• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The ACTION* family of macros can be used in a namespace scope to
33 // define custom actions easily.  The syntax:
34 //
35 //   ACTION(name) { statements; }
36 //
37 // will define an action with the given name that executes the
38 // statements.  The value returned by the statements will be used as
39 // the return value of the action.  Inside the statements, you can
40 // refer to the K-th (0-based) argument of the mock function by
41 // 'argK', and refer to its type by 'argK_type'.  For example:
42 //
43 //   ACTION(IncrementArg1) {
44 //     arg1_type temp = arg1;
45 //     return ++(*temp);
46 //   }
47 //
48 // allows you to write
49 //
50 //   ...WillOnce(IncrementArg1());
51 //
52 // You can also refer to the entire argument tuple and its type by
53 // 'args' and 'args_type', and refer to the mock function type and its
54 // return type by 'function_type' and 'return_type'.
55 //
56 // Note that you don't need to specify the types of the mock function
57 // arguments.  However rest assured that your code is still type-safe:
58 // you'll get a compiler error if *arg1 doesn't support the ++
59 // operator, or if the type of ++(*arg1) isn't compatible with the
60 // mock function's return type, for example.
61 //
62 // Sometimes you'll want to parameterize the action.   For that you can use
63 // another macro:
64 //
65 //   ACTION_P(name, param_name) { statements; }
66 //
67 // For example:
68 //
69 //   ACTION_P(Add, n) { return arg0 + n; }
70 //
71 // will allow you to write:
72 //
73 //   ...WillOnce(Add(5));
74 //
75 // Note that you don't need to provide the type of the parameter
76 // either.  If you need to reference the type of a parameter named
77 // 'foo', you can write 'foo_type'.  For example, in the body of
78 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
79 // of 'n'.
80 //
81 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
82 // multi-parameter actions.
83 //
84 // For the purpose of typing, you can view
85 //
86 //   ACTION_Pk(Foo, p1, ..., pk) { ... }
87 //
88 // as shorthand for
89 //
90 //   template <typename p1_type, ..., typename pk_type>
91 //   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
92 //
93 // In particular, you can provide the template type arguments
94 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
95 // although usually you can rely on the compiler to infer the types
96 // for you automatically.  You can assign the result of expression
97 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
98 // pk_type>.  This can be useful when composing actions.
99 //
100 // You can also overload actions with different numbers of parameters:
101 //
102 //   ACTION_P(Plus, a) { ... }
103 //   ACTION_P2(Plus, a, b) { ... }
104 //
105 // While it's tempting to always use the ACTION* macros when defining
106 // a new action, you should also consider implementing ActionInterface
107 // or using MakePolymorphicAction() instead, especially if you need to
108 // use the action a lot.  While these approaches require more work,
109 // they give you more control on the types of the mock function
110 // arguments and the action parameters, which in general leads to
111 // better compiler error messages that pay off in the long run.  They
112 // also allow overloading actions based on parameter types (as opposed
113 // to just based on the number of parameters).
114 //
115 // CAVEAT:
116 //
117 // ACTION*() can only be used in a namespace scope as templates cannot be
118 // declared inside of a local class.
119 // Users can, however, define any local functors (e.g. a lambda) that
120 // can be used as actions.
121 //
122 // MORE INFORMATION:
123 //
124 // To learn more about using these macros, please search for 'ACTION' on
125 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
126 
127 // IWYU pragma: private, include "gmock/gmock.h"
128 // IWYU pragma: friend gmock/.*
129 
130 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
131 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
132 
133 #ifndef _WIN32_WCE
134 #include <errno.h>
135 #endif
136 
137 #include <algorithm>
138 #include <functional>
139 #include <memory>
140 #include <string>
141 #include <tuple>
142 #include <type_traits>
143 #include <utility>
144 
145 #include "gmock/internal/gmock-internal-utils.h"
146 #include "gmock/internal/gmock-port.h"
147 #include "gmock/internal/gmock-pp.h"
148 
149 #ifdef _MSC_VER
150 #pragma warning(push)
151 #pragma warning(disable : 4100)
152 #endif
153 
154 namespace testing {
155 
156 // To implement an action Foo, define:
157 //   1. a class FooAction that implements the ActionInterface interface, and
158 //   2. a factory function that creates an Action object from a
159 //      const FooAction*.
160 //
161 // The two-level delegation design follows that of Matcher, providing
162 // consistency for extension developers.  It also eases ownership
163 // management as Action objects can now be copied like plain values.
164 
165 namespace internal {
166 
167 // BuiltInDefaultValueGetter<T, true>::Get() returns a
168 // default-constructed T value.  BuiltInDefaultValueGetter<T,
169 // false>::Get() crashes with an error.
170 //
171 // This primary template is used when kDefaultConstructible is true.
172 template <typename T, bool kDefaultConstructible>
173 struct BuiltInDefaultValueGetter {
GetBuiltInDefaultValueGetter174   static T Get() { return T(); }
175 };
176 template <typename T>
177 struct BuiltInDefaultValueGetter<T, false> {
178   static T Get() {
179     Assert(false, __FILE__, __LINE__,
180            "Default action undefined for the function return type.");
181     return internal::Invalid<T>();
182     // The above statement will never be reached, but is required in
183     // order for this function to compile.
184   }
185 };
186 
187 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
188 // for type T, which is NULL when T is a raw pointer type, 0 when T is
189 // a numeric type, false when T is bool, or "" when T is string or
190 // std::string.  In addition, in C++11 and above, it turns a
191 // default-constructed T value if T is default constructible.  For any
192 // other type T, the built-in default T value is undefined, and the
193 // function will abort the process.
194 template <typename T>
195 class BuiltInDefaultValue {
196  public:
197   // This function returns true if and only if type T has a built-in default
198   // value.
199   static bool Exists() { return ::std::is_default_constructible<T>::value; }
200 
201   static T Get() {
202     return BuiltInDefaultValueGetter<
203         T, ::std::is_default_constructible<T>::value>::Get();
204   }
205 };
206 
207 // This partial specialization says that we use the same built-in
208 // default value for T and const T.
209 template <typename T>
210 class BuiltInDefaultValue<const T> {
211  public:
212   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
213   static T Get() { return BuiltInDefaultValue<T>::Get(); }
214 };
215 
216 // This partial specialization defines the default values for pointer
217 // types.
218 template <typename T>
219 class BuiltInDefaultValue<T*> {
220  public:
221   static bool Exists() { return true; }
222   static T* Get() { return nullptr; }
223 };
224 
225 // The following specializations define the default values for
226 // specific types we care about.
