• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The MATCHER* family of macros can be used in a namespace scope to
33 // define custom matchers easily.
34 //
35 // Basic Usage
36 // ===========
37 //
38 // The syntax
39 //
40 //   MATCHER(name, description_string) { statements; }
41 //
42 // defines a matcher with the given name that executes the statements,
43 // which must return a bool to indicate if the match succeeds.  Inside
44 // the statements, you can refer to the value being matched by 'arg',
45 // and refer to its type by 'arg_type'.
46 //
47 // The description string documents what the matcher does, and is used
48 // to generate the failure message when the match fails.  Since a
49 // MATCHER() is usually defined in a header file shared by multiple
50 // C++ source files, we require the description to be a C-string
51 // literal to avoid possible side effects.  It can be empty, in which
52 // case we'll use the sequence of words in the matcher name as the
53 // description.
54 //
55 // For example:
56 //
57 //   MATCHER(IsEven, "") { return (arg % 2) == 0; }
58 //
59 // allows you to write
60 //
61 //   // Expects mock_foo.Bar(n) to be called where n is even.
62 //   EXPECT_CALL(mock_foo, Bar(IsEven()));
63 //
64 // or,
65 //
66 //   // Verifies that the value of some_expression is even.
67 //   EXPECT_THAT(some_expression, IsEven());
68 //
69 // If the above assertion fails, it will print something like:
70 //
71 //   Value of: some_expression
72 //   Expected: is even
73 //     Actual: 7
74 //
75 // where the description "is even" is automatically calculated from the
76 // matcher name IsEven.
77 //
78 // Argument Type
79 // =============
80 //
81 // Note that the type of the value being matched (arg_type) is
82 // determined by the context in which you use the matcher and is
83 // supplied to you by the compiler, so you don't need to worry about
84 // declaring it (nor can you).  This allows the matcher to be
85 // polymorphic.  For example, IsEven() can be used to match any type
86 // where the value of "(arg % 2) == 0" can be implicitly converted to
87 // a bool.  In the "Bar(IsEven())" example above, if method Bar()
88 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
89 // 'arg_type' will be unsigned long; and so on.
90 //
91 // Parameterizing Matchers
92 // =======================
93 //
94 // Sometimes you'll want to parameterize the matcher.  For that you
95 // can use another macro:
96 //
97 //   MATCHER_P(name, param_name, description_string) { statements; }
98 //
99 // For example:
100 //
101 //   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
102 //
103 // will allow you to write:
104 //
105 //   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
106 //
107 // which may lead to this message (assuming n is 10):
108 //
109 //   Value of: Blah("a")
110 //   Expected: has absolute value 10
111 //     Actual: -9
112 //
113 // Note that both the matcher description and its parameter are
114 // printed, making the message human-friendly.
115 //
116 // In the matcher definition body, you can write 'foo_type' to
117 // reference the type of a parameter named 'foo'.  For example, in the
118 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
119 // 'value_type' to refer to the type of 'value'.
120 //
121 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
122 // support multi-parameter matchers.
123 //
124 // Describing Parameterized Matchers
125 // =================================
126 //
127 // The last argument to MATCHER*() is a string-typed expression.  The
128 // expression can reference all of the matcher's parameters and a
129 // special bool-typed variable named 'negation'.  When 'negation' is
130 // false, the expression should evaluate to the matcher's description;
131 // otherwise it should evaluate to the description of the negation of
132 // the matcher.  For example,
133 //
134 //   using testing::PrintToString;
135 //
136 //   MATCHER_P2(InClosedRange, low, hi,
137 //       std::string(negation ? "is not" : "is") + " in range [" +
138 //       PrintToString(low) + ", " + PrintToString(hi) + "]") {
139 //     return low <= arg && arg <= hi;
140 //   }
141 //   ...
142 //   EXPECT_THAT(3, InClosedRange(4, 6));
143 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
144 //
145 // would generate two failures that contain the text:
146 //
147 //   Expected: is in range [4, 6]
148 //   ...
149 //   Expected: is not in range [2, 4]
150 //
151 // If you specify "" as the description, the failure message will
152 // contain the sequence of words in the matcher name followed by the
153 // parameter values printed as a tuple.  For example,
154 //
155 //   MATCHER_P2(InClosedRange, low, hi, "") { ... }
156 //   ...
157 //   EXPECT_THAT(3, InClosedRange(4, 6));
158 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
159 //
160 // would generate two failures that contain the text:
161 //
162 //   Expected: in closed range (4, 6)
163 //   ...
164 //   Expected: not (in closed range (2, 4))
165 //
166 // Types of Matcher Parameters
167 // ===========================
168 //
169 // For the purpose of typing, you can view
170 //
171 //   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
172 //
173 // as shorthand for
174 //
175 //   template <typename p1_type, ..., typename pk_type>
176 //   FooMatcherPk<p1_type, ..., pk_type>
177 //   Foo(p1_type p1, ..., pk_type pk) { ... }
178 //
179 // When you write Foo(v1, ..., vk), the compiler infers the types of
180 // the parameters v1, ..., and vk for you.  If you are not happy with
181 // the result of the type inference, you can specify the types by
182 // explicitly instantiating the template, as in Foo<long, bool>(5,
183 // false).  As said earlier, you don't get to (or need to) specify
184 // 'arg_type' as that's determined by the context in which the matcher
185 // is used.  You can assign the result of expression Foo(p1, ..., pk)
186 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
187 // can be useful when composing matchers.
188 //
189 // While you can instantiate a matcher template with reference types,
190 // passing the parameters by pointer usually makes your code more
191 // readable.  If, however, you still want to pass a parameter by
192 // reference, be aware that in the failure message generated by the
193 // matcher you will see the value of the referenced object but not its
194 // address.
195 //
196 // Explaining Match Results
197 // ========================
198 //
199 // Sometimes the matcher description alone isn't enough to explain why
200 // the match has failed or succeeded.  For example, when expecting a
201 // long string, it can be very helpful to also print the diff between
202 // the expected string and the actual one.  To achieve that, you can
203 // optionally stream additional information to a special variable
204 // named result_listener, whose type is a pointer to class
205 // MatchResultListener:
206 //
207 //   MATCHER_P(EqualsLongString, str, "") {
208 //     if (arg == str) return true;
209 //
210 //     *result_listener << "the difference: "
211 ///                     << DiffStrings(str, arg);
212 //     return false;
213 //   }
214 //
215 // Overloading Matchers
216 // ====================
217 //
218 // You can overload matchers with different numbers of parameters:
219 //
220 //   MATCHER_P(Blah, a, description_string1) { ... }
221 //   MATCHER_P2(Blah, a, b, description_string2) { ... }
222 //
223 // Caveats
224 // =======
225 //
226 // When defining a new matcher, you should also consider implementing
227 // MatcherInterface or using MakePolymorphicMatcher().  These
228 // approaches require more work than the MATCHER* macros, but also
229 // give you more control on the types of the value being matched and
230 // the matcher parameters, which may leads to better compiler error
231 // messages when the matcher is used wrong.  They also allow
232 // overloading matchers based on parameter types (as opposed to just
233 // based on the number of parameters).
234 //
235 // MATCHER*() can only be used in a namespace scope as templates cannot be
236 // declared inside of a local class.
237 //
238 // More Information
239 // ================
240 //
241 // To learn more about using these macros, please search for 'MATCHER'
242 // on
243 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
244 //
245 // This file also implements some commonly used argument matchers.  More
246 // matchers can be defined by the user implementing the
247 // MatcherInterface<T> interface if necessary.
248 //
249 // See googletest/include/gtest/gtest-matchers.h for the definition of class
250 // Matcher, class MatcherInterface, and others.
251 
252 // IWYU pragma: private, include "gmock/gmock.h"
253 // IWYU pragma: friend gmock/.*
254 
255 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257 
258 #include <algorithm>
259 #include <cmath>
260 #include <initializer_list>
261 #include <iterator>
262 #include <limits>
263 #include <memory>
264 #include <ostream>  // NOLINT
265 #include <sstream>
266 #include <string>
267 #include <type_traits>
268 #include <utility>
269 #include <vector>
270 
271 #include "gmock/internal/gmock-internal-utils.h"
272 #include "gmock/internal/gmock-port.h"
273 #include "gmock/internal/gmock-pp.h"
274 #include "gtest/gtest.h"
275 
276 // MSVC warning C5046 is new as of VS2017 version 15.8.
277 #if defined(_MSC_VER) && _MSC_VER >= 1915
278 #define GMOCK_MAYBE_5046_ 5046
279 #else
280 #define GMOCK_MAYBE_5046_
281 #endif
282 
283 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
284     4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
285                               clients of class B */
286     /* Symbol involving type with internal linkage not defined */)
287 
288 namespace testing {
289 
290 // To implement a matcher Foo for type T, define:
291 //   1. a class FooMatcherImpl that implements the
292 //      MatcherInterface<T> interface, and
293 //   2. a factory function that creates a Matcher<T> object from a
294 //      FooMatcherImpl*.
295 //
296 // The two-level delegation design makes it possible to allow a user
297 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
298 // is impossible if we pass matchers by pointers.  It also eases
299 // ownership management as Matcher objects can now be copied like
300 // plain values.
301 
302 // A match result listener that stores the explanation in a string.
303 class StringMatchResultListener : public MatchResultListener {
304  public:
StringMatchResultListener()305   StringMatchResultListener() : MatchResultListener(&ss_) {}
306 
307   // Returns the explanation accumulated so far.
str()308   std::string str() const { return ss_.str(); }
309 
310   // Clears the explanation accumulated so far.
Clear()311   void Clear() { ss_.str(""); }
312 
313  private:
314   ::std::stringstream ss_;
315 
316   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
317 };
318 
319 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
320 // and MUST NOT BE USED IN USER CODE!!!
321 namespace internal {
322 
323 // The MatcherCastImpl class template is a helper for implementing
324 // MatcherCast().  We need this helper in order to partially
325 // specialize the implementation of MatcherCast() (C++ allows
326 // class/struct templates to be partially specialized, but not
327 // function templates.).
328 
329 // This general version is used when MatcherCast()'s argument is a
330 // polymorphic matcher (i.e. something that can be converted to a
331 // Matcher but is not one yet; for example, Eq(value)) or a value (for
332 // example, "hello").
333 template <typename T, typename M>
334 class MatcherCastImpl {
335  public:
Cast(const M & polymorphic_matcher_or_value)336   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
337     // M can be a polymorphic matcher, in which case we want to use
338     // its conversion operator to create Matcher<T>.  Or it can be a value
339     // that should be passed to the Matcher<T>'s constructor.
340     //
341     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
342     // polymorphic matcher because it'll be ambiguous if T has an implicit
343     // constructor from M (this usually happens when T has an implicit
344     // constructor from any type).
345     //
346     // It won't work to unconditionally implicit_cast
347     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
348     // a user-defined conversion from M to T if one exists (assuming M is
349     // a value).
350     return CastImpl(polymorphic_matcher_or_value,
351                     std::is_convertible<M, Matcher<T>>{},
352                     std::is_convertible<M, T>{});
353   }
354 
355  private:
356   template <bool Ignore>
CastImpl(const M & polymorphic_matcher_or_value,std::true_type,std::integral_constant<bool,Ignore>)357   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
358                              std::true_type /* convertible_to_matcher */,
359                              std::integral_constant<bool, Ignore>) {
360     // M is implicitly convertible to Matcher<T>, which means that either
361     // M is a polymorphic matcher or Matcher<T> has an implicit constructor
362     // from M.  In both cases using the implicit conversion will produce a
363     // matcher.
364     //
365     // Even if T has an implicit constructor from M, it won't be called because
366     // creating Matcher<T> would require a chain of two user-defined conversions
367     // (first to create T from M and then to create Matcher<T> from T).
368     return polymorphic_matcher_or_value;
369   }
370 
371   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
372   // matcher. It's a value of a type implicitly convertible to T. Use direct
373   // initialization to create a matcher.
CastImpl(const M & value,std::false_type,std::true_type)374   static Matcher<T> CastImpl(const M& value,
375                              std::false_type /* convertible_to_matcher */,
376                              std::true_type /* convertible_to_T */) {
377     return Matcher<T>(ImplicitCast_<T>(value));
378   }
379 
380   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
381   // polymorphic matcher Eq(value) in this case.
382   //
383   // Note that we first attempt to perform an implicit cast on the value and
384   // only fall back to the polymorphic Eq() matcher afterwards because the
385   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
386   // which might be undefined even when Rhs is implicitly convertible to Lhs
387   // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
388   //
389   // We don't define this method inline as we need the declaration of Eq().
390   static Matcher<T> CastImpl(const M& value,
391                              std::false_type /* convertible_to_matcher */,
392                              std::false_type /* convertible_to_T */);
393 };
394 
395 // This more specialized version is used when MatcherCast()'s argument
396 // is already a Matcher.  This only compiles when type T can be
397 // statically converted to type U.
398 template <typename T, typename U>
399 class MatcherCastImpl<T, Matcher<U>> {
400  public:
Cast(const Matcher<U> & source_matcher)401   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
402     return Matcher<T>(new Impl(source_matcher));
403   }
404 
405  private:
406   class Impl : public MatcherInterface<T> {
407    public:
Impl(const Matcher<U> & source_matcher)408     explicit Impl(const Matcher<U>& source_matcher)
409         : source_matcher_(source_matcher) {}
410 
411     // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)412     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
413       using FromType = typename std::remove_cv<typename std::remove_pointer<
414           typename std::remove_reference<T>::type>::type>::type;
415       using ToType = typename std::remove_cv<typename std::remove_pointer<
416           typename std::remove_reference<U>::type>::type>::type;
417       // Do not allow implicitly converting base*/& to derived*/&.
418       static_assert(
419           // Do not trigger if only one of them is a pointer. That implies a
420           // regular conversion and not a down_cast.
421           (std::is_pointer<typename std::remove_reference<T>::type>::value !=
422            std::is_pointer<typename std::remove_reference<U>::type>::value) ||
423               std::is_same<FromType, ToType>::value ||
424               !std::is_base_of<FromType, ToType>::value,
425           "Can't implicitly convert from <base> to <derived>");
426 
427       // Do the cast to `U` explicitly if necessary.
428       // Otherwise, let implicit conversions do the trick.
429       using CastType =
430           typename std::conditional<std::is_convertible<T&, const U&>::value,
431                                     T&, U>::type;
432 
433       return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
434                                              listener);
435     }
436 
DescribeTo(::std::ostream * os)437     void DescribeTo(::std::ostream* os) const override {
438       source_matcher_.DescribeTo(os);
439     }
440 
DescribeNegationTo(::std::ostream * os)441     void DescribeNegationTo(::std::ostream* os) const override {
442       source_matcher_.DescribeNegationTo(os);
443     }
444 
445    private:
446     const Matcher<U> source_matcher_;
447   };
448 };
449 
450 // This even more specialized version is used for efficiently casting
451 // a matcher to its own type.
452 template <typename T>
453 class MatcherCastImpl<T, Matcher<T>> {
454  public:
Cast(const Matcher<T> & matcher)455   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
456 };
457 
458 // Template specialization for parameterless Matcher.
459 template <typename Derived>
460 class MatcherBaseImpl {
461  public:
462   MatcherBaseImpl() = default;
463 
464   template <typename T>
465   operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
466     return ::testing::Matcher<T>(new
467                                  typename Derived::template gmock_Impl<T>());
468   }
469 };
470 
471 // Template specialization for Matcher with parameters.
472 template <template <typename...> class Derived, typename... Ts>
473 class MatcherBaseImpl<Derived<Ts...>> {
474  public:
475   // Mark the constructor explicit for single argument T to avoid implicit
476   // conversions.
477   template <typename E = std::enable_if<sizeof...(Ts) == 1>,
478             typename E::type* = nullptr>
MatcherBaseImpl(Ts...params)479   explicit MatcherBaseImpl(Ts... params)
480       : params_(std::forward<Ts>(params)...) {}
481   template <typename E = std::enable_if<sizeof...(Ts) != 1>,
482             typename = typename E::type>
MatcherBaseImpl(Ts...params)483   MatcherBaseImpl(Ts... params)  // NOLINT
484       : params_(std::forward<Ts>(params)...) {}
485 
486   template <typename F>
487   operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
488     return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
489   }
490 
491  private:
492   template <typename F, std::size_t... tuple_ids>
Apply(IndexSequence<tuple_ids...>)493   ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
494     return ::testing::Matcher<F>(
495         new typename Derived<Ts...>::template gmock_Impl<F>(
496             std::get<tuple_ids>(params_)...));
497   }
498 
499   const std::tuple<Ts...> params_;
500 };
501 
502 }  // namespace internal
503 
504 // In order to be safe and clear, casting between different matcher
505 // types is done explicitly via MatcherCast<T>(m), which takes a
506 // matcher m and returns a Matcher<T>.  It compiles only when T can be
507 // statically converted to the argument type of m.
508 template <typename T, typename M>
MatcherCast(const M & matcher)509 inline Matcher<T> MatcherCast(const M& matcher) {
510   return internal::MatcherCastImpl<T, M>::Cast(matcher);
511 }
512 
513 // This overload handles polymorphic matchers and values only since
514 // monomorphic matchers are handled by the next one.
515 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher_or_value)516 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
517   return MatcherCast<T>(polymorphic_matcher_or_value);
518 }
519 
520 // This overload handles monomorphic matchers.
521 //
522 // In general, if type T can be implicitly converted to type U, we can
523 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
524 // contravariant): just keep a copy of the original Matcher<U>, convert the
525 // argument from type T to U, and then pass it to the underlying Matcher<U>.
526 // The only exception is when U is a reference and T is not, as the
527 // underlying Matcher<U> may be interested in the argument's address, which
528 // is not preserved in the conversion from T to U.
529 template <typename T, typename U>
SafeMatcherCast(const Matcher<U> & matcher)530 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
531   // Enforce that T can be implicitly converted to U.
532   static_assert(std::is_convertible<const T&, const U&>::value,
533                 "T must be implicitly convertible to U");
534   // Enforce that we are not converting a non-reference type T to a reference
535   // type U.
536   GTEST_COMPILE_ASSERT_(
537       std::is_reference<T>::value || !std::is_reference<U>::value,
538       cannot_convert_non_reference_arg_to_reference);
539   // In case both T and U are arithmetic types, enforce that the
540   // conversion is not lossy.
541   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
542   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
543   constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
544   constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
545   GTEST_COMPILE_ASSERT_(
546       kTIsOther || kUIsOther ||
547           (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
548       conversion_of_arithmetic_types_must_be_lossless);
549   return MatcherCast<T>(matcher);
550 }
551 
552 // A<T>() returns a matcher that matches any value of type T.
553 template <typename T>
554 Matcher<T> A();
555 
556 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
557 // and MUST NOT BE USED IN USER CODE!!!
558 namespace internal {
559 
560 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const std::string & explanation,::std::ostream * os)561 inline void PrintIfNotEmpty(const std::string& explanation,
562                             ::std::ostream* os) {
563   if (explanation != "" && os != nullptr) {
564     *os << ", " << explanation;
565   }
566 }
567 
568 // Returns true if the given type name is easy to read by a human.
569 // This is used to decide whether printing the type of a value might
570 // be helpful.
IsReadableTypeName(const std::string & type_name)571 inline bool IsReadableTypeName(const std::string& type_name) {
572   // We consider a type name readable if it's short or doesn't contain
573   // a template or function type.
574   return (type_name.length() <= 20 ||
575           type_name.find_first_of("<(") == std::string::npos);
576 }
577 
578 // Matches the value against the given matcher, prints the value and explains
579 // the match result to the listener. Returns the match result.
580 // 'listener' must not be NULL.
581 // Value cannot be passed by const reference, because some matchers take a
582 // non-const argument.
583 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)584 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
585                           MatchResultListener* listener) {
586   if (!listener->IsInterested()) {
587     // If the listener is not interested, we do not need to construct the
588     // inner explanation.
589     return matcher.Matches(value);
590   }
591 
592   StringMatchResultListener inner_listener;
593   const bool match = matcher.MatchAndExplain(value, &inner_listener);
594 
595   UniversalPrint(value, listener->stream());
596 #if GTEST_HAS_RTTI
597   const std::string& type_name = GetTypeName<Value>();
598   if (IsReadableTypeName(type_name))
599     *listener->stream() << " (of type " << type_name << ")";
600 #endif
601   PrintIfNotEmpty(inner_listener.str(), listener->stream());
602 
603   return match;
604 }
605 
606 // An internal helper class for doing compile-time loop on a tuple's
607 // fields.
608 template <size_t N>
609 class TuplePrefix {
610  public:
611   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
612   // if and only if the first N fields of matcher_tuple matches
613   // the first N fields of value_tuple, respectively.
