ctx,const uint8_t * response,size_t response_len)969 int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response,
970                               size_t response_len) {
971   ctx->cert->ocsp_response.reset(
972       CRYPTO_BUFFER_new(response, response_len, nullptr));
973   return ctx->cert->ocsp_response != nullptr;
974 }
975 
SSL_set_ocsp_response(SSL * ssl,const uint8_t * response,size_t response_len)976 int SSL_set_ocsp_response(SSL *ssl, const uint8_t *response,
977                           size_t response_len) {
978   if (!ssl->config) {
979     return 0;
980   }
981   ssl->config->cert->ocsp_response.reset(
982       CRYPTO_BUFFER_new(response, response_len, nullptr));
983   return ssl->config->cert->ocsp_response != nullptr;
984 }
985 
SSL_CTX_set0_client_CAs(SSL_CTX * ctx,STACK_OF (CRYPTO_BUFFER)* name_list)986 void SSL_CTX_set0_client_CAs(SSL_CTX *ctx, STACK_OF(CRYPTO_BUFFER) *name_list) {
987   ctx->x509_method->ssl_ctx_flush_cached_client_CA(ctx);
988   ctx->client_CA.reset(name_list);
989 }
990 
SSL_set0_client_CAs(SSL * ssl,STACK_OF (CRYPTO_BUFFER)* name_list)991 void SSL_set0_client_CAs(SSL *ssl, STACK_OF(CRYPTO_BUFFER) *name_list) {
992   if (!ssl->config) {
993     return;
994   }
995   ssl->ctx->x509_method->ssl_flush_cached_client_CA(ssl->config.get());
996   ssl->config->client_CA.reset(name_list);
997 }
998 
SSL_set1_delegated_credential(SSL * ssl,CRYPTO_BUFFER * dc,EVP_PKEY * pkey,const SSL_PRIVATE_KEY_METHOD * key_method)999 int SSL_set1_delegated_credential(SSL *ssl, CRYPTO_BUFFER *dc, EVP_PKEY *pkey,
1000                                   const SSL_PRIVATE_KEY_METHOD *key_method) {
1001   if (!ssl->config) {
1002     return 0;
1003   }
1004 
1005   return cert_set_dc(ssl->config->cert.get(), dc, pkey, key_method);
1006 }
1007 
SSL_delegated_credential_used(const SSL * ssl)1008 int SSL_delegated_credential_used(const SSL *ssl) {
1009   return ssl->s3->delegated_credential_used;
1010 }
1011