• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// TLS low level connection and record layer
6
7package runner
8
9import (
10	"bytes"
11	"crypto/cipher"
12	"crypto/ecdsa"
13	"crypto/subtle"
14	"crypto/x509"
15	"encoding/binary"
16	"errors"
17	"fmt"
18	"io"
19	"net"
20	"sync"
21	"time"
22)
23
24// A Conn represents a secured connection.
25// It implements the net.Conn interface.
26type Conn struct {
27	// constant
28	conn     net.Conn
29	isDTLS   bool
30	isClient bool
31
32	// constant after handshake; protected by handshakeMutex
33	handshakeMutex       sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
34	handshakeErr         error      // error resulting from handshake
35	wireVersion          uint16     // TLS wire version
36	vers                 uint16     // TLS version
37	haveVers             bool       // version has been negotiated
38	config               *Config    // configuration passed to constructor
39	handshakeComplete    bool
40	skipEarlyData        bool // On a server, indicates that the client is sending early data that must be skipped over.
41	didResume            bool // whether this connection was a session resumption
42	extendedMasterSecret bool // whether this session used an extended master secret
43	cipherSuite          *cipherSuite
44	ocspResponse         []byte // stapled OCSP response
45	sctList              []byte // signed certificate timestamp list
46	peerCertificates     []*x509.Certificate
47	// verifiedChains contains the certificate chains that we built, as
48	// opposed to the ones presented by the server.
49	verifiedChains [][]*x509.Certificate
50	// serverName contains the server name indicated by the client, if any.
51	serverName string
52	// firstFinished contains the first Finished hash sent during the
53	// handshake. This is the "tls-unique" channel binding value.
54	firstFinished [12]byte
55	// peerSignatureAlgorithm contains the signature algorithm that was used
56	// by the peer in the handshake, or zero if not applicable.
57	peerSignatureAlgorithm signatureAlgorithm
58	// curveID contains the curve that was used in the handshake, or zero if
59	// not applicable.
60	curveID CurveID
61	// quicTransportParams contains the QUIC transport params received
62	// by the peer using codepoint 57.
63	quicTransportParams []byte
64	// quicTransportParams contains the QUIC transport params received
65	// by the peer using legacy codepoint 0xffa5.
66	quicTransportParamsLegacy []byte
67
68	clientRandom, serverRandom [32]byte
69	earlyExporterSecret        []byte
70	exporterSecret             []byte
71	resumptionSecret           []byte
72
73	clientProtocol         string
74	clientProtocolFallback bool
75	usedALPN               bool
76
77	localApplicationSettings, peerApplicationSettings       []byte
78	hasApplicationSettings                                  bool
79	localApplicationSettingsOld, peerApplicationSettingsOld []byte
80	hasApplicationSettingsOld                               bool
81
82	// verify_data values for the renegotiation extension.
83	clientVerify []byte
84	serverVerify []byte
85
86	channelID *ecdsa.PublicKey
87
88	srtpProtectionProfile uint16
89
90	clientVersion uint16
91
92	// input/output
93	in, out  halfConn     // in.Mutex < out.Mutex
94	rawInput *block       // raw input, right off the wire
95	input    *block       // application record waiting to be read
96	hand     bytes.Buffer // handshake record waiting to be read
97
98	// pendingFlight, if PackHandshakeFlight is enabled, is the buffer of
99	// handshake data to be split into records at the end of the flight.
100	pendingFlight bytes.Buffer
101
102	// DTLS state
103	sendHandshakeSeq uint16
104	recvHandshakeSeq uint16
105	handMsg          []byte   // pending assembled handshake message
106	handMsgLen       int      // handshake message length, not including the header
107	pendingFragments [][]byte // pending outgoing handshake fragments.
108	pendingPacket    []byte   // pending outgoing packet.
109
110	keyUpdateSeen      bool
111	keyUpdateRequested bool
112	seenOneByteRecord  bool
113
114	expectTLS13ChangeCipherSpec bool
115
116	// seenHandshakePackEnd is whether the most recent handshake record was
117	// not full for ExpectPackedEncryptedHandshake. If true, no more
118	// handshake data may be received until the next flight or epoch change.
119	seenHandshakePackEnd bool
120
121	// echAccepted indicates whether ECH was accepted for this connection.
122	echAccepted bool
123
124	tmp [16]byte
125}
126
127func (c *Conn) init() {
128	c.in.isDTLS = c.isDTLS
129	c.out.isDTLS = c.isDTLS
130	c.in.config = c.config
131	c.out.config = c.config
132
133	c.out.updateOutSeq()
134}
135
136// Access to net.Conn methods.
137// Cannot just embed net.Conn because that would
138// export the struct field too.
139
140// LocalAddr returns the local network address.
141func (c *Conn) LocalAddr() net.Addr {
142	return c.conn.LocalAddr()
143}
144
145// RemoteAddr returns the remote network address.
146func (c *Conn) RemoteAddr() net.Addr {
147	return c.conn.RemoteAddr()
148}
149
150// SetDeadline sets the read and write deadlines associated with the connection.
151// A zero value for t means Read and Write will not time out.
152// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
153func (c *Conn) SetDeadline(t time.Time) error {
154	return c.conn.SetDeadline(t)
155}
156
157// SetReadDeadline sets the read deadline on the underlying connection.
158// A zero value for t means Read will not time out.
159func (c *Conn) SetReadDeadline(t time.Time) error {
160	return c.conn.SetReadDeadline(t)
161}
162
163// SetWriteDeadline sets the write deadline on the underlying conneciton.
164// A zero value for t means Write will not time out.
165// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
166func (c *Conn) SetWriteDeadline(t time.Time) error {
167	return c.conn.SetWriteDeadline(t)
168}
169
170// A halfConn represents one direction of the record layer
171// connection, either sending or receiving.
172type halfConn struct {
173	sync.Mutex
174
175	err         error  // first permanent error
176	version     uint16 // protocol version
177	wireVersion uint16 // wire version
178	isDTLS      bool
179	cipher      any // cipher algorithm
180	mac         macFunction
181	seq         [8]byte // 64-bit sequence number
182	outSeq      [8]byte // Mapped sequence number
183	bfree       *block  // list of free blocks
184
185	nextCipher any         // next encryption state
186	nextMac    macFunction // next MAC algorithm
187	nextSeq    [6]byte     // next epoch's starting sequence number in DTLS
188
189	// used to save allocating a new buffer for each MAC.
190	inDigestBuf, outDigestBuf []byte
191
192	trafficSecret []byte
193
194	config *Config
195}
196
197func (hc *halfConn) setErrorLocked(err error) error {
198	hc.err = err
199	return err
200}
201
202func (hc *halfConn) error() error {
203	// This should be locked, but I've removed it for the renegotiation
204	// tests since we don't concurrently read and write the same tls.Conn
205	// in any case during testing.
206	err := hc.err
207	return err
208}
209
210// prepareCipherSpec sets the encryption and MAC states
211// that a subsequent changeCipherSpec will use.
212func (hc *halfConn) prepareCipherSpec(version uint16, cipher any, mac macFunction) {
213	hc.wireVersion = version
214	protocolVersion, ok := wireToVersion(version, hc.isDTLS)
215	if !ok {
216		panic("TLS: unknown version")
217	}
218	hc.version = protocolVersion
219	hc.nextCipher = cipher
220	hc.nextMac = mac
221}
222
223// changeCipherSpec changes the encryption and MAC states
224// to the ones previously passed to prepareCipherSpec.
225func (hc *halfConn) changeCipherSpec(config *Config) error {
226	if hc.nextCipher == nil {
227		return alertInternalError
228	}
229	hc.cipher = hc.nextCipher
230	hc.mac = hc.nextMac
231	hc.nextCipher = nil
232	hc.nextMac = nil
233	hc.config = config
234	hc.incEpoch()
235
236	if config.Bugs.NullAllCiphers {
237		hc.cipher = nullCipher{}
238		hc.mac = nil
239	}
240	return nil
241}
242
243// useTrafficSecret sets the current cipher state for TLS 1.3.
244func (hc *halfConn) useTrafficSecret(version uint16, suite *cipherSuite, secret []byte, side trafficDirection) {
245	hc.wireVersion = version
246	protocolVersion, ok := wireToVersion(version, hc.isDTLS)
247	if !ok {
248		panic("TLS: unknown version")
249	}
250	hc.version = protocolVersion
251	hc.cipher = deriveTrafficAEAD(version, suite, secret, side)
252	if hc.config.Bugs.NullAllCiphers {
253		hc.cipher = nullCipher{}
254	}
255	hc.trafficSecret = secret
256	hc.incEpoch()
257}
258
259// resetCipher changes the cipher state back to no encryption to be able
260// to send an unencrypted ClientHello in response to HelloRetryRequest
261// after 0-RTT data was rejected.
262func (hc *halfConn) resetCipher() {
263	hc.cipher = nil
264	hc.incEpoch()
265}
266
267// incSeq increments the sequence number.
268func (hc *halfConn) incSeq(isOutgoing bool) {
269	limit := 0
270	increment := uint64(1)
271	if hc.isDTLS {
272		// Increment up to the epoch in DTLS.
273		limit = 2
274	}
275	for i := 7; i >= limit; i-- {
276		increment += uint64(hc.seq[i])
277		hc.seq[i] = byte(increment)
278		increment >>= 8
279	}
280
281	// Not allowed to let sequence number wrap.