614   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)615   static bool Matches(const MatcherTuple& matcher_tuple,
616                       const ValueTuple& value_tuple) {
617     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
618            std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
619   }
620 
621   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
622   // describes failures in matching the first N fields of matchers
623   // against the first N fields of values.  If there is no failure,
624   // nothing will be streamed to os.
625   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)626   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
627                                      const ValueTuple& values,
628                                      ::std::ostream* os) {
629     // First, describes failures in the first N - 1 fields.
630     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
631 
632     // Then describes the failure (if any) in the (N - 1)-th (0-based)
633     // field.
634     typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
635         std::get<N - 1>(matchers);
636     typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
637     const Value& value = std::get<N - 1>(values);
638     StringMatchResultListener listener;
639     if (!matcher.MatchAndExplain(value, &listener)) {
640       *os << "  Expected arg #" << N - 1 << ": ";
641       std::get<N - 1>(matchers).DescribeTo(os);
642       *os << "\n           Actual: ";
643       // We remove the reference in type Value to prevent the
644       // universal printer from printing the address of value, which
645       // isn't interesting to the user most of the time.  The
646       // matcher's MatchAndExplain() method handles the case when
647       // the address is interesting.
648       internal::UniversalPrint(value, os);
649       PrintIfNotEmpty(listener.str(), os);
650       *os << "\n";
651     }
652   }
653 };
654 
655 // The base case.
656 template <>
657 class TuplePrefix<0> {
658  public:
659   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)660   static bool Matches(const MatcherTuple& /* matcher_tuple */,
661                       const ValueTuple& /* value_tuple */) {
662     return true;
663   }
664 
665   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)666   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
667                                      const ValueTuple& /* values */,
668                                      ::std::ostream* /* os */) {}
669 };
670 
671 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
672 // all matchers in matcher_tuple match the corresponding fields in
673 // value_tuple.  It is a compiler error if matcher_tuple and
674 // value_tuple have different number of fields or incompatible field
675 // types.
676 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)677 bool TupleMatches(const MatcherTuple& matcher_tuple,
678                   const ValueTuple& value_tuple) {
679   // Makes sure that matcher_tuple and value_tuple have the same
680   // number of fields.
681   GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
682                             std::tuple_size<ValueTuple>::value,
683                         matcher_and_value_have_different_numbers_of_fields);
684   return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
685                                                                   value_tuple);
686 }
687 
688 // Describes failures in matching matchers against values.  If there
689 // is no failure, nothing will be streamed to os.
690 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)691 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
692                                 const ValueTuple& values, ::std::ostream* os) {
693   TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
694       matchers, values, os);
695 }
696 
697 // TransformTupleValues and its helper.
698 //
699 // TransformTupleValuesHelper hides the internal machinery that
700 // TransformTupleValues uses to implement a tuple traversal.
701 template <typename Tuple, typename Func, typename OutIter>
702 class TransformTupleValuesHelper {
703  private:
704   typedef ::std::tuple_size<Tuple> TupleSize;
705 
706  public:
707   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
708   // Returns the final value of 'out' in case the caller needs it.
Run(Func f,const Tuple & t,OutIter out)709   static OutIter Run(Func f, const Tuple& t, OutIter out) {
710     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
711   }
712 
713  private:
714   template <typename Tup, size_t kRemainingSize>
715   struct IterateOverTuple {
operatorIterateOverTuple716     OutIter operator()(Func f, const Tup& t, OutIter out) const {
717       *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
718       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
719     }
720   };
721   template <typename Tup>
722   struct IterateOverTuple<Tup, 0> {
723     OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const {
724       return out;
725     }
726   };
727 };
728 
729 // Successively invokes 'f(element)' on each element of the tuple 't',
730 // appending each result to the 'out' iterator. Returns the final value
731 // of 'out'.
732 template <typename Tuple, typename Func, typename OutIter>
733 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
734   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
735 }
736 
737 // Implements _, a matcher that matches any value of any
738 // type.  This is a polymorphic matcher, so we need a template type
739 // conversion operator to make it appearing as a Matcher<T> for any
740 // type T.
741 class AnythingMatcher {
742  public:
743   using is_gtest_matcher = void;
744 
745   template <typename T>
746   bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
747     return true;
748   }
749   void DescribeTo(std::ostream* os) const { *os << "is anything"; }
750   void DescribeNegationTo(::std::ostream* os) const {
751     // This is mostly for completeness' sake, as it's not very useful
752     // to write Not(A<bool>()).  However we cannot completely rule out
753     // such a possibility, and it doesn't hurt to be prepared.
754     *os << "never matches";
755   }
756 };
757 
758 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
759 // pointer that is NULL.
760 class IsNullMatcher {
761  public:
762   template <typename Pointer>
763   bool MatchAndExplain(const Pointer& p,
764                        MatchResultListener* /* listener */) const {
765     return p == nullptr;
766   }
767 
768   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
769   void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; }
770 };
771 
772 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
773 // pointer that is not NULL.
774 class NotNullMatcher {
775  public:
776   template <typename Pointer>
777   bool MatchAndExplain(const Pointer& p,
778                        MatchResultListener* /* listener */) const {
779     return p != nullptr;
780   }
781 
782   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
783   void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
784 };
785 
786 // Ref(variable) matches any argument that is a reference to
787 // 'variable'.  This matcher is polymorphic as it can match any
788 // super type of the type of 'variable'.
789 //
790 // The RefMatcher template class implements Ref(variable).  It can
791 // only be instantiated with a reference type.  This prevents a user
792 // from mistakenly using Ref(x) to match a non-reference function
793 // argument.  For example, the following will righteously cause a
794 // compiler error:
795 //
796 //   int n;
797 //   Matcher<int> m1 = Ref(n);   // This won't compile.
798 //   Matcher<int&> m2 = Ref(n);  // This will compile.
799 template <typename T>
800 class RefMatcher;
801 
802 template <typename T>
803 class RefMatcher<T&> {
804   // Google Mock is a generic framework and thus needs to support
805   // mocking any function types, including those that take non-const
806   // reference arguments.  Therefore the template parameter T (and
807   // Super below) can be instantiated to either a const type or a
808   // non-const type.
809  public:
810   // RefMatcher() takes a T& instead of const T&, as we want the
811   // compiler to catch using Ref(const_value) as a matcher for a
812   // non-const reference.
813   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
814 
815   template <typename Super>
816   operator Matcher<Super&>() const {
817     // By passing object_ (type T&) to Impl(), which expects a Super&,
818     // we make sure that Super is a super type of T.  In particular,
819     // this catches using Ref(const_value) as a matcher for a
820     // non-const reference, as you cannot implicitly convert a const
821     // reference to a non-const reference.
822     return MakeMatcher(new Impl<Super>(object_));
823   }
824 
825  private:
826   template <typename Super>
827   class Impl : public MatcherInterface<Super&> {
828    public:
829     explicit Impl(Super& x) : object_(x) {}  // NOLINT
830 
831     // MatchAndExplain() takes a Super& (as opposed to const Super&)
832     // in order to match the interface MatcherInterface<Super&>.
833     bool MatchAndExplain(Super& x,
834                          MatchResultListener* listener) const override {
835       *listener << "which is located @" << static_cast<const void*>(&x);
836       return &x == &object_;
837     }
838 
839     void DescribeTo(::std::ostream* os) const override {
840       *os << "references the variable ";
841       UniversalPrinter<Super&>::Print(object_, os);
842     }
843 
844     void DescribeNegationTo(::std::ostream* os) const override {
845       *os << "does not reference the variable ";
846       UniversalPrinter<Super&>::Print(object_, os);
847     }
848 
849    private:
850     const Super& object_;
851   };
852 
853   T& object_;
854 };
855 
856 // Polymorphic helper functions for narrow and wide string matchers.
857 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
858   return String::CaseInsensitiveCStringEquals(lhs, rhs);
859 }
860 
861 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
862                                          const wchar_t* rhs) {
863   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
864 }
865 
866 // String comparison for narrow or wide strings that can have embedded NUL
867 // characters.
868 template <typename StringType>
869 bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) {
870   // Are the heads equal?
871   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
872     return false;
873   }
874 
875   // Skip the equal heads.
876   const typename StringType::value_type nul = 0;
877   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
878 
879   // Are we at the end of either s1 or s2?
880   if (i1 == StringType::npos || i2 == StringType::npos) {
881     return i1 == i2;
882   }
883 
884   // Are the tails equal?
885   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
886 }
887 
888 // String matchers.
889 
890 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
891 template <typename StringType>
892 class StrEqualityMatcher {
893  public:
894   StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
895       : string_(std::move(str)),
896         expect_eq_(expect_eq),
897         case_sensitive_(case_sensitive) {}
898 
899 #if GTEST_INTERNAL_HAS_STRING_VIEW
900   bool MatchAndExplain(const internal::StringView& s,
901                        MatchResultListener* listener) const {
902     // This should fail to compile if StringView is used with wide
903     // strings.
904     const StringType& str = std::string(s);
905     return MatchAndExplain(str, listener);
906   }
907 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
908 
909   // Accepts pointer types, particularly:
910   //   const char*
911   //   char*
912   //   const wchar_t*
913   //   wchar_t*
914   template <typename CharType>
915   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
916     if (s == nullptr) {
917       return !expect_eq_;
918     }
919     return MatchAndExplain(StringType(s), listener);
920   }
921 
922   // Matches anything that can convert to StringType.
923   //
924   // This is a template, not just a plain function with const StringType&,
925   // because StringView has some interfering non-explicit constructors.
926   template <typename MatcheeStringType>
927   bool MatchAndExplain(const MatcheeStringType& s,
928                        MatchResultListener* /* listener */) const {
929     const StringType s2(s);
930     const bool eq = case_sensitive_ ? s2 == string_
931                                     : CaseInsensitiveStringEquals(s2, string_);
932     return expect_eq_ == eq;
933   }
934 
935   void DescribeTo(::std::ostream* os) const {
936     DescribeToHelper(expect_eq_, os);
937   }
938 
939   void DescribeNegationTo(::std::ostream* os) const {
940     DescribeToHelper(!expect_eq_, os);
941   }
942 
943  private:
944   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
945     *os << (expect_eq ? "is " : "isn't ");
946     *os << "equal to ";
947     if (!case_sensitive_) {
948       *os << "(ignoring case) ";
949     }
950     UniversalPrint(string_, os);
951   }
952 
953   const StringType string_;
954   const bool expect_eq_;
955   const bool case_sensitive_;
956 };
957 
958 // Implements the polymorphic HasSubstr(substring) matcher, which
959 // can be used as a Matcher<T> as long as T can be converted to a
960 // string.
961 template <typename StringType>
962 class HasSubstrMatcher {
963  public:
964   explicit HasSubstrMatcher(const StringType& substring)
965       : substring_(substring) {}
966 
967 #if GTEST_INTERNAL_HAS_STRING_VIEW
968   bool MatchAndExplain(const internal::StringView& s,
969                        MatchResultListener* listener) const {
970     // This should fail to compile if StringView is used with wide
971     // strings.
972     const StringType& str = std::string(s);
973     return MatchAndExplain(str, listener);
974   }
975 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
976 
977   // Accepts pointer types, particularly:
978   //   const char*
979   //   char*
980   //   const wchar_t*
981   //   wchar_t*
982   template <typename CharType>
983   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
984     return s != nullptr && MatchAndExplain(StringType(s), listener);
985   }
986 
987   // Matches anything that can convert to StringType.
988   //
989   // This is a template, not just a plain function with const StringType&,
990   // because StringView has some interfering non-explicit constructors.
991   template <typename MatcheeStringType>
992   bool MatchAndExplain(const MatcheeStringType& s,
993                        MatchResultListener* /* listener */) const {
994     return StringType(s).find(substring_) != StringType::npos;
995   }
996 
997   // Describes what this matcher matches.
998   void DescribeTo(::std::ostream* os) const {
999     *os << "has substring ";
1000     UniversalPrint(substring_, os);
1001   }
1002 
1003   void DescribeNegationTo(::std::ostream* os) const {
1004     *os << "has no substring ";
1005     UniversalPrint(substring_, os);
1006   }
1007 
1008  private:
1009   const StringType substring_;
1010 };
1011 
1012 // Implements the polymorphic StartsWith(substring) matcher, which
1013 // can be used as a Matcher<T> as long as T can be converted to a
1014 // string.
1015 template <typename StringType>
1016 class StartsWithMatcher {
1017  public:
1018   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {}
1019 
1020 #if GTEST_INTERNAL_HAS_STRING_VIEW
1021   bool MatchAndExplain(const internal::StringView& s,
1022                        MatchResultListener* listener) const {
1023     // This should fail to compile if StringView is used with wide
1024     // strings.
1025     const StringType& str = std::string(s);
1026     return MatchAndExplain(str, listener);
1027   }
1028 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1029 
1030   // Accepts pointer types, particularly:
1031   //   const char*
1032   //   char*
1033   //   const wchar_t*
1034   //   wchar_t*
1035   template <typename CharType>
1036   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1037     return s != nullptr && MatchAndExplain(StringType(s), listener);
1038   }
1039 
1040   // Matches anything that can convert to StringType.
1041   //
1042   // This is a template, not just a plain function with const StringType&,
1043   // because StringView has some interfering non-explicit constructors.
1044   template <typename MatcheeStringType>
1045   bool MatchAndExplain(const MatcheeStringType& s,
1046                        MatchResultListener* /* listener */) const {
1047     const StringType& s2(s);
1048     return s2.length() >= prefix_.length() &&
1049            s2.substr(0, prefix_.length()) == prefix_;
1050   }
1051 
1052   void DescribeTo(::std::ostream* os) const {
1053     *os << "starts with ";
1054     UniversalPrint(prefix_, os);
1055   }
1056 
1057   void DescribeNegationTo(::std::ostream* os) const {
1058     *os << "doesn't start with ";
1059     UniversalPrint(prefix_, os);
1060   }
1061 
1062  private:
1063   const StringType prefix_;
1064 };
1065 
1066 // Implements the polymorphic EndsWith(substring) matcher, which
1067 // can be used as a Matcher<T> as long as T can be converted to a
1068 // string.
1069 template <typename StringType>
1070 class EndsWithMatcher {
1071  public:
1072   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1073 
1074 #if GTEST_INTERNAL_HAS_STRING_VIEW
1075   bool MatchAndExplain(const internal::StringView& s,
1076                        MatchResultListener* listener) const {
1077     // This should fail to compile if StringView is used with wide
1078     // strings.
1079     const StringType& str = std::string(s);
1080     return MatchAndExplain(str, listener);
1081   }
1082 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1083 
1084   // Accepts pointer types, particularly:
1085   //   const char*
1086   //   char*
1087   //   const wchar_t*
1088   //   wchar_t*
1089   template <typename CharType>
1090   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1091     return s != nullptr && MatchAndExplain(StringType(s), listener);
1092   }
1093 
1094   // Matches anything that can convert to StringType.
1095   //
1096   // This is a template, not just a plain function with const StringType&,
1097   // because StringView has some interfering non-explicit constructors.
1098   template <typename MatcheeStringType>
1099   bool MatchAndExplain(const MatcheeStringType& s,
1100                        MatchResultListener* /* listener */) const {
1101     const StringType& s2(s);
1102     return s2.length() >= suffix_.length() &&
1103            s2.substr(s2.length() - suffix_.length()) == suffix_;
1104   }
1105 
1106   void DescribeTo(::std::ostream* os) const {
1107     *os << "ends with ";
1108     UniversalPrint(suffix_, os);
1109   }
1110 
1111   void DescribeNegationTo(::std::ostream* os) const {
1112     *os << "doesn't end with ";
1113     UniversalPrint(suffix_, os);
1114   }
1115 
1116  private:
1117   const StringType suffix_;
1118 };
1119 
1120 // Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be
1121 // used as a Matcher<T> as long as T can be converted to a string.
1122 class WhenBase64UnescapedMatcher {
1123  public:
1124   using is_gtest_matcher = void;
1125 
1126   explicit WhenBase64UnescapedMatcher(
1127       const Matcher<const std::string&>& internal_matcher)
1128       : internal_matcher_(internal_matcher) {}
1129 
1130   // Matches anything that can convert to std::string.
1131   template <typename MatcheeStringType>
1132   bool MatchAndExplain(const MatcheeStringType& s,
1133                        MatchResultListener* listener) const {
1134     const std::string s2(s);  // NOLINT (needed for working with string_view).
1135     std::string unescaped;
1136     if (!internal::Base64Unescape(s2, &unescaped)) {
1137       if (listener != nullptr) {
1138         *listener << "is not a valid base64 escaped string";
1139       }
1140       return false;
1141     }
1142     return MatchPrintAndExplain(unescaped, internal_matcher_, listener);
1143   }
1144 
1145   void DescribeTo(::std::ostream* os) const {
1146     *os << "matches after Base64Unescape ";
1147     internal_matcher_.DescribeTo(os);
1148   }
1149 
1150   void DescribeNegationTo(::std::ostream* os) const {
1151     *os << "does not match after Base64Unescape ";
1152     internal_matcher_.DescribeTo(os);
1153   }
1154 
1155  private:
1156   const Matcher<const std::string&> internal_matcher_;
1157 };
1158 
1159 // Implements a matcher that compares the two fields of a 2-tuple
1160 // using one of the ==, <=, <, etc, operators.  The two fields being
1161 // compared don't have to have the same type.
1162 //
1163 // The matcher defined here is polymorphic (for example, Eq() can be
1164 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1165 // etc).  Therefore we use a template type conversion operator in the
1166 // implementation.
1167 template <typename D, typename Op>
1168 class PairMatchBase {
1169  public:
1170   template <typename T1, typename T2>
1171   operator Matcher<::std::tuple<T1, T2>>() const {
1172     return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1173   }
1174   template <typename T1, typename T2>
1175   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1176     return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1177   }
1178 
1179  private:
1180   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1181     return os << D::Desc();
1182   }
1183 
1184   template <typename Tuple>
1185   class Impl : public MatcherInterface<Tuple> {
1186    public:
1187     bool MatchAndExplain(Tuple args,
1188                          MatchResultListener* /* listener */) const override {
1189       return Op()(::std::get<0>(args), ::std::get<1>(args));
1190     }
1191     void DescribeTo(::std::ostream* os) const override {
1192       *os << "are " << GetDesc;
1193     }
1194     void DescribeNegationTo(::std::ostream* os) const override {
1195       *os << "aren't " << GetDesc;
1196     }
1197   };
1198 };
1199 
1200 class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
1201  public:
1202   static const char* Desc() { return "an equal pair"; }
1203 };
1204 class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
1205  public:
1206   static const char* Desc() { return "an unequal pair"; }
1207 };
1208 class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
1209  public:
1210   static const char* Desc() { return "a pair where the first < the second"; }
1211 };
1212 class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
1213  public:
1214   static const char* Desc() { return "a pair where the first > the second"; }
1215 };
1216 class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
1217  public:
1218   static const char* Desc() { return "a pair where the first <= the second"; }
1219 };
1220 class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
1221  public:
1222   static const char* Desc() { return "a pair where the first >= the second"; }
1223 };
1224 
1225 // Implements the Not(...) matcher for a particular argument type T.
1226 // We do not nest it inside the NotMatcher class template, as that
1227 // will prevent different instantiations of NotMatcher from sharing
1228 // the same NotMatcherImpl<T> class.
1229 template <typename T>
1230 class NotMatcherImpl : public MatcherInterface<const T&> {
1231  public:
1232   explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
1233 
1234   bool MatchAndExplain(const T& x,
1235                        MatchResultListener* listener) const override {
1236     return !matcher_.MatchAndExplain(x, listener);
1237   }
1238 
1239   void DescribeTo(::std::ostream* os) const override {
1240     matcher_.DescribeNegationTo(os);
1241   }
1242 
1243   void DescribeNegationTo(::std::ostream* os) const override {
1244     matcher_.DescribeTo(os);
1245   }
1246 
1247  private:
1248   const Matcher<T> matcher_;
1249 };
1250 
1251 // Implements the Not(m) matcher, which matches a value that doesn't
1252 // match matcher m.
1253 template <typename InnerMatcher>
1254 class NotMatcher {
1255  public:
1256   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1257 
1258   // This template type conversion operator allows Not(m) to be used
1259   // to match any type m can match.
1260   template <typename T>
1261   operator Matcher<T>() const {
1262     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1263   }
1264 
1265  private:
1266   InnerMatcher matcher_;
1267 };
1268 
1269 // Implements the AllOf(m1, m2) matcher for a particular argument type
1270 // T. We do not nest it inside the BothOfMatcher class template, as
1271 // that will prevent different instantiations of BothOfMatcher from
1272 // sharing the same BothOfMatcherImpl<T> class.