227 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
228   template <>                                                     \
229   class BuiltInDefaultValue<type> {                               \
230    public:                                                        \
231     static bool Exists() { return true; }                         \
232     static type Get() { return value; }                           \
233   }
234 
235 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
236 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
237 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
238 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
239 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
240 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
241 
242 // There's no need for a default action for signed wchar_t, as that
243 // type is the same as wchar_t for gcc, and invalid for MSVC.
244 //
245 // There's also no need for a default action for unsigned wchar_t, as
246 // that type is the same as unsigned int for gcc, and invalid for
247 // MSVC.
248 #if GMOCK_WCHAR_T_IS_NATIVE_
249 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
250 #endif
251 
252 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
253 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
254 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
255 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
256 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);     // NOLINT
257 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);        // NOLINT
258 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
259 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);    // NOLINT
260 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
261 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
262 
263 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
264 
265 // Simple two-arg form of std::disjunction.
266 template <typename P, typename Q>
267 using disjunction = typename ::std::conditional<P::value, P, Q>::type;
268 
269 }  // namespace internal
270 
271 // When an unexpected function call is encountered, Google Mock will
272 // let it return a default value if the user has specified one for its
273 // return type, or if the return type has a built-in default value;
274 // otherwise Google Mock won't know what value to return and will have
275 // to abort the process.
276 //
277 // The DefaultValue<T> class allows a user to specify the
278 // default value for a type T that is both copyable and publicly
279 // destructible (i.e. anything that can be used as a function return
280 // type).  The usage is:
281 //
282 //   // Sets the default value for type T to be foo.
283 //   DefaultValue<T>::Set(foo);
284 template <typename T>
285 class DefaultValue {
286  public:
287   // Sets the default value for type T; requires T to be
288   // copy-constructable and have a public destructor.
289   static void Set(T x) {
290     delete producer_;
291     producer_ = new FixedValueProducer(x);
292   }
293 
294   // Provides a factory function to be called to generate the default value.
295   // This method can be used even if T is only move-constructible, but it is not
296   // limited to that case.
297   typedef T (*FactoryFunction)();
298   static void SetFactory(FactoryFunction factory) {
299     delete producer_;
300     producer_ = new FactoryValueProducer(factory);
301   }
302 
303   // Unsets the default value for type T.
304   static void Clear() {
305     delete producer_;
306     producer_ = nullptr;
307   }
308 
309   // Returns true if and only if the user has set the default value for type T.
310   static bool IsSet() { return producer_ != nullptr; }
311 
312   // Returns true if T has a default return value set by the user or there
313   // exists a built-in default value.
314   static bool Exists() {
315     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
316   }
317 
318   // Returns the default value for type T if the user has set one;
319   // otherwise returns the built-in default value. Requires that Exists()
320   // is true, which ensures that the return value is well-defined.
321   static T Get() {
322     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
323                                 : producer_->Produce();
324   }
325 
326  private:
327   class ValueProducer {
328    public:
329     virtual ~ValueProducer() {}
330     virtual T Produce() = 0;
331   };
332 
333   class FixedValueProducer : public ValueProducer {
334    public:
335     explicit FixedValueProducer(T value) : value_(value) {}
336     T Produce() override { return value_; }
337 
338    private:
339     const T value_;
340     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
341   };
342 
343   class FactoryValueProducer : public ValueProducer {
344    public:
345     explicit FactoryValueProducer(FactoryFunction factory)
346         : factory_(factory) {}
347     T Produce() override { return factory_(); }
348 
349    private:
350     const FactoryFunction factory_;
351     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
352   };
353 
354   static ValueProducer* producer_;
355 };
356 
357 // This partial specialization allows a user to set default values for
358 // reference types.
359 template <typename T>
360 class DefaultValue<T&> {
361  public:
362   // Sets the default value for type T&.
363   static void Set(T& x) {  // NOLINT
364     address_ = &x;
365   }
366 
367   // Unsets the default value for type T&.
368   static void Clear() { address_ = nullptr; }
369 
370   // Returns true if and only if the user has set the default value for type T&.
371   static bool IsSet() { return address_ != nullptr; }
372 
373   // Returns true if T has a default return value set by the user or there
374   // exists a built-in default value.
375   static bool Exists() {
376     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
377   }
378 
379   // Returns the default value for type T& if the user has set one;
380   // otherwise returns the built-in default value if there is one;
381   // otherwise aborts the process.
382   static T& Get() {
383     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
384                                : *address_;
385   }
386 
387  private:
388   static T* address_;
389 };
390 
391 // This specialization allows DefaultValue<void>::Get() to
392 // compile.
393 template <>
394 class DefaultValue<void> {
395  public:
396   static bool Exists() { return true; }
397   static void Get() {}
398 };
399 
400 // Points to the user-set default value for type T.
401 template <typename T>
402 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
403 
404 // Points to the user-set default value for type T&.
405 template <typename T>
406 T* DefaultValue<T&>::address_ = nullptr;
407 
408 // Implement this interface to define an action for function type F.
409 template <typename F>
410 class ActionInterface {
411  public:
412   typedef typename internal::Function<F>::Result Result;
413   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
414 
415   ActionInterface() {}
416   virtual ~ActionInterface() {}
417 
418   // Performs the action.  This method is not const, as in general an
419   // action can have side effects and be stateful.  For example, a
420   // get-the-next-element-from-the-collection action will need to
421   // remember the current element.
422   virtual Result Perform(const ArgumentTuple& args) = 0;
423 
424  private:
425   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
426 };
427 
428 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
429 // object that represents an action to be taken when a mock function
430 // of type F is called.  The implementation of Action<T> is just a
431 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
432 // You can view an object implementing ActionInterface<F> as a
433 // concrete action (including its current state), and an Action<F>
434 // object as a handle to it.
435 template <typename F>
436 class Action {
437   // Adapter class to allow constructing Action from a legacy ActionInterface.
438   // New code should create Actions from functors instead.
439   struct ActionAdapter {
440     // Adapter must be copyable to satisfy std::function requirements.
441     ::std::shared_ptr<ActionInterface<F>> impl_;
442 
443     template <typename... Args>
444     typename internal::Function<F>::Result operator()(Args&&... args) {
445       return impl_->Perform(
446           ::std::forward_as_tuple(::std::forward<Args>(args)...));
447     }
448   };
449 
450   template <typename G>
451   using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
452 
453  public:
454   typedef typename internal::Function<F>::Result Result;
455   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
456 
457   // Constructs a null Action.  Needed for storing Action objects in
458   // STL containers.
459   Action() {}
460 
461   // Construct an Action from a specified callable.
462   // This cannot take std::function directly, because then Action would not be
463   // directly constructible from lambda (it would require two conversions).