282	// Instead, must renegotiate before it does.
283	// Not likely enough to bother.
284	if increment != 0 {
285		panic("TLS: sequence number wraparound")
286	}
287
288	hc.updateOutSeq()
289}
290
291// incNextSeq increments the starting sequence number for the next epoch.
292func (hc *halfConn) incNextSeq() {
293	for i := len(hc.nextSeq) - 1; i >= 0; i-- {
294		hc.nextSeq[i]++
295		if hc.nextSeq[i] != 0 {
296			return
297		}
298	}
299	panic("TLS: sequence number wraparound")
300}
301
302// incEpoch resets the sequence number. In DTLS, it also increments the epoch
303// half of the sequence number.
304func (hc *halfConn) incEpoch() {
305	if hc.isDTLS {
306		for i := 1; i >= 0; i-- {
307			hc.seq[i]++
308			if hc.seq[i] != 0 {
309				break
310			}
311			if i == 0 {
312				panic("TLS: epoch number wraparound")
313			}
314		}
315		copy(hc.seq[2:], hc.nextSeq[:])
316		for i := range hc.nextSeq {
317			hc.nextSeq[i] = 0
318		}
319	} else {
320		for i := range hc.seq {
321			hc.seq[i] = 0
322		}
323	}
324
325	hc.updateOutSeq()
326}
327
328func (hc *halfConn) updateOutSeq() {
329	if hc.config.Bugs.SequenceNumberMapping != nil {
330		seqU64 := binary.BigEndian.Uint64(hc.seq[:])
331		seqU64 = hc.config.Bugs.SequenceNumberMapping(seqU64)
332		binary.BigEndian.PutUint64(hc.outSeq[:], seqU64)
333
334		// The DTLS epoch cannot be changed.
335		copy(hc.outSeq[:2], hc.seq[:2])
336		return
337	}
338
339	copy(hc.outSeq[:], hc.seq[:])
340}
341
342func (hc *halfConn) recordHeaderLen() int {
343	if hc.isDTLS {
344		return dtlsRecordHeaderLen
345	}
346	return tlsRecordHeaderLen
347}
348
349// removePadding returns an unpadded slice, in constant time, which is a prefix
350// of the input. It also returns a byte which is equal to 255 if the padding
351// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
352func removePadding(payload []byte) ([]byte, byte) {
353	if len(payload) < 1 {
354		return payload, 0
355	}
356
357	paddingLen := payload[len(payload)-1]
358	t := uint(len(payload)-1) - uint(paddingLen)
359	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
360	good := byte(int32(^t) >> 31)
361
362	toCheck := 255 // the maximum possible padding length
363	// The length of the padded data is public, so we can use an if here
364	if toCheck+1 > len(payload) {
365		toCheck = len(payload) - 1
366	}
367
368	for i := 0; i < toCheck; i++ {
369		t := uint(paddingLen) - uint(i)
370		// if i <= paddingLen then the MSB of t is zero
371		mask := byte(int32(^t) >> 31)
372		b := payload[len(payload)-1-i]
373		good &^= mask&paddingLen ^ mask&b
374	}
375
376	// We AND together the bits of good and replicate the result across
377	// all the bits.
378	good &= good << 4
379	good &= good << 2
380	good &= good << 1
381	good = uint8(int8(good) >> 7)
382
383	toRemove := good&paddingLen + 1
384	return payload[:len(payload)-int(toRemove)], good
385}
386
387func roundUp(a, b int) int {
388	return a + (b-a%b)%b
389}
390
391// cbcMode is an interface for block ciphers using cipher block chaining.
392type cbcMode interface {
393	cipher.BlockMode
394	SetIV([]byte)
395}
396
397// decrypt checks and strips the mac and decrypts the data in b. Returns a
398// success boolean, the number of bytes to skip from the start of the record in
399// order to get the application payload, the encrypted record type (or 0
400// if there is none), and an optional alert value.
401func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, contentType recordType, alertValue alert) {
402	recordHeaderLen := hc.recordHeaderLen()
403
404	// pull out payload
405	payload := b.data[recordHeaderLen:]
406
407	macSize := 0
408	if hc.mac != nil {
409		macSize = hc.mac.Size()
410	}
411
412	paddingGood := byte(255)
413	explicitIVLen := 0
414
415	seq := hc.seq[:]
416	if hc.isDTLS {
417		// DTLS sequence numbers are explicit.
418		seq = b.data[3:11]
419	}
420
421	// decrypt
422	if hc.cipher != nil {
423		switch c := hc.cipher.(type) {
424		case cipher.Stream:
425			c.XORKeyStream(payload, payload)
426		case *tlsAead:
427			nonce := seq
428			if c.explicitNonce {
429				explicitIVLen = 8
430				if len(payload) < explicitIVLen {
431					return false, 0, 0, alertBadRecordMAC
432				}
433				nonce = payload[:8]
434				payload = payload[8:]
435			}
436
437			var additionalData []byte
438			if hc.version < VersionTLS13 {
439				additionalData = make([]byte, 13)
440				copy(additionalData, seq)
441				copy(additionalData[8:], b.data[:3])
442				n := len(payload) - c.Overhead()
443				additionalData[11] = byte(n >> 8)
444				additionalData[12] = byte(n)
445			} else {
446				additionalData = b.data[:recordHeaderLen]
447			}
448			var err error
449			payload, err = c.Open(payload[:0], nonce, payload, additionalData)
450			if err != nil {
451				return false, 0, 0, alertBadRecordMAC
452			}
453			b.resize(recordHeaderLen + explicitIVLen + len(payload))
454		case cbcMode:
455			blockSize := c.BlockSize()
456			if hc.version >= VersionTLS11 || hc.isDTLS {
457				explicitIVLen = blockSize
458			}
459
460			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
461				return false, 0, 0, alertBadRecordMAC
462			}
463
464			if explicitIVLen > 0 {
465				c.SetIV(payload[:explicitIVLen])
466				payload = payload[explicitIVLen:]
467			}
468			c.CryptBlocks(payload, payload)
469			payload, paddingGood = removePadding(payload)
470			b.resize(recordHeaderLen + explicitIVLen + len(payload))
471
472			// note that we still have a timing side-channel in the
473			// MAC check, below. An attacker can align the record
474			// so that a correct padding will cause one less hash
475			// block to be calculated. Then they can iteratively
476			// decrypt a record by breaking each byte. See
477			// "Password Interception in a SSL/TLS Channel", Brice
478			// Canvel et al.
479			//
480			// However, our behavior matches OpenSSL, so we leak
481			// only as much as they do.
482		case nullCipher:
483			break
484		default:
485			panic("unknown cipher type")
486		}
487
488		if hc.version >= VersionTLS13 {
489			i := len(payload)
490			for i > 0 && payload[i-1] == 0 {
491				i--
492			}
493			payload = payload[:i]
494			if len(payload) == 0 {
495				return false, 0, 0, alertUnexpectedMessage
496			}
497			contentType = recordType(payload[len(payload)-1])
498			payload = payload[:len(payload)-1]
499			b.resize(recordHeaderLen + len(payload))
500		}
501	}
502
503	// check, strip mac
504	if hc.mac != nil {
505		if len(payload) < macSize {
506			return false, 0, 0, alertBadRecordMAC
507		}
508
509		// strip mac off payload, b.data
510		n := len(payload) - macSize
511		b.data[recordHeaderLen-2] = byte(n >> 8)
512		b.data[recordHeaderLen-1] = byte(n)
513		b.resize(recordHeaderLen + explicitIVLen + n)
514		remoteMAC := payload[n:]
515		localMAC := hc.mac.MAC(hc.inDigestBuf, seq, b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], payload[:n])
516
517		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
518			return false, 0, 0, alertBadRecordMAC
519		}
520		hc.inDigestBuf = localMAC
521	}
522	hc.incSeq(false)
523
524	return true, recordHeaderLen + explicitIVLen, contentType, 0
525}
526
527// padToBlockSize calculates the needed padding block, if any, for a payload.
528// On exit, prefix aliases payload and extends to the end of the last full
529// block of payload. finalBlock is a fresh slice which contains the contents of
530// any suffix of payload as well as the needed padding to make finalBlock a
531// full block.
532func padToBlockSize(payload []byte, blockSize int, config *Config) (prefix, finalBlock []byte) {
533	overrun := len(payload) % blockSize
534	prefix = payload[:len(payload)-overrun]
535
536	paddingLen := blockSize - overrun
537	finalSize := blockSize
538	if config.Bugs.MaxPadding {
539		for paddingLen+blockSize <= 256 {
540			paddingLen += blockSize
541		}
542		finalSize = 256
543	}
544	finalBlock = make([]byte, finalSize)
545	for i := range finalBlock {
546		finalBlock[i] = byte(paddingLen - 1)
547	}
548	if config.Bugs.PaddingFirstByteBad || config.Bugs.PaddingFirstByteBadIf255 && paddingLen == 256 {
549		finalBlock[overrun] ^= 0xff
550	}
551	copy(finalBlock, payload[len(payload)-overrun:])
552	return
553}
554
555// encrypt encrypts and macs the data in b.