1273 template <typename T>
1274 class AllOfMatcherImpl : public MatcherInterface<const T&> {
1275  public:
1276   explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers)
1277       : matchers_(std::move(matchers)) {}
1278 
1279   void DescribeTo(::std::ostream* os) const override {
1280     *os << "(";
1281     for (size_t i = 0; i < matchers_.size(); ++i) {
1282       if (i != 0) *os << ") and (";
1283       matchers_[i].DescribeTo(os);
1284     }
1285     *os << ")";
1286   }
1287 
1288   void DescribeNegationTo(::std::ostream* os) const override {
1289     *os << "(";
1290     for (size_t i = 0; i < matchers_.size(); ++i) {
1291       if (i != 0) *os << ") or (";
1292       matchers_[i].DescribeNegationTo(os);
1293     }
1294     *os << ")";
1295   }
1296 
1297   bool MatchAndExplain(const T& x,
1298                        MatchResultListener* listener) const override {
1299     // If either matcher1_ or matcher2_ doesn't match x, we only need
1300     // to explain why one of them fails.
1301     std::string all_match_result;
1302 
1303     for (size_t i = 0; i < matchers_.size(); ++i) {
1304       StringMatchResultListener slistener;
1305       if (matchers_[i].MatchAndExplain(x, &slistener)) {
1306         if (all_match_result.empty()) {
1307           all_match_result = slistener.str();
1308         } else {
1309           std::string result = slistener.str();
1310           if (!result.empty()) {
1311             all_match_result += ", and ";
1312             all_match_result += result;
1313           }
1314         }
1315       } else {
1316         *listener << slistener.str();
1317         return false;
1318       }
1319     }
1320 
1321     // Otherwise we need to explain why *both* of them match.
1322     *listener << all_match_result;
1323     return true;
1324   }
1325 
1326  private:
1327   const std::vector<Matcher<T>> matchers_;
1328 };
1329 
1330 // VariadicMatcher is used for the variadic implementation of
1331 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1332 // CombiningMatcher<T> is used to recursively combine the provided matchers
1333 // (of type Args...).
1334 template <template <typename T> class CombiningMatcher, typename... Args>
1335 class VariadicMatcher {
1336  public:
1337   VariadicMatcher(const Args&... matchers)  // NOLINT
1338       : matchers_(matchers...) {
1339     static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1340   }
1341 
1342   VariadicMatcher(const VariadicMatcher&) = default;
1343   VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1344 
1345   // This template type conversion operator allows an
1346   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1347   // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1348   template <typename T>
1349   operator Matcher<T>() const {
1350     std::vector<Matcher<T>> values;
1351     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1352     return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1353   }
1354 
1355  private:
1356   template <typename T, size_t I>
1357   void CreateVariadicMatcher(std::vector<Matcher<T>>* values,
1358                              std::integral_constant<size_t, I>) const {
1359     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1360     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1361   }
1362 
1363   template <typename T>
1364   void CreateVariadicMatcher(
1365       std::vector<Matcher<T>>*,
1366       std::integral_constant<size_t, sizeof...(Args)>) const {}
1367 
1368   std::tuple<Args...> matchers_;
1369 };
1370 
1371 template <typename... Args>
1372 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1373 
1374 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1375 // T.  We do not nest it inside the AnyOfMatcher class template, as
1376 // that will prevent different instantiations of AnyOfMatcher from
1377 // sharing the same EitherOfMatcherImpl<T> class.
1378 template <typename T>
1379 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1380  public:
1381   explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers)
1382       : matchers_(std::move(matchers)) {}
1383 
1384   void DescribeTo(::std::ostream* os) const override {
1385     *os << "(";
1386     for (size_t i = 0; i < matchers_.size(); ++i) {
1387       if (i != 0) *os << ") or (";
1388       matchers_[i].DescribeTo(os);
1389     }
1390     *os << ")";
1391   }
1392 
1393   void DescribeNegationTo(::std::ostream* os) const override {
1394     *os << "(";
1395     for (size_t i = 0; i < matchers_.size(); ++i) {
1396       if (i != 0) *os << ") and (";
1397       matchers_[i].DescribeNegationTo(os);
1398     }
1399     *os << ")";
1400   }
1401 
1402   bool MatchAndExplain(const T& x,
1403                        MatchResultListener* listener) const override {
1404     std::string no_match_result;
1405 
1406     // If either matcher1_ or matcher2_ matches x, we just need to
1407     // explain why *one* of them matches.
1408     for (size_t i = 0; i < matchers_.size(); ++i) {
1409       StringMatchResultListener slistener;
1410       if (matchers_[i].MatchAndExplain(x, &slistener)) {
1411         *listener << slistener.str();
1412         return true;
1413       } else {
1414         if (no_match_result.empty()) {
1415           no_match_result = slistener.str();
1416         } else {
1417           std::string result = slistener.str();
1418           if (!result.empty()) {
1419             no_match_result += ", and ";
1420             no_match_result += result;
1421           }
1422         }
1423       }
1424     }
1425 
1426     // Otherwise we need to explain why *both* of them fail.
1427     *listener << no_match_result;
1428     return false;
1429   }
1430 
1431  private:
1432   const std::vector<Matcher<T>> matchers_;
1433 };
1434 
1435 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1436 template <typename... Args>
1437 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1438 
1439 // ConditionalMatcher is the implementation of Conditional(cond, m1, m2)
1440 template <typename MatcherTrue, typename MatcherFalse>
1441 class ConditionalMatcher {
1442  public:
1443   ConditionalMatcher(bool condition, MatcherTrue matcher_true,
1444                      MatcherFalse matcher_false)
1445       : condition_(condition),
1446         matcher_true_(std::move(matcher_true)),
1447         matcher_false_(std::move(matcher_false)) {}
1448 
1449   template <typename T>
1450   operator Matcher<T>() const {  // NOLINT(runtime/explicit)
1451     return condition_ ? SafeMatcherCast<T>(matcher_true_)
1452                       : SafeMatcherCast<T>(matcher_false_);
1453   }
1454 
1455  private:
1456   bool condition_;
1457   MatcherTrue matcher_true_;
1458   MatcherFalse matcher_false_;
1459 };
1460 
1461 // Wrapper for implementation of Any/AllOfArray().
1462 template <template <class> class MatcherImpl, typename T>
1463 class SomeOfArrayMatcher {
1464  public:
1465   // Constructs the matcher from a sequence of element values or
1466   // element matchers.
1467   template <typename Iter>
1468   SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1469 
1470   template <typename U>
1471   operator Matcher<U>() const {  // NOLINT
1472     using RawU = typename std::decay<U>::type;
1473     std::vector<Matcher<RawU>> matchers;
1474     for (const auto& matcher : matchers_) {
1475       matchers.push_back(MatcherCast<RawU>(matcher));
1476     }
1477     return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1478   }
1479 
1480  private:
1481   const ::std::vector<T> matchers_;
1482 };
1483 
1484 template <typename T>
1485 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1486 
1487 template <typename T>
1488 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1489 
1490 // Used for implementing Truly(pred), which turns a predicate into a
1491 // matcher.
1492 template <typename Predicate>
1493 class TrulyMatcher {
1494  public:
1495   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1496 
1497   // This method template allows Truly(pred) to be used as a matcher
1498   // for type T where T is the argument type of predicate 'pred'.  The
1499   // argument is passed by reference as the predicate may be
1500   // interested in the address of the argument.
1501   template <typename T>
1502   bool MatchAndExplain(T& x,  // NOLINT
1503                        MatchResultListener* listener) const {
1504     // Without the if-statement, MSVC sometimes warns about converting
1505     // a value to bool (warning 4800).
1506     //
1507     // We cannot write 'return !!predicate_(x);' as that doesn't work
1508     // when predicate_(x) returns a class convertible to bool but
1509     // having no operator!().
1510     if (predicate_(x)) return true;
1511     *listener << "didn't satisfy the given predicate";
1512     return false;
1513   }
1514 
1515   void DescribeTo(::std::ostream* os) const {
1516     *os << "satisfies the given predicate";
1517   }
1518 
1519   void DescribeNegationTo(::std::ostream* os) const {
1520     *os << "doesn't satisfy the given predicate";
1521   }
1522 
1523  private:
1524   Predicate predicate_;
1525 };
1526 
1527 // Used for implementing Matches(matcher), which turns a matcher into
1528 // a predicate.
1529 template <typename M>
1530 class MatcherAsPredicate {
1531  public:
1532   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1533 
1534   // This template operator() allows Matches(m) to be used as a
1535   // predicate on type T where m is a matcher on type T.
1536   //
1537   // The argument x is passed by reference instead of by value, as
1538   // some matcher may be interested in its address (e.g. as in
1539   // Matches(Ref(n))(x)).
1540   template <typename T>
1541   bool operator()(const T& x) const {
1542     // We let matcher_ commit to a particular type here instead of
1543     // when the MatcherAsPredicate object was constructed.  This
1544     // allows us to write Matches(m) where m is a polymorphic matcher
1545     // (e.g. Eq(5)).
1546     //
1547     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1548     // compile when matcher_ has type Matcher<const T&>; if we write
1549     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1550     // when matcher_ has type Matcher<T>; if we just write
1551     // matcher_.Matches(x), it won't compile when matcher_ is
1552     // polymorphic, e.g. Eq(5).
1553     //
1554     // MatcherCast<const T&>() is necessary for making the code work
1555     // in all of the above situations.
1556     return MatcherCast<const T&>(matcher_).Matches(x);
1557   }
1558 
1559  private:
1560   M matcher_;
1561 };
1562 
1563 // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1564 // argument M must be a type that can be converted to a matcher.
1565 template <typename M>
1566 class PredicateFormatterFromMatcher {
1567  public:
1568   explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1569 
1570   // This template () operator allows a PredicateFormatterFromMatcher
1571   // object to act as a predicate-formatter suitable for using with
1572   // Google Test's EXPECT_PRED_FORMAT1() macro.
1573   template <typename T>
1574   AssertionResult operator()(const char* value_text, const T& x) const {
1575     // We convert matcher_ to a Matcher<const T&> *now* instead of
1576     // when the PredicateFormatterFromMatcher object was constructed,
1577     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1578     // know which type to instantiate it to until we actually see the
1579     // type of x here.
1580     //
1581     // We write SafeMatcherCast<const T&>(matcher_) instead of
1582     // Matcher<const T&>(matcher_), as the latter won't compile when
1583     // matcher_ has type Matcher<T> (e.g. An<int>()).
1584     // We don't write MatcherCast<const T&> either, as that allows
1585     // potentially unsafe downcasting of the matcher argument.
1586     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1587 
1588     // The expected path here is that the matcher should match (i.e. that most
1589     // tests pass) so optimize for this case.
1590     if (matcher.Matches(x)) {
1591       return AssertionSuccess();
1592     }
1593 
1594     ::std::stringstream ss;
1595     ss << "Value of: " << value_text << "\n"
1596        << "Expected: ";
1597     matcher.DescribeTo(&ss);
1598 
1599     // Rerun the matcher to "PrintAndExplain" the failure.
1600     StringMatchResultListener listener;
1601     if (MatchPrintAndExplain(x, matcher, &listener)) {
1602       ss << "\n  The matcher failed on the initial attempt; but passed when "
1603             "rerun to generate the explanation.";
1604     }
1605     ss << "\n  Actual: " << listener.str();
1606     return AssertionFailure() << ss.str();
1607   }
1608 
1609  private:
1610   const M matcher_;
1611 };
1612 
1613 // A helper function for converting a matcher to a predicate-formatter
1614 // without the user needing to explicitly write the type.  This is
1615 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1616 // Implementation detail: 'matcher' is received by-value to force decaying.
1617 template <typename M>
1618 inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(
1619     M matcher) {
1620   return PredicateFormatterFromMatcher<M>(std::move(matcher));
1621 }
1622 
1623 // Implements the polymorphic IsNan() matcher, which matches any floating type
1624 // value that is Nan.
1625 class IsNanMatcher {
1626  public:
1627   template <typename FloatType>
1628   bool MatchAndExplain(const FloatType& f,
1629                        MatchResultListener* /* listener */) const {
1630     return (::std::isnan)(f);
1631   }
1632 
1633   void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1634   void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; }
1635 };
1636 
1637 // Implements the polymorphic floating point equality matcher, which matches
1638 // two float values using ULP-based approximation or, optionally, a
1639 // user-specified epsilon.  The template is meant to be instantiated with
1640 // FloatType being either float or double.
1641 template <typename FloatType>
1642 class FloatingEqMatcher {
1643  public:
1644   // Constructor for FloatingEqMatcher.
1645   // The matcher's input will be compared with expected.  The matcher treats two
1646   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1647   // equality comparisons between NANs will always return false.  We specify a
1648   // negative max_abs_error_ term to indicate that ULP-based approximation will
1649   // be used for comparison.
1650   FloatingEqMatcher(FloatType expected, bool nan_eq_nan)
1651       : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {}
1652 
1653   // Constructor that supports a user-specified max_abs_error that will be used
1654   // for comparison instead of ULP-based approximation.  The max absolute
1655   // should be non-negative.
1656   FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1657                     FloatType max_abs_error)
1658       : expected_(expected),
1659         nan_eq_nan_(nan_eq_nan),
1660         max_abs_error_(max_abs_error) {
1661     GTEST_CHECK_(max_abs_error >= 0)
1662         << ", where max_abs_error is" << max_abs_error;
1663   }
1664 
1665   // Implements floating point equality matcher as a Matcher<T>.
1666   template <typename T>
1667   class Impl : public MatcherInterface<T> {
1668    public:
1669     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1670         : expected_(expected),
1671           nan_eq_nan_(nan_eq_nan),
1672           max_abs_error_(max_abs_error) {}
1673 
1674     bool MatchAndExplain(T value,
1675                          MatchResultListener* listener) const override {
1676       const FloatingPoint<FloatType> actual(value), expected(expected_);
1677 
1678       // Compares NaNs first, if nan_eq_nan_ is true.
1679       if (actual.is_nan() || expected.is_nan()) {
1680         if (actual.is_nan() && expected.is_nan()) {
1681           return nan_eq_nan_;
1682         }
1683         // One is nan; the other is not nan.
1684         return false;
1685       }
1686       if (HasMaxAbsError()) {
1687         // We perform an equality check so that inf will match inf, regardless
1688         // of error bounds.  If the result of value - expected_ would result in
1689         // overflow or if either value is inf, the default result is infinity,
1690         // which should only match if max_abs_error_ is also infinity.
1691         if (value == expected_) {
1692           return true;
1693         }
1694 
1695         const FloatType diff = value - expected_;
1696         if (::std::fabs(diff) <= max_abs_error_) {
1697           return true;
1698         }
1699 
1700         if (listener->IsInterested()) {
1701           *listener << "which is " << diff << " from " << expected_;
1702         }
1703         return false;
1704       } else {
1705         return actual.AlmostEquals(expected);
1706       }
1707     }
1708 
1709     void DescribeTo(::std::ostream* os) const override {
1710       // os->precision() returns the previously set precision, which we
1711       // store to restore the ostream to its original configuration
1712       // after outputting.
1713       const ::std::streamsize old_precision =
1714           os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1715       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1716         if (nan_eq_nan_) {
1717           *os << "is NaN";
1718         } else {
1719           *os << "never matches";
1720         }
1721       } else {
1722         *os << "is approximately " << expected_;
1723         if (HasMaxAbsError()) {
1724           *os << " (absolute error <= " << max_abs_error_ << ")";
1725         }
1726       }
1727       os->precision(old_precision);
1728     }
1729 
1730     void DescribeNegationTo(::std::ostream* os) const override {
1731       // As before, get original precision.
1732       const ::std::streamsize old_precision =
1733           os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1734       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1735         if (nan_eq_nan_) {
1736           *os << "isn't NaN";
1737         } else {
1738           *os << "is anything";
1739         }
1740       } else {
1741         *os << "isn't approximately " << expected_;
1742         if (HasMaxAbsError()) {
1743           *os << " (absolute error > " << max_abs_error_ << ")";
1744         }
1745       }
1746       // Restore original precision.
1747       os->precision(old_precision);
1748     }
1749 
1750    private:
1751     bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
1752 
1753     const FloatType expected_;
1754     const bool nan_eq_nan_;
1755     // max_abs_error will be used for value comparison when >= 0.
1756     const FloatType max_abs_error_;
1757   };
1758 
1759   // The following 3 type conversion operators allow FloatEq(expected) and
1760   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1761   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1762   operator Matcher<FloatType>() const {
1763     return MakeMatcher(
1764         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1765   }
1766 
1767   operator Matcher<const FloatType&>() const {
1768     return MakeMatcher(
1769         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1770   }
1771 
1772   operator Matcher<FloatType&>() const {
1773     return MakeMatcher(
1774         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1775   }
1776 
1777  private:
1778   const FloatType expected_;
1779   const bool nan_eq_nan_;
1780   // max_abs_error will be used for value comparison when >= 0.
1781   const FloatType max_abs_error_;
1782 };
1783 
1784 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1785 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1786 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1787 // against y. The former implements "Eq", the latter "Near". At present, there
1788 // is no version that compares NaNs as equal.
1789 template <typename FloatType>
1790 class FloatingEq2Matcher {
1791  public:
1792   FloatingEq2Matcher() { Init(-1, false); }
1793 
1794   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1795 
1796   explicit FloatingEq2Matcher(FloatType max_abs_error) {
1797     Init(max_abs_error, false);
1798   }
1799 
1800   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1801     Init(max_abs_error, nan_eq_nan);
1802   }
1803 
1804   template <typename T1, typename T2>
1805   operator Matcher<::std::tuple<T1, T2>>() const {
1806     return MakeMatcher(
1807         new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1808   }
1809   template <typename T1, typename T2>
1810   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1811     return MakeMatcher(
1812         new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1813   }
1814 
1815  private:
1816   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1817     return os << "an almost-equal pair";
1818   }
1819 
1820   template <typename Tuple>
1821   class Impl : public MatcherInterface<Tuple> {
1822    public:
1823     Impl(FloatType max_abs_error, bool nan_eq_nan)
1824         : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
1825 
1826     bool MatchAndExplain(Tuple args,
1827                          MatchResultListener* listener) const override {
1828       if (max_abs_error_ == -1) {
1829         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1830         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1831             ::std::get<1>(args), listener);
1832       } else {
1833         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1834                                         max_abs_error_);
1835         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1836             ::std::get<1>(args), listener);
1837       }
1838     }
1839     void DescribeTo(::std::ostream* os) const override {
1840       *os << "are " << GetDesc;
1841     }
1842     void DescribeNegationTo(::std::ostream* os) const override {
1843       *os << "aren't " << GetDesc;
1844     }
1845 
1846    private:
1847     FloatType max_abs_error_;
1848     const bool nan_eq_nan_;
1849   };
1850 
1851   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1852     max_abs_error_ = max_abs_error_val;
1853     nan_eq_nan_ = nan_eq_nan_val;
1854   }
1855   FloatType max_abs_error_;
1856   bool nan_eq_nan_;
1857 };
1858 
1859 // Implements the Pointee(m) matcher for matching a pointer whose
1860 // pointee matches matcher m.  The pointer can be either raw or smart.
1861 template <typename InnerMatcher>
1862 class PointeeMatcher {
1863  public:
1864   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1865 
1866   // This type conversion operator template allows Pointee(m) to be
1867   // used as a matcher for any pointer type whose pointee type is
1868   // compatible with the inner matcher, where type Pointer can be
1869   // either a raw pointer or a smart pointer.
1870   //
1871   // The reason we do this instead of relying on
1872   // MakePolymorphicMatcher() is that the latter is not flexible
1873   // enough for implementing the DescribeTo() method of Pointee().
1874   template <typename Pointer>
1875   operator Matcher<Pointer>() const {
1876     return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1877   }
1878 
1879  private:
1880   // The monomorphic implementation that works for a particular pointer type.
1881   template <typename Pointer>
1882   class Impl : public MatcherInterface<Pointer> {
1883    public:
1884     using Pointee =
1885         typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1886             Pointer)>::element_type;
1887 
1888     explicit Impl(const InnerMatcher& matcher)
1889         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1890 
1891     void DescribeTo(::std::ostream* os) const override {
1892       *os << "points to a value that ";
1893       matcher_.DescribeTo(os);
1894     }
1895 
1896     void DescribeNegationTo(::std::ostream* os) const override {
1897       *os << "does not point to a value that ";
1898       matcher_.DescribeTo(os);
1899     }
1900 
1901     bool MatchAndExplain(Pointer pointer,
1902                          MatchResultListener* listener) const override {
1903       if (GetRawPointer(pointer) == nullptr) return false;
1904 
1905       *listener << "which points to ";
1906       return MatchPrintAndExplain(*pointer, matcher_, listener);
1907     }
1908 
1909    private:
1910     const Matcher<const Pointee&> matcher_;
1911   };
1912 
1913   const InnerMatcher matcher_;
1914 };
1915 
1916 // Implements the Pointer(m) matcher
1917 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
1918 // m.  The pointer can be either raw or smart, and will match `m` against the
1919 // raw pointer.