464   template <
465       typename G,
466       typename = typename std::enable_if<internal::disjunction<
467           IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
468                                                         G>>::value>::type>
469   Action(G&& fun) {  // NOLINT
470     Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
471   }
472 
473   // Constructs an Action from its implementation.
474   explicit Action(ActionInterface<F>* impl)
475       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
476 
477   // This constructor allows us to turn an Action<Func> object into an
478   // Action<F>, as long as F's arguments can be implicitly converted
479   // to Func's and Func's return type can be implicitly converted to F's.
480   template <typename Func>
481   explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
482 
483   // Returns true if and only if this is the DoDefault() action.
484   bool IsDoDefault() const { return fun_ == nullptr; }
485 
486   // Performs the action.  Note that this method is const even though
487   // the corresponding method in ActionInterface is not.  The reason
488   // is that a const Action<F> means that it cannot be re-bound to
489   // another concrete action, not that the concrete action it binds to
490   // cannot change state.  (Think of the difference between a const
491   // pointer and a pointer to const.)
492   Result Perform(ArgumentTuple args) const {
493     if (IsDoDefault()) {
494       internal::IllegalDoDefault(__FILE__, __LINE__);
495     }
496     return internal::Apply(fun_, ::std::move(args));
497   }
498 
499  private:
500   template <typename G>
501   friend class Action;
502 
503   template <typename G>
504   void Init(G&& g, ::std::true_type) {
505     fun_ = ::std::forward<G>(g);
506   }
507 
508   template <typename G>
509   void Init(G&& g, ::std::false_type) {
510     fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
511   }
512 
513   template <typename FunctionImpl>
514   struct IgnoreArgs {
515     template <typename... Args>
516     Result operator()(const Args&...) const {
517       return function_impl();
518     }
519 
520     FunctionImpl function_impl;
521   };
522 
523   // fun_ is an empty function if and only if this is the DoDefault() action.
524   ::std::function<F> fun_;
525 };
526 
527 // The PolymorphicAction class template makes it easy to implement a
528 // polymorphic action (i.e. an action that can be used in mock
529 // functions of than one type, e.g. Return()).
530 //
531 // To define a polymorphic action, a user first provides a COPYABLE
532 // implementation class that has a Perform() method template:
533 //
534 //   class FooAction {
535 //    public:
536 //     template <typename Result, typename ArgumentTuple>
537 //     Result Perform(const ArgumentTuple& args) const {
538 //       // Processes the arguments and returns a result, using
539 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
540 //     }
541 //     ...
542 //   };
543 //
544 // Then the user creates the polymorphic action using
545 // MakePolymorphicAction(object) where object has type FooAction.  See
546 // the definition of Return(void) and SetArgumentPointee<N>(value) for
547 // complete examples.
548 template <typename Impl>
549 class PolymorphicAction {
550  public:
551   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
552 
553   template <typename F>
554   operator Action<F>() const {
555     return Action<F>(new MonomorphicImpl<F>(impl_));
556   }
557 
558  private:
559   template <typename F>
560   class MonomorphicImpl : public ActionInterface<F> {
561    public:
562     typedef typename internal::Function<F>::Result Result;
563     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
564 
565     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
566 
567     Result Perform(const ArgumentTuple& args) override {
568       return impl_.template Perform<Result>(args);
569     }
570 
571    private:
572     Impl impl_;
573   };
574 
575   Impl impl_;
576 };
577 
578 // Creates an Action from its implementation and returns it.  The
579 // created Action object owns the implementation.
580 template <typename F>
581 Action<F> MakeAction(ActionInterface<F>* impl) {
582   return Action<F>(impl);
583 }
584 
585 // Creates a polymorphic action from its implementation.  This is
586 // easier to use than the PolymorphicAction<Impl> constructor as it
587 // doesn't require you to explicitly write the template argument, e.g.
588 //
589 //   MakePolymorphicAction(foo);
590 // vs
591 //   PolymorphicAction<TypeOfFoo>(foo);
592 template <typename Impl>
593 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
594   return PolymorphicAction<Impl>(impl);
595 }
596 
597 namespace internal {
598 
599 // Helper struct to specialize ReturnAction to execute a move instead of a copy
600 // on return. Useful for move-only types, but could be used on any type.
601 template <typename T>
602 struct ByMoveWrapper {
603   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
604   T payload;
605 };
606 
607 // Implements the polymorphic Return(x) action, which can be used in
608 // any function that returns the type of x, regardless of the argument
609 // types.
610 //
611 // Note: The value passed into Return must be converted into
612 // Function<F>::Result when this action is cast to Action<F> rather than
613 // when that action is performed. This is important in scenarios like
614 //
615 // MOCK_METHOD1(Method, T(U));
616 // ...
617 // {
618 //   Foo foo;
619 //   X x(&foo);
620 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
621 // }
622 //
623 // In the example above the variable x holds reference to foo which leaves
624 // scope and gets destroyed.  If copying X just copies a reference to foo,
625 // that copy will be left with a hanging reference.  If conversion to T
626 // makes a copy of foo, the above code is safe. To support that scenario, we
627 // need to make sure that the type conversion happens inside the EXPECT_CALL
628 // statement, and conversion of the result of Return to Action<T(U)> is a
629 // good place for that.
630 //
631 // The real life example of the above scenario happens when an invocation
632 // of gtl::Container() is passed into Return.
633 //
634 template <typename R>
635 class ReturnAction {
636  public:
637   // Constructs a ReturnAction object from the value to be returned.
638   // 'value' is passed by value instead of by const reference in order
639   // to allow Return("string literal") to compile.
640   explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
641 
642   // This template type conversion operator allows Return(x) to be
643   // used in ANY function that returns x's type.
644   template <typename F>
645   operator Action<F>() const {  // NOLINT
646     // Assert statement belongs here because this is the best place to verify
647     // conditions on F. It produces the clearest error messages
648     // in most compilers.
649     // Impl really belongs in this scope as a local class but can't
650     // because MSVC produces duplicate symbols in different translation units
651     // in this case. Until MS fixes that bug we put Impl into the class scope
652     // and put the typedef both here (for use in assert statement) and
653     // in the Impl class. But both definitions must be the same.
654     typedef typename Function<F>::Result Result;
655     GTEST_COMPILE_ASSERT_(
656         !std::is_reference<Result>::value,
657         use_ReturnRef_instead_of_Return_to_return_a_reference);
658     static_assert(!std::is_void<Result>::value,
659                   "Can't use Return() on an action expected to return `void`.");
660     return Action<F>(new Impl<R, F>(value_));
661   }
662 
663  private:
664   // Implements the Return(x) action for a particular function type F.
665   template <typename R_, typename F>
666   class Impl : public ActionInterface<F> {
667    public:
668     typedef typename Function<F>::Result Result;
669     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
670 
671     // The implicit cast is necessary when Result has more than one
672     // single-argument constructor (e.g. Result is std::vector<int>) and R
673     // has a type conversion operator template.  In that case, value_(value)
674     // won't compile as the compiler doesn't known which constructor of
675     // Result to call.  ImplicitCast_ forces the compiler to convert R to
676     // Result without considering explicit constructors, thus resolving the
677     // ambiguity. value_ is then initialized using its copy constructor.
678     explicit Impl(const std::shared_ptr<R>& value)
679         : value_before_cast_(*value),
680           value_(ImplicitCast_<Result>(value_before_cast_)) {}
681 
682     Result Perform(const ArgumentTuple&) override { return value_; }
683 
684    private:
685     GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
686                           Result_cannot_be_a_reference_type);
687     // We save the value before casting just in case it is being cast to a
688     // wrapper type.
689     R value_before_cast_;
690     Result value_;
691 
692     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
693   };
694 
695   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
696   // move its contents instead.
697   template <typename R_, typename F>
698   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
699    public:
700     typedef typename Function<F>::Result Result;
701     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
702 
703     explicit Impl(const std::shared_ptr<R>& wrapper)
704         : performed_(false), wrapper_(wrapper) {}
705 
706     Result Perform(const ArgumentTuple&) override {
707       GTEST_CHECK_(!performed_)
708           << "A ByMove() action should only be performed once.";
709       performed_ = true;
710       return std::move(wrapper_->payload);
711     }
712 
713    private:
714     bool performed_;
715     const std::shared_ptr<R> wrapper_;
716   };
717 
718   const std::shared_ptr<R> value_;
719 };
720 
721 // Implements the ReturnNull() action.
722 class ReturnNullAction {
723  public:
724   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
725   // this is enforced by returning nullptr, and in non-C++11 by asserting a
726   // pointer type on compile time.
727   template <typename Result, typename ArgumentTuple>
728   static Result Perform(const ArgumentTuple&) {
729     return nullptr;
730   }
731 };
732 
733 // Implements the Return() action.
734 class ReturnVoidAction {
735  public:
736   // Allows Return() to be used in any void-returning function.
737   template <typename Result, typename ArgumentTuple>
738   static void Perform(const ArgumentTuple&) {
739     static_assert(std::is_void<Result>::value, "Result should be void.");
740   }
741 };
742 
743 // Implements the polymorphic ReturnRef(x) action, which can be used
744 // in any function that returns a reference to the type of x,
745 // regardless of the argument types.
746 template <typename T>
747 class ReturnRefAction {
748  public:
749   // Constructs a ReturnRefAction object from the reference to be returned.
750   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
751 
752   // This template type conversion operator allows ReturnRef(x) to be
753   // used in ANY function that returns a reference to x's type.
754   template <typename F>
755   operator Action<F>() const {
756     typedef typename Function<F>::Result Result;
757     // Asserts that the function return type is a reference.  This
758     // catches the user error of using ReturnRef(x) when Return(x)
759     // should be used, and generates some helpful error message.
760     GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
761                           use_Return_instead_of_ReturnRef_to_return_a_value);
762     return Action<F>(new Impl<F>(ref_));
763   }
764 
765  private:
766   // Implements the ReturnRef(x) action for a particular function type F.
767   template <typename F>
768   class Impl : public ActionInterface<F> {
769    public:
770     typedef typename Function<F>::Result Result;
771     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
772 
773     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
774 
775     Result Perform(const ArgumentTuple&) override { return ref_; }
776 
777    private:
778     T& ref_;
779   };
780 
781   T& ref_;
782 };
783 
784 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
785 // used in any function that returns a reference to the type of x,
786 // regardless of the argument types.
787 template <typename T>
788 class ReturnRefOfCopyAction {
789  public:
790   // Constructs a ReturnRefOfCopyAction object from the reference to
791   // be returned.
792   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
793 
794   // This template type conversion operator allows ReturnRefOfCopy(x) to be
795   // used in ANY function that returns a reference to x's type.
796   template <typename F>
797   operator Action<F>() const {
798     typedef typename Function<F>::Result Result;
799     // Asserts that the function return type is a reference.  This
800     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
801     // should be used, and generates some helpful error message.
802     GTEST_COMPILE_ASSERT_(
803         std::is_reference<Result>::value,
804         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
805     return Action<F>(new Impl<F>(value_));
806   }
807 
808  private:
809   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
810   template <typename F>
811   class Impl : public ActionInterface<F> {
812    public:
813     typedef typename Function<F>::Result Result;
814     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
815 
816     explicit Impl(const T& value) : value_(value) {}  // NOLINT
817 
818     Result Perform(const ArgumentTuple&) override { return value_; }
819 
820    private:
821     T value_;
822   };
823 
824   const T value_;
825 };
826 
827 // Implements the polymorphic ReturnRoundRobin(v) action, which can be
828 // used in any function that returns the element_type of v.
829 template <typename T>
830 class ReturnRoundRobinAction {
831  public:
832   explicit ReturnRoundRobinAction(std::vector<T> values) {
833     GTEST_CHECK_(!values.empty())
834         << "ReturnRoundRobin requires at least one element.";
835     state_->values = std::move(values);
836   }
837 
838   template <typename... Args>
839   T operator()(Args&&...) const {
840     return state_->Next();
841   }
842 
843  private:
844   struct State {
845     T Next() {
846       T ret_val = values[i++];
847       if (i == values.size()) i = 0;
848       return ret_val;
849     }
850 
851     std::vector<T> values;
852     size_t i = 0;
853   };
854   std::shared_ptr<State> state_ = std::make_shared<State>();
855 };
856 
857 // Implements the polymorphic DoDefault() action.
858 class DoDefaultAction {
859  public:
860   // This template type conversion operator allows DoDefault() to be
861   // used in any function.
862   template <typename F>
863   operator Action<F>() const {
864     return Action<F>();
865   }  // NOLINT
866 };
867 
868 // Implements the Assign action to set a given pointer referent to a
869 // particular value.
870 template <typename T1, typename T2>
871 class AssignAction {
872  public:
873   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
874 
875   template <typename Result, typename ArgumentTuple>
876   void Perform(const ArgumentTuple& /* args */) const {
877     *ptr_ = value_;
878   }
879 
880  private:
881   T1* const ptr_;
882   const T2 value_;
883 };
884 
885 #if !GTEST_OS_WINDOWS_MOBILE
886 
887 // Implements the SetErrnoAndReturn action to simulate return from
888 // various system calls and libc functions.
889 template <typename T>
890 class SetErrnoAndReturnAction {
891  public:
892   SetErrnoAndReturnAction(int errno_value, T result)
893       : errno_(errno_value), result_(result) {}
894   template <typename Result, typename ArgumentTuple>
895   Result Perform(const ArgumentTuple& /* args */) const {
896     errno = errno_;
897     return result_;
898   }
899 
900  private:
901   const int errno_;
902   const T result_;
903 };
904 
905 #endif  // !GTEST_OS_WINDOWS_MOBILE
906 
907 // Implements the SetArgumentPointee<N>(x) action for any function
908 // whose N-th argument (0-based) is a pointer to x's type.
909 template <size_t N, typename A, typename = void>
910 struct SetArgumentPointeeAction {
911   A value;
912 
913   template <typename... Args>
914   void operator()(const Args&... args) const {
915     *::std::get<N>(std::tie(args...)) = value;
916   }
917 };
918 
919 // Implements the Invoke(object_ptr, &Class::Method) action.
920 template <class Class, typename MethodPtr>
921 struct InvokeMethodAction {
922   Class* const obj_ptr;
923   const MethodPtr method_ptr;
924 
925   template <typename... Args>
926   auto operator()(Args&&... args) const
927       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
928     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
929   }
930 };
931 
932 // Implements the InvokeWithoutArgs(f) action.  The template argument
933 // FunctionImpl is the implementation type of f, which can be either a
934 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
935 // Action<F> as long as f's type is compatible with F.
936 template <typename FunctionImpl>
937 struct InvokeWithoutArgsAction {
938   FunctionImpl function_impl;
939 
940   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
941   // compatible with f.
942   template <typename... Args>
943   auto operator()(const Args&...) -> decltype(function_impl()) {
944     return function_impl();
945   }
946 };
947 
948 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
949 template <class Class, typename MethodPtr>
950 struct InvokeMethodWithoutArgsAction {
951   Class* const obj_ptr;
952   const MethodPtr method_ptr;
953 
954   using ReturnType =
955       decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
956 
957   template <typename... Args>
958   ReturnType operator()(const Args&...) const {
959     return (obj_ptr->*method_ptr)();
960   }
961 };
962 
963 // Implements the IgnoreResult(action) action.
964 template <typename A>
965 class IgnoreResultAction {
966  public:
967   explicit IgnoreResultAction(const A& action) : action_(action) {}
968 
969   template <typename F>
970   operator Action<F>() const {
971     // Assert statement belongs here because this is the best place to verify
972     // conditions on F. It produces the clearest error messages
973     // in most compilers.
974     // Impl really belongs in this scope as a local class but can't
975     // because MSVC produces duplicate symbols in different translation units
976     // in this case. Until MS fixes that bug we put Impl into the class scope
977     // and put the typedef both here (for use in assert statement) and
978     // in the Impl class. But both definitions must be the same.
979     typedef typename internal::Function<F>::Result Result;
980 
981     // Asserts at compile time that F returns void.
982     static_assert(std::is_void<Result>::value, "Result type should be void.");
983 
984     return Action<F>(new Impl<F>(action_));
985   }
986 
987  private:
988   template <typename F>
989   class Impl : public ActionInterface<F> {
990    public:
991     typedef typename internal::Function<F>::Result Result;
992     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
993 
994     explicit Impl(const A& action) : action_(action) {}
995 
996     void Perform(const ArgumentTuple& args) override {
997       // Performs the action and ignores its result.
998       action_.Perform(args);
999     }
1000 
1001    private:
1002     // Type OriginalFunction is the same as F except that its return
1003     // type is IgnoredValue.
1004     typedef
1005         typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
1006 
1007     const Action<OriginalFunction> action_;
1008   };
1009 
1010   const A action_;
1011 };
1012 
1013 template <typename InnerAction, size_t... I>
1014 struct WithArgsAction {
1015   InnerAction action;
1016 
1017   // The inner action could be anything convertible to Action<X>.
1018   // We use the conversion operator to detect the signature of the inner Action.
1019   template <typename R, typename... Args>
1020   operator Action<R(Args...)>() const {  // NOLINT
1021     using TupleType = std::tuple<Args...>;
1022     Action<R(typename std::tuple_element<I, TupleType>::type...)> converted(
1023         action);
1024 
1025     return [converted](Args... args) -> R {
1026       return converted.Perform(std::forward_as_tuple(
1027           std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1028     };
1029   }
1030 };
1031 
1032 template <typename... Actions>
1033 struct DoAllAction {
1034  private:
1035   template <typename T>
1036   using NonFinalType =
1037       typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1038 
1039   template <typename ActionT, size_t... I>
1040   std::vector<ActionT> Convert(IndexSequence<I...>) const {
1041     return {ActionT(std::get<I>(actions))...};
1042   }
1043 
1044  public:
1045   std::tuple<Actions...> actions;
1046 
1047   template <typename R, typename... Args>
1048   operator Action<R(Args...)>() const {  // NOLINT
1049     struct Op {
1050       std::vector<Action<void(NonFinalType<Args>...)>> converted;
1051       Action<R(Args...)> last;
1052       R operator()(Args... args) const {
1053         auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
1054         for (auto& a : converted) {
1055           a.Perform(tuple_args);
1056         }
1057         return last.Perform(std::move(tuple_args));
1058       }
1059     };
1060     return Op{Convert<Action<void(NonFinalType<Args>...)>>(
1061                   MakeIndexSequence<sizeof...(Actions) - 1>()),
1062               std::get<sizeof...(Actions) - 1>(actions)};
1063   }
1064 };
1065 
1066 template <typename T, typename... Params>
1067 struct ReturnNewAction {
1068   T* operator()() const {
1069     return internal::Apply(
1070         [](const Params&... unpacked_params) {
1071           return new T(unpacked_params...);
1072         },
1073         params);
1074   }
1075   std::tuple<Params...> params;
1076 };
1077 
1078 template <size_t k>
1079 struct ReturnArgAction {
1080   template <typename... Args>
1081   auto operator()(Args&&... args) const -> decltype(std::get<k>(
1082       std::forward_as_tuple(std::forward<Args>(args)...))) {
1083     return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
1084   }
1085 };
1086 
1087 template <size_t k, typename Ptr>
1088 struct SaveArgAction {
1089   Ptr pointer;
1090 
1091   template <typename... Args>
1092   void operator()(const Args&... args) const {
1093     *pointer = std::get<k>(std::tie(args...));
1094   }
1095 };
1096 
1097 template <size_t k, typename Ptr>
1098 struct SaveArgPointeeAction {
1099   Ptr pointer;
1100 
1101   template <typename... Args>
1102   void operator()(const Args&... args) const {
1103     *pointer = *std::get<k>(std::tie(args...));
1104   }
1105 };
1106 
1107 template <size_t k, typename T>
1108 struct SetArgRefereeAction {
1109   T value;
1110 
1111   template <typename... Args>
1112   void operator()(Args&&... args) const {
1113     using argk_type =
1114         typename ::std::tuple_element<k, std::tuple<Args...>>::type;
1115     static_assert(std::is_lvalue_reference<argk_type>::value,
1116                   "Argument must be a reference type.");
1117     std::get<k>(std::tie(args...)) = value;
1118   }
1119 };
1120 
1121 template <size_t k, typename I1, typename I2>
1122 struct SetArrayArgumentAction {
1123   I1 first;
1124   I2 last;
1125 
1126   template <typename... Args>
1127   void operator()(const Args&... args) const {
1128     auto value = std::get<k>(std::tie(args...));
1129     for (auto it = first; it != last; ++it, (void)++value) {
1130       *value = *it;
1131     }
1132   }
1133 };
1134 
1135 template <size_t k>
1136 struct DeleteArgAction {
1137   template <typename... Args>
1138   void operator()(const Args&... args) const {
1139     delete std::get<k>(std::tie(args...));
1140   }
1141 };
1142 
1143 template <typename Ptr>
1144 struct ReturnPointeeAction {
1145   Ptr pointer;
1146   template <typename... Args>
1147   auto operator()(const Args&...) const -> decltype(*pointer) {
1148     return *pointer;
1149   }
1150 };
1151 
1152 #if GTEST_HAS_EXCEPTIONS
1153 template <typename T>
1154 struct ThrowAction {
1155   T exception;
1156   // We use a conversion operator to adapt to any return type.
1157   template <typename R, typename... Args>
1158   operator Action<R(Args...)>() const {  // NOLINT
1159     T copy = exception;
1160     return [copy](Args...) -> R { throw copy; };
1161   }
1162 };
1163 #endif  // GTEST_HAS_EXCEPTIONS
1164 
1165 }  // namespace internal
1166 
1167 // An Unused object can be implicitly constructed from ANY value.
1168 // This is handy when defining actions that ignore some or all of the
1169 // mock function arguments.  For example, given
1170 //
1171 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1172 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
1173 //
1174 // instead of
1175 //
1176 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
1177 //     return sqrt(x*x + y*y);
1178 //   }
1179 //   double DistanceToOriginWithIndex(int index, double x, double y) {
1180 //     return sqrt(x*x + y*y);
1181 //   }
1182 //   ...
1183 //   EXPECT_CALL(mock, Foo("abc", _, _))
1184 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
1185 //   EXPECT_CALL(mock, Bar(5, _, _))
1186 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
1187 //
1188 // you could write
1189 //
1190 //   // We can declare any uninteresting argument as Unused.
1191 //   double DistanceToOrigin(Unused, double x, double y) {
1192 //     return sqrt(x*x + y*y);
1193 //   }
1194 //   ...
1195 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1196 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1197 typedef internal::IgnoredValue Unused;
1198 
1199 // Creates an action that does actions a1, a2, ..., sequentially in
1200 // each invocation. All but the last action will have a readonly view of the
1201 // arguments.
1202 template <typename... Action>
1203 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
1204     Action&&... action) {
1205   return {std::forward_as_tuple(std::forward<Action>(action)...)};
1206 }
1207 
1208 // WithArg<k>(an_action) creates an action that passes the k-th
1209 // (0-based) argument of the mock function to an_action and performs
1210 // it.  It adapts an action accepting one argument to one that accepts
1211 // multiple arguments.  For convenience, we also provide
1212 // WithArgs<k>(an_action) (defined below) as a synonym.
1213 template <size_t k, typename InnerAction>
1214 internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
1215     InnerAction&& action) {
1216   return {std::forward<InnerAction>(action)};
1217 }
1218 
1219 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
1220 // the selected arguments of the mock function to an_action and
1221 // performs it.  It serves as an adaptor between actions with
1222 // different argument lists.
1223 template <size_t k, size_t... ks, typename InnerAction>
1224 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
1225 WithArgs(InnerAction&& action) {
1226   return {std::forward<InnerAction>(action)};
1227 }
1228 
1229 // WithoutArgs(inner_action) can be used in a mock function with a
1230 // non-empty argument list to perform inner_action, which takes no
1231 // argument.  In other words, it adapts an action accepting no
1232 // argument to one that accepts (and ignores) arguments.
1233 template <typename InnerAction>
1234 internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
1235     InnerAction&& action) {
1236   return {std::forward<InnerAction>(action)};
1237 }
1238 
1239 // Creates an action that returns 'value'.  'value' is passed by value
1240 // instead of const reference - otherwise Return("string literal")
1241 // will trigger a compiler error about using array as initializer.
1242 template <typename R>
1243 internal::ReturnAction<R> Return(R value) {
1244   return internal::ReturnAction<R>(std::move(value));
1245 }
1246 
1247 // Creates an action that returns NULL.
1248 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1249   return MakePolymorphicAction(internal::ReturnNullAction());
1250 }
1251 
1252 // Creates an action that returns from a void function.
1253 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1254   return MakePolymorphicAction(internal::ReturnVoidAction());
1255 }
1256 
1257 // Creates an action that returns the reference to a variable.
1258 template <typename R>
1259 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
1260   return internal::ReturnRefAction<R>(x);
1261 }
1262 
1263 // Prevent using ReturnRef on reference to temporary.
1264 template <typename R, R* = nullptr>
1265 internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
1266 
1267 // Creates an action that returns the reference to a copy of the
1268 // argument.  The copy is created when the action is constructed and
1269 // lives as long as the action.
1270 template <typename R>
1271 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1272   return internal::ReturnRefOfCopyAction<R>(x);
1273 }
1274 
1275 // Modifies the parent action (a Return() action) to perform a move of the
1276 // argument instead of a copy.
1277 // Return(ByMove()) actions can only be executed once and will assert this
1278 // invariant.
1279 template <typename R>
1280 internal::ByMoveWrapper<R> ByMove(R x) {
1281   return internal::ByMoveWrapper<R>(std::move(x));
1282 }
1283 
1284 // Creates an action that returns an element of `vals`. Calling this action will
1285 // repeatedly return the next value from `vals` until it reaches the end and
1286 // will restart from the beginning.
1287 template <typename T>
1288 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
1289   return internal::ReturnRoundRobinAction<T>(std::move(vals));
1290 }
1291 
1292 // Creates an action that returns an element of `vals`. Calling this action will
1293 // repeatedly return the next value from `vals` until it reaches the end and
1294 // will restart from the beginning.
1295 template <typename T>
1296 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
1297     std::initializer_list<T> vals) {
1298   return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
1299 }
1300 
1301 // Creates an action that does the default action for the give mock function.
1302 inline internal::DoDefaultAction DoDefault() {
1303   return internal::DoDefaultAction();
1304 }
1305 
1306 // Creates an action that sets the variable pointed by the N-th
1307 // (0-based) function argument to 'value'.
1308 template <size_t N, typename T>
1309 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
1310   return {std::move(value)};
1311 }
1312 
1313 // The following version is DEPRECATED.
1314 template <size_t N, typename T>
1315 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
1316   return {std::move(value)};
1317 }
1318 
1319 // Creates an action that sets a pointer referent to a given value.
1320 template <typename T1, typename T2>
1321 PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
1322   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1323 }
1324 
1325 #if !GTEST_OS_WINDOWS_MOBILE
1326 
1327 // Creates an action that sets errno and returns the appropriate error.
1328 template <typename T>
1329 PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
1330     int errval, T result) {
1331   return MakePolymorphicAction(
1332       internal::SetErrnoAndReturnAction<T>(errval, result));
1333 }
1334 
1335 #endif  // !GTEST_OS_WINDOWS_MOBILE
1336 
1337 // Various overloads for Invoke().
1338 
1339 // Legacy function.
1340 // Actions can now be implicitly constructed from callables. No need to create
1341 // wrapper objects.
1342 // This function exists for backwards compatibility.
1343 template <typename FunctionImpl>
1344 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
1345   return std::forward<FunctionImpl>(function_impl);
1346 }
1347 
1348 // Creates an action that invokes the given method on the given object
1349 // with the mock function's arguments.
1350 template <class Class, typename MethodPtr>
1351 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
1352                                                       MethodPtr method_ptr) {
1353   return {obj_ptr, method_ptr};
1354 }
1355 
1356 // Creates an action that invokes 'function_impl' with no argument.
1357 template <typename FunctionImpl>
1358 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
1359 InvokeWithoutArgs(FunctionImpl function_impl) {
1360   return {std::move(function_impl)};
1361 }
1362 
1363 // Creates an action that invokes the given method on the given object
1364 // with no argument.
1365 template <class Class, typename MethodPtr>
1366 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
1367     Class* obj_ptr, MethodPtr method_ptr) {
1368   return {obj_ptr, method_ptr};
1369 }
1370 
1371 // Creates an action that performs an_action and throws away its
1372 // result.  In other words, it changes the return type of an_action to
1373 // void.  an_action MUST NOT return void, or the code won't compile.
1374 template <typename A>
1375 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1376   return internal::IgnoreResultAction<A>(an_action);
1377 }
1378 
1379 // Creates a reference wrapper for the given L-value.  If necessary,
1380 // you can explicitly specify the type of the reference.  For example,
1381 // suppose 'derived' is an object of type Derived, ByRef(derived)
1382 // would wrap a Derived&.  If you want to wrap a const Base& instead,
1383 // where Base is a base class of Derived, just write:
1384 //
1385 //   ByRef<const Base>(derived)
1386 //
1387 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
1388 // However, it may still be used for consistency with ByMove().
1389 template <typename T>
1390 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
1391   return ::std::reference_wrapper<T>(l_value);
1392 }
1393 
1394 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
1395 // instance of type T, constructed on the heap with constructor arguments
1396 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
1397 template <typename T, typename... Params>
1398 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
1399     Params&&... params) {
1400   return {std::forward_as_tuple(std::forward<Params>(params)...)};
1401 }
1402 
1403 // Action ReturnArg<k>() returns the k-th argument of the mock function.
1404 template <size_t k>
1405 internal::ReturnArgAction<k> ReturnArg() {
1406   return {};
1407 }
1408 
1409 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
1410 // mock function to *pointer.
1411 template <size_t k, typename Ptr>
1412 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
1413   return {pointer};
1414 }
1415 
1416 // Action SaveArgPointee<k>(pointer) saves the value pointed to
1417 // by the k-th (0-based) argument of the mock function to *pointer.
1418 template <size_t k, typename Ptr>
1419 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
1420   return {pointer};
1421 }
1422 
1423 // Action SetArgReferee<k>(value) assigns 'value' to the variable
1424 // referenced by the k-th (0-based) argument of the mock function.
1425 template <size_t k, typename T>
1426 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
1427     T&& value) {
1428   return {std::forward<T>(value)};
1429 }
1430 
1431 // Action SetArrayArgument<k>(first, last) copies the elements in
1432 // source range [first, last) to the array pointed to by the k-th
1433 // (0-based) argument, which can be either a pointer or an
1434 // iterator. The action does not take ownership of the elements in the
1435 // source range.
1436 template <size_t k, typename I1, typename I2>
1437 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
1438                                                              I2 last) {
1439   return {first, last};
1440 }
1441 
1442 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
1443 // function.
1444 template <size_t k>
1445 internal::DeleteArgAction<k> DeleteArg() {
1446   return {};
1447 }
1448 
1449 // This action returns the value pointed to by 'pointer'.
1450 template <typename Ptr>
1451 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
1452   return {pointer};
1453 }
1454 
1455 // Action Throw(exception) can be used in a mock function of any type
1456 // to throw the given exception.  Any copyable value can be thrown.
1457 #if GTEST_HAS_EXCEPTIONS
1458 template <typename T>
1459 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
1460   return {std::forward<T>(exception)};
1461 }
1462 #endif  // GTEST_HAS_EXCEPTIONS
1463 
1464 namespace internal {
1465 
1466 // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
1467 // defines an action that can be used in a mock function.  Typically,
1468 // these actions only care about a subset of the arguments of the mock
1469 // function.  For example, if such an action only uses the second
1470 // argument, it can be used in any mock function that takes >= 2
1471 // arguments where the type of the second argument is compatible.
1472 //
1473 // Therefore, the action implementation must be prepared to take more
1474 // arguments than it needs.  The ExcessiveArg type is used to
1475 // represent those excessive arguments.  In order to keep the compiler
1476 // error messages tractable, we define it in the testing namespace
1477 // instead of testing::internal.  However, this is an INTERNAL TYPE
1478 // and subject to change without notice, so a user MUST NOT USE THIS
1479 // TYPE DIRECTLY.
1480 struct ExcessiveArg {};
1481 
1482 // Builds an implementation of an Action<> for some particular signature, using
1483 // a class defined by an ACTION* macro.
1484 template <typename F, typename Impl>
1485 struct ActionImpl;
1486 
1487 template <typename Impl>
1488 struct ImplBase {
1489   struct Holder {
1490     // Allows each copy of the Action<> to get to the Impl.
1491     explicit operator const Impl&() const { return *ptr; }
1492     std::shared_ptr<Impl> ptr;
1493   };
1494   using type = typename std::conditional<std::is_constructible<Impl>::value,
1495                                          Impl, Holder>::type;
1496 };
1497 
1498 template <typename R, typename... Args, typename Impl>
1499 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
1500   using Base = typename ImplBase<Impl>::type;
1501   using function_type = R(Args...);
1502   using args_type = std::tuple<Args...>;
1503 
1504   ActionImpl() = default;  // Only defined if appropriate for Base.
1505   explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
1506 
1507   R operator()(Args&&... arg) const {
1508     static constexpr size_t kMaxArgs =
1509         sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
1510     return Apply(MakeIndexSequence<kMaxArgs>{},
1511                  MakeIndexSequence<10 - kMaxArgs>{},
1512                  args_type{std::forward<Args>(arg)...});
1513   }
1514 
1515   template <std::size_t... arg_id, std::size_t... excess_id>
1516   R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
1517           const args_type& args) const {
1518     // Impl need not be specific to the signature of action being implemented;
1519     // only the implementing function body needs to have all of the specific
1520     // types instantiated.  Up to 10 of the args that are provided by the
1521     // args_type get passed, followed by a dummy of unspecified type for the
1522     // remainder up to 10 explicit args.
1523     static constexpr ExcessiveArg kExcessArg{};
1524     return static_cast<const Impl&>(*this)
1525         .template gmock_PerformImpl<
1526             /*function_type=*/function_type, /*return_type=*/R,
1527             /*args_type=*/args_type,
1528             /*argN_type=*/
1529             typename std::tuple_element<arg_id, args_type>::type...>(
1530             /*args=*/args, std::get<arg_id>(args)...,
1531             ((void)excess_id, kExcessArg)...);
1532   }
1533 };
1534 
1535 // Stores a default-constructed Impl as part of the Action<>'s
1536 // std::function<>. The Impl should be trivial to copy.
1537 template <typename F, typename Impl>
1538 ::testing::Action<F> MakeAction() {
1539   return ::testing::Action<F>(ActionImpl<F, Impl>());
1540 }
1541 
1542 // Stores just the one given instance of Impl.
1543 template <typename F, typename Impl>
1544 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
1545   return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
1546 }
1547 
1548 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
1549   , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
1550 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_                 \
1551   const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
1552       GMOCK_INTERNAL_ARG_UNUSED, , 10)
1553 
1554 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
1555 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
1556   const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
1557 
1558 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
1559 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
1560   GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
1561 
1562 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
1563 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
1564   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
1565 
1566 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
1567 #define GMOCK_ACTION_TYPE_PARAMS_(params) \
1568   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
1569 
1570 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
1571   , param##_type gmock_p##i
1572 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
1573   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
1574 
1575 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
1576   , std::forward<param##_type>(gmock_p##i)
1577 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
1578   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
1579 
1580 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
1581   , param(::std::forward<param##_type>(gmock_p##i))
1582 #define GMOCK_ACTION_INIT_PARAMS_(params) \
1583   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
1584 
1585 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
1586 #define GMOCK_ACTION_FIELD_PARAMS_(params) \
1587   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
1588 
1589 #define GMOCK_INTERNAL_ACTION(name, full_name, params)                         \
1590   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
1591   class full_name {                                                            \
1592    public:                                                                     \
1593     explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))               \
1594         : impl_(std::make_shared<gmock_Impl>(                                  \
1595               GMOCK_ACTION_GVALUE_PARAMS_(params))) {}                         \
1596     full_name(const full_name&) = default;                                     \
1597     full_name(full_name&&) noexcept = default;                                 \
1598     template <typename F>                                                      \
1599     operator ::testing::Action<F>() const {                                    \
1600       return ::testing::internal::MakeAction<F>(impl_);                        \
1601     }                                                                          \
1602                                                                                \
1603    private:                                                                    \
1604     class gmock_Impl {                                                         \
1605      public:                                                                   \
1606       explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))            \
1607           : GMOCK_ACTION_INIT_PARAMS_(params) {}                               \
1608       template <typename function_type, typename return_type,                  \
1609                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>         \
1610       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const;  \
1611       GMOCK_ACTION_FIELD_PARAMS_(params)                                       \
1612     };                                                                         \
1613     std::shared_ptr<const gmock_Impl> impl_;                                   \
1614   };                                                                           \
1615   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
1616   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
1617       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_;        \
1618   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
1619   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
1620       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                              \
1621     return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                       \
1622         GMOCK_ACTION_GVALUE_PARAMS_(params));                                  \
1623   }                                                                            \
1624   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
1625   template <typename function_type, typename return_type, typename args_type,  \
1626             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                 \
1627   return_type                                                                  \
1628   full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
1629       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
1630 
1631 }  // namespace internal
1632 
1633 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
1634 #define ACTION(name)                                                          \
1635   class name##Action {                                                        \
1636    public:                                                                    \
1637     explicit name##Action() noexcept {}                                       \
1638     name##Action(const name##Action&) noexcept {}                             \
1639     template <typename F>                                                     \
1640     operator ::testing::Action<F>() const {                                   \
1641       return ::testing::internal::MakeAction<F, gmock_Impl>();                \
1642     }                                                                         \
1643                                                                               \
1644    private:                                                                   \
1645     class gmock_Impl {                                                        \
1646      public:                                                                  \
1647       template <typename function_type, typename return_type,                 \
1648                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
1649       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
1650     };                                                                        \
1651   };                                                                          \
1652   inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
1653   inline name##Action name() { return name##Action(); }                       \
1654   template <typename function_type, typename return_type, typename args_type, \
1655             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
1656   return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \
1657       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
1658 
1659 #define ACTION_P(name, ...) \
1660   GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
1661 
1662 #define ACTION_P2(name, ...) \
1663   GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
1664 
1665 #define ACTION_P3(name, ...) \
1666   GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
1667 
1668 #define ACTION_P4(name, ...) \
1669   GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
1670 
1671 #define ACTION_P5(name, ...) \
1672   GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
1673 
1674 #define ACTION_P6(name, ...) \
1675   GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
1676 
1677 #define ACTION_P7(name, ...) \
1678   GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
1679 
1680 #define ACTION_P8(name, ...) \
1681   GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
1682 
1683 #define ACTION_P9(name, ...) \
1684   GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
1685 
1686 #define ACTION_P10(name, ...) \
1687   GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
1688 
1689 }  // namespace testing
1690 
1691 #ifdef _MSC_VER
1692 #pragma warning(pop)
1693 #endif
1694 
1695 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
1696