556func (hc *halfConn) encrypt(b *block, explicitIVLen int, typ recordType) (bool, alert) {
557	recordHeaderLen := hc.recordHeaderLen()
558
559	// mac
560	if hc.mac != nil {
561		mac := hc.mac.MAC(hc.outDigestBuf, hc.outSeq[0:], b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
562
563		n := len(b.data)
564		b.resize(n + len(mac))
565		copy(b.data[n:], mac)
566		hc.outDigestBuf = mac
567	}
568
569	payload := b.data[recordHeaderLen:]
570
571	// encrypt
572	if hc.cipher != nil {
573		// Add TLS 1.3 padding.
574		if hc.version >= VersionTLS13 {
575			paddingLen := hc.config.Bugs.RecordPadding
576			if hc.config.Bugs.OmitRecordContents {
577				b.resize(recordHeaderLen + paddingLen)
578			} else {
579				b.resize(len(b.data) + 1 + paddingLen)
580				b.data[len(b.data)-paddingLen-1] = byte(typ)
581			}
582			for i := 0; i < paddingLen; i++ {
583				b.data[len(b.data)-paddingLen+i] = 0
584			}
585		}
586
587		switch c := hc.cipher.(type) {
588		case cipher.Stream:
589			c.XORKeyStream(payload, payload)
590		case *tlsAead:
591			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
592			b.resize(len(b.data) + c.Overhead())
593			nonce := hc.outSeq[:]
594			if c.explicitNonce {
595				nonce = b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
596			}
597			payload := b.data[recordHeaderLen+explicitIVLen:]
598			payload = payload[:payloadLen]
599
600			var additionalData []byte
601			if hc.version < VersionTLS13 {
602				additionalData = make([]byte, 13)
603				copy(additionalData, hc.outSeq[:])
604				copy(additionalData[8:], b.data[:3])
605				additionalData[11] = byte(payloadLen >> 8)
606				additionalData[12] = byte(payloadLen)
607			} else {
608				additionalData = make([]byte, 5)
609				copy(additionalData, b.data[:3])
610				n := len(b.data) - recordHeaderLen
611				additionalData[3] = byte(n >> 8)
612				additionalData[4] = byte(n)
613			}
614
615			c.Seal(payload[:0], nonce, payload, additionalData)
616		case cbcMode:
617			blockSize := c.BlockSize()
618			if explicitIVLen > 0 {
619				c.SetIV(payload[:explicitIVLen])
620				payload = payload[explicitIVLen:]
621			}
622			prefix, finalBlock := padToBlockSize(payload, blockSize, hc.config)
623			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
624			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
625			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
626		case nullCipher:
627			break
628		default:
629			panic("unknown cipher type")
630		}
631	}
632
633	// update length to include MAC and any block padding needed.
634	n := len(b.data) - recordHeaderLen
635	b.data[recordHeaderLen-2] = byte(n >> 8)
636	b.data[recordHeaderLen-1] = byte(n)
637	hc.incSeq(true)
638
639	return true, 0
640}
641
642// A block is a simple data buffer.
643type block struct {
644	data []byte
645	off  int // index for Read
646	link *block
647}
648
649// resize resizes block to be n bytes, growing if necessary.
650func (b *block) resize(n int) {
651	if n > cap(b.data) {
652		b.reserve(n)
653	}
654	b.data = b.data[0:n]
655}
656
657// reserve makes sure that block contains a capacity of at least n bytes.
658func (b *block) reserve(n int) {
659	if cap(b.data) >= n {
660		return
661	}
662	m := cap(b.data)
663	if m == 0 {
664		m = 1024
665	}
666	for m < n {
667		m *= 2
668	}
669	data := make([]byte, len(b.data), m)
670	copy(data, b.data)
671	b.data = data
672}
673
674// readFromUntil reads from r into b until b contains at least n bytes
675// or else returns an error.
676func (b *block) readFromUntil(r io.Reader, n int) error {
677	// quick case
678	if len(b.data) >= n {
679		return nil
680	}
681
682	// read until have enough.
683	b.reserve(n)
684	for {
685		m, err := r.Read(b.data[len(b.data):cap(b.data)])
686		b.data = b.data[0 : len(b.data)+m]
687		if len(b.data) >= n {
688			// TODO(bradfitz,agl): slightly suspicious
689			// that we're throwing away r.Read's err here.
690			break
691		}
692		if err != nil {
693			return err
694		}
695	}
696	return nil
697}
698
699func (b *block) Read(p []byte) (n int, err error) {
700	n = copy(p, b.data[b.off:])
701	b.off += n
702	return
703}
704
705// newBlock allocates a new block, from hc's free list if possible.
706func (hc *halfConn) newBlock() *block {
707	b := hc.bfree
708	if b == nil {
709		return new(block)
710	}
711	hc.bfree = b.link
712	b.link = nil
713	b.resize(0)
714	return b
715}
716
717// freeBlock returns a block to hc's free list.
718// The protocol is such that each side only has a block or two on
719// its free list at a time, so there's no need to worry about
720// trimming the list, etc.
721func (hc *halfConn) freeBlock(b *block) {
722	b.link = hc.bfree
723	hc.bfree = b
724}
725
726// splitBlock splits a block after the first n bytes,
727// returning a block with those n bytes and a
728// block with the remainder.  the latter may be nil.
729func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
730	if len(b.data) <= n {
731		return b, nil
732	}
733	bb := hc.newBlock()
734	bb.resize(len(b.data) - n)
735	copy(bb.data, b.data[n:])
736	b.data = b.data[0:n]
737	return b, bb
738}
739
740func (c *Conn) useInTrafficSecret(level encryptionLevel, version uint16, suite *cipherSuite, secret []byte) error {
741	if c.hand.Len() != 0 {
742		return c.in.setErrorLocked(errors.New("tls: buffered handshake messages on cipher change"))
743	}
744	side := serverWrite
745	if !c.isClient {
746		side = clientWrite
747	}
748	if c.config.Bugs.MockQUICTransport != nil {
749		c.config.Bugs.MockQUICTransport.readLevel = level
750		c.config.Bugs.MockQUICTransport.readSecret = secret
751		c.config.Bugs.MockQUICTransport.readCipherSuite = suite.id
752	}
753	c.in.useTrafficSecret(version, suite, secret, side)
754	c.seenHandshakePackEnd = false
755	return nil
756}
757
758func (c *Conn) useOutTrafficSecret(level encryptionLevel, version uint16, suite *cipherSuite, secret []byte) {
759	side := serverWrite
760	if c.isClient {
761		side = clientWrite
762	}
763	if c.config.Bugs.MockQUICTransport != nil {
764		c.config.Bugs.MockQUICTransport.writeLevel = level
765		c.config.Bugs.MockQUICTransport.writeSecret = secret
766		c.config.Bugs.MockQUICTransport.writeCipherSuite = suite.id
767	}
768	c.out.useTrafficSecret(version, suite, secret, side)
769}
770
771func (c *Conn) setSkipEarlyData() {
772	if c.config.Bugs.MockQUICTransport != nil {
773		c.config.Bugs.MockQUICTransport.skipEarlyData = true
774	} else {
775		c.skipEarlyData = true
776	}
777}
778
779func (c *Conn) shouldSkipEarlyData() bool {
780	if c.config.Bugs.MockQUICTransport != nil {
781		return c.config.Bugs.MockQUICTransport.skipEarlyData
782	}
783	return c.skipEarlyData
784}
785
786func (c *Conn) doReadRecord(want recordType) (recordType, *block, error) {
787RestartReadRecord:
788	if c.isDTLS {
789		return c.dtlsDoReadRecord(want)
790	}
791
792	recordHeaderLen := c.in.recordHeaderLen()
793
794	if c.rawInput == nil {
795		c.rawInput = c.in.newBlock()
796	}
797	b := c.rawInput
798
799	// Read header, payload.
800	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
801		// RFC suggests that EOF without an alertCloseNotify is
802		// an error, but popular web sites seem to do this,
803		// so we can't make it an error, outside of tests.
804		if err == io.EOF && c.config.Bugs.ExpectCloseNotify {
805			err = io.ErrUnexpectedEOF
806		}
807		if e, ok := err.(net.Error); !ok || !e.Temporary() {
808			c.in.setErrorLocked(err)
809		}
810		return 0, nil, err
811	}
812
813	typ := recordType(b.data[0])
814
815	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
816	// start with a uint16 length where the MSB is set and the first record
817	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
818	// an SSLv2 client.
819	if want == recordTypeHandshake && typ == 0x80 {
820		c.sendAlert(alertProtocolVersion)
821		return 0, nil, c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
822	}
823
824	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
825	n := int(b.data[3])<<8 | int(b.data[4])
826
827	// Alerts sent near version negotiation do not have a well-defined
828	// record-layer version prior to TLS 1.3. (In TLS 1.3, the record-layer
829	// version is irrelevant.)
830	if typ != recordTypeAlert {
831		var expect uint16
832		if c.haveVers {
833			expect = c.vers
834			if c.vers >= VersionTLS13 {
835				expect = VersionTLS12
836			}
837		} else {
838			expect = c.config.Bugs.ExpectInitialRecordVersion
839		}
840		if expect != 0 && vers != expect {
841			c.sendAlert(alertProtocolVersion)
842			return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, expect))
843		}
844	}
845	if n > maxCiphertext {
846		c.sendAlert(alertRecordOverflow)
847		return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
848	}
849	if !c.haveVers {
850		// First message, be extra suspicious:
851		// this might not be a TLS client.
852		// Bail out before reading a full 'body', if possible.
853		// The current max version is 3.1.
854		// If the version is >= 16.0, it's probably not real.
855		// Similarly, a clientHello message encodes in
856		// well under a kilobyte.  If the length is >= 12 kB,
857		// it's probably not real.
858		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
859			c.sendAlert(alertUnexpectedMessage)
860			return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
861		}
862	}
863	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
864		if err == io.EOF {
865			err = io.ErrUnexpectedEOF
866		}
867		if e, ok := err.(net.Error); !ok || !e.Temporary() {
868			c.in.setErrorLocked(err)
869		}
870		return 0, nil, err
871	}
872
873	// Process message.
874	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
875	ok, off, encTyp, alertValue := c.in.decrypt(b)
876
877	// Handle skipping over early data.
878	if !ok && c.skipEarlyData {
879		goto RestartReadRecord
880	}
881
882	// If the server is expecting a second ClientHello (in response to
883	// a HelloRetryRequest) and the client sends early data, there
884	// won't be a decryption failure but it still needs to be skipped.
885	if c.in.cipher == nil && typ == recordTypeApplicationData && c.skipEarlyData {
886		goto RestartReadRecord
887	}
888
889	if !ok {
890		return 0, nil, c.in.setErrorLocked(c.sendAlert(alertValue))
891	}
892	b.off = off
893	c.skipEarlyData = false
894
895	if c.vers >= VersionTLS13 && c.in.cipher != nil {
896		if typ != recordTypeApplicationData {
897			return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: outer record type is not application data"))
898		}
899		typ = encTyp
900	}
901
902	length := len(b.data[b.off:])
903	if c.config.Bugs.ExpectRecordSplitting && typ == recordTypeApplicationData && length != 1 && !c.seenOneByteRecord {
904		return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: application data records were not split"))
905	}
906
907	c.seenOneByteRecord = typ == recordTypeApplicationData && length == 1
908	return typ, b, nil
909}
910
911func (c *Conn) readTLS13ChangeCipherSpec() error {
912	if c.config.Bugs.MockQUICTransport != nil {
913		return nil
914	}
915	if !c.expectTLS13ChangeCipherSpec {
916		panic("c.expectTLS13ChangeCipherSpec not set")
917	}
918
919	// Read the ChangeCipherSpec.
920	if c.rawInput == nil {
921		c.rawInput = c.in.newBlock()
922	}
923	b := c.rawInput
924	if err := b.readFromUntil(c.conn, 1); err != nil {
925		return c.in.setErrorLocked(fmt.Errorf("tls: error reading TLS 1.3 ChangeCipherSpec: %s", err))
926	}
927	if recordType(b.data[0]) == recordTypeAlert {
928		// If the client is sending an alert, allow the ChangeCipherSpec
929		// to be skipped. It may be rejecting a sufficiently malformed
930		// ServerHello that it can't parse out the version.
931		c.expectTLS13ChangeCipherSpec = false
932		return nil
933	}
934	if err := b.readFromUntil(c.conn, 6); err != nil {
935		return c.in.setErrorLocked(fmt.Errorf("tls: error reading TLS 1.3 ChangeCipherSpec: %s", err))
936	}
937
938	// Check they match that we expect.
939	expected := [6]byte{byte(recordTypeChangeCipherSpec), 3, 1, 0, 1, 1}
940	if c.vers >= VersionTLS13 {
941		expected[2] = 3
942	}
943	if !bytes.Equal(b.data[:6], expected[:]) {
944		return c.in.setErrorLocked(fmt.Errorf("tls: error invalid TLS 1.3 ChangeCipherSpec: %x", b.data[:6]))
945	}
946
947	// Discard the data.
948	b, c.rawInput = c.in.splitBlock(b, 6)
949	c.in.freeBlock(b)
950
951	c.expectTLS13ChangeCipherSpec = false
952	return nil
953}
954
955// readRecord reads the next TLS record from the connection
956// and updates the record layer state.
957// c.in.Mutex <= L; c.input == nil.
958func (c *Conn) readRecord(want recordType) error {
959	// Caller must be in sync with connection:
960	// handshake data if handshake not yet completed,
961	// else application data.
962	switch want {
963	default:
964		c.sendAlert(alertInternalError)
965		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
966	case recordTypeChangeCipherSpec:
967		if c.handshakeComplete {
968			c.sendAlert(alertInternalError)
969			return c.in.setErrorLocked(errors.New("tls: ChangeCipherSpec requested after handshake complete"))
970		}
971	case recordTypeApplicationData, recordTypeAlert, recordTypeHandshake:
972		break
973	}
974
975	if c.expectTLS13ChangeCipherSpec {
976		if err := c.readTLS13ChangeCipherSpec(); err != nil {
977			return err
978		}
979	}
980
981Again:
982	doReadRecord := c.doReadRecord
983	if c.config.Bugs.MockQUICTransport != nil {
984		doReadRecord = c.config.Bugs.MockQUICTransport.readRecord
985	}
986	typ, b, err := doReadRecord(want)
987	if err != nil {
988		return err
989	}
990	data := b.data[b.off:]
991	max := maxPlaintext
992	if c.config.Bugs.MaxReceivePlaintext != 0 {
993		max = c.config.Bugs.MaxReceivePlaintext
994	}
995	if len(data) > max {
996		err := c.sendAlert(alertRecordOverflow)
997		c.in.freeBlock(b)
998		return c.in.setErrorLocked(err)
999	}
1000
1001	if typ != recordTypeHandshake {
1002		c.seenHandshakePackEnd = false
1003	} else if c.seenHandshakePackEnd {
1004		c.in.freeBlock(b)
1005		return c.in.setErrorLocked(errors.New("tls: peer violated ExpectPackedEncryptedHandshake"))
1006	}
1007
1008	switch typ {
1009	default:
1010		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1011
1012	case recordTypeAlert:
1013		if len(data) != 2 {
1014			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1015			break
1016		}
1017		if alert(data[1]) == alertCloseNotify {
1018			c.in.setErrorLocked(io.EOF)
1019			break
1020		}
1021		switch data[0] {
1022		case alertLevelWarning:
1023			// drop on the floor
1024			c.in.freeBlock(b)
1025			goto Again
1026		case alertLevelError:
1027			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
1028		default:
1029			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1030		}
1031
1032	case recordTypeChangeCipherSpec:
1033		if typ != want || len(data) != 1 || data[0] != 1 {
1034			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1035			break
1036		}
1037		if c.hand.Len() != 0 {
1038			c.in.setErrorLocked(errors.New("tls: buffered handshake messages on cipher change"))
1039			break
1040		}
1041		if err := c.in.changeCipherSpec(c.config); err != nil {
1042			c.in.setErrorLocked(c.sendAlert(err.(alert)))
1043		}
1044
1045	case recordTypeApplicationData:
1046		if typ != want {
1047			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1048			break
1049		}
1050		c.input = b
1051		b = nil
1052
1053	case recordTypeHandshake:
1054		// Allow handshake data while reading application data to
1055		// trigger post-handshake messages.
1056		// TODO(rsc): Should at least pick off connection close.
1057		if typ != want && want != recordTypeApplicationData {
1058			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
1059		}
1060		c.hand.Write(data)
1061		if pack := c.config.Bugs.ExpectPackedEncryptedHandshake; pack > 0 && len(data) < pack && c.out.cipher != nil {
1062			c.seenHandshakePackEnd = true
1063		}
1064	}
1065
1066	if b != nil {
1067		c.in.freeBlock(b)
1068	}
1069	return c.in.err
1070}
1071
1072// sendAlert sends a TLS alert message.
1073// c.out.Mutex <= L.
1074func (c *Conn) sendAlertLocked(level byte, err alert) error {
1075	c.tmp[0] = level
1076	c.tmp[1] = byte(err)
1077	if c.config.Bugs.FragmentAlert {
1078		c.writeRecord(recordTypeAlert, c.tmp[0:1])
1079		c.writeRecord(recordTypeAlert, c.tmp[1:2])
1080	} else if c.config.Bugs.DoubleAlert {
1081		copy(c.tmp[2:4], c.tmp[0:2])
1082		c.writeRecord(recordTypeAlert, c.tmp[0:4])
1083	} else {
1084		c.writeRecord(recordTypeAlert, c.tmp[0:2])
1085	}
1086	// Error alerts are fatal to the connection.
1087	if level == alertLevelError {
1088		return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
1089	}
1090	return nil
1091}
1092
1093// sendAlert sends a TLS alert message.
1094// L < c.out.Mutex.
1095func (c *Conn) sendAlert(err alert) error {
1096	level := byte(alertLevelError)
1097	if err == alertNoRenegotiation || err == alertCloseNotify {
1098		level = alertLevelWarning
1099	}
1100	return c.SendAlert(level, err)
1101}
1102
1103func (c *Conn) SendAlert(level byte, err alert) error {
1104	c.out.Lock()
1105	defer c.out.Unlock()
1106	return c.sendAlertLocked(level, err)
1107}
1108
1109// writeV2Record writes a record for a V2ClientHello.
1110func (c *Conn) writeV2Record(data []byte) (n int, err error) {
1111	record := make([]byte, 2+len(data))
1112	record[0] = uint8(len(data)>>8) | 0x80
1113	record[1] = uint8(len(data))
1114	copy(record[2:], data)
1115	return c.conn.Write(record)
1116}
1117
1118// writeRecord writes a TLS record with the given type and payload
1119// to the connection and updates the record layer state.
1120// c.out.Mutex <= L.
1121func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
1122	c.seenHandshakePackEnd = false
1123	if typ == recordTypeHandshake {
1124		msgType := data[0]
1125		if c.config.Bugs.SendWrongMessageType != 0 && msgType == c.config.Bugs.SendWrongMessageType {
1126			msgType += 42
1127		}
1128		if msgType != data[0] {
1129			data = append([]byte{msgType}, data[1:]...)
1130		}
1131
1132		if c.config.Bugs.SendTrailingMessageData != 0 && msgType == c.config.Bugs.SendTrailingMessageData {
1133			// Add a 0 to the body.
1134			newData := make([]byte, len(data)+1)
1135			copy(newData, data)
1136
1137			// Fix the header.
1138			newLen := len(newData) - 4
1139			newData[1] = byte(newLen >> 16)
1140			newData[2] = byte(newLen >> 8)
1141			newData[3] = byte(newLen)
1142
1143			data = newData
1144		}
1145
1146		if c.config.Bugs.TrailingDataWithFinished && msgType == typeFinished {
1147			// Add a 0 to the record. Note unused bytes in |data| may be owned by the
1148			// caller, so we force a new allocation.
1149			data = append(data[:len(data):len(data)], 0)
1150		}
1151	}
1152
1153	if c.isDTLS {
1154		return c.dtlsWriteRecord(typ, data)
1155	}
1156	if c.config.Bugs.MockQUICTransport != nil {
1157		return c.config.Bugs.MockQUICTransport.writeRecord(typ, data)
1158	}
1159
1160	if typ == recordTypeHandshake {
1161		if c.config.Bugs.SendHelloRequestBeforeEveryHandshakeMessage {
1162			newData := make([]byte, 0, 4+len(data))
1163			newData = append(newData, typeHelloRequest, 0, 0, 0)
1164			newData = append(newData, data...)
1165			data = newData
1166		}
1167
1168		if c.config.Bugs.PackHandshakeFlight {
1169			c.pendingFlight.Write(data)
1170			return len(data), nil
1171		}
1172	}
1173
1174	// Flush buffered data before writing anything.
1175	if err := c.flushHandshake(); err != nil {
1176		return 0, err
1177	}
1178
1179	if typ == recordTypeApplicationData && c.config.Bugs.SendPostHandshakeChangeCipherSpec {
1180		if _, err := c.doWriteRecord(recordTypeChangeCipherSpec, []byte{1}); err != nil {
1181			return 0, err
1182		}
1183	}
1184
1185	return c.doWriteRecord(typ, data)
1186}
1187
1188func (c *Conn) doWriteRecord(typ recordType, data []byte) (n int, err error) {
1189	recordHeaderLen := c.out.recordHeaderLen()
1190	b := c.out.newBlock()
1191	first := true
1192	isClientHello := typ == recordTypeHandshake && len(data) > 0 && data[0] == typeClientHello
1193	for len(data) > 0 || first {
1194		m := len(data)
1195		if m > maxPlaintext && !c.config.Bugs.SendLargeRecords {
1196			m = maxPlaintext
1197		}
1198		if typ == recordTypeHandshake && c.config.Bugs.MaxHandshakeRecordLength > 0 && m > c.config.Bugs.MaxHandshakeRecordLength {
1199			m = c.config.Bugs.MaxHandshakeRecordLength
1200			// By default, do not fragment the client_version or
1201			// server_version, which are located in the first 6
1202			// bytes.
1203			if first && isClientHello && !c.config.Bugs.FragmentClientVersion && m < 6 {
1204				m = 6
1205			}
1206		}
1207		explicitIVLen := 0
1208		explicitIVIsSeq := false
1209		first = false
1210
1211		var cbc cbcMode
1212		if c.out.version >= VersionTLS11 {
1213			var ok bool
1214			if cbc, ok = c.out.cipher.(cbcMode); ok {
1215				explicitIVLen = cbc.BlockSize()
1216			}
1217		}
1218		if explicitIVLen == 0 {
1219			if aead, ok := c.out.cipher.(*tlsAead); ok && aead.explicitNonce {
1220				explicitIVLen = 8
1221				// The AES-GCM construction in TLS has an
1222				// explicit nonce so that the nonce can be
1223				// random. However, the nonce is only 8 bytes
1224				// which is too small for a secure, random
1225				// nonce. Therefore we use the sequence number
1226				// as the nonce.
1227				explicitIVIsSeq = true
1228			}
1229		}
1230		b.resize(recordHeaderLen + explicitIVLen + m)
1231		b.data[0] = byte(typ)
1232		if c.vers >= VersionTLS13 && c.out.cipher != nil {
1233			b.data[0] = byte(recordTypeApplicationData)
1234			if outerType := c.config.Bugs.OuterRecordType; outerType != 0 {
1235				b.data[0] = byte(outerType)
1236			}
1237		}
1238		vers := c.vers
1239		if vers == 0 {
1240			// Some TLS servers fail if the record version is
1241			// greater than TLS 1.0 for the initial ClientHello.
1242			//
1243			// TLS 1.3 fixes the version number in the record
1244			// layer to {3, 1}.
1245			vers = VersionTLS10
1246		}
1247		if c.vers >= VersionTLS13 || c.out.version >= VersionTLS13 {
1248			vers = VersionTLS12
1249		}
1250
1251		if c.config.Bugs.SendRecordVersion != 0 {
1252			vers = c.config.Bugs.SendRecordVersion
1253		}
1254		if c.vers == 0 && c.config.Bugs.SendInitialRecordVersion != 0 {
1255			vers = c.config.Bugs.SendInitialRecordVersion
1256		}
1257		b.data[1] = byte(vers >> 8)
1258		b.data[2] = byte(vers)
1259		b.data[3] = byte(m >> 8)
1260		b.data[4] = byte(m)
1261		if explicitIVLen > 0 {
1262			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
1263			if explicitIVIsSeq {
1264				copy(explicitIV, c.out.seq[:])
1265			} else {
1266				if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
1267					break
1268				}
1269			}
1270		}
1271		copy(b.data[recordHeaderLen+explicitIVLen:], data)
1272		c.out.encrypt(b, explicitIVLen, typ)
1273		_, err = c.conn.Write(b.data)
1274		if err != nil {
1275			break
1276		}
1277		n += m
1278		data = data[m:]
1279	}
1280	c.out.freeBlock(b)
1281
1282	if typ == recordTypeChangeCipherSpec && c.vers < VersionTLS13 {
1283		err = c.out.changeCipherSpec(c.config)
1284		if err != nil {
1285			return n, c.sendAlertLocked(alertLevelError, err.(alert))
1286		}
1287	}
1288	return
1289}
1290
1291func (c *Conn) flushHandshake() error {
1292	if c.isDTLS {
1293		return c.dtlsFlushHandshake()
1294	}
1295
1296	for c.pendingFlight.Len() > 0 {
1297		var buf [maxPlaintext]byte
1298		n, _ := c.pendingFlight.Read(buf[:])
1299		if _, err := c.doWriteRecord(recordTypeHandshake, buf[:n]); err != nil {
1300			return err
1301		}
1302	}
1303
1304	c.pendingFlight.Reset()
1305	return nil
1306}
1307
1308func (c *Conn) doReadHandshake() ([]byte, error) {
1309	if c.isDTLS {
1310		return c.dtlsDoReadHandshake()
1311	}
1312
1313	for c.hand.Len() < 4 {
1314		if err := c.in.err; err != nil {
1315			return nil, err
1316		}
1317		if err := c.readRecord(recordTypeHandshake); err != nil {
1318			return nil, err
1319		}
1320	}
1321
1322	data := c.hand.Bytes()
1323	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
1324	if n > maxHandshake {
1325		return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
1326	}
1327	for c.hand.Len() < 4+n {
1328		if err := c.in.err; err != nil {
1329			return nil, err
1330		}
1331		if err := c.readRecord(recordTypeHandshake); err != nil {
1332			return nil, err
1333		}
1334	}
1335	return c.hand.Next(4 + n), nil
1336}
1337
1338// readHandshake reads the next handshake message from
1339// the record layer.
1340// c.in.Mutex < L; c.out.Mutex < L.
1341func (c *Conn) readHandshake() (any, error) {
1342	data, err := c.doReadHandshake()
1343	if err != nil {
1344		return nil, err
1345	}
1346
1347	var m handshakeMessage
1348	switch data[0] {
1349	case typeHelloRequest:
1350		m = new(helloRequestMsg)
1351	case typeClientHello:
1352		m = &clientHelloMsg{
1353			isDTLS: c.isDTLS,
1354		}
1355	case typeServerHello:
1356		m = &serverHelloMsg{
1357			isDTLS: c.isDTLS,
1358		}
1359	case typeNewSessionTicket:
1360		m = &newSessionTicketMsg{
1361			vers:   c.wireVersion,
1362			isDTLS: c.isDTLS,
1363		}
1364	case typeEncryptedExtensions:
1365		if c.isClient {
1366			m = new(encryptedExtensionsMsg)
1367		} else {
1368			m = new(clientEncryptedExtensionsMsg)
1369		}
1370	case typeCertificate:
1371		m = &certificateMsg{
1372			hasRequestContext: c.vers >= VersionTLS13,
1373		}
1374	case typeCompressedCertificate:
1375		m = new(compressedCertificateMsg)
1376	case typeCertificateRequest:
1377		m = &certificateRequestMsg{
1378			vers:                  c.wireVersion,
1379			hasSignatureAlgorithm: c.vers >= VersionTLS12,
1380			hasRequestContext:     c.vers >= VersionTLS13,
1381		}
1382	case typeCertificateStatus:
1383		m = new(certificateStatusMsg)
1384	case typeServerKeyExchange:
1385		m = new(serverKeyExchangeMsg)
1386	case typeServerHelloDone:
1387		m = new(serverHelloDoneMsg)
1388	case typeClientKeyExchange:
1389		m = new(clientKeyExchangeMsg)
1390	case typeCertificateVerify:
1391		m = &certificateVerifyMsg{
1392			hasSignatureAlgorithm: c.vers >= VersionTLS12,
1393		}
1394	case typeNextProtocol:
1395		m = new(nextProtoMsg)
1396	case typeFinished:
1397		m = new(finishedMsg)
1398	case typeHelloVerifyRequest:
1399		m = new(helloVerifyRequestMsg)
1400	case typeChannelID:
1401		m = new(channelIDMsg)
1402	case typeKeyUpdate:
1403		m = new(keyUpdateMsg)
1404	case typeEndOfEarlyData:
1405		m = new(endOfEarlyDataMsg)
1406	default:
1407		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1408	}
1409
1410	// The handshake message unmarshallers
1411	// expect to be able to keep references to data,
1412	// so pass in a fresh copy that won't be overwritten.
1413	data = append([]byte(nil), data...)
1414
1415	if data[0] == typeServerHello && len(data) >= 38 {
1416		vers := uint16(data[4])<<8 | uint16(data[5])
1417		if vers == VersionTLS12 && bytes.Equal(data[6:38], tls13HelloRetryRequest) {
1418			m = new(helloRetryRequestMsg)
1419		}
1420	}
1421
1422	if !m.unmarshal(data) {
1423		return nil, c.in.setErrorLocked(c.sendAlert(alertDecodeError))
1424	}
1425	return m, nil
1426}
1427
1428// skipPacket processes all the DTLS records in packet. It updates
1429// sequence number expectations but otherwise ignores them.
1430func (c *Conn) skipPacket(packet []byte) error {
1431	for len(packet) > 0 {
1432		if len(packet) < 13 {
1433			return errors.New("tls: bad packet")
1434		}
1435		// Dropped packets are completely ignored save to update
1436		// expected sequence numbers for this and the next epoch. (We
1437		// don't assert on the contents of the packets both for
1438		// simplicity and because a previous test with one shorter
1439		// timeout schedule would have done so.)
1440		epoch := packet[3:5]
1441		seq := packet[5:11]
1442		length := uint16(packet[11])<<8 | uint16(packet[12])
1443		if bytes.Equal(c.in.seq[:2], epoch) {
1444			if bytes.Compare(seq, c.in.seq[2:]) < 0 {
1445				return errors.New("tls: sequence mismatch")
1446			}
1447			copy(c.in.seq[2:], seq)
1448			c.in.incSeq(false)
1449		} else {
1450			if bytes.Compare(seq, c.in.nextSeq[:]) < 0 {
1451				return errors.New("tls: sequence mismatch")
1452			}
1453			copy(c.in.nextSeq[:], seq)
1454			c.in.incNextSeq()
1455		}
1456		if len(packet) < 13+int(length) {
1457			return errors.New("tls: bad packet")
1458		}
1459		packet = packet[13+length:]
1460	}
1461	return nil
1462}
1463
1464// simulatePacketLoss simulates the loss of a handshake leg from the
1465// peer based on the schedule in c.config.Bugs. If resendFunc is
1466// non-nil, it is called after each simulated timeout to retransmit
1467// handshake messages from the local end. This is used in cases where
1468// the peer retransmits on a stale Finished rather than a timeout.
1469func (c *Conn) simulatePacketLoss(resendFunc func()) error {
1470	if len(c.config.Bugs.TimeoutSchedule) == 0 {
1471		return nil
1472	}
1473	if !c.isDTLS {
1474		return errors.New("tls: TimeoutSchedule may only be set in DTLS")
1475	}
1476	if c.config.Bugs.PacketAdaptor == nil {
1477		return errors.New("tls: TimeoutSchedule set without PacketAdapter")
1478	}
1479	for _, timeout := range c.config.Bugs.TimeoutSchedule {
1480		// Simulate a timeout.
1481		packets, err := c.config.Bugs.PacketAdaptor.SendReadTimeout(timeout)
1482		if err != nil {
1483			return err
1484		}
1485		for _, packet := range packets {
1486			if err := c.skipPacket(packet); err != nil {
1487				return err
1488			}
1489		}
1490		if resendFunc != nil {
1491			resendFunc()
1492		}
1493	}
1494	return nil
1495}
1496
1497func (c *Conn) SendHalfHelloRequest() error {
1498	if err := c.Handshake(); err != nil {
1499		return err
1500	}
1501
1502	c.out.Lock()
1503	defer c.out.Unlock()
1504
1505	if _, err := c.writeRecord(recordTypeHandshake, []byte{typeHelloRequest, 0}); err != nil {
1506		return err
1507	}
1508	return c.flushHandshake()
1509}
1510
1511// Write writes data to the connection.
1512func (c *Conn) Write(b []byte) (int, error) {
1513	if err := c.Handshake(); err != nil {
1514		return 0, err
1515	}
1516
1517	c.out.Lock()
1518	defer c.out.Unlock()
1519
1520	if err := c.out.err; err != nil {
1521		return 0, err
1522	}
1523
1524	if !c.handshakeComplete {
1525		return 0, alertInternalError
1526	}
1527
1528	if c.keyUpdateRequested {
1529		if err := c.sendKeyUpdateLocked(keyUpdateNotRequested); err != nil {
1530			return 0, err
1531		}
1532		c.keyUpdateRequested = false
1533	}
1534
1535	if c.config.Bugs.SendSpuriousAlert != 0 {
1536		c.sendAlertLocked(alertLevelError, c.config.Bugs.SendSpuriousAlert)
1537	}
1538
1539	if c.config.Bugs.SendHelloRequestBeforeEveryAppDataRecord {
1540		c.writeRecord(recordTypeHandshake, []byte{typeHelloRequest, 0, 0, 0})
1541		c.flushHandshake()
1542	}
1543
1544	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
1545	// attack when using block mode ciphers due to predictable IVs.
1546	// This can be prevented by splitting each Application Data
1547	// record into two records, effectively randomizing the IV.
1548	//
1549	// http://www.openssl.org/~bodo/tls-cbc.txt
1550	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
1551	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
1552
1553	var m int
1554	if len(b) > 1 && c.vers <= VersionTLS10 && !c.isDTLS {
1555		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
1556			n, err := c.writeRecord(recordTypeApplicationData, b[:1])
1557			if err != nil {
1558				return n, c.out.setErrorLocked(err)
1559			}
1560			m, b = 1, b[1:]
1561		}
1562	}
1563
1564	n, err := c.writeRecord(recordTypeApplicationData, b)
1565	return n + m, c.out.setErrorLocked(err)
1566}
1567
1568func (c *Conn) processTLS13NewSessionTicket(newSessionTicket *newSessionTicketMsg, cipherSuite *cipherSuite) error {
1569	if c.config.Bugs.ExpectGREASE && !newSessionTicket.hasGREASEExtension {
1570		return errors.New("tls: no GREASE ticket extension found")
1571	}
1572
1573	if c.config.Bugs.ExpectTicketEarlyData && newSessionTicket.maxEarlyDataSize == 0 {
1574		return errors.New("tls: no early_data ticket extension found")
1575	}
1576
1577	if c.config.Bugs.ExpectNoNewSessionTicket {
1578		return errors.New("tls: received unexpected NewSessionTicket")
1579	}
1580
1581	if c.config.ClientSessionCache == nil || newSessionTicket.ticketLifetime == 0 {
1582		return nil
1583	}
1584
1585	session := &ClientSessionState{
1586		sessionTicket:               newSessionTicket.ticket,
1587		vers:                        c.vers,
1588		wireVersion:                 c.wireVersion,
1589		cipherSuite:                 cipherSuite,
1590		secret:                      deriveSessionPSK(cipherSuite, c.wireVersion, c.resumptionSecret, newSessionTicket.ticketNonce),
1591		serverCertificates:          c.peerCertificates,
1592		sctList:                     c.sctList,
1593		ocspResponse:                c.ocspResponse,
1594		ticketCreationTime:          c.config.time(),
1595		ticketExpiration:            c.config.time().Add(time.Duration(newSessionTicket.ticketLifetime) * time.Second),
1596		ticketAgeAdd:                newSessionTicket.ticketAgeAdd,
1597		maxEarlyDataSize:            newSessionTicket.maxEarlyDataSize,
1598		earlyALPN:                   c.clientProtocol,
1599		hasApplicationSettings:      c.hasApplicationSettings,
1600		localApplicationSettings:    c.localApplicationSettings,
1601		peerApplicationSettings:     c.peerApplicationSettings,
1602		hasApplicationSettingsOld:   c.hasApplicationSettingsOld,
1603		localApplicationSettingsOld: c.localApplicationSettingsOld,
1604		peerApplicationSettingsOld:  c.peerApplicationSettingsOld,
1605	}
1606
1607	cacheKey := clientSessionCacheKey(c.conn.RemoteAddr(), c.config)
1608	_, ok := c.config.ClientSessionCache.Get(cacheKey)
1609	if !ok || !c.config.Bugs.UseFirstSessionTicket {
1610		c.config.ClientSessionCache.Put(cacheKey, session)
1611	}
1612	return nil
1613}
1614
1615func (c *Conn) handlePostHandshakeMessage() error {
1616	msg, err := c.readHandshake()
1617	if err != nil {
1618		return err
1619	}
1620
1621	if c.vers < VersionTLS13 {
1622		if !c.isClient {
1623			c.sendAlert(alertUnexpectedMessage)
1624			return errors.New("tls: unexpected post-handshake message")
1625		}
1626
1627		_, ok := msg.(*helloRequestMsg)
1628		if !ok {
1629			c.sendAlert(alertUnexpectedMessage)
1630			return alertUnexpectedMessage
1631		}
1632
1633		c.handshakeComplete = false
1634		return c.Handshake()
1635	}
1636
1637	if c.isClient {
1638		if newSessionTicket, ok := msg.(*newSessionTicketMsg); ok {
1639			return c.processTLS13NewSessionTicket(newSessionTicket, c.cipherSuite)
1640		}
1641	}
1642
1643	if keyUpdate, ok := msg.(*keyUpdateMsg); ok {
1644		c.keyUpdateSeen = true
1645
1646		if c.config.Bugs.RejectUnsolicitedKeyUpdate {
1647			return errors.New("tls: unexpected KeyUpdate message")
1648		}
1649		if err := c.useInTrafficSecret(encryptionApplication, c.in.wireVersion, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), c.wireVersion, c.in.trafficSecret)); err != nil {
1650			return err
1651		}
1652		if keyUpdate.keyUpdateRequest == keyUpdateRequested {
1653			c.keyUpdateRequested = true
1654		}
1655		return nil
1656	}
1657
1658	c.sendAlert(alertUnexpectedMessage)
1659	return errors.New("tls: unexpected post-handshake message")
1660}
1661
1662// Reads a KeyUpdate acknowledgment from the peer. There may not be any
1663// application data records before the message.
1664func (c *Conn) ReadKeyUpdateACK() error {
1665	c.in.Lock()
1666	defer c.in.Unlock()
1667
1668	msg, err := c.readHandshake()
1669	if err != nil {
1670		return err
1671	}
1672
1673	keyUpdate, ok := msg.(*keyUpdateMsg)
1674	if !ok {
1675		c.sendAlert(alertUnexpectedMessage)
1676		return fmt.Errorf("tls: unexpected message (%T) when reading KeyUpdate", msg)
1677	}
1678
1679	if keyUpdate.keyUpdateRequest != keyUpdateNotRequested {
1680		return errors.New("tls: received invalid KeyUpdate message")
1681	}
1682
1683	return c.useInTrafficSecret(encryptionApplication, c.in.wireVersion, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), c.wireVersion, c.in.trafficSecret))
1684}
1685
1686func (c *Conn) Renegotiate() error {
1687	if !c.isClient {
1688		helloReq := new(helloRequestMsg).marshal()
1689		if c.config.Bugs.BadHelloRequest != nil {
1690			helloReq = c.config.Bugs.BadHelloRequest
1691		}
1692		c.writeRecord(recordTypeHandshake, helloReq)
1693		c.flushHandshake()
1694	}
1695
1696	c.handshakeComplete = false
1697	return c.Handshake()
1698}
1699
1700// Read can be made to time out and return a net.Error with Timeout() == true
1701// after a fixed time limit; see SetDeadline and SetReadDeadline.
1702func (c *Conn) Read(b []byte) (n int, err error) {
1703	if err = c.Handshake(); err != nil {
1704		return
1705	}
1706
1707	c.in.Lock()
1708	defer c.in.Unlock()
1709
1710	// Some OpenSSL servers send empty records in order to randomize the
1711	// CBC IV. So this loop ignores a limited number of empty records.
1712	const maxConsecutiveEmptyRecords = 100
1713	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
1714		for c.input == nil && c.in.err == nil {
1715			if err := c.readRecord(recordTypeApplicationData); err != nil {
1716				// Soft error, like EAGAIN
1717				return 0, err
1718			}
1719			for c.hand.Len() > 0 {
1720				// We received handshake bytes, indicating a
1721				// post-handshake message.
1722				if err := c.handlePostHandshakeMessage(); err != nil {
1723					return 0, err
1724				}
1725			}
1726		}
1727		if err := c.in.err; err != nil {
1728			return 0, err
1729		}
1730
1731		n, err = c.input.Read(b)
1732		if c.input.off >= len(c.input.data) || c.isDTLS {
1733			c.in.freeBlock(c.input)
1734			c.input = nil
1735		}
1736
1737		// If a close-notify alert is waiting, read it so that
1738		// we can return (n, EOF) instead of (n, nil), to signal
1739		// to the HTTP response reading goroutine that the
1740		// connection is now closed. This eliminates a race
1741		// where the HTTP response reading goroutine would
1742		// otherwise not observe the EOF until its next read,
1743		// by which time a client goroutine might have already
1744		// tried to reuse the HTTP connection for a new
1745		// request.
1746		// See https://codereview.appspot.com/76400046
1747		// and http://golang.org/issue/3514
1748		if ri := c.rawInput; ri != nil &&
1749			n != 0 && err == nil &&
1750			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
1751			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
1752				err = recErr // will be io.EOF on closeNotify
1753			}
1754		}
1755
1756		if n != 0 || err != nil {
1757			return n, err
1758		}
1759	}
1760
1761	return 0, io.ErrNoProgress
1762}
1763
1764// Close closes the connection.
1765func (c *Conn) Close() error {
1766	var alertErr error
1767
1768	c.handshakeMutex.Lock()
1769	defer c.handshakeMutex.Unlock()
1770	if c.handshakeComplete && !c.config.Bugs.NoCloseNotify {
1771		alert := alertCloseNotify
1772		if c.config.Bugs.SendAlertOnShutdown != 0 {
1773			alert = c.config.Bugs.SendAlertOnShutdown
1774		}
1775		alertErr = c.sendAlert(alert)
1776		// Clear local alerts when sending alerts so we continue to wait
1777		// for the peer rather than closing the socket early.
1778		if opErr, ok := alertErr.(*net.OpError); ok && opErr.Op == "local error" {
1779			alertErr = nil
1780		}
1781	}
1782
1783	// Consume a close_notify from the peer if one hasn't been received
1784	// already. This avoids the peer from failing |SSL_shutdown| due to a
1785	// write failing.
1786	if c.handshakeComplete && alertErr == nil && c.config.Bugs.ExpectCloseNotify {
1787		for c.in.error() == nil {
1788			c.readRecord(recordTypeAlert)
1789		}
1790		if c.in.error() != io.EOF {
1791			alertErr = c.in.error()
1792		}
1793	}
1794
1795	if err := c.conn.Close(); err != nil {
1796		return err
1797	}
1798	return alertErr
1799}
1800
1801// Handshake runs the client or server handshake
1802// protocol if it has not yet been run.
1803// Most uses of this package need not call Handshake
1804// explicitly: the first Read or Write will call it automatically.
1805func (c *Conn) Handshake() error {
1806	c.handshakeMutex.Lock()
1807	defer c.handshakeMutex.Unlock()
1808	if err := c.handshakeErr; err != nil {
1809		return err
1810	}
1811	if c.handshakeComplete {
1812		return nil
1813	}
1814
1815	if c.isDTLS && c.config.Bugs.SendSplitAlert {
1816		c.conn.Write([]byte{
1817			byte(recordTypeAlert), // type
1818			0xfe, 0xff,            // version
1819			0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, // sequence
1820			0x0, 0x2, // length
1821		})
1822		c.conn.Write([]byte{alertLevelError, byte(alertInternalError)})
1823	}
1824	if data := c.config.Bugs.AppDataBeforeHandshake; data != nil {
1825		c.writeRecord(recordTypeApplicationData, data)
1826	}
1827	if c.isClient {
1828		c.handshakeErr = c.clientHandshake()
1829	} else {
1830		c.handshakeErr = c.serverHandshake()
1831	}
1832	if c.handshakeErr == nil && c.config.Bugs.SendInvalidRecordType {
1833		c.writeRecord(recordType(42), []byte("invalid record"))
1834	}
1835	return c.handshakeErr
1836}
1837
1838// ConnectionState returns basic TLS details about the connection.
1839func (c *Conn) ConnectionState() ConnectionState {
1840	c.handshakeMutex.Lock()
1841	defer c.handshakeMutex.Unlock()
1842
1843	var state ConnectionState
1844	state.HandshakeComplete = c.handshakeComplete
1845	if c.handshakeComplete {
1846		state.Version = c.vers
1847		state.NegotiatedProtocol = c.clientProtocol
1848		state.DidResume = c.didResume
1849		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
1850		state.NegotiatedProtocolFromALPN = c.usedALPN
1851		state.CipherSuite = c.cipherSuite.id
1852		state.PeerCertificates = c.peerCertificates
1853		state.VerifiedChains = c.verifiedChains
1854		state.OCSPResponse = c.ocspResponse
1855		state.ServerName = c.serverName
1856		state.ChannelID = c.channelID
1857		state.SRTPProtectionProfile = c.srtpProtectionProfile
1858		state.TLSUnique = c.firstFinished[:]
1859		state.SCTList = c.sctList
1860		state.PeerSignatureAlgorithm = c.peerSignatureAlgorithm
1861		state.CurveID = c.curveID
1862		state.QUICTransportParams = c.quicTransportParams
1863		state.QUICTransportParamsLegacy = c.quicTransportParamsLegacy
1864		state.HasApplicationSettings = c.hasApplicationSettings
1865		state.PeerApplicationSettings = c.peerApplicationSettings
1866		state.HasApplicationSettingsOld = c.hasApplicationSettingsOld
1867		state.PeerApplicationSettingsOld = c.peerApplicationSettingsOld
1868		state.ECHAccepted = c.echAccepted
1869	}
1870
1871	return state
1872}
1873
1874// VerifyHostname checks that the peer certificate chain is valid for
1875// connecting to host.  If so, it returns nil; if not, it returns an error
1876// describing the problem.
1877func (c *Conn) VerifyHostname(host string) error {
1878	c.handshakeMutex.Lock()
1879	defer c.handshakeMutex.Unlock()
1880	if !c.isClient {
1881		return errors.New("tls: VerifyHostname called on TLS server connection")
1882	}
1883	if !c.handshakeComplete {
1884		return errors.New("tls: handshake has not yet been performed")
1885	}
1886	return c.peerCertificates[0].VerifyHostname(host)
1887}
1888
1889func (c *Conn) exportKeyingMaterialTLS13(length int, secret, label, context []byte) []byte {
1890	hash := c.cipherSuite.hash()
1891	exporterKeyingLabel := []byte("exporter")
1892	contextHash := hash.New()
1893	contextHash.Write(context)
1894	exporterContext := hash.New().Sum(nil)
1895	derivedSecret := hkdfExpandLabel(c.cipherSuite.hash(), secret, label, exporterContext, hash.Size())
1896	return hkdfExpandLabel(c.cipherSuite.hash(), derivedSecret, exporterKeyingLabel, contextHash.Sum(nil), length)
1897}
1898
1899// ExportKeyingMaterial exports keying material from the current connection
1900// state, as per RFC 5705.
1901func (c *Conn) ExportKeyingMaterial(length int, label, context []byte, useContext bool) ([]byte, error) {
1902	c.handshakeMutex.Lock()
1903	defer c.handshakeMutex.Unlock()
1904	if !c.handshakeComplete {
1905		return nil, errors.New("tls: handshake has not yet been performed")
1906	}
1907
1908	if c.vers >= VersionTLS13 {
1909		return c.exportKeyingMaterialTLS13(length, c.exporterSecret, label, context), nil
1910	}
1911
1912	seedLen := len(c.clientRandom) + len(c.serverRandom)
1913	if useContext {
1914		seedLen += 2 + len(context)
1915	}
1916	seed := make([]byte, 0, seedLen)
1917	seed = append(seed, c.clientRandom[:]...)
1918	seed = append(seed, c.serverRandom[:]...)
1919	if useContext {
1920		seed = append(seed, byte(len(context)>>8), byte(len(context)))
1921		seed = append(seed, context...)
1922	}
1923	result := make([]byte, length)
1924	prfForVersion(c.vers, c.cipherSuite)(result, c.exporterSecret, label, seed)
1925	return result, nil
1926}
1927
1928func (c *Conn) ExportEarlyKeyingMaterial(length int, label, context []byte) ([]byte, error) {
1929	if c.vers < VersionTLS13 {
1930		return nil, errors.New("tls: early exporters not defined before TLS 1.3")
1931	}
1932
1933	if c.earlyExporterSecret == nil {
1934		return nil, errors.New("tls: no early exporter secret")
1935	}
1936
1937	return c.exportKeyingMaterialTLS13(length, c.earlyExporterSecret, label, context), nil
1938}
1939
1940// noRenegotiationInfo returns true if the renegotiation info extension
1941// should be supported in the current handshake.
1942func (c *Conn) noRenegotiationInfo() bool {
1943	if c.config.Bugs.NoRenegotiationInfo {
1944		return true
1945	}
1946	if c.cipherSuite == nil && c.config.Bugs.NoRenegotiationInfoInInitial {
1947		return true
1948	}
1949	if c.cipherSuite != nil && c.config.Bugs.NoRenegotiationInfoAfterInitial {
1950		return true
1951	}
1952	return false
1953}
1954
1955func (c *Conn) SendNewSessionTicket(nonce []byte) error {
1956	if c.isClient || c.vers < VersionTLS13 {
1957		return errors.New("tls: cannot send post-handshake NewSessionTicket")
1958	}
1959
1960	var peerCertificatesRaw [][]byte
1961	for _, cert := range c.peerCertificates {
1962		peerCertificatesRaw = append(peerCertificatesRaw, cert.Raw)
1963	}
1964
1965	addBuffer := make([]byte, 4)
1966	_, err := io.ReadFull(c.config.rand(), addBuffer)
1967	if err != nil {
1968		c.sendAlert(alertInternalError)
1969		return errors.New("tls: short read from Rand: " + err.Error())
1970	}
1971	ticketAgeAdd := uint32(addBuffer[3])<<24 | uint32(addBuffer[2])<<16 | uint32(addBuffer[1])<<8 | uint32(addBuffer[0])
1972
1973	// TODO(davidben): Allow configuring these values.
1974	m := &newSessionTicketMsg{
1975		vers:                        c.wireVersion,
1976		isDTLS:                      c.isDTLS,
1977		ticketLifetime:              uint32(24 * time.Hour / time.Second),
1978		duplicateEarlyDataExtension: c.config.Bugs.DuplicateTicketEarlyData,
1979		customExtension:             c.config.Bugs.CustomTicketExtension,
1980		ticketAgeAdd:                ticketAgeAdd,
1981		ticketNonce:                 nonce,
1982		maxEarlyDataSize:            c.config.MaxEarlyDataSize,
1983	}
1984	if c.config.Bugs.MockQUICTransport != nil && m.maxEarlyDataSize > 0 {
1985		m.maxEarlyDataSize = 0xffffffff
1986	}
1987
1988	if c.config.Bugs.SendTicketLifetime != 0 {
1989		m.ticketLifetime = uint32(c.config.Bugs.SendTicketLifetime / time.Second)
1990	}
1991
1992	state := sessionState{
1993		vers:                        c.vers,
1994		cipherSuite:                 c.cipherSuite.id,
1995		secret:                      deriveSessionPSK(c.cipherSuite, c.wireVersion, c.resumptionSecret, nonce),
1996		certificates:                peerCertificatesRaw,
1997		ticketCreationTime:          c.config.time(),
1998		ticketExpiration:            c.config.time().Add(time.Duration(m.ticketLifetime) * time.Second),
1999		ticketAgeAdd:                uint32(addBuffer[3])<<24 | uint32(addBuffer[2])<<16 | uint32(addBuffer[1])<<8 | uint32(addBuffer[0]),
2000		earlyALPN:                   []byte(c.clientProtocol),
2001		hasApplicationSettings:      c.hasApplicationSettings,
2002		localApplicationSettings:    c.localApplicationSettings,
2003		peerApplicationSettings:     c.peerApplicationSettings,
2004		hasApplicationSettingsOld:   c.hasApplicationSettingsOld,
2005		localApplicationSettingsOld: c.localApplicationSettingsOld,
2006		peerApplicationSettingsOld:  c.peerApplicationSettingsOld,
2007	}
2008
2009	if !c.config.Bugs.SendEmptySessionTicket {
2010		var err error
2011		m.ticket, err = c.encryptTicket(&state)
2012		if err != nil {
2013			return err
2014		}
2015	}
2016	c.out.Lock()
2017	defer c.out.Unlock()
2018	_, err = c.writeRecord(recordTypeHandshake, m.marshal())
2019	return err
2020}
2021
2022func (c *Conn) SendKeyUpdate(keyUpdateRequest byte) error {
2023	c.out.Lock()
2024	defer c.out.Unlock()
2025	return c.sendKeyUpdateLocked(keyUpdateRequest)
2026}
2027
2028func (c *Conn) sendKeyUpdateLocked(keyUpdateRequest byte) error {
2029	if c.vers < VersionTLS13 {
2030		return errors.New("tls: attempted to send KeyUpdate before TLS 1.3")
2031	}
2032
2033	m := keyUpdateMsg{
2034		keyUpdateRequest: keyUpdateRequest,
2035	}
2036	if _, err := c.writeRecord(recordTypeHandshake, m.marshal()); err != nil {
2037		return err
2038	}
2039	if err := c.flushHandshake(); err != nil {
2040		return err
2041	}
2042	c.useOutTrafficSecret(encryptionApplication, c.out.wireVersion, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), c.wireVersion, c.out.trafficSecret))
2043	return nil
2044}
2045
2046func (c *Conn) sendFakeEarlyData(len int) error {
2047	// Assemble a fake early data record. This does not use writeRecord
2048	// because the record layer may be using different keys at this point.
2049	payload := make([]byte, 5+len)
2050	payload[0] = byte(recordTypeApplicationData)
2051	payload[1] = 3
2052	payload[2] = 3
2053	payload[3] = byte(len >> 8)
2054	payload[4] = byte(len)
2055	_, err := c.conn.Write(payload)
2056	return err
2057}
2058