1920 template <typename InnerMatcher>
1921 class PointerMatcher {
1922  public:
1923   explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1924 
1925   // This type conversion operator template allows Pointer(m) to be
1926   // used as a matcher for any pointer type whose pointer type is
1927   // compatible with the inner matcher, where type PointerType can be
1928   // either a raw pointer or a smart pointer.
1929   //
1930   // The reason we do this instead of relying on
1931   // MakePolymorphicMatcher() is that the latter is not flexible
1932   // enough for implementing the DescribeTo() method of Pointer().
1933   template <typename PointerType>
1934   operator Matcher<PointerType>() const {  // NOLINT
1935     return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1936   }
1937 
1938  private:
1939   // The monomorphic implementation that works for a particular pointer type.
1940   template <typename PointerType>
1941   class Impl : public MatcherInterface<PointerType> {
1942    public:
1943     using Pointer =
1944         const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1945             PointerType)>::element_type*;
1946 
1947     explicit Impl(const InnerMatcher& matcher)
1948         : matcher_(MatcherCast<Pointer>(matcher)) {}
1949 
1950     void DescribeTo(::std::ostream* os) const override {
1951       *os << "is a pointer that ";
1952       matcher_.DescribeTo(os);
1953     }
1954 
1955     void DescribeNegationTo(::std::ostream* os) const override {
1956       *os << "is not a pointer that ";
1957       matcher_.DescribeTo(os);
1958     }
1959 
1960     bool MatchAndExplain(PointerType pointer,
1961                          MatchResultListener* listener) const override {
1962       *listener << "which is a pointer that ";
1963       Pointer p = GetRawPointer(pointer);
1964       return MatchPrintAndExplain(p, matcher_, listener);
1965     }
1966 
1967    private:
1968     Matcher<Pointer> matcher_;
1969   };
1970 
1971   const InnerMatcher matcher_;
1972 };
1973 
1974 #if GTEST_HAS_RTTI
1975 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1976 // reference that matches inner_matcher when dynamic_cast<T> is applied.
1977 // The result of dynamic_cast<To> is forwarded to the inner matcher.
1978 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
1979 // If To is a reference and the cast fails, this matcher returns false
1980 // immediately.
1981 template <typename To>
1982 class WhenDynamicCastToMatcherBase {
1983  public:
1984   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
1985       : matcher_(matcher) {}
1986 
1987   void DescribeTo(::std::ostream* os) const {
1988     GetCastTypeDescription(os);
1989     matcher_.DescribeTo(os);
1990   }
1991 
1992   void DescribeNegationTo(::std::ostream* os) const {
1993     GetCastTypeDescription(os);
1994     matcher_.DescribeNegationTo(os);
1995   }
1996 
1997  protected:
1998   const Matcher<To> matcher_;
1999 
2000   static std::string GetToName() { return GetTypeName<To>(); }
2001 
2002  private:
2003   static void GetCastTypeDescription(::std::ostream* os) {
2004     *os << "when dynamic_cast to " << GetToName() << ", ";
2005   }
2006 };
2007 
2008 // Primary template.
2009 // To is a pointer. Cast and forward the result.
2010 template <typename To>
2011 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2012  public:
2013   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2014       : WhenDynamicCastToMatcherBase<To>(matcher) {}
2015 
2016   template <typename From>
2017   bool MatchAndExplain(From from, MatchResultListener* listener) const {
2018     To to = dynamic_cast<To>(from);
2019     return MatchPrintAndExplain(to, this->matcher_, listener);
2020   }
2021 };
2022 
2023 // Specialize for references.
2024 // In this case we return false if the dynamic_cast fails.
2025 template <typename To>
2026 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2027  public:
2028   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2029       : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2030 
2031   template <typename From>
2032   bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2033     // We don't want an std::bad_cast here, so do the cast with pointers.
2034     To* to = dynamic_cast<To*>(&from);
2035     if (to == nullptr) {
2036       *listener << "which cannot be dynamic_cast to " << this->GetToName();
2037       return false;
2038     }
2039     return MatchPrintAndExplain(*to, this->matcher_, listener);
2040   }
2041 };
2042 #endif  // GTEST_HAS_RTTI
2043 
2044 // Implements the Field() matcher for matching a field (i.e. member
2045 // variable) of an object.
2046 template <typename Class, typename FieldType>
2047 class FieldMatcher {
2048  public:
2049   FieldMatcher(FieldType Class::*field,
2050                const Matcher<const FieldType&>& matcher)
2051       : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2052 
2053   FieldMatcher(const std::string& field_name, FieldType Class::*field,
2054                const Matcher<const FieldType&>& matcher)
2055       : field_(field),
2056         matcher_(matcher),
2057         whose_field_("whose field `" + field_name + "` ") {}
2058 
2059   void DescribeTo(::std::ostream* os) const {
2060     *os << "is an object " << whose_field_;
2061     matcher_.DescribeTo(os);
2062   }
2063 
2064   void DescribeNegationTo(::std::ostream* os) const {
2065     *os << "is an object " << whose_field_;
2066     matcher_.DescribeNegationTo(os);
2067   }
2068 
2069   template <typename T>
2070   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2071     // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2072     // a compiler bug, and can now be removed.
2073     return MatchAndExplainImpl(
2074         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2075         value, listener);
2076   }
2077 
2078  private:
2079   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2080                            const Class& obj,
2081                            MatchResultListener* listener) const {
2082     *listener << whose_field_ << "is ";
2083     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2084   }
2085 
2086   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2087                            MatchResultListener* listener) const {
2088     if (p == nullptr) return false;
2089 
2090     *listener << "which points to an object ";
2091     // Since *p has a field, it must be a class/struct/union type and
2092     // thus cannot be a pointer.  Therefore we pass false_type() as
2093     // the first argument.
2094     return MatchAndExplainImpl(std::false_type(), *p, listener);
2095   }
2096 
2097   const FieldType Class::*field_;
2098   const Matcher<const FieldType&> matcher_;
2099 
2100   // Contains either "whose given field " if the name of the field is unknown
2101   // or "whose field `name_of_field` " if the name is known.
2102   const std::string whose_field_;
2103 };
2104 
2105 // Implements the Property() matcher for matching a property
2106 // (i.e. return value of a getter method) of an object.
2107 //
2108 // Property is a const-qualified member function of Class returning
2109 // PropertyType.
2110 template <typename Class, typename PropertyType, typename Property>
2111 class PropertyMatcher {
2112  public:
2113   typedef const PropertyType& RefToConstProperty;
2114 
2115   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2116       : property_(property),
2117         matcher_(matcher),
2118         whose_property_("whose given property ") {}
2119 
2120   PropertyMatcher(const std::string& property_name, Property property,
2121                   const Matcher<RefToConstProperty>& matcher)
2122       : property_(property),
2123         matcher_(matcher),
2124         whose_property_("whose property `" + property_name + "` ") {}
2125 
2126   void DescribeTo(::std::ostream* os) const {
2127     *os << "is an object " << whose_property_;
2128     matcher_.DescribeTo(os);
2129   }
2130 
2131   void DescribeNegationTo(::std::ostream* os) const {
2132     *os << "is an object " << whose_property_;
2133     matcher_.DescribeNegationTo(os);
2134   }
2135 
2136   template <typename T>
2137   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2138     return MatchAndExplainImpl(
2139         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2140         value, listener);
2141   }
2142 
2143  private:
2144   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2145                            const Class& obj,
2146                            MatchResultListener* listener) const {
2147     *listener << whose_property_ << "is ";
2148     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2149     // which takes a non-const reference as argument.
2150     RefToConstProperty result = (obj.*property_)();
2151     return MatchPrintAndExplain(result, matcher_, listener);
2152   }
2153 
2154   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2155                            MatchResultListener* listener) const {
2156     if (p == nullptr) return false;
2157 
2158     *listener << "which points to an object ";
2159     // Since *p has a property method, it must be a class/struct/union
2160     // type and thus cannot be a pointer.  Therefore we pass
2161     // false_type() as the first argument.
2162     return MatchAndExplainImpl(std::false_type(), *p, listener);
2163   }
2164 
2165   Property property_;
2166   const Matcher<RefToConstProperty> matcher_;
2167 
2168   // Contains either "whose given property " if the name of the property is
2169   // unknown or "whose property `name_of_property` " if the name is known.
2170   const std::string whose_property_;
2171 };
2172 
2173 // Type traits specifying various features of different functors for ResultOf.
2174 // The default template specifies features for functor objects.
2175 template <typename Functor>
2176 struct CallableTraits {
2177   typedef Functor StorageType;
2178 
2179   static void CheckIsValid(Functor /* functor */) {}
2180 
2181   template <typename T>
2182   static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2183     return f(arg);
2184   }
2185 };
2186 
2187 // Specialization for function pointers.
2188 template <typename ArgType, typename ResType>
2189 struct CallableTraits<ResType (*)(ArgType)> {
2190   typedef ResType ResultType;
2191   typedef ResType (*StorageType)(ArgType);
2192 
2193   static void CheckIsValid(ResType (*f)(ArgType)) {
2194     GTEST_CHECK_(f != nullptr)
2195         << "NULL function pointer is passed into ResultOf().";
2196   }
2197   template <typename T>
2198   static ResType Invoke(ResType (*f)(ArgType), T arg) {
2199     return (*f)(arg);
2200   }
2201 };
2202 
2203 // Implements the ResultOf() matcher for matching a return value of a
2204 // unary function of an object.
2205 template <typename Callable, typename InnerMatcher>
2206 class ResultOfMatcher {
2207  public:
2208   ResultOfMatcher(Callable callable, InnerMatcher matcher)
2209       : ResultOfMatcher(/*result_description=*/"", std::move(callable),
2210                         std::move(matcher)) {}
2211 
2212   ResultOfMatcher(const std::string& result_description, Callable callable,
2213                   InnerMatcher matcher)
2214       : result_description_(result_description),
2215         callable_(std::move(callable)),
2216         matcher_(std::move(matcher)) {
2217     CallableTraits<Callable>::CheckIsValid(callable_);
2218   }
2219 
2220   template <typename T>
2221   operator Matcher<T>() const {
2222     return Matcher<T>(
2223         new Impl<const T&>(result_description_, callable_, matcher_));
2224   }
2225 
2226  private:
2227   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2228 
2229   template <typename T>
2230   class Impl : public MatcherInterface<T> {
2231     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2232         std::declval<CallableStorageType>(), std::declval<T>()));
2233 
2234    public:
2235     template <typename M>
2236     Impl(const std::string& result_description,
2237          const CallableStorageType& callable, const M& matcher)
2238         : result_description_(result_description),
2239           callable_(callable),
2240           matcher_(MatcherCast<ResultType>(matcher)) {}
2241 
2242     void DescribeTo(::std::ostream* os) const override {
2243       if (result_description_.empty()) {
2244         *os << "is mapped by the given callable to a value that ";
2245       } else {
2246         *os << "whose " << result_description_ << " ";
2247       }
2248       matcher_.DescribeTo(os);
2249     }
2250 
2251     void DescribeNegationTo(::std::ostream* os) const override {
2252       if (result_description_.empty()) {
2253         *os << "is mapped by the given callable to a value that ";
2254       } else {
2255         *os << "whose " << result_description_ << " ";
2256       }
2257       matcher_.DescribeNegationTo(os);
2258     }
2259 
2260     bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2261       *listener << "which is mapped by the given callable to ";
2262       // Cannot pass the return value directly to MatchPrintAndExplain, which
2263       // takes a non-const reference as argument.
2264       // Also, specifying template argument explicitly is needed because T could
2265       // be a non-const reference (e.g. Matcher<Uncopyable&>).
2266       ResultType result =
2267           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2268       return MatchPrintAndExplain(result, matcher_, listener);
2269     }
2270 
2271    private:
2272     const std::string result_description_;
2273     // Functors often define operator() as non-const method even though
2274     // they are actually stateless. But we need to use them even when
2275     // 'this' is a const pointer. It's the user's responsibility not to
2276     // use stateful callables with ResultOf(), which doesn't guarantee
2277     // how many times the callable will be invoked.
2278     mutable CallableStorageType callable_;
2279     const Matcher<ResultType> matcher_;
2280   };  // class Impl
2281 
2282   const std::string result_description_;
2283   const CallableStorageType callable_;
2284   const InnerMatcher matcher_;
2285 };
2286 
2287 // Implements a matcher that checks the size of an STL-style container.
2288 template <typename SizeMatcher>
2289 class SizeIsMatcher {
2290  public:
2291   explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2292       : size_matcher_(size_matcher) {}
2293 
2294   template <typename Container>
2295   operator Matcher<Container>() const {
2296     return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2297   }
2298 
2299   template <typename Container>
2300   class Impl : public MatcherInterface<Container> {
2301    public:
2302     using SizeType = decltype(std::declval<Container>().size());
2303     explicit Impl(const SizeMatcher& size_matcher)
2304         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2305 
2306     void DescribeTo(::std::ostream* os) const override {
2307       *os << "size ";
2308       size_matcher_.DescribeTo(os);
2309     }
2310     void DescribeNegationTo(::std::ostream* os) const override {
2311       *os << "size ";
2312       size_matcher_.DescribeNegationTo(os);
2313     }
2314 
2315     bool MatchAndExplain(Container container,
2316                          MatchResultListener* listener) const override {
2317       SizeType size = container.size();
2318       StringMatchResultListener size_listener;
2319       const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2320       *listener << "whose size " << size
2321                 << (result ? " matches" : " doesn't match");
2322       PrintIfNotEmpty(size_listener.str(), listener->stream());
2323       return result;
2324     }
2325 
2326    private:
2327     const Matcher<SizeType> size_matcher_;
2328   };
2329 
2330  private:
2331   const SizeMatcher size_matcher_;
2332 };
2333 
2334 // Implements a matcher that checks the begin()..end() distance of an STL-style
2335 // container.
2336 template <typename DistanceMatcher>
2337 class BeginEndDistanceIsMatcher {
2338  public:
2339   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2340       : distance_matcher_(distance_matcher) {}
2341 
2342   template <typename Container>
2343   operator Matcher<Container>() const {
2344     return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2345   }
2346 
2347   template <typename Container>
2348   class Impl : public MatcherInterface<Container> {
2349    public:
2350     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2351         Container)>
2352         ContainerView;
2353     typedef typename std::iterator_traits<
2354         typename ContainerView::type::const_iterator>::difference_type
2355         DistanceType;
2356     explicit Impl(const DistanceMatcher& distance_matcher)
2357         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2358 
2359     void DescribeTo(::std::ostream* os) const override {
2360       *os << "distance between begin() and end() ";
2361       distance_matcher_.DescribeTo(os);
2362     }
2363     void DescribeNegationTo(::std::ostream* os) const override {
2364       *os << "distance between begin() and end() ";
2365       distance_matcher_.DescribeNegationTo(os);
2366     }
2367 
2368     bool MatchAndExplain(Container container,
2369                          MatchResultListener* listener) const override {
2370       using std::begin;
2371       using std::end;
2372       DistanceType distance = std::distance(begin(container), end(container));
2373       StringMatchResultListener distance_listener;
2374       const bool result =
2375           distance_matcher_.MatchAndExplain(distance, &distance_listener);
2376       *listener << "whose distance between begin() and end() " << distance
2377                 << (result ? " matches" : " doesn't match");
2378       PrintIfNotEmpty(distance_listener.str(), listener->stream());
2379       return result;
2380     }
2381 
2382    private:
2383     const Matcher<DistanceType> distance_matcher_;
2384   };
2385 
2386  private:
2387   const DistanceMatcher distance_matcher_;
2388 };
2389 
2390 // Implements an equality matcher for any STL-style container whose elements
2391 // support ==. This matcher is like Eq(), but its failure explanations provide
2392 // more detailed information that is useful when the container is used as a set.
2393 // The failure message reports elements that are in one of the operands but not
2394 // the other. The failure messages do not report duplicate or out-of-order
2395 // elements in the containers (which don't properly matter to sets, but can
2396 // occur if the containers are vectors or lists, for example).
2397 //
2398 // Uses the container's const_iterator, value_type, operator ==,
2399 // begin(), and end().
2400 template <typename Container>
2401 class ContainerEqMatcher {
2402  public:
2403   typedef internal::StlContainerView<Container> View;
2404   typedef typename View::type StlContainer;
2405   typedef typename View::const_reference StlContainerReference;
2406 
2407   static_assert(!std::is_const<Container>::value,
2408                 "Container type must not be const");
2409   static_assert(!std::is_reference<Container>::value,
2410                 "Container type must not be a reference");
2411 
2412   // We make a copy of expected in case the elements in it are modified
2413   // after this matcher is created.
2414   explicit ContainerEqMatcher(const Container& expected)
2415       : expected_(View::Copy(expected)) {}
2416 
2417   void DescribeTo(::std::ostream* os) const {
2418     *os << "equals ";
2419     UniversalPrint(expected_, os);
2420   }
2421   void DescribeNegationTo(::std::ostream* os) const {
2422     *os << "does not equal ";
2423     UniversalPrint(expected_, os);
2424   }
2425 
2426   template <typename LhsContainer>
2427   bool MatchAndExplain(const LhsContainer& lhs,
2428                        MatchResultListener* listener) const {
2429     typedef internal::StlContainerView<
2430         typename std::remove_const<LhsContainer>::type>
2431         LhsView;
2432     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2433     if (lhs_stl_container == expected_) return true;
2434 
2435     ::std::ostream* const os = listener->stream();
2436     if (os != nullptr) {
2437       // Something is different. Check for extra values first.
2438       bool printed_header = false;
2439       for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end();
2440            ++it) {
2441         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2442             expected_.end()) {
2443           if (printed_header) {
2444             *os << ", ";
2445           } else {
2446             *os << "which has these unexpected elements: ";
2447             printed_header = true;
2448           }
2449           UniversalPrint(*it, os);
2450         }
2451       }
2452 
2453       // Now check for missing values.
2454       bool printed_header2 = false;
2455       for (auto it = expected_.begin(); it != expected_.end(); ++it) {
2456         if (internal::ArrayAwareFind(lhs_stl_container.begin(),
2457                                      lhs_stl_container.end(),
2458                                      *it) == lhs_stl_container.end()) {
2459           if (printed_header2) {
2460             *os << ", ";
2461           } else {
2462             *os << (printed_header ? ",\nand" : "which")
2463                 << " doesn't have these expected elements: ";
2464             printed_header2 = true;
2465           }
2466           UniversalPrint(*it, os);
2467         }
2468       }
2469     }
2470 
2471     return false;
2472   }
2473 
2474  private:
2475   const StlContainer expected_;
2476 };
2477 
2478 // A comparator functor that uses the < operator to compare two values.
2479 struct LessComparator {
2480   template <typename T, typename U>
2481   bool operator()(const T& lhs, const U& rhs) const {
2482     return lhs < rhs;
2483   }
2484 };
2485 
2486 // Implements WhenSortedBy(comparator, container_matcher).
2487 template <typename Comparator, typename ContainerMatcher>
2488 class WhenSortedByMatcher {
2489  public:
2490   WhenSortedByMatcher(const Comparator& comparator,
2491                       const ContainerMatcher& matcher)
2492       : comparator_(comparator), matcher_(matcher) {}
2493 
2494   template <typename LhsContainer>
2495   operator Matcher<LhsContainer>() const {
2496     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2497   }
2498 
2499   template <typename LhsContainer>
2500   class Impl : public MatcherInterface<LhsContainer> {
2501    public:
2502     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2503         LhsContainer)>
2504         LhsView;
2505     typedef typename LhsView::type LhsStlContainer;
2506     typedef typename LhsView::const_reference LhsStlContainerReference;
2507     // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2508     // so that we can match associative containers.
2509     typedef
2510         typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type
2511             LhsValue;
2512 
2513     Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2514         : comparator_(comparator), matcher_(matcher) {}
2515 
2516     void DescribeTo(::std::ostream* os) const override {
2517       *os << "(when sorted) ";
2518       matcher_.DescribeTo(os);
2519     }
2520 
2521     void DescribeNegationTo(::std::ostream* os) const override {
2522       *os << "(when sorted) ";
2523       matcher_.DescribeNegationTo(os);
2524     }
2525 
2526     bool MatchAndExplain(LhsContainer lhs,
2527                          MatchResultListener* listener) const override {
2528       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2529       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2530                                                lhs_stl_container.end());
2531       ::std::sort(sorted_container.begin(), sorted_container.end(),
2532                   comparator_);
2533 
2534       if (!listener->IsInterested()) {
2535         // If the listener is not interested, we do not need to
2536         // construct the inner explanation.
2537         return matcher_.Matches(sorted_container);
2538       }
2539 
2540       *listener << "which is ";
2541       UniversalPrint(sorted_container, listener->stream());
2542       *listener << " when sorted";
2543 
2544       StringMatchResultListener inner_listener;
2545       const bool match =
2546           matcher_.MatchAndExplain(sorted_container, &inner_listener);
2547       PrintIfNotEmpty(inner_listener.str(), listener->stream());
2548       return match;
2549     }
2550 
2551    private:
2552     const Comparator comparator_;
2553     const Matcher<const ::std::vector<LhsValue>&> matcher_;
2554 
2555     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
2556   };
2557 
2558  private:
2559   const Comparator comparator_;
2560   const ContainerMatcher matcher_;
2561 };
2562 
2563 // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
2564 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
2565 // T2&> >, where T1 and T2 are the types of elements in the LHS
2566 // container and the RHS container respectively.
2567 template <typename TupleMatcher, typename RhsContainer>
2568 class PointwiseMatcher {
2569   GTEST_COMPILE_ASSERT_(
2570       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2571       use_UnorderedPointwise_with_hash_tables);
2572 
2573  public:
2574   typedef internal::StlContainerView<RhsContainer> RhsView;
2575   typedef typename RhsView::type RhsStlContainer;
2576   typedef typename RhsStlContainer::value_type RhsValue;
2577 
2578   static_assert(!std::is_const<RhsContainer>::value,
2579                 "RhsContainer type must not be const");
2580   static_assert(!std::is_reference<RhsContainer>::value,
2581                 "RhsContainer type must not be a reference");
2582 
2583   // Like ContainerEq, we make a copy of rhs in case the elements in
2584   // it are modified after this matcher is created.
2585   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2586       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2587 
2588   template <typename LhsContainer>
2589   operator Matcher<LhsContainer>() const {
2590     GTEST_COMPILE_ASSERT_(
2591         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2592         use_UnorderedPointwise_with_hash_tables);
2593 
2594     return Matcher<LhsContainer>(
2595         new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2596   }
2597 
2598   template <typename LhsContainer>
2599   class Impl : public MatcherInterface<LhsContainer> {
2600    public:
2601     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2602         LhsContainer)>
2603         LhsView;
2604     typedef typename LhsView::type LhsStlContainer;
2605     typedef typename LhsView::const_reference LhsStlContainerReference;
2606     typedef typename LhsStlContainer::value_type LhsValue;
2607     // We pass the LHS value and the RHS value to the inner matcher by
2608     // reference, as they may be expensive to copy.  We must use tuple
2609     // instead of pair here, as a pair cannot hold references (C++ 98,
2610     // 20.2.2 [lib.pairs]).
2611     typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2612 
2613     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2614         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2615         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2616           rhs_(rhs) {}
2617 
2618     void DescribeTo(::std::ostream* os) const override {
2619       *os << "contains " << rhs_.size()
2620           << " values, where each value and its corresponding value in ";
2621       UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2622       *os << " ";
2623       mono_tuple_matcher_.DescribeTo(os);
2624     }
2625     void DescribeNegationTo(::std::ostream* os) const override {
2626       *os << "doesn't contain exactly " << rhs_.size()
2627           << " values, or contains a value x at some index i"
2628           << " where x and the i-th value of ";
2629       UniversalPrint(rhs_, os);
2630       *os << " ";
2631       mono_tuple_matcher_.DescribeNegationTo(os);
2632     }
2633 
2634     bool MatchAndExplain(LhsContainer lhs,
2635                          MatchResultListener* listener) const override {
2636       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2637       const size_t actual_size = lhs_stl_container.size();
2638       if (actual_size != rhs_.size()) {
2639         *listener << "which contains " << actual_size << " values";
2640         return false;
2641       }
2642 
2643       auto left = lhs_stl_container.begin();
2644       auto right = rhs_.begin();
2645       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2646         if (listener->IsInterested()) {
2647           StringMatchResultListener inner_listener;
2648           // Create InnerMatcherArg as a temporarily object to avoid it outlives
2649           // *left and *right. Dereference or the conversion to `const T&` may
2650           // return temp objects, e.g. for vector<bool>.
2651           if (!mono_tuple_matcher_.MatchAndExplain(
2652                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2653                                   ImplicitCast_<const RhsValue&>(*right)),
2654                   &inner_listener)) {
2655             *listener << "where the value pair (";
2656             UniversalPrint(*left, listener->stream());
2657             *listener << ", ";
2658             UniversalPrint(*right, listener->stream());
2659             *listener << ") at index #" << i << " don't match";
2660             PrintIfNotEmpty(inner_listener.str(), listener->stream());
2661             return false;
2662           }
2663         } else {
2664           if (!mono_tuple_matcher_.Matches(
2665                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2666                                   ImplicitCast_<const RhsValue&>(*right))))
2667             return false;
2668         }
2669       }
2670 
2671       return true;
2672     }
2673 
2674    private:
2675     const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2676     const RhsStlContainer rhs_;
2677   };
2678 
2679  private:
2680   const TupleMatcher tuple_matcher_;
2681   const RhsStlContainer rhs_;
2682 };
2683 
2684 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2685 template <typename Container>
2686 class QuantifierMatcherImpl : public MatcherInterface<Container> {
2687  public:
2688   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2689   typedef StlContainerView<RawContainer> View;
2690   typedef typename View::type StlContainer;
2691   typedef typename View::const_reference StlContainerReference;
2692   typedef typename StlContainer::value_type Element;
2693 
2694   template <typename InnerMatcher>
2695   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2696       : inner_matcher_(
2697             testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2698 
2699   // Checks whether:
2700   // * All elements in the container match, if all_elements_should_match.
2701   // * Any element in the container matches, if !all_elements_should_match.
2702   bool MatchAndExplainImpl(bool all_elements_should_match, Container container,
2703                            MatchResultListener* listener) const {
2704     StlContainerReference stl_container = View::ConstReference(container);
2705     size_t i = 0;
2706     for (auto it = stl_container.begin(); it != stl_container.end();
2707          ++it, ++i) {
2708       StringMatchResultListener inner_listener;
2709       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2710 
2711       if (matches != all_elements_should_match) {
2712         *listener << "whose element #" << i
2713                   << (matches ? " matches" : " doesn't match");
2714         PrintIfNotEmpty(inner_listener.str(), listener->stream());
2715         return !all_elements_should_match;
2716       }
2717     }
2718     return all_elements_should_match;
2719   }
2720 
2721   bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher,
2722                            Container container,
2723                            MatchResultListener* listener) const {
2724     StlContainerReference stl_container = View::ConstReference(container);
2725     size_t i = 0;
2726     std::vector<size_t> match_elements;
2727     for (auto it = stl_container.begin(); it != stl_container.end();
2728          ++it, ++i) {
2729       StringMatchResultListener inner_listener;
2730       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2731       if (matches) {
2732         match_elements.push_back(i);
2733       }
2734     }
2735     if (listener->IsInterested()) {
2736       if (match_elements.empty()) {
2737         *listener << "has no element that matches";
2738       } else if (match_elements.size() == 1) {
2739         *listener << "whose element #" << match_elements[0] << " matches";
2740       } else {
2741         *listener << "whose elements (";
2742         std::string sep = "";
2743         for (size_t e : match_elements) {
2744           *listener << sep << e;
2745           sep = ", ";
2746         }
2747         *listener << ") match";
2748       }
2749     }
2750     StringMatchResultListener count_listener;
2751     if (count_matcher.MatchAndExplain(match_elements.size(), &count_listener)) {
2752       *listener << " and whose match quantity of " << match_elements.size()
2753                 << " matches";
2754       PrintIfNotEmpty(count_listener.str(), listener->stream());
2755       return true;
2756     } else {
2757       if (match_elements.empty()) {
2758         *listener << " and";
2759       } else {
2760         *listener << " but";
2761       }
2762       *listener << " whose match quantity of " << match_elements.size()
2763                 << " does not match";
2764       PrintIfNotEmpty(count_listener.str(), listener->stream());
2765       return false;
2766     }
2767   }
2768 
2769  protected:
2770   const Matcher<const Element&> inner_matcher_;
2771 };
2772 
2773 // Implements Contains(element_matcher) for the given argument type Container.
2774 // Symmetric to EachMatcherImpl.
2775 template <typename Container>
2776 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2777  public:
2778   template <typename InnerMatcher>
2779   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2780       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2781 
2782   // Describes what this matcher does.
2783   void DescribeTo(::std::ostream* os) const override {
2784     *os << "contains at least one element that ";
2785     this->inner_matcher_.DescribeTo(os);
2786   }
2787 
2788   void DescribeNegationTo(::std::ostream* os) const override {
2789     *os << "doesn't contain any element that ";
2790     this->inner_matcher_.DescribeTo(os);
2791   }
2792 
2793   bool MatchAndExplain(Container container,
2794                        MatchResultListener* listener) const override {
2795     return this->MatchAndExplainImpl(false, container, listener);
2796   }
2797 };
2798 
2799 // Implements Each(element_matcher) for the given argument type Container.
2800 // Symmetric to ContainsMatcherImpl.
2801 template <typename Container>
2802 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2803  public:
2804   template <typename InnerMatcher>
2805   explicit EachMatcherImpl(InnerMatcher inner_matcher)
2806       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2807 
2808   // Describes what this matcher does.
2809   void DescribeTo(::std::ostream* os) const override {
2810     *os << "only contains elements that ";
2811     this->inner_matcher_.DescribeTo(os);
2812   }
2813 
2814   void DescribeNegationTo(::std::ostream* os) const override {
2815     *os << "contains some element that ";
2816     this->inner_matcher_.DescribeNegationTo(os);
2817   }
2818 
2819   bool MatchAndExplain(Container container,
2820                        MatchResultListener* listener) const override {
2821     return this->MatchAndExplainImpl(true, container, listener);
2822   }
2823 };
2824 
2825 // Implements Contains(element_matcher).Times(n) for the given argument type
2826 // Container.
2827 template <typename Container>
2828 class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> {
2829  public:
2830   template <typename InnerMatcher>
2831   explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher,
2832                                     Matcher<size_t> count_matcher)
2833       : QuantifierMatcherImpl<Container>(inner_matcher),
2834         count_matcher_(std::move(count_matcher)) {}
2835 
2836   void DescribeTo(::std::ostream* os) const override {
2837     *os << "quantity of elements that match ";
2838     this->inner_matcher_.DescribeTo(os);
2839     *os << " ";
2840     count_matcher_.DescribeTo(os);
2841   }
2842 
2843   void DescribeNegationTo(::std::ostream* os) const override {
2844     *os << "quantity of elements that match ";
2845     this->inner_matcher_.DescribeTo(os);
2846     *os << " ";
2847     count_matcher_.DescribeNegationTo(os);
2848   }
2849 
2850   bool MatchAndExplain(Container container,
2851                        MatchResultListener* listener) const override {
2852     return this->MatchAndExplainImpl(count_matcher_, container, listener);
2853   }
2854 
2855  private:
2856   const Matcher<size_t> count_matcher_;
2857 };
2858 
2859 // Implements polymorphic Contains(element_matcher).Times(n).
2860 template <typename M>
2861 class ContainsTimesMatcher {
2862  public:
2863   explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher)
2864       : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {}
2865 
2866   template <typename Container>
2867   operator Matcher<Container>() const {  // NOLINT
2868     return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>(
2869         inner_matcher_, count_matcher_));
2870   }
2871 
2872  private:
2873   const M inner_matcher_;
2874   const Matcher<size_t> count_matcher_;
2875 };
2876 
2877 // Implements polymorphic Contains(element_matcher).
2878 template <typename M>
2879 class ContainsMatcher {
2880  public:
2881   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2882 
2883   template <typename Container>
2884   operator Matcher<Container>() const {  // NOLINT
2885     return Matcher<Container>(
2886         new ContainsMatcherImpl<const Container&>(inner_matcher_));
2887   }
2888 
2889   ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const {
2890     return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher));
2891   }
2892 
2893  private:
2894   const M inner_matcher_;
2895 };
2896 
2897 // Implements polymorphic Each(element_matcher).
2898 template <typename M>
2899 class EachMatcher {
2900  public:
2901   explicit EachMatcher(M m) : inner_matcher_(m) {}
2902 
2903   template <typename Container>
2904   operator Matcher<Container>() const {  // NOLINT
2905     return Matcher<Container>(
2906         new EachMatcherImpl<const Container&>(inner_matcher_));
2907   }
2908 
2909  private:
2910   const M inner_matcher_;
2911 };
2912 
2913 struct Rank1 {};
2914 struct Rank0 : Rank1 {};
2915 
2916 namespace pair_getters {
2917 using std::get;
2918 template <typename T>
2919 auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT
2920   return get<0>(x);
2921 }
2922 template <typename T>
2923 auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT
2924   return x.first;
2925 }
2926 
2927 template <typename T>
2928 auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT
2929   return get<1>(x);
2930 }
2931 template <typename T>
2932 auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT
2933   return x.second;
2934 }
2935 }  // namespace pair_getters
2936 
2937 // Implements Key(inner_matcher) for the given argument pair type.
2938 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2939 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2940 // std::map that contains at least one element whose key is >= 5.
2941 template <typename PairType>
2942 class KeyMatcherImpl : public MatcherInterface<PairType> {
2943  public:
2944   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2945   typedef typename RawPairType::first_type KeyType;
2946 
2947   template <typename InnerMatcher>
2948   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2949       : inner_matcher_(
2950             testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {}
2951 
2952   // Returns true if and only if 'key_value.first' (the key) matches the inner
2953   // matcher.
2954   bool MatchAndExplain(PairType key_value,
2955                        MatchResultListener* listener) const override {
2956     StringMatchResultListener inner_listener;
2957     const bool match = inner_matcher_.MatchAndExplain(
2958         pair_getters::First(key_value, Rank0()), &inner_listener);
2959     const std::string explanation = inner_listener.str();
2960     if (explanation != "") {
2961       *listener << "whose first field is a value " << explanation;
2962     }
2963     return match;
2964   }
2965 
2966   // Describes what this matcher does.
2967   void DescribeTo(::std::ostream* os) const override {
2968     *os << "has a key that ";
2969     inner_matcher_.DescribeTo(os);
2970   }
2971 
2972   // Describes what the negation of this matcher does.
2973   void DescribeNegationTo(::std::ostream* os) const override {
2974     *os << "doesn't have a key that ";
2975     inner_matcher_.DescribeTo(os);
2976   }
2977 
2978  private:
2979   const Matcher<const KeyType&> inner_matcher_;
2980 };
2981 
2982 // Implements polymorphic Key(matcher_for_key).
2983 template <typename M>
2984 class KeyMatcher {
2985  public:
2986   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2987 
2988   template <typename PairType>
2989   operator Matcher<PairType>() const {
2990     return Matcher<PairType>(
2991         new KeyMatcherImpl<const PairType&>(matcher_for_key_));
2992   }
2993 
2994  private:
2995   const M matcher_for_key_;
2996 };
2997 
2998 // Implements polymorphic Address(matcher_for_address).
2999 template <typename InnerMatcher>
3000 class AddressMatcher {
3001  public:
3002   explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
3003 
3004   template <typename Type>
3005   operator Matcher<Type>() const {  // NOLINT
3006     return Matcher<Type>(new Impl<const Type&>(matcher_));
3007   }
3008 
3009  private:
3010   // The monomorphic implementation that works for a particular object type.
3011   template <typename Type>
3012   class Impl : public MatcherInterface<Type> {
3013    public:
3014     using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
3015     explicit Impl(const InnerMatcher& matcher)
3016         : matcher_(MatcherCast<Address>(matcher)) {}
3017 
3018     void DescribeTo(::std::ostream* os) const override {
3019       *os << "has address that ";
3020       matcher_.DescribeTo(os);
3021     }
3022 
3023     void DescribeNegationTo(::std::ostream* os) const override {
3024       *os << "does not have address that ";
3025       matcher_.DescribeTo(os);
3026     }
3027 
3028     bool MatchAndExplain(Type object,
3029                          MatchResultListener* listener) const override {
3030       *listener << "which has address ";
3031       Address address = std::addressof(object);
3032       return MatchPrintAndExplain(address, matcher_, listener);
3033     }
3034 
3035    private:
3036     const Matcher<Address> matcher_;
3037   };
3038   const InnerMatcher matcher_;
3039 };
3040 
3041 // Implements Pair(first_matcher, second_matcher) for the given argument pair
3042 // type with its two matchers. See Pair() function below.
3043 template <typename PairType>
3044 class PairMatcherImpl : public MatcherInterface<PairType> {
3045  public:
3046   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3047   typedef typename RawPairType::first_type FirstType;
3048   typedef typename RawPairType::second_type SecondType;
3049 
3050   template <typename FirstMatcher, typename SecondMatcher>
3051   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3052       : first_matcher_(
3053             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3054         second_matcher_(
3055             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {}
3056 
3057   // Describes what this matcher does.
3058   void DescribeTo(::std::ostream* os) const override {
3059     *os << "has a first field that ";
3060     first_matcher_.DescribeTo(os);
3061     *os << ", and has a second field that ";
3062     second_matcher_.DescribeTo(os);
3063   }
3064 
3065   // Describes what the negation of this matcher does.
3066   void DescribeNegationTo(::std::ostream* os) const override {
3067     *os << "has a first field that ";
3068     first_matcher_.DescribeNegationTo(os);
3069     *os << ", or has a second field that ";
3070     second_matcher_.DescribeNegationTo(os);
3071   }
3072 
3073   // Returns true if and only if 'a_pair.first' matches first_matcher and
3074   // 'a_pair.second' matches second_matcher.
3075   bool MatchAndExplain(PairType a_pair,
3076                        MatchResultListener* listener) const override {
3077     if (!listener->IsInterested()) {
3078       // If the listener is not interested, we don't need to construct the
3079       // explanation.
3080       return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
3081              second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
3082     }
3083     StringMatchResultListener first_inner_listener;
3084     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
3085                                         &first_inner_listener)) {
3086       *listener << "whose first field does not match";
3087       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3088       return false;
3089     }
3090     StringMatchResultListener second_inner_listener;
3091     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
3092                                          &second_inner_listener)) {
3093       *listener << "whose second field does not match";
3094       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3095       return false;
3096     }
3097     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3098                    listener);
3099     return true;
3100   }
3101 
3102  private:
3103   void ExplainSuccess(const std::string& first_explanation,
3104                       const std::string& second_explanation,
3105                       MatchResultListener* listener) const {
3106     *listener << "whose both fields match";
3107     if (first_explanation != "") {
3108       *listener << ", where the first field is a value " << first_explanation;
3109     }
3110     if (second_explanation != "") {
3111       *listener << ", ";
3112       if (first_explanation != "") {
3113         *listener << "and ";
3114       } else {
3115         *listener << "where ";
3116       }
3117       *listener << "the second field is a value " << second_explanation;
3118     }
3119   }
3120 
3121   const Matcher<const FirstType&> first_matcher_;
3122   const Matcher<const SecondType&> second_matcher_;
3123 };
3124 
3125 // Implements polymorphic Pair(first_matcher, second_matcher).
3126 template <typename FirstMatcher, typename SecondMatcher>
3127 class PairMatcher {
3128  public:
3129   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3130       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3131 
3132   template <typename PairType>
3133   operator Matcher<PairType>() const {
3134     return Matcher<PairType>(
3135         new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
3136   }
3137 
3138  private:
3139   const FirstMatcher first_matcher_;
3140   const SecondMatcher second_matcher_;
3141 };
3142 
3143 template <typename T, size_t... I>
3144 auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
3145     -> decltype(std::tie(get<I>(t)...)) {
3146   static_assert(std::tuple_size<T>::value == sizeof...(I),
3147                 "Number of arguments doesn't match the number of fields.");
3148   return std::tie(get<I>(t)...);
3149 }
3150 
3151 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
3152 template <typename T>
3153 auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
3154   const auto& [a] = t;
3155   return std::tie(a);
3156 }
3157 template <typename T>
3158 auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
3159   const auto& [a, b] = t;
3160   return std::tie(a, b);
3161 }
3162 template <typename T>
3163 auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
3164   const auto& [a, b, c] = t;
3165   return std::tie(a, b, c);
3166 }
3167 template <typename T>
3168 auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
3169   const auto& [a, b, c, d] = t;
3170   return std::tie(a, b, c, d);
3171 }
3172 template <typename T>
3173 auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
3174   const auto& [a, b, c, d, e] = t;
3175   return std::tie(a, b, c, d, e);
3176 }
3177 template <typename T>
3178 auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
3179   const auto& [a, b, c, d, e, f] = t;
3180   return std::tie(a, b, c, d, e, f);
3181 }
3182 template <typename T>
3183 auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
3184   const auto& [a, b, c, d, e, f, g] = t;
3185   return std::tie(a, b, c, d, e, f, g);
3186 }
3187 template <typename T>
3188 auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
3189   const auto& [a, b, c, d, e, f, g, h] = t;
3190   return std::tie(a, b, c, d, e, f, g, h);
3191 }
3192 template <typename T>
3193 auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
3194   const auto& [a, b, c, d, e, f, g, h, i] = t;
3195   return std::tie(a, b, c, d, e, f, g, h, i);
3196 }
3197 template <typename T>
3198 auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
3199   const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3200   return std::tie(a, b, c, d, e, f, g, h, i, j);
3201 }
3202 template <typename T>
3203 auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
3204   const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3205   return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3206 }
3207 template <typename T>
3208 auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
3209   const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3210   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3211 }
3212 template <typename T>
3213 auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
3214   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3215   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3216 }
3217 template <typename T>
3218 auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
3219   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3220   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3221 }
3222 template <typename T>
3223 auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
3224   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3225   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3226 }
3227 template <typename T>
3228 auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
3229   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3230   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3231 }
3232 #endif  // defined(__cpp_structured_bindings)
3233 
3234 template <size_t I, typename T>
3235 auto UnpackStruct(const T& t)
3236     -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
3237   return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
3238 }
3239 
3240 // Helper function to do comma folding in C++11.
3241 // The array ensures left-to-right order of evaluation.
3242 // Usage: VariadicExpand({expr...});
3243 template <typename T, size_t N>
3244 void VariadicExpand(const T (&)[N]) {}
3245 
3246 template <typename Struct, typename StructSize>
3247 class FieldsAreMatcherImpl;
3248 
3249 template <typename Struct, size_t... I>
3250 class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
3251     : public MatcherInterface<Struct> {
3252   using UnpackedType =
3253       decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3254   using MatchersType = std::tuple<
3255       Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3256 
3257  public:
3258   template <typename Inner>
3259   explicit FieldsAreMatcherImpl(const Inner& matchers)
3260       : matchers_(testing::SafeMatcherCast<
3261                   const typename std::tuple_element<I, UnpackedType>::type&>(
3262             std::get<I>(matchers))...) {}
3263 
3264   void DescribeTo(::std::ostream* os) const override {
3265     const char* separator = "";
3266     VariadicExpand(
3267         {(*os << separator << "has field #" << I << " that ",
3268           std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3269   }
3270 
3271   void DescribeNegationTo(::std::ostream* os) const override {
3272     const char* separator = "";
3273     VariadicExpand({(*os << separator << "has field #" << I << " that ",
3274                      std::get<I>(matchers_).DescribeNegationTo(os),
3275                      separator = ", or ")...});
3276   }
3277 
3278   bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3279     return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3280   }
3281 
3282  private:
3283   bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3284     if (!listener->IsInterested()) {
3285       // If the listener is not interested, we don't need to construct the
3286       // explanation.
3287       bool good = true;
3288       VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3289                                          std::get<I>(tuple))...});
3290       return good;
3291     }
3292 
3293     size_t failed_pos = ~size_t{};
3294 
3295     std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3296 
3297     VariadicExpand(
3298         {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3299                                         std::get<I>(tuple), &inner_listener[I])
3300              ? failed_pos = I
3301              : 0 ...});
3302     if (failed_pos != ~size_t{}) {
3303       *listener << "whose field #" << failed_pos << " does not match";
3304       PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3305       return false;
3306     }
3307 
3308     *listener << "whose all elements match";
3309     const char* separator = ", where";
3310     for (size_t index = 0; index < sizeof...(I); ++index) {
3311       const std::string str = inner_listener[index].str();
3312       if (!str.empty()) {
3313         *listener << separator << " field #" << index << " is a value " << str;
3314         separator = ", and";
3315       }
3316     }
3317 
3318     return true;
3319   }
3320 
3321   MatchersType matchers_;
3322 };
3323 
3324 template <typename... Inner>
3325 class FieldsAreMatcher {
3326  public:
3327   explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3328 
3329   template <typename Struct>
3330   operator Matcher<Struct>() const {  // NOLINT
3331     return Matcher<Struct>(
3332         new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
3333             matchers_));
3334   }
3335 
3336  private:
3337   std::tuple<Inner...> matchers_;
3338 };
3339 
3340 // Implements ElementsAre() and ElementsAreArray().
3341 template <typename Container>
3342 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3343  public:
3344   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3345   typedef internal::StlContainerView<RawContainer> View;
3346   typedef typename View::type StlContainer;
3347   typedef typename View::const_reference StlContainerReference;
3348   typedef typename StlContainer::value_type Element;
3349 
3350   // Constructs the matcher from a sequence of element values or
3351   // element matchers.
3352   template <typename InputIter>
3353   ElementsAreMatcherImpl(InputIter first, InputIter last) {
3354     while (first != last) {
3355       matchers_.push_back(MatcherCast<const Element&>(*first++));
3356     }
3357   }
3358 
3359   // Describes what this matcher does.
3360   void DescribeTo(::std::ostream* os) const override {
3361     if (count() == 0) {
3362       *os << "is empty";
3363     } else if (count() == 1) {
3364       *os << "has 1 element that ";
3365       matchers_[0].DescribeTo(os);
3366     } else {
3367       *os << "has " << Elements(count()) << " where\n";
3368       for (size_t i = 0; i != count(); ++i) {
3369         *os << "element #" << i << " ";
3370         matchers_[i].DescribeTo(os);
3371         if (i + 1 < count()) {
3372           *os << ",\n";
3373         }
3374       }
3375     }
3376   }
3377 
3378   // Describes what the negation of this matcher does.
3379   void DescribeNegationTo(::std::ostream* os) const override {
3380     if (count() == 0) {
3381       *os << "isn't empty";
3382       return;
3383     }
3384 
3385     *os << "doesn't have " << Elements(count()) << ", or\n";
3386     for (size_t i = 0; i != count(); ++i) {
3387       *os << "element #" << i << " ";
3388       matchers_[i].DescribeNegationTo(os);
3389       if (i + 1 < count()) {
3390         *os << ", or\n";
3391       }
3392     }
3393   }
3394 
3395   bool MatchAndExplain(Container container,
3396                        MatchResultListener* listener) const override {
3397     // To work with stream-like "containers", we must only walk
3398     // through the elements in one pass.
3399 
3400     const bool listener_interested = listener->IsInterested();
3401 
3402     // explanations[i] is the explanation of the element at index i.
3403     ::std::vector<std::string> explanations(count());
3404     StlContainerReference stl_container = View::ConstReference(container);
3405     auto it = stl_container.begin();
3406     size_t exam_pos = 0;
3407     bool mismatch_found = false;  // Have we found a mismatched element yet?
3408 
3409     // Go through the elements and matchers in pairs, until we reach
3410     // the end of either the elements or the matchers, or until we find a
3411     // mismatch.
3412     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3413       bool match;  // Does the current element match the current matcher?
3414       if (listener_interested) {
3415         StringMatchResultListener s;
3416         match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3417         explanations[exam_pos] = s.str();
3418       } else {
3419         match = matchers_[exam_pos].Matches(*it);
3420       }
3421 
3422       if (!match) {
3423         mismatch_found = true;
3424         break;
3425       }
3426     }
3427     // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3428 
3429     // Find how many elements the actual container has.  We avoid
3430     // calling size() s.t. this code works for stream-like "containers"
3431     // that don't define size().
3432     size_t actual_count = exam_pos;
3433     for (; it != stl_container.end(); ++it) {
3434       ++actual_count;
3435     }
3436 
3437     if (actual_count != count()) {
3438       // The element count doesn't match.  If the container is empty,
3439       // there's no need to explain anything as Google Mock already
3440       // prints the empty container.  Otherwise we just need to show
3441       // how many elements there actually are.
3442       if (listener_interested && (actual_count != 0)) {
3443         *listener << "which has " << Elements(actual_count);
3444       }
3445       return false;
3446     }
3447 
3448     if (mismatch_found) {
3449       // The element count matches, but the exam_pos-th element doesn't match.
3450       if (listener_interested) {
3451         *listener << "whose element #" << exam_pos << " doesn't match";
3452         PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3453       }
3454       return false;
3455     }
3456 
3457     // Every element matches its expectation.  We need to explain why
3458     // (the obvious ones can be skipped).
3459     if (listener_interested) {
3460       bool reason_printed = false;
3461       for (size_t i = 0; i != count(); ++i) {
3462         const std::string& s = explanations[i];
3463         if (!s.empty()) {
3464           if (reason_printed) {
3465             *listener << ",\nand ";
3466           }
3467           *listener << "whose element #" << i << " matches, " << s;
3468           reason_printed = true;
3469         }
3470       }
3471     }
3472     return true;
3473   }
3474 
3475  private:
3476   static Message Elements(size_t count) {
3477     return Message() << count << (count == 1 ? " element" : " elements");
3478   }
3479 
3480   size_t count() const { return matchers_.size(); }
3481 
3482   ::std::vector<Matcher<const Element&>> matchers_;
3483 };
3484 
3485 // Connectivity matrix of (elements X matchers), in element-major order.
3486 // Initially, there are no edges.
3487 // Use NextGraph() to iterate over all possible edge configurations.
3488 // Use Randomize() to generate a random edge configuration.
3489 class GTEST_API_ MatchMatrix {
3490  public:
3491   MatchMatrix(size_t num_elements, size_t num_matchers)
3492       : num_elements_(num_elements),
3493         num_matchers_(num_matchers),
3494         matched_(num_elements_ * num_matchers_, 0) {}
3495 
3496   size_t LhsSize() const { return num_elements_; }
3497   size_t RhsSize() const { return num_matchers_; }
3498   bool HasEdge(size_t ilhs, size_t irhs) const {
3499     return matched_[SpaceIndex(ilhs, irhs)] == 1;
3500   }
3501   void SetEdge(size_t ilhs, size_t irhs, bool b) {
3502     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3503   }
3504 
3505   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3506   // adds 1 to that number; returns false if incrementing the graph left it
3507   // empty.
3508   bool NextGraph();
3509 
3510   void Randomize();
3511 
3512   std::string DebugString() const;
3513 
3514  private:
3515   size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3516     return ilhs * num_matchers_ + irhs;
3517   }
3518 
3519   size_t num_elements_;
3520   size_t num_matchers_;
3521 
3522   // Each element is a char interpreted as bool. They are stored as a
3523   // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3524   // a (ilhs, irhs) matrix coordinate into an offset.
3525   ::std::vector<char> matched_;
3526 };
3527 
3528 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3529 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3530 
3531 // Returns a maximum bipartite matching for the specified graph 'g'.
3532 // The matching is represented as a vector of {element, matcher} pairs.
3533 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
3534 
3535 struct UnorderedMatcherRequire {
3536   enum Flags {
3537     Superset = 1 << 0,
3538     Subset = 1 << 1,
3539     ExactMatch = Superset | Subset,
3540   };
3541 };
3542 
3543 // Untyped base class for implementing UnorderedElementsAre.  By
3544 // putting logic that's not specific to the element type here, we
3545 // reduce binary bloat and increase compilation speed.
3546 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3547  protected:
3548   explicit UnorderedElementsAreMatcherImplBase(
3549       UnorderedMatcherRequire::Flags matcher_flags)
3550       : match_flags_(matcher_flags) {}
3551 
3552   // A vector of matcher describers, one for each element matcher.
3553   // Does not own the describers (and thus can be used only when the
3554   // element matchers are alive).
3555   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3556 
3557   // Describes this UnorderedElementsAre matcher.
3558   void DescribeToImpl(::std::ostream* os) const;
3559 
3560   // Describes the negation of this UnorderedElementsAre matcher.
3561   void DescribeNegationToImpl(::std::ostream* os) const;
3562 
3563   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3564                          const MatchMatrix& matrix,
3565                          MatchResultListener* listener) const;
3566 
3567   bool FindPairing(const MatchMatrix& matrix,
3568                    MatchResultListener* listener) const;
3569 
3570   MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
3571 
3572   static Message Elements(size_t n) {
3573     return Message() << n << " element" << (n == 1 ? "" : "s");
3574   }
3575 
3576   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3577 
3578  private:
3579   UnorderedMatcherRequire::Flags match_flags_;
3580   MatcherDescriberVec matcher_describers_;
3581 };
3582 
3583 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3584 // IsSupersetOf.
3585 template <typename Container>
3586 class UnorderedElementsAreMatcherImpl
3587     : public MatcherInterface<Container>,
3588       public UnorderedElementsAreMatcherImplBase {
3589  public:
3590   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3591   typedef internal::StlContainerView<RawContainer> View;
3592   typedef typename View::type StlContainer;
3593   typedef typename View::const_reference StlContainerReference;
3594   typedef typename StlContainer::value_type Element;
3595 
3596   template <typename InputIter>
3597   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3598                                   InputIter first, InputIter last)
3599       : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3600     for (; first != last; ++first) {
3601       matchers_.push_back(MatcherCast<const Element&>(*first));
3602     }
3603     for (const auto& m : matchers_) {
3604       matcher_describers().push_back(m.GetDescriber());
3605     }
3606   }
3607 
3608   // Describes what this matcher does.
3609   void DescribeTo(::std::ostream* os) const override {
3610     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3611   }
3612 
3613   // Describes what the negation of this matcher does.
3614   void DescribeNegationTo(::std::ostream* os) const override {
3615     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3616   }
3617 
3618   bool MatchAndExplain(Container container,
3619                        MatchResultListener* listener) const override {
3620     StlContainerReference stl_container = View::ConstReference(container);
3621     ::std::vector<std::string> element_printouts;
3622     MatchMatrix matrix =
3623         AnalyzeElements(stl_container.begin(), stl_container.end(),
3624                         &element_printouts, listener);
3625 
3626     if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
3627       return true;
3628     }
3629 
3630     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
3631       if (matrix.LhsSize() != matrix.RhsSize()) {
3632         // The element count doesn't match.  If the container is empty,
3633         // there's no need to explain anything as Google Mock already
3634         // prints the empty container. Otherwise we just need to show
3635         // how many elements there actually are.
3636         if (matrix.LhsSize() != 0 && listener->IsInterested()) {
3637           *listener << "which has " << Elements(matrix.LhsSize());
3638         }
3639         return false;
3640       }
3641     }
3642 
3643     return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3644            FindPairing(matrix, listener);
3645   }
3646 
3647  private:
3648   template <typename ElementIter>
3649   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3650                               ::std::vector<std::string>* element_printouts,
3651                               MatchResultListener* listener) const {
3652     element_printouts->clear();
3653     ::std::vector<char> did_match;
3654     size_t num_elements = 0;
3655     DummyMatchResultListener dummy;
3656     for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3657       if (listener->IsInterested()) {
3658         element_printouts->push_back(PrintToString(*elem_first));
3659       }
3660       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3661         did_match.push_back(
3662             matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3663       }
3664     }
3665 
3666     MatchMatrix matrix(num_elements, matchers_.size());
3667     ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3668     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3669       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3670         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3671       }
3672     }
3673     return matrix;
3674   }
3675 
3676   ::std::vector<Matcher<const Element&>> matchers_;
3677 };
3678 
3679 // Functor for use in TransformTuple.
3680 // Performs MatcherCast<Target> on an input argument of any type.
3681 template <typename Target>
3682 struct CastAndAppendTransform {
3683   template <typename Arg>
3684   Matcher<Target> operator()(const Arg& a) const {
3685     return MatcherCast<Target>(a);
3686   }
3687 };
3688 
3689 // Implements UnorderedElementsAre.
3690 template <typename MatcherTuple>
3691 class UnorderedElementsAreMatcher {
3692  public:
3693   explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3694       : matchers_(args) {}
3695 
3696   template <typename Container>
3697   operator Matcher<Container>() const {
3698     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3699     typedef typename internal::StlContainerView<RawContainer>::type View;
3700     typedef typename View::value_type Element;
3701     typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3702     MatcherVec matchers;
3703     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3704     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3705                          ::std::back_inserter(matchers));
3706     return Matcher<Container>(
3707         new UnorderedElementsAreMatcherImpl<const Container&>(
3708             UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3709             matchers.end()));
3710   }
3711 
3712  private:
3713   const MatcherTuple matchers_;
3714 };
3715 
3716 // Implements ElementsAre.
3717 template <typename MatcherTuple>
3718 class ElementsAreMatcher {
3719  public:
3720   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3721 
3722   template <typename Container>
3723   operator Matcher<Container>() const {
3724     GTEST_COMPILE_ASSERT_(
3725         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3726             ::std::tuple_size<MatcherTuple>::value < 2,
3727         use_UnorderedElementsAre_with_hash_tables);
3728 
3729     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3730     typedef typename internal::StlContainerView<RawContainer>::type View;
3731     typedef typename View::value_type Element;
3732     typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3733     MatcherVec matchers;
3734     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3735     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3736                          ::std::back_inserter(matchers));
3737     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3738         matchers.begin(), matchers.end()));
3739   }
3740 
3741  private:
3742   const MatcherTuple matchers_;
3743 };
3744 
3745 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3746 template <typename T>
3747 class UnorderedElementsAreArrayMatcher {
3748  public:
3749   template <typename Iter>
3750   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3751                                    Iter first, Iter last)
3752       : match_flags_(match_flags), matchers_(first, last) {}
3753 
3754   template <typename Container>
3755   operator Matcher<Container>() const {
3756     return Matcher<Container>(
3757         new UnorderedElementsAreMatcherImpl<const Container&>(
3758             match_flags_, matchers_.begin(), matchers_.end()));
3759   }
3760 
3761  private:
3762   UnorderedMatcherRequire::Flags match_flags_;
3763   ::std::vector<T> matchers_;
3764 };
3765 
3766 // Implements ElementsAreArray().
3767 template <typename T>
3768 class ElementsAreArrayMatcher {
3769  public:
3770   template <typename Iter>
3771   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3772 
3773   template <typename Container>
3774   operator Matcher<Container>() const {
3775     GTEST_COMPILE_ASSERT_(
3776         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3777         use_UnorderedElementsAreArray_with_hash_tables);
3778 
3779     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3780         matchers_.begin(), matchers_.end()));
3781   }
3782 
3783  private:
3784   const ::std::vector<T> matchers_;
3785 };
3786 
3787 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3788 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3789 // second) is a polymorphic matcher that matches a value x if and only if
3790 // tm matches tuple (x, second).  Useful for implementing
3791 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
3792 //
3793 // BoundSecondMatcher is copyable and assignable, as we need to put
3794 // instances of this class in a vector when implementing
3795 // UnorderedPointwise().
3796 template <typename Tuple2Matcher, typename Second>
3797 class BoundSecondMatcher {
3798  public:
3799   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3800       : tuple2_matcher_(tm), second_value_(second) {}
3801 
3802   BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3803 
3804   template <typename T>
3805   operator Matcher<T>() const {
3806     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3807   }
3808 
3809   // We have to define this for UnorderedPointwise() to compile in
3810   // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3811   // which requires the elements to be assignable in C++98.  The
3812   // compiler cannot generate the operator= for us, as Tuple2Matcher
3813   // and Second may not be assignable.
3814   //
3815   // However, this should never be called, so the implementation just
3816   // need to assert.
3817   void operator=(const BoundSecondMatcher& /*rhs*/) {
3818     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3819   }
3820 
3821  private:
3822   template <typename T>
3823   class Impl : public MatcherInterface<T> {
3824    public:
3825     typedef ::std::tuple<T, Second> ArgTuple;
3826 
3827     Impl(const Tuple2Matcher& tm, const Second& second)
3828         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3829           second_value_(second) {}
3830 
3831     void DescribeTo(::std::ostream* os) const override {
3832       *os << "and ";
3833       UniversalPrint(second_value_, os);
3834       *os << " ";
3835       mono_tuple2_matcher_.DescribeTo(os);
3836     }
3837 
3838     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3839       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3840                                                   listener);
3841     }
3842 
3843    private:
3844     const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3845     const Second second_value_;
3846   };
3847 
3848   const Tuple2Matcher tuple2_matcher_;
3849   const Second second_value_;
3850 };
3851 
3852 // Given a 2-tuple matcher tm and a value second,
3853 // MatcherBindSecond(tm, second) returns a matcher that matches a
3854 // value x if and only if tm matches tuple (x, second).  Useful for
3855 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3856 template <typename Tuple2Matcher, typename Second>
3857 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3858     const Tuple2Matcher& tm, const Second& second) {
3859   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3860 }
3861 
3862 // Returns the description for a matcher defined using the MATCHER*()
3863 // macro where the user-supplied description string is "", if
3864 // 'negation' is false; otherwise returns the description of the
3865 // negation of the matcher.  'param_values' contains a list of strings
3866 // that are the print-out of the matcher's parameters.
3867 GTEST_API_ std::string FormatMatcherDescription(
3868     bool negation, const char* matcher_name,
3869     const std::vector<const char*>& param_names, const Strings& param_values);
3870 
3871 // Implements a matcher that checks the value of a optional<> type variable.
3872 template <typename ValueMatcher>
3873 class OptionalMatcher {
3874  public:
3875   explicit OptionalMatcher(const ValueMatcher& value_matcher)
3876       : value_matcher_(value_matcher) {}
3877 
3878   template <typename Optional>
3879   operator Matcher<Optional>() const {
3880     return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3881   }
3882 
3883   template <typename Optional>
3884   class Impl : public MatcherInterface<Optional> {
3885    public:
3886     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3887     typedef typename OptionalView::value_type ValueType;
3888     explicit Impl(const ValueMatcher& value_matcher)
3889         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3890 
3891     void DescribeTo(::std::ostream* os) const override {
3892       *os << "value ";
3893       value_matcher_.DescribeTo(os);
3894     }
3895 
3896     void DescribeNegationTo(::std::ostream* os) const override {
3897       *os << "value ";
3898       value_matcher_.DescribeNegationTo(os);
3899     }
3900 
3901     bool MatchAndExplain(Optional optional,
3902                          MatchResultListener* listener) const override {
3903       if (!optional) {
3904         *listener << "which is not engaged";
3905         return false;
3906       }
3907       const ValueType& value = *optional;
3908       StringMatchResultListener value_listener;
3909       const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3910       *listener << "whose value " << PrintToString(value)
3911                 << (match ? " matches" : " doesn't match");
3912       PrintIfNotEmpty(value_listener.str(), listener->stream());
3913       return match;
3914     }
3915 
3916    private:
3917     const Matcher<ValueType> value_matcher_;
3918   };
3919 
3920  private:
3921   const ValueMatcher value_matcher_;
3922 };
3923 
3924 namespace variant_matcher {
3925 // Overloads to allow VariantMatcher to do proper ADL lookup.
3926 template <typename T>
3927 void holds_alternative() {}
3928 template <typename T>
3929 void get() {}
3930 
3931 // Implements a matcher that checks the value of a variant<> type variable.
3932 template <typename T>
3933 class VariantMatcher {
3934  public:
3935   explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3936       : matcher_(std::move(matcher)) {}
3937 
3938   template <typename Variant>
3939   bool MatchAndExplain(const Variant& value,
3940                        ::testing::MatchResultListener* listener) const {
3941     using std::get;
3942     if (!listener->IsInterested()) {
3943       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3944     }
3945 
3946     if (!holds_alternative<T>(value)) {
3947       *listener << "whose value is not of type '" << GetTypeName() << "'";
3948       return false;
3949     }
3950 
3951     const T& elem = get<T>(value);
3952     StringMatchResultListener elem_listener;
3953     const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3954     *listener << "whose value " << PrintToString(elem)
3955               << (match ? " matches" : " doesn't match");
3956     PrintIfNotEmpty(elem_listener.str(), listener->stream());
3957     return match;
3958   }
3959 
3960   void DescribeTo(std::ostream* os) const {
3961     *os << "is a variant<> with value of type '" << GetTypeName()
3962         << "' and the value ";
3963     matcher_.DescribeTo(os);
3964   }
3965 
3966   void DescribeNegationTo(std::ostream* os) const {
3967     *os << "is a variant<> with value of type other than '" << GetTypeName()
3968         << "' or the value ";
3969     matcher_.DescribeNegationTo(os);
3970   }
3971 
3972  private:
3973   static std::string GetTypeName() {
3974 #if GTEST_HAS_RTTI
3975     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3976         return internal::GetTypeName<T>());
3977 #endif
3978     return "the element type";
3979   }
3980 
3981   const ::testing::Matcher<const T&> matcher_;
3982 };
3983 
3984 }  // namespace variant_matcher
3985 
3986 namespace any_cast_matcher {
3987 
3988 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
3989 template <typename T>
3990 void any_cast() {}
3991 
3992 // Implements a matcher that any_casts the value.
3993 template <typename T>
3994 class AnyCastMatcher {
3995  public:
3996   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
3997       : matcher_(matcher) {}
3998 
3999   template <typename AnyType>
4000   bool MatchAndExplain(const AnyType& value,
4001                        ::testing::MatchResultListener* listener) const {
4002     if (!listener->IsInterested()) {
4003       const T* ptr = any_cast<T>(&value);
4004       return ptr != nullptr && matcher_.Matches(*ptr);
4005     }
4006 
4007     const T* elem = any_cast<T>(&value);
4008     if (elem == nullptr) {
4009       *listener << "whose value is not of type '" << GetTypeName() << "'";
4010       return false;
4011     }
4012 
4013     StringMatchResultListener elem_listener;
4014     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4015     *listener << "whose value " << PrintToString(*elem)
4016               << (match ? " matches" : " doesn't match");
4017     PrintIfNotEmpty(elem_listener.str(), listener->stream());
4018     return match;
4019   }
4020 
4021   void DescribeTo(std::ostream* os) const {
4022     *os << "is an 'any' type with value of type '" << GetTypeName()
4023         << "' and the value ";
4024     matcher_.DescribeTo(os);
4025   }
4026 
4027   void DescribeNegationTo(std::ostream* os) const {
4028     *os << "is an 'any' type with value of type other than '" << GetTypeName()
4029         << "' or the value ";
4030     matcher_.DescribeNegationTo(os);
4031   }
4032 
4033  private:
4034   static std::string GetTypeName() {
4035 #if GTEST_HAS_RTTI
4036     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4037         return internal::GetTypeName<T>());
4038 #endif
4039     return "the element type";
4040   }
4041 
4042   const ::testing::Matcher<const T&> matcher_;
4043 };
4044 
4045 }  // namespace any_cast_matcher
4046 
4047 // Implements the Args() matcher.
4048 template <class ArgsTuple, size_t... k>
4049 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
4050  public:
4051   using RawArgsTuple = typename std::decay<ArgsTuple>::type;
4052   using SelectedArgs =
4053       std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
4054   using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
4055 
4056   template <typename InnerMatcher>
4057   explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
4058       : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
4059 
4060   bool MatchAndExplain(ArgsTuple args,
4061                        MatchResultListener* listener) const override {
4062     // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
4063     (void)args;
4064     const SelectedArgs& selected_args =
4065         std::forward_as_tuple(std::get<k>(args)...);
4066     if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
4067 
4068     PrintIndices(listener->stream());
4069     *listener << "are " << PrintToString(selected_args);
4070 
4071     StringMatchResultListener inner_listener;
4072     const bool match =
4073         inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
4074     PrintIfNotEmpty(inner_listener.str(), listener->stream());
4075     return match;
4076   }
4077 
4078   void DescribeTo(::std::ostream* os) const override {
4079     *os << "are a tuple ";
4080     PrintIndices(os);
4081     inner_matcher_.DescribeTo(os);
4082   }
4083 
4084   void DescribeNegationTo(::std::ostream* os) const override {
4085     *os << "are a tuple ";
4086     PrintIndices(os);
4087     inner_matcher_.DescribeNegationTo(os);
4088   }
4089 
4090  private:
4091   // Prints the indices of the selected fields.
4092   static void PrintIndices(::std::ostream* os) {
4093     *os << "whose fields (";
4094     const char* sep = "";
4095     // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
4096     (void)sep;
4097     const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
4098     (void)dummy;
4099     *os << ") ";
4100   }
4101 
4102   MonomorphicInnerMatcher inner_matcher_;
4103 };
4104 
4105 template <class InnerMatcher, size_t... k>
4106 class ArgsMatcher {
4107  public:
4108   explicit ArgsMatcher(InnerMatcher inner_matcher)
4109       : inner_matcher_(std::move(inner_matcher)) {}
4110 
4111   template <typename ArgsTuple>
4112   operator Matcher<ArgsTuple>() const {  // NOLINT
4113     return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
4114   }
4115 
4116  private:
4117   InnerMatcher inner_matcher_;
4118 };
4119 
4120 }  // namespace internal
4121 
4122 // ElementsAreArray(iterator_first, iterator_last)
4123 // ElementsAreArray(pointer, count)
4124 // ElementsAreArray(array)
4125 // ElementsAreArray(container)
4126 // ElementsAreArray({ e1, e2, ..., en })
4127 //
4128 // The ElementsAreArray() functions are like ElementsAre(...), except
4129 // that they are given a homogeneous sequence rather than taking each
4130 // element as a function argument. The sequence can be specified as an
4131 // array, a pointer and count, a vector, an initializer list, or an
4132 // STL iterator range. In each of these cases, the underlying sequence
4133 // can be either a sequence of values or a sequence of matchers.
4134 //
4135 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
4136 
4137 template <typename Iter>
4138 inline internal::ElementsAreArrayMatcher<
4139     typename ::std::iterator_traits<Iter>::value_type>
4140 ElementsAreArray(Iter first, Iter last) {
4141   typedef typename ::std::iterator_traits<Iter>::value_type T;
4142   return internal::ElementsAreArrayMatcher<T>(first, last);
4143 }
4144 
4145 template <typename T>
4146 inline auto ElementsAreArray(const T* pointer, size_t count)
4147     -> decltype(ElementsAreArray(pointer, pointer + count)) {
4148   return ElementsAreArray(pointer, pointer + count);
4149 }
4150 
4151 template <typename T, size_t N>
4152 inline auto ElementsAreArray(const T (&array)[N])
4153     -> decltype(ElementsAreArray(array, N)) {
4154   return ElementsAreArray(array, N);
4155 }
4156 
4157 template <typename Container>
4158 inline auto ElementsAreArray(const Container& container)
4159     -> decltype(ElementsAreArray(container.begin(), container.end())) {
4160   return ElementsAreArray(container.begin(), container.end());
4161 }
4162 
4163 template <typename T>
4164 inline auto ElementsAreArray(::std::initializer_list<T> xs)
4165     -> decltype(ElementsAreArray(xs.begin(), xs.end())) {
4166   return ElementsAreArray(xs.begin(), xs.end());
4167 }
4168 
4169 // UnorderedElementsAreArray(iterator_first, iterator_last)
4170 // UnorderedElementsAreArray(pointer, count)
4171 // UnorderedElementsAreArray(array)
4172 // UnorderedElementsAreArray(container)
4173 // UnorderedElementsAreArray({ e1, e2, ..., en })
4174 //
4175 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
4176 // collection of matchers exists.
4177 //
4178 // The matchers can be specified as an array, a pointer and count, a container,
4179 // an initializer list, or an STL iterator range. In each of these cases, the
4180 // underlying matchers can be either values or matchers.
4181 
4182 template <typename Iter>
4183 inline internal::UnorderedElementsAreArrayMatcher<
4184     typename ::std::iterator_traits<Iter>::value_type>
4185 UnorderedElementsAreArray(Iter first, Iter last) {
4186   typedef typename ::std::iterator_traits<Iter>::value_type T;
4187   return internal::UnorderedElementsAreArrayMatcher<T>(
4188       internal::UnorderedMatcherRequire::ExactMatch, first, last);
4189 }
4190 
4191 template <typename T>
4192 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4193     const T* pointer, size_t count) {
4194   return UnorderedElementsAreArray(pointer, pointer + count);
4195 }
4196 
4197 template <typename T, size_t N>
4198 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4199     const T (&array)[N]) {
4200   return UnorderedElementsAreArray(array, N);
4201 }
4202 
4203 template <typename Container>
4204 inline internal::UnorderedElementsAreArrayMatcher<
4205     typename Container::value_type>
4206 UnorderedElementsAreArray(const Container& container) {
4207   return UnorderedElementsAreArray(container.begin(), container.end());
4208 }
4209 
4210 template <typename T>
4211 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4212     ::std::initializer_list<T> xs) {
4213   return UnorderedElementsAreArray(xs.begin(), xs.end());
4214 }
4215 
4216 // _ is a matcher that matches anything of any type.
4217 //
4218 // This definition is fine as:
4219 //
4220 //   1. The C++ standard permits using the name _ in a namespace that
4221 //      is not the global namespace or ::std.
4222 //   2. The AnythingMatcher class has no data member or constructor,
4223 //      so it's OK to create global variables of this type.
4224 //   3. c-style has approved of using _ in this case.
4225 const internal::AnythingMatcher _ = {};
4226 // Creates a matcher that matches any value of the given type T.
4227 template <typename T>
4228 inline Matcher<T> A() {
4229   return _;
4230 }
4231 
4232 // Creates a matcher that matches any value of the given type T.
4233 template <typename T>
4234 inline Matcher<T> An() {
4235   return _;
4236 }
4237 
4238 template <typename T, typename M>
4239 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4240     const M& value, std::false_type /* convertible_to_matcher */,
4241     std::false_type /* convertible_to_T */) {
4242   return Eq(value);
4243 }
4244 
4245 // Creates a polymorphic matcher that matches any NULL pointer.
4246 inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() {
4247   return MakePolymorphicMatcher(internal::IsNullMatcher());
4248 }
4249 
4250 // Creates a polymorphic matcher that matches any non-NULL pointer.
4251 // This is convenient as Not(NULL) doesn't compile (the compiler
4252 // thinks that that expression is comparing a pointer with an integer).
4253 inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() {
4254   return MakePolymorphicMatcher(internal::NotNullMatcher());
4255 }
4256 
4257 // Creates a polymorphic matcher that matches any argument that
4258 // references variable x.
4259 template <typename T>
4260 inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
4261   return internal::RefMatcher<T&>(x);
4262 }
4263 
4264 // Creates a polymorphic matcher that matches any NaN floating point.
4265 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4266   return MakePolymorphicMatcher(internal::IsNanMatcher());
4267 }
4268 
4269 // Creates a matcher that matches any double argument approximately
4270 // equal to rhs, where two NANs are considered unequal.
4271 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4272   return internal::FloatingEqMatcher<double>(rhs, false);
4273 }
4274 
4275 // Creates a matcher that matches any double argument approximately
4276 // equal to rhs, including NaN values when rhs is NaN.
4277 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4278   return internal::FloatingEqMatcher<double>(rhs, true);
4279 }
4280 
4281 // Creates a matcher that matches any double argument approximately equal to
4282 // rhs, up to the specified max absolute error bound, where two NANs are
4283 // considered unequal.  The max absolute error bound must be non-negative.
4284 inline internal::FloatingEqMatcher<double> DoubleNear(double rhs,
4285                                                       double max_abs_error) {
4286   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4287 }
4288 
4289 // Creates a matcher that matches any double argument approximately equal to
4290 // rhs, up to the specified max absolute error bound, including NaN values when
4291 // rhs is NaN.  The max absolute error bound must be non-negative.
4292 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4293     double rhs, double max_abs_error) {
4294   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4295 }
4296 
4297 // Creates a matcher that matches any float argument approximately
4298 // equal to rhs, where two NANs are considered unequal.
4299 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4300   return internal::FloatingEqMatcher<float>(rhs, false);
4301 }
4302 
4303 // Creates a matcher that matches any float argument approximately
4304 // equal to rhs, including NaN values when rhs is NaN.
4305 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4306   return internal::FloatingEqMatcher<float>(rhs, true);
4307 }
4308 
4309 // Creates a matcher that matches any float argument approximately equal to
4310 // rhs, up to the specified max absolute error bound, where two NANs are
4311 // considered unequal.  The max absolute error bound must be non-negative.
4312 inline internal::FloatingEqMatcher<float> FloatNear(float rhs,
4313                                                     float max_abs_error) {
4314   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4315 }
4316 
4317 // Creates a matcher that matches any float argument approximately equal to
4318 // rhs, up to the specified max absolute error bound, including NaN values when
4319 // rhs is NaN.  The max absolute error bound must be non-negative.
4320 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4321     float rhs, float max_abs_error) {
4322   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4323 }
4324 
4325 // Creates a matcher that matches a pointer (raw or smart) that points
4326 // to a value that matches inner_matcher.
4327 template <typename InnerMatcher>
4328 inline internal::PointeeMatcher<InnerMatcher> Pointee(
4329     const InnerMatcher& inner_matcher) {
4330   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4331 }
4332 
4333 #if GTEST_HAS_RTTI
4334 // Creates a matcher that matches a pointer or reference that matches
4335 // inner_matcher when dynamic_cast<To> is applied.
4336 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4337 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4338 // If To is a reference and the cast fails, this matcher returns false
4339 // immediately.
4340 template <typename To>
4341 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>>
4342 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4343   return MakePolymorphicMatcher(
4344       internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4345 }
4346 #endif  // GTEST_HAS_RTTI
4347 
4348 // Creates a matcher that matches an object whose given field matches
4349 // 'matcher'.  For example,
4350 //   Field(&Foo::number, Ge(5))
4351 // matches a Foo object x if and only if x.number >= 5.
4352 template <typename Class, typename FieldType, typename FieldMatcher>
4353 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4354     FieldType Class::*field, const FieldMatcher& matcher) {
4355   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4356       field, MatcherCast<const FieldType&>(matcher)));
4357   // The call to MatcherCast() is required for supporting inner
4358   // matchers of compatible types.  For example, it allows
4359   //   Field(&Foo::bar, m)
4360   // to compile where bar is an int32 and m is a matcher for int64.
4361 }
4362 
4363 // Same as Field() but also takes the name of the field to provide better error
4364 // messages.
4365 template <typename Class, typename FieldType, typename FieldMatcher>
4366 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4367     const std::string& field_name, FieldType Class::*field,
4368     const FieldMatcher& matcher) {
4369   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4370       field_name, field, MatcherCast<const FieldType&>(matcher)));
4371 }
4372 
4373 // Creates a matcher that matches an object whose given property
4374 // matches 'matcher'.  For example,
4375 //   Property(&Foo::str, StartsWith("hi"))
4376 // matches a Foo object x if and only if x.str() starts with "hi".
4377 template <typename Class, typename PropertyType, typename PropertyMatcher>
4378 inline PolymorphicMatcher<internal::PropertyMatcher<
4379     Class, PropertyType, PropertyType (Class::*)() const>>
4380 Property(PropertyType (Class::*property)() const,
4381          const PropertyMatcher& matcher) {
4382   return MakePolymorphicMatcher(
4383       internal::PropertyMatcher<Class, PropertyType,
4384                                 PropertyType (Class::*)() const>(
4385           property, MatcherCast<const PropertyType&>(matcher)));
4386   // The call to MatcherCast() is required for supporting inner
4387   // matchers of compatible types.  For example, it allows
4388   //   Property(&Foo::bar, m)
4389   // to compile where bar() returns an int32 and m is a matcher for int64.
4390 }
4391 
4392 // Same as Property() above, but also takes the name of the property to provide
4393 // better error messages.
4394 template <typename Class, typename PropertyType, typename PropertyMatcher>
4395 inline PolymorphicMatcher<internal::PropertyMatcher<
4396     Class, PropertyType, PropertyType (Class::*)() const>>
4397 Property(const std::string& property_name,
4398          PropertyType (Class::*property)() const,
4399          const PropertyMatcher& matcher) {
4400   return MakePolymorphicMatcher(
4401       internal::PropertyMatcher<Class, PropertyType,
4402                                 PropertyType (Class::*)() const>(
4403           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4404 }
4405 
4406 // The same as above but for reference-qualified member functions.
4407 template <typename Class, typename PropertyType, typename PropertyMatcher>
4408 inline PolymorphicMatcher<internal::PropertyMatcher<
4409     Class, PropertyType, PropertyType (Class::*)() const&>>
4410 Property(PropertyType (Class::*property)() const&,
4411          const PropertyMatcher& matcher) {
4412   return MakePolymorphicMatcher(
4413       internal::PropertyMatcher<Class, PropertyType,
4414                                 PropertyType (Class::*)() const&>(
4415           property, MatcherCast<const PropertyType&>(matcher)));
4416 }
4417 
4418 // Three-argument form for reference-qualified member functions.
4419 template <typename Class, typename PropertyType, typename PropertyMatcher>
4420 inline PolymorphicMatcher<internal::PropertyMatcher<
4421     Class, PropertyType, PropertyType (Class::*)() const&>>
4422 Property(const std::string& property_name,
4423          PropertyType (Class::*property)() const&,
4424          const PropertyMatcher& matcher) {
4425   return MakePolymorphicMatcher(
4426       internal::PropertyMatcher<Class, PropertyType,
4427                                 PropertyType (Class::*)() const&>(
4428           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4429 }
4430 
4431 // Creates a matcher that matches an object if and only if the result of
4432 // applying a callable to x matches 'matcher'. For example,
4433 //   ResultOf(f, StartsWith("hi"))
4434 // matches a Foo object x if and only if f(x) starts with "hi".
4435 // `callable` parameter can be a function, function pointer, or a functor. It is
4436 // required to keep no state affecting the results of the calls on it and make
4437 // no assumptions about how many calls will be made. Any state it keeps must be
4438 // protected from the concurrent access.
4439 template <typename Callable, typename InnerMatcher>
4440 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4441     Callable callable, InnerMatcher matcher) {
4442   return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable),
4443                                                            std::move(matcher));
4444 }
4445 
4446 // Same as ResultOf() above, but also takes a description of the `callable`
4447 // result to provide better error messages.
4448 template <typename Callable, typename InnerMatcher>
4449 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4450     const std::string& result_description, Callable callable,
4451     InnerMatcher matcher) {
4452   return internal::ResultOfMatcher<Callable, InnerMatcher>(
4453       result_description, std::move(callable), std::move(matcher));
4454 }
4455 
4456 // String matchers.
4457 
4458 // Matches a string equal to str.
4459 template <typename T = std::string>
4460 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq(
4461     const internal::StringLike<T>& str) {
4462   return MakePolymorphicMatcher(
4463       internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4464 }
4465 
4466 // Matches a string not equal to str.
4467 template <typename T = std::string>
4468 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe(
4469     const internal::StringLike<T>& str) {
4470   return MakePolymorphicMatcher(
4471       internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4472 }
4473 
4474 // Matches a string equal to str, ignoring case.
4475 template <typename T = std::string>
4476 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq(
4477     const internal::StringLike<T>& str) {
4478   return MakePolymorphicMatcher(
4479       internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4480 }
4481 
4482 // Matches a string not equal to str, ignoring case.
4483 template <typename T = std::string>
4484 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe(
4485     const internal::StringLike<T>& str) {
4486   return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4487       std::string(str), false, false));
4488 }
4489 
4490 // Creates a matcher that matches any string, std::string, or C string
4491 // that contains the given substring.
4492 template <typename T = std::string>
4493 PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr(
4494     const internal::StringLike<T>& substring) {
4495   return MakePolymorphicMatcher(
4496       internal::HasSubstrMatcher<std::string>(std::string(substring)));
4497 }
4498 
4499 // Matches a string that starts with 'prefix' (case-sensitive).
4500 template <typename T = std::string>
4501 PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith(
4502     const internal::StringLike<T>& prefix) {
4503   return MakePolymorphicMatcher(
4504       internal::StartsWithMatcher<std::string>(std::string(prefix)));
4505 }
4506 
4507 // Matches a string that ends with 'suffix' (case-sensitive).
4508 template <typename T = std::string>
4509 PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith(
4510     const internal::StringLike<T>& suffix) {
4511   return MakePolymorphicMatcher(
4512       internal::EndsWithMatcher<std::string>(std::string(suffix)));
4513 }
4514 
4515 #if GTEST_HAS_STD_WSTRING
4516 // Wide string matchers.
4517 
4518 // Matches a string equal to str.
4519 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq(
4520     const std::wstring& str) {
4521   return MakePolymorphicMatcher(
4522       internal::StrEqualityMatcher<std::wstring>(str, true, true));
4523 }
4524 
4525 // Matches a string not equal to str.
4526 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe(
4527     const std::wstring& str) {
4528   return MakePolymorphicMatcher(
4529       internal::StrEqualityMatcher<std::wstring>(str, false, true));
4530 }
4531 
4532 // Matches a string equal to str, ignoring case.
4533 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq(
4534     const std::wstring& str) {
4535   return MakePolymorphicMatcher(
4536       internal::StrEqualityMatcher<std::wstring>(str, true, false));
4537 }
4538 
4539 // Matches a string not equal to str, ignoring case.
4540 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe(
4541     const std::wstring& str) {
4542   return MakePolymorphicMatcher(
4543       internal::StrEqualityMatcher<std::wstring>(str, false, false));
4544 }
4545 
4546 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4547 // that contains the given substring.
4548 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr(
4549     const std::wstring& substring) {
4550   return MakePolymorphicMatcher(
4551       internal::HasSubstrMatcher<std::wstring>(substring));
4552 }
4553 
4554 // Matches a string that starts with 'prefix' (case-sensitive).
4555 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith(
4556     const std::wstring& prefix) {
4557   return MakePolymorphicMatcher(
4558       internal::StartsWithMatcher<std::wstring>(prefix));
4559 }
4560 
4561 // Matches a string that ends with 'suffix' (case-sensitive).
4562 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith(
4563     const std::wstring& suffix) {
4564   return MakePolymorphicMatcher(
4565       internal::EndsWithMatcher<std::wstring>(suffix));
4566 }
4567 
4568 #endif  // GTEST_HAS_STD_WSTRING
4569 
4570 // Creates a polymorphic matcher that matches a 2-tuple where the
4571 // first field == the second field.
4572 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4573 
4574 // Creates a polymorphic matcher that matches a 2-tuple where the
4575 // first field >= the second field.
4576 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4577 
4578 // Creates a polymorphic matcher that matches a 2-tuple where the
4579 // first field > the second field.
4580 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4581 
4582 // Creates a polymorphic matcher that matches a 2-tuple where the
4583 // first field <= the second field.
4584 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4585 
4586 // Creates a polymorphic matcher that matches a 2-tuple where the
4587 // first field < the second field.
4588 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4589 
4590 // Creates a polymorphic matcher that matches a 2-tuple where the
4591 // first field != the second field.
4592 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4593 
4594 // Creates a polymorphic matcher that matches a 2-tuple where
4595 // FloatEq(first field) matches the second field.
4596 inline internal::FloatingEq2Matcher<float> FloatEq() {
4597   return internal::FloatingEq2Matcher<float>();
4598 }
4599 
4600 // Creates a polymorphic matcher that matches a 2-tuple where
4601 // DoubleEq(first field) matches the second field.
4602 inline internal::FloatingEq2Matcher<double> DoubleEq() {
4603   return internal::FloatingEq2Matcher<double>();
4604 }
4605 
4606 // Creates a polymorphic matcher that matches a 2-tuple where
4607 // FloatEq(first field) matches the second field with NaN equality.
4608 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4609   return internal::FloatingEq2Matcher<float>(true);
4610 }
4611 
4612 // Creates a polymorphic matcher that matches a 2-tuple where
4613 // DoubleEq(first field) matches the second field with NaN equality.
4614 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4615   return internal::FloatingEq2Matcher<double>(true);
4616 }
4617 
4618 // Creates a polymorphic matcher that matches a 2-tuple where
4619 // FloatNear(first field, max_abs_error) matches the second field.
4620 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4621   return internal::FloatingEq2Matcher<float>(max_abs_error);
4622 }
4623 
4624 // Creates a polymorphic matcher that matches a 2-tuple where
4625 // DoubleNear(first field, max_abs_error) matches the second field.
4626 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4627   return internal::FloatingEq2Matcher<double>(max_abs_error);
4628 }
4629 
4630 // Creates a polymorphic matcher that matches a 2-tuple where
4631 // FloatNear(first field, max_abs_error) matches the second field with NaN
4632 // equality.
4633 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4634     float max_abs_error) {
4635   return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4636 }
4637 
4638 // Creates a polymorphic matcher that matches a 2-tuple where
4639 // DoubleNear(first field, max_abs_error) matches the second field with NaN
4640 // equality.
4641 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4642     double max_abs_error) {
4643   return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4644 }
4645 
4646 // Creates a matcher that matches any value of type T that m doesn't
4647 // match.
4648 template <typename InnerMatcher>
4649 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4650   return internal::NotMatcher<InnerMatcher>(m);
4651 }
4652 
4653 // Returns a matcher that matches anything that satisfies the given
4654 // predicate.  The predicate can be any unary function or functor
4655 // whose return type can be implicitly converted to bool.
4656 template <typename Predicate>
4657 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly(
4658     Predicate pred) {
4659   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4660 }
4661 
4662 // Returns a matcher that matches the container size. The container must
4663 // support both size() and size_type which all STL-like containers provide.
4664 // Note that the parameter 'size' can be a value of type size_type as well as
4665 // matcher. For instance:
4666 //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
4667 //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
4668 template <typename SizeMatcher>
4669 inline internal::SizeIsMatcher<SizeMatcher> SizeIs(
4670     const SizeMatcher& size_matcher) {
4671   return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4672 }
4673 
4674 // Returns a matcher that matches the distance between the container's begin()
4675 // iterator and its end() iterator, i.e. the size of the container. This matcher
4676 // can be used instead of SizeIs with containers such as std::forward_list which
4677 // do not implement size(). The container must provide const_iterator (with
4678 // valid iterator_traits), begin() and end().
4679 template <typename DistanceMatcher>
4680 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(
4681     const DistanceMatcher& distance_matcher) {
4682   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4683 }
4684 
4685 // Returns a matcher that matches an equal container.
4686 // This matcher behaves like Eq(), but in the event of mismatch lists the
4687 // values that are included in one container but not the other. (Duplicate
4688 // values and order differences are not explained.)
4689 template <typename Container>
4690 inline PolymorphicMatcher<
4691     internal::ContainerEqMatcher<typename std::remove_const<Container>::type>>
4692 ContainerEq(const Container& rhs) {
4693   return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4694 }
4695 
4696 // Returns a matcher that matches a container that, when sorted using
4697 // the given comparator, matches container_matcher.
4698 template <typename Comparator, typename ContainerMatcher>
4699 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(
4700     const Comparator& comparator, const ContainerMatcher& container_matcher) {
4701   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4702       comparator, container_matcher);
4703 }
4704 
4705 // Returns a matcher that matches a container that, when sorted using
4706 // the < operator, matches container_matcher.
4707 template <typename ContainerMatcher>
4708 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4709 WhenSorted(const ContainerMatcher& container_matcher) {
4710   return internal::WhenSortedByMatcher<internal::LessComparator,
4711                                        ContainerMatcher>(
4712       internal::LessComparator(), container_matcher);
4713 }
4714 
4715 // Matches an STL-style container or a native array that contains the
4716 // same number of elements as in rhs, where its i-th element and rhs's
4717 // i-th element (as a pair) satisfy the given pair matcher, for all i.
4718 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4719 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
4720 // LHS container and the RHS container respectively.
4721 template <typename TupleMatcher, typename Container>
4722 inline internal::PointwiseMatcher<TupleMatcher,
4723                                   typename std::remove_const<Container>::type>
4724 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4725   return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4726                                                              rhs);
4727 }
4728 
4729 // Supports the Pointwise(m, {a, b, c}) syntax.
4730 template <typename TupleMatcher, typename T>
4731 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise(
4732     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4733   return Pointwise(tuple_matcher, std::vector<T>(rhs));
4734 }
4735 
4736 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4737 // container or a native array that contains the same number of
4738 // elements as in rhs, where in some permutation of the container, its
4739 // i-th element and rhs's i-th element (as a pair) satisfy the given
4740 // pair matcher, for all i.  Tuple2Matcher must be able to be safely
4741 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4742 // the types of elements in the LHS container and the RHS container
4743 // respectively.
4744 //
4745 // This is like Pointwise(pair_matcher, rhs), except that the element
4746 // order doesn't matter.
4747 template <typename Tuple2Matcher, typename RhsContainer>
4748 inline internal::UnorderedElementsAreArrayMatcher<
4749     typename internal::BoundSecondMatcher<
4750         Tuple2Matcher,
4751         typename internal::StlContainerView<
4752             typename std::remove_const<RhsContainer>::type>::type::value_type>>
4753 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4754                    const RhsContainer& rhs_container) {
4755   // RhsView allows the same code to handle RhsContainer being a
4756   // STL-style container and it being a native C-style array.
4757   typedef typename internal::StlContainerView<RhsContainer> RhsView;
4758   typedef typename RhsView::type RhsStlContainer;
4759   typedef typename RhsStlContainer::value_type Second;
4760   const RhsStlContainer& rhs_stl_container =
4761       RhsView::ConstReference(rhs_container);
4762 
4763   // Create a matcher for each element in rhs_container.
4764   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers;
4765   for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end();
4766        ++it) {
4767     matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it));
4768   }
4769 
4770   // Delegate the work to UnorderedElementsAreArray().
4771   return UnorderedElementsAreArray(matchers);
4772 }
4773 
4774 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4775 template <typename Tuple2Matcher, typename T>
4776 inline internal::UnorderedElementsAreArrayMatcher<
4777     typename internal::BoundSecondMatcher<Tuple2Matcher, T>>
4778 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4779                    std::initializer_list<T> rhs) {
4780   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4781 }
4782 
4783 // Matches an STL-style container or a native array that contains at
4784 // least one element matching the given value or matcher.
4785 //
4786 // Examples:
4787 //   ::std::set<int> page_ids;
4788 //   page_ids.insert(3);
4789 //   page_ids.insert(1);
4790 //   EXPECT_THAT(page_ids, Contains(1));
4791 //   EXPECT_THAT(page_ids, Contains(Gt(2)));
4792 //   EXPECT_THAT(page_ids, Not(Contains(4)));  // See below for Times(0)
4793 //
4794 //   ::std::map<int, size_t> page_lengths;
4795 //   page_lengths[1] = 100;
4796 //   EXPECT_THAT(page_lengths,
4797 //               Contains(::std::pair<const int, size_t>(1, 100)));
4798 //
4799 //   const char* user_ids[] = { "joe", "mike", "tom" };
4800 //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4801 //
4802 // The matcher supports a modifier `Times` that allows to check for arbitrary
4803 // occurrences including testing for absence with Times(0).
4804 //
4805 // Examples:
4806 //   ::std::vector<int> ids;
4807 //   ids.insert(1);
4808 //   ids.insert(1);
4809 //   ids.insert(3);
4810 //   EXPECT_THAT(ids, Contains(1).Times(2));      // 1 occurs 2 times
4811 //   EXPECT_THAT(ids, Contains(2).Times(0));      // 2 is not present
4812 //   EXPECT_THAT(ids, Contains(3).Times(Ge(1)));  // 3 occurs at least once
4813 
4814 template <typename M>
4815 inline internal::ContainsMatcher<M> Contains(M matcher) {
4816   return internal::ContainsMatcher<M>(matcher);
4817 }
4818 
4819 // IsSupersetOf(iterator_first, iterator_last)
4820 // IsSupersetOf(pointer, count)
4821 // IsSupersetOf(array)
4822 // IsSupersetOf(container)
4823 // IsSupersetOf({e1, e2, ..., en})
4824 //
4825 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
4826 // of matchers exists. In other words, a container matches
4827 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4828 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
4829 // ..., and yn matches en. Obviously, the size of the container must be >= n
4830 // in order to have a match. Examples:
4831 //
4832 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4833 //   1 matches Ne(0).
4834 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4835 //   both Eq(1) and Lt(2). The reason is that different matchers must be used
4836 //   for elements in different slots of the container.
4837 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4838 //   Eq(1) and (the second) 1 matches Lt(2).
4839 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4840 //   Gt(1) and 3 matches (the second) Gt(1).
4841 //
4842 // The matchers can be specified as an array, a pointer and count, a container,
4843 // an initializer list, or an STL iterator range. In each of these cases, the
4844 // underlying matchers can be either values or matchers.
4845 
4846 template <typename Iter>
4847 inline internal::UnorderedElementsAreArrayMatcher<
4848     typename ::std::iterator_traits<Iter>::value_type>
4849 IsSupersetOf(Iter first, Iter last) {
4850   typedef typename ::std::iterator_traits<Iter>::value_type T;
4851   return internal::UnorderedElementsAreArrayMatcher<T>(
4852       internal::UnorderedMatcherRequire::Superset, first, last);
4853 }
4854 
4855 template <typename T>
4856 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4857     const T* pointer, size_t count) {
4858   return IsSupersetOf(pointer, pointer + count);
4859 }
4860 
4861 template <typename T, size_t N>
4862 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4863     const T (&array)[N]) {
4864   return IsSupersetOf(array, N);
4865 }
4866 
4867 template <typename Container>
4868 inline internal::UnorderedElementsAreArrayMatcher<
4869     typename Container::value_type>
4870 IsSupersetOf(const Container& container) {
4871   return IsSupersetOf(container.begin(), container.end());
4872 }
4873 
4874 template <typename T>
4875 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4876     ::std::initializer_list<T> xs) {
4877   return IsSupersetOf(xs.begin(), xs.end());
4878 }
4879 
4880 // IsSubsetOf(iterator_first, iterator_last)
4881 // IsSubsetOf(pointer, count)
4882 // IsSubsetOf(array)
4883 // IsSubsetOf(container)
4884 // IsSubsetOf({e1, e2, ..., en})
4885 //
4886 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4887 // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4888 // only if there is a subset of matchers {m1, ..., mk} which would match the
4889 // container using UnorderedElementsAre.  Obviously, the size of the container
4890 // must be <= n in order to have a match. Examples:
4891 //
4892 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4893 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4894 //   matches Lt(0).
4895 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4896 //   match Gt(0). The reason is that different matchers must be used for
4897 //   elements in different slots of the container.
4898 //
4899 // The matchers can be specified as an array, a pointer and count, a container,
4900 // an initializer list, or an STL iterator range. In each of these cases, the
4901 // underlying matchers can be either values or matchers.
4902 
4903 template <typename Iter>
4904 inline internal::UnorderedElementsAreArrayMatcher<
4905     typename ::std::iterator_traits<Iter>::value_type>
4906 IsSubsetOf(Iter first, Iter last) {
4907   typedef typename ::std::iterator_traits<Iter>::value_type T;
4908   return internal::UnorderedElementsAreArrayMatcher<T>(
4909       internal::UnorderedMatcherRequire::Subset, first, last);
4910 }
4911 
4912 template <typename T>
4913 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4914     const T* pointer, size_t count) {
4915   return IsSubsetOf(pointer, pointer + count);
4916 }
4917 
4918 template <typename T, size_t N>
4919 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4920     const T (&array)[N]) {
4921   return IsSubsetOf(array, N);
4922 }
4923 
4924 template <typename Container>
4925 inline internal::UnorderedElementsAreArrayMatcher<
4926     typename Container::value_type>
4927 IsSubsetOf(const Container& container) {
4928   return IsSubsetOf(container.begin(), container.end());
4929 }
4930 
4931 template <typename T>
4932 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4933     ::std::initializer_list<T> xs) {
4934   return IsSubsetOf(xs.begin(), xs.end());
4935 }
4936 
4937 // Matches an STL-style container or a native array that contains only
4938 // elements matching the given value or matcher.
4939 //
4940 // Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only
4941 // the messages are different.
4942 //
4943 // Examples:
4944 //   ::std::set<int> page_ids;
4945 //   // Each(m) matches an empty container, regardless of what m is.
4946 //   EXPECT_THAT(page_ids, Each(Eq(1)));
4947 //   EXPECT_THAT(page_ids, Each(Eq(77)));
4948 //
4949 //   page_ids.insert(3);
4950 //   EXPECT_THAT(page_ids, Each(Gt(0)));
4951 //   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4952 //   page_ids.insert(1);
4953 //   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4954 //
4955 //   ::std::map<int, size_t> page_lengths;
4956 //   page_lengths[1] = 100;
4957 //   page_lengths[2] = 200;
4958 //   page_lengths[3] = 300;
4959 //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4960 //   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4961 //
4962 //   const char* user_ids[] = { "joe", "mike", "tom" };
4963 //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4964 template <typename M>
4965 inline internal::EachMatcher<M> Each(M matcher) {
4966   return internal::EachMatcher<M>(matcher);
4967 }
4968 
4969 // Key(inner_matcher) matches an std::pair whose 'first' field matches
4970 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
4971 // std::map that contains at least one element whose key is >= 5.
4972 template <typename M>
4973 inline internal::KeyMatcher<M> Key(M inner_matcher) {
4974   return internal::KeyMatcher<M>(inner_matcher);
4975 }
4976 
4977 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4978 // matches first_matcher and whose 'second' field matches second_matcher.  For
4979 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4980 // to match a std::map<int, string> that contains exactly one element whose key
4981 // is >= 5 and whose value equals "foo".
4982 template <typename FirstMatcher, typename SecondMatcher>
4983 inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(
4984     FirstMatcher first_matcher, SecondMatