• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/ssl.h>
58 
59 #include <assert.h>
60 #include <limits.h>
61 
62 #include <openssl/ec.h>
63 #include <openssl/ec_key.h>
64 #include <openssl/err.h>
65 #include <openssl/evp.h>
66 #include <openssl/mem.h>
67 #include <openssl/span.h>
68 
69 #include "internal.h"
70 #include "../crypto/internal.h"
71 
72 
73 BSSL_NAMESPACE_BEGIN
74 
ssl_is_key_type_supported(int key_type)75 bool ssl_is_key_type_supported(int key_type) {
76   return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
77          key_type == EVP_PKEY_ED25519;
78 }
79 
ssl_set_pkey(CERT * cert,EVP_PKEY * pkey)80 static bool ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) {
81   if (!ssl_is_key_type_supported(EVP_PKEY_id(pkey))) {
82     OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
83     return false;
84   }
85 
86   if (cert->chain != nullptr &&
87       sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) != nullptr &&
88       // Sanity-check that the private key and the certificate match.
89       !ssl_cert_check_private_key(cert, pkey)) {
90     return false;
91   }
92 
93   cert->privatekey = UpRef(pkey);
94   return true;
95 }
96 
97 typedef struct {
98   uint16_t sigalg;
99   int pkey_type;
100   int curve;
101   const EVP_MD *(*digest_func)(void);
102   bool is_rsa_pss;
103 } SSL_SIGNATURE_ALGORITHM;
104 
105 static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
106     {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1,
107      false},
108     {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, false},
109     {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, false},
110     {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, false},
111     {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, false},
112 
113     {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, true},
114     {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, true},
115     {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, true},
116 
117     {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, false},
118     {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
119      &EVP_sha256, false},
120     {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
121      false},
122     {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
123      false},
124 
125     {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, false},
126 };
127 
get_signature_algorithm(uint16_t sigalg)128 static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
129   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
130     if (kSignatureAlgorithms[i].sigalg == sigalg) {
131       return &kSignatureAlgorithms[i];
132     }
133   }
134   return NULL;
135 }
136 
ssl_has_private_key(const SSL_HANDSHAKE * hs)137 bool ssl_has_private_key(const SSL_HANDSHAKE *hs) {
138   if (hs->config->cert->privatekey != nullptr ||
139       hs->config->cert->key_method != nullptr ||
140       ssl_signing_with_dc(hs)) {
141     return true;
142   }
143 
144   return false;
145 }
146 
pkey_supports_algorithm(const SSL * ssl,EVP_PKEY * pkey,uint16_t sigalg)147 static bool pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
148                                     uint16_t sigalg) {
149   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
150   if (alg == NULL ||
151       EVP_PKEY_id(pkey) != alg->pkey_type) {
152     return false;
153   }
154 
155   if (ssl_protocol_version(ssl) < TLS1_2_VERSION) {
156     // TLS 1.0 and 1.1 do not negotiate algorithms and always sign one of two
157     // hardcoded algorithms.
158     return sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1 ||
159            sigalg == SSL_SIGN_ECDSA_SHA1;
160   }
161 
162   // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| is not a real SignatureScheme for TLS 1.2 and
163   // higher. It is an internal value we use to represent TLS 1.0/1.1's MD5/SHA1
164   // concatenation.
165   if (sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
166     return false;
167   }
168 
169   if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
170     // RSA keys may only be used with RSA-PSS.
171     if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) {
172       return false;
173     }
174 
175     // EC keys have a curve requirement.
176     if (alg->pkey_type == EVP_PKEY_EC &&
177         (alg->curve == NID_undef ||
178          EC_GROUP_get_curve_name(
179              EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
180       return false;
181     }
182   }
183 
184   return true;
185 }
186 
setup_ctx(SSL * ssl,EVP_MD_CTX * ctx,EVP_PKEY * pkey,uint16_t sigalg,bool is_verify)187 static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey,
188                       uint16_t sigalg, bool is_verify) {
189   if (!pkey_supports_algorithm(ssl, pkey, sigalg)) {
190     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
191     return false;
192   }
193 
194   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
195   const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
196   EVP_PKEY_CTX *pctx;
197   if (is_verify) {
198     if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
199       return false;
200     }
201   } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
202     return false;
203   }
204 
205   if (alg->is_rsa_pss) {
206     if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
207         !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
208       return false;
209     }
210   }
211 
212   return true;
213 }
214 
ssl_private_key_sign(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,uint16_t sigalg,Span<const uint8_t> in)215 enum ssl_private_key_result_t ssl_private_key_sign(
216     SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
217     uint16_t sigalg, Span<const uint8_t> in) {
218   SSL *const ssl = hs->ssl;
219   SSL_HANDSHAKE_HINTS *const hints = hs->hints.get();
220   Array<uint8_t> spki;
221   if (hints) {
222     ScopedCBB spki_cbb;
223     if (!CBB_init(spki_cbb.get(), 64) ||
224         !EVP_marshal_public_key(spki_cbb.get(), hs->local_pubkey.get()) ||
225         !CBBFinishArray(spki_cbb.get(), &spki)) {
226       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
227       return ssl_private_key_failure;
228     }
229   }
230 
231   // Replay the signature from handshake hints if available.
232   if (hints && !hs->hints_requested &&         //
233       sigalg == hints->signature_algorithm &&  //
234       in == hints->signature_input &&
235       MakeConstSpan(spki) == hints->signature_spki &&
236       !hints->signature.empty() &&  //
237       hints->signature.size() <= max_out) {
238     // Signature algorithm and input both match. Reuse the signature from hints.
239     *out_len = hints->signature.size();
240     OPENSSL_memcpy(out, hints->signature.data(), hints->signature.size());
241     return ssl_private_key_success;
242   }
243 
244   const SSL_PRIVATE_KEY_METHOD *key_method = hs->config->cert->key_method;
245   EVP_PKEY *privatekey = hs->config->cert->privatekey.get();
246   assert(!hs->can_release_private_key);
247   if (ssl_signing_with_dc(hs)) {
248     key_method = hs->config->cert->dc_key_method;
249     privatekey = hs->config->cert->dc_privatekey.get();
250   }
251 
252   if (key_method != NULL) {
253     enum ssl_private_key_result_t ret;
254     if (hs->pending_private_key_op) {
255       ret = key_method->complete(ssl, out, out_len, max_out);
256     } else {
257       ret = key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(),
258                              in.size());
259     }
260     if (ret == ssl_private_key_failure) {
261       OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
262     }
263     hs->pending_private_key_op = ret == ssl_private_key_retry;
264     if (ret != ssl_private_key_success) {
265       return ret;
266     }
267   } else {
268     *out_len = max_out;
269     ScopedEVP_MD_CTX ctx;
270     if (!setup_ctx(ssl, ctx.get(), privatekey, sigalg, false /* sign */) ||
271         !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
272       return ssl_private_key_failure;
273     }
274   }
275 
276   // Save the hint if applicable.
277   if (hints && hs->hints_requested) {
278     hints->signature_algorithm = sigalg;
279     hints->signature_spki = std::move(spki);
280     if (!hints->signature_input.CopyFrom(in) ||
281         !hints->signature.CopyFrom(MakeConstSpan(out, *out_len))) {
282       return ssl_private_key_failure;
283     }
284   }
285   return ssl_private_key_success;
286 }
287 
ssl_public_key_verify(SSL * ssl,Span<const uint8_t> signature,uint16_t sigalg,EVP_PKEY * pkey,Span<const uint8_t> in)288 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
289                            uint16_t sigalg, EVP_PKEY *pkey,
290                            Span<const uint8_t> in) {
291   ScopedEVP_MD_CTX ctx;
292   if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) {
293     return false;
294   }
295   bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
296                              in.data(), in.size());
297 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
298   ok = true;
299   ERR_clear_error();
300 #endif
301   return ok;
302 }
303 
ssl_private_key_decrypt(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,Span<const uint8_t> in)304 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
305                                                       uint8_t *out,
306                                                       size_t *out_len,
307                                                       size_t max_out,
308                                                       Span<const uint8_t> in) {
309   SSL *const ssl = hs->ssl;
310   assert(!hs->can_release_private_key);
311   if (hs->config->cert->key_method != NULL) {
312     enum ssl_private_key_result_t ret;
313     if (hs->pending_private_key_op) {
314       ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out);
315     } else {
316       ret = hs->config->cert->key_method->decrypt(ssl, out, out_len, max_out,
317                                                   in.data(), in.size());
318     }
319     if (ret == ssl_private_key_failure) {
320       OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
321     }
322     hs->pending_private_key_op = ret == ssl_private_key_retry;
323     return ret;
324   }
325 
326   RSA *rsa = EVP_PKEY_get0_RSA(hs->config->cert->privatekey.get());
327   if (rsa == NULL) {
328     // Decrypt operations are only supported for RSA keys.
329     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
330     return ssl_private_key_failure;
331   }
332 
333   // Decrypt with no padding. PKCS#1 padding will be removed as part of the
334   // timing-sensitive code by the caller.
335   if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
336                    RSA_NO_PADDING)) {
337     return ssl_private_key_failure;
338   }
339   return ssl_private_key_success;
340 }
341 
ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE * hs,uint16_t sigalg)342 bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
343                                                   uint16_t sigalg) {
344   SSL *const ssl = hs->ssl;
345   if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) {
346     return false;
347   }
348 
349   // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
350   // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
351   // hash in TLS. Reasonable RSA key sizes are large enough for the largest
352   // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
353   // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
354   // size so that we can fall back to another algorithm in that case.
355   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
356   if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) <
357                              2 * EVP_MD_size(alg->digest_func()) + 2) {
358     return false;
359   }
360 
361   return true;
362 }
363 
364 BSSL_NAMESPACE_END
365 
366 using namespace bssl;
367 
SSL_use_RSAPrivateKey(SSL * ssl,RSA * rsa)368 int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
369   if (rsa == NULL || ssl->config == NULL) {
370     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
371     return 0;
372   }
373 
374   UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
375   if (!pkey ||
376       !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
377     OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
378     return 0;
379   }
380 
381   return ssl_set_pkey(ssl->config->cert.get(), pkey.get());
382 }
383 
SSL_use_RSAPrivateKey_ASN1(SSL * ssl,const uint8_t * der,size_t der_len)384 int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
385   UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
386   if (!rsa) {
387     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
388     return 0;
389   }
390 
391   return SSL_use_RSAPrivateKey(ssl, rsa.get());
392 }
393 
SSL_use_PrivateKey(SSL * ssl,EVP_PKEY * pkey)394 int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
395   if (pkey == NULL || ssl->config == NULL) {
396     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
397     return 0;
398   }
399 
400   return ssl_set_pkey(ssl->config->cert.get(), pkey);
401 }
402 
SSL_use_PrivateKey_ASN1(int type,SSL * ssl,const uint8_t * der,size_t der_len)403 int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
404                             size_t der_len) {
405   if (der_len > LONG_MAX) {
406     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
407     return 0;
408   }
409 
410   const uint8_t *p = der;
411   UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
412   if (!pkey || p != der + der_len) {
413     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
414     return 0;
415   }
416 
417   return SSL_use_PrivateKey(ssl, pkey.get());
418 }
419 
SSL_CTX_use_RSAPrivateKey(SSL_CTX * ctx,RSA * rsa)420 int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
421   if (rsa == NULL) {
422     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
423     return 0;
424   }
425 
426   UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
427   if (!pkey ||
428       !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
429     OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
430     return 0;
431   }
432 
433   return ssl_set_pkey(ctx->cert.get(), pkey.get());
434 }
435 
SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX * ctx,const uint8_t * der,size_t der_len)436 int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
437                                    size_t der_len) {
438   UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
439   if (!rsa) {
440     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
441     return 0;
442   }
443 
444   return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
445 }
446 
SSL_CTX_use_PrivateKey(SSL_CTX * ctx,EVP_PKEY * pkey)447 int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
448   if (pkey == NULL) {
449     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
450     return 0;
451   }
452 
453   return ssl_set_pkey(ctx->cert.get(), pkey);
454 }
455 
SSL_CTX_use_PrivateKey_ASN1(int type,SSL_CTX * ctx,const uint8_t * der,size_t der_len)456 int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
457                                 size_t der_len) {
458   if (der_len > LONG_MAX) {
459     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
460     return 0;
461   }
462 
463   const uint8_t *p = der;
464   UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
465   if (!pkey || p != der + der_len) {
466     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
467     return 0;
468   }
469 
470   return SSL_CTX_use_PrivateKey(ctx, pkey.get());
471 }
472 
SSL_set_private_key_method(SSL * ssl,const SSL_PRIVATE_KEY_METHOD * key_method)473 void SSL_set_private_key_method(SSL *ssl,
474                                 const SSL_PRIVATE_KEY_METHOD *key_method) {
475   if (!ssl->config) {
476     return;
477   }
478   ssl->config->cert->key_method = key_method;
479 }
480 
SSL_CTX_set_private_key_method(SSL_CTX * ctx,const SSL_PRIVATE_KEY_METHOD * key_method)481 void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
482                                     const SSL_PRIVATE_KEY_METHOD *key_method) {
483   ctx->cert->key_method = key_method;
484 }
485 
486 static constexpr size_t kMaxSignatureAlgorithmNameLen = 23;
487 
488 struct SignatureAlgorithmName {
489   uint16_t signature_algorithm;
490   const char name[kMaxSignatureAlgorithmNameLen];
491 };
492 
493 // This was "constexpr" rather than "const", but that triggered a bug in MSVC
494 // where it didn't pad the strings to the correct length.
495 static const SignatureAlgorithmName kSignatureAlgorithmNames[] = {
496     {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"},
497     {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"},
498     {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"},
499     {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"},
500     {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"},
501     {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"},
502     {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"},
503     {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"},
504     {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"},
505     {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"},
506     {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"},
507     {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"},
508     {SSL_SIGN_ED25519, "ed25519"},
509 };
510 
SSL_get_signature_algorithm_name(uint16_t sigalg,int include_curve)511 const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
512                                              int include_curve) {
513   if (!include_curve) {
514     switch (sigalg) {
515       case SSL_SIGN_ECDSA_SECP256R1_SHA256:
516         return "ecdsa_sha256";
517       case SSL_SIGN_ECDSA_SECP384R1_SHA384:
518         return "ecdsa_sha384";
519       case SSL_SIGN_ECDSA_SECP521R1_SHA512:
520         return "ecdsa_sha512";
521         // If adding more here, also update
522         // |SSL_get_all_signature_algorithm_names|.
523     }
524   }
525 
526   for (const auto &candidate : kSignatureAlgorithmNames) {
527     if (candidate.signature_algorithm == sigalg) {
528       return candidate.name;
529     }
530   }
531 
532   return NULL;
533 }
534 
SSL_get_all_signature_algorithm_names(const char ** out,size_t max_out)535 size_t SSL_get_all_signature_algorithm_names(const char **out, size_t max_out) {
536   const char *kPredefinedNames[] = {"ecdsa_sha256", "ecdsa_sha384",
537                                     "ecdsa_sha512"};
538   return GetAllNames(out, max_out, MakeConstSpan(kPredefinedNames),
539                      &SignatureAlgorithmName::name,
540                      MakeConstSpan(kSignatureAlgorithmNames));
541 }
542 
SSL_get_signature_algorithm_key_type(uint16_t sigalg)543 int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
544   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
545   return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
546 }
547 
SSL_get_signature_algorithm_digest(uint16_t sigalg)548 const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
549   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
550   if (alg == nullptr || alg->digest_func == nullptr) {
551     return nullptr;
552   }
553   return alg->digest_func();
554 }
555 
SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg)556 int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
557   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
558   return alg != nullptr && alg->is_rsa_pss;
559 }
560 
compare_uint16_t(const void * p1,const void * p2)561 static int compare_uint16_t(const void *p1, const void *p2) {
562   uint16_t u1 = *((const uint16_t *)p1);
563   uint16_t u2 = *((const uint16_t *)p2);
564   if (u1 < u2) {
565     return -1;
566   } else if (u1 > u2) {
567     return 1;
568   } else {
569     return 0;
570   }
571 }
572 
sigalgs_unique(Span<const uint16_t> in_sigalgs)573 static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) {
574   if (in_sigalgs.size() < 2) {
575     return true;
576   }
577 
578   Array<uint16_t> sigalgs;
579   if (!sigalgs.CopyFrom(in_sigalgs)) {
580     return false;
581   }
582 
583   qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t);
584 
585   for (size_t i = 1; i < sigalgs.size(); i++) {
586     if (sigalgs[i - 1] == sigalgs[i]) {
587       OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM);
588       return false;
589     }
590   }
591 
592   return true;
593 }
594 
set_sigalg_prefs(Array<uint16_t> * out,Span<const uint16_t> prefs)595 static bool set_sigalg_prefs(Array<uint16_t> *out, Span<const uint16_t> prefs) {
596   if (!sigalgs_unique(prefs)) {
597     return false;
598   }
599 
600   // Check for invalid algorithms, and filter out |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
601   Array<uint16_t> filtered;
602   if (!filtered.Init(prefs.size())) {
603     return false;
604   }
605   size_t added = 0;
606   for (uint16_t pref : prefs) {
607     if (pref == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
608       // Though not intended to be used with this API, we treat
609       // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| as a real signature algorithm in
610       // |SSL_PRIVATE_KEY_METHOD|. Not accepting it here makes for a confusing
611       // abstraction.
612       continue;
613     }
614     if (get_signature_algorithm(pref) == nullptr) {
615       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
616       return false;
617     }
618     filtered[added] = pref;
619     added++;
620   }
621   filtered.Shrink(added);
622 
623   // This can happen if |prefs| contained only |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
624   // Leaving it empty would revert to the default, so treat this as an error
625   // condition.
626   if (!prefs.empty() && filtered.empty()) {
627     OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
628     return false;
629   }
630 
631   *out = std::move(filtered);
632   return true;
633 }
634 
SSL_CTX_set_signing_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)635 int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
636                                         size_t num_prefs) {
637   return set_sigalg_prefs(&ctx->cert->sigalgs, MakeConstSpan(prefs, num_prefs));
638 }
639 
SSL_set_signing_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)640 int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
641                                     size_t num_prefs) {
642   if (!ssl->config) {
643     return 0;
644   }
645   return set_sigalg_prefs(&ssl->config->cert->sigalgs,
646                           MakeConstSpan(prefs, num_prefs));
647 }
648 
649 static constexpr struct {
650   int pkey_type;
651   int hash_nid;
652   uint16_t signature_algorithm;
653 } kSignatureAlgorithmsMapping[] = {
654     {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1},
655     {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256},
656     {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384},
657     {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512},
658     {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256},
659     {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384},
660     {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512},
661     {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1},
662     {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256},
663     {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384},
664     {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512},
665     {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519},
666 };
667 
parse_sigalg_pairs(Array<uint16_t> * out,const int * values,size_t num_values)668 static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values,
669                                size_t num_values) {
670   if ((num_values & 1) == 1) {
671     return false;
672   }
673 
674   const size_t num_pairs = num_values / 2;
675   if (!out->Init(num_pairs)) {
676     return false;
677   }
678 
679   for (size_t i = 0; i < num_values; i += 2) {
680     const int hash_nid = values[i];
681     const int pkey_type = values[i+1];
682 
683     bool found = false;
684     for (const auto &candidate : kSignatureAlgorithmsMapping) {
685       if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) {
686         (*out)[i / 2] = candidate.signature_algorithm;
687         found = true;
688         break;
689       }
690     }
691 
692     if (!found) {
693       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
694       ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type);
695       return false;
696     }
697   }
698 
699   return true;
700 }
701 
SSL_CTX_set1_sigalgs(SSL_CTX * ctx,const int * values,size_t num_values)702 int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) {
703   Array<uint16_t> sigalgs;
704   if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
705     return 0;
706   }
707 
708   if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
709                                            sigalgs.size()) ||
710       !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
711                                           sigalgs.size())) {
712     return 0;
713   }
714 
715   return 1;
716 }
717 
SSL_set1_sigalgs(SSL * ssl,const int * values,size_t num_values)718 int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) {
719   if (!ssl->config) {
720     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
721     return 0;
722   }
723 
724   Array<uint16_t> sigalgs;
725   if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
726     return 0;
727   }
728 
729   if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
730       !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
731     return 0;
732   }
733 
734   return 1;
735 }
736 
parse_sigalgs_list(Array<uint16_t> * out,const char * str)737 static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) {
738   // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256".
739 
740   // Count colons to give the number of output elements from any successful
741   // parse.
742   size_t num_elements = 1;
743   size_t len = 0;
744   for (const char *p = str; *p; p++) {
745     len++;
746     if (*p == ':') {
747       num_elements++;
748     }
749   }
750 
751   if (!out->Init(num_elements)) {
752     return false;
753   }
754   size_t out_i = 0;
755 
756   enum {
757     pkey_or_name,
758     hash_name,
759   } state = pkey_or_name;
760 
761   char buf[kMaxSignatureAlgorithmNameLen];
762   // buf_used is always < sizeof(buf). I.e. it's always safe to write
763   // buf[buf_used] = 0.
764   size_t buf_used = 0;
765 
766   int pkey_type = 0, hash_nid = 0;
767 
768   // Note that the loop runs to len+1, i.e. it'll process the terminating NUL.
769   for (size_t offset = 0; offset < len+1; offset++) {
770     const unsigned char c = str[offset];
771 
772     switch (c) {
773       case '+':
774         if (state == hash_name) {
775           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
776           ERR_add_error_dataf("+ found in hash name at offset %zu", offset);
777           return false;
778         }
779         if (buf_used == 0) {
780           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
781           ERR_add_error_dataf("empty public key type at offset %zu", offset);
782           return false;
783         }
784         buf[buf_used] = 0;
785 
786         if (strcmp(buf, "RSA") == 0) {
787           pkey_type = EVP_PKEY_RSA;
788         } else if (strcmp(buf, "RSA-PSS") == 0 ||
789                    strcmp(buf, "PSS") == 0) {
790           pkey_type = EVP_PKEY_RSA_PSS;
791         } else if (strcmp(buf, "ECDSA") == 0) {
792           pkey_type = EVP_PKEY_EC;
793         } else {
794           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
795           ERR_add_error_dataf("unknown public key type '%s'", buf);
796           return false;
797         }
798 
799         state = hash_name;
800         buf_used = 0;
801         break;
802 
803       case ':':
804         OPENSSL_FALLTHROUGH;
805       case 0:
806         if (buf_used == 0) {
807           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
808           ERR_add_error_dataf("empty element at offset %zu", offset);
809           return false;
810         }
811 
812         buf[buf_used] = 0;
813 
814         if (state == pkey_or_name) {
815           // No '+' was seen thus this is a TLS 1.3-style name.
816           bool found = false;
817           for (const auto &candidate : kSignatureAlgorithmNames) {
818             if (strcmp(candidate.name, buf) == 0) {
819               assert(out_i < num_elements);
820               (*out)[out_i++] = candidate.signature_algorithm;
821               found = true;
822               break;
823             }
824           }
825 
826           if (!found) {
827             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
828             ERR_add_error_dataf("unknown signature algorithm '%s'", buf);
829             return false;
830           }
831         } else {
832           if (strcmp(buf, "SHA1") == 0) {
833             hash_nid = NID_sha1;
834           } else if (strcmp(buf, "SHA256") == 0) {
835             hash_nid = NID_sha256;
836           } else if (strcmp(buf, "SHA384") == 0) {
837             hash_nid = NID_sha384;
838           } else if (strcmp(buf, "SHA512") == 0) {
839             hash_nid = NID_sha512;
840           } else {
841             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
842             ERR_add_error_dataf("unknown hash function '%s'", buf);
843             return false;
844           }
845 
846           bool found = false;
847           for (const auto &candidate : kSignatureAlgorithmsMapping) {
848             if (candidate.pkey_type == pkey_type &&
849                 candidate.hash_nid == hash_nid) {
850               assert(out_i < num_elements);
851               (*out)[out_i++] = candidate.signature_algorithm;
852               found = true;
853               break;
854             }
855           }
856 
857           if (!found) {
858             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
859             ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf);
860             return false;
861           }
862         }
863 
864         state = pkey_or_name;
865         buf_used = 0;
866         break;
867 
868       default:
869         if (buf_used == sizeof(buf) - 1) {
870           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
871           ERR_add_error_dataf("substring too long at offset %zu", offset);
872           return false;
873         }
874 
875         if (OPENSSL_isalnum(c) || c == '-' || c == '_') {
876           buf[buf_used++] = c;
877         } else {
878           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
879           ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c,
880                               offset);
881           return false;
882         }
883     }
884   }
885 
886   assert(out_i == out->size());
887   return true;
888 }
889 
SSL_CTX_set1_sigalgs_list(SSL_CTX * ctx,const char * str)890 int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) {
891   Array<uint16_t> sigalgs;
892   if (!parse_sigalgs_list(&sigalgs, str)) {
893     return 0;
894   }
895 
896   if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
897                                            sigalgs.size()) ||
898       !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
899                                           sigalgs.size())) {
900     return 0;
901   }
902 
903   return 1;
904 }
905 
SSL_set1_sigalgs_list(SSL * ssl,const char * str)906 int SSL_set1_sigalgs_list(SSL *ssl, const char *str) {
907   if (!ssl->config) {
908     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
909     return 0;
910   }
911 
912   Array<uint16_t> sigalgs;
913   if (!parse_sigalgs_list(&sigalgs, str)) {
914     return 0;
915   }
916 
917   if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
918       !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
919     return 0;
920   }
921 
922   return 1;
923 }
924 
SSL_CTX_set_verify_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)925 int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
926                                        size_t num_prefs) {
927   return set_sigalg_prefs(&ctx->verify_sigalgs,
928                           MakeConstSpan(prefs, num_prefs));
929 }
930 
SSL_set_verify_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)931 int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
932                                    size_t num_prefs) {
933   if (!ssl->config) {
934     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
935     return 0;
936   }
937 
938   return set_sigalg_prefs(&ssl->config->verify_sigalgs,
939                           MakeConstSpan(prefs, num_prefs));
940 }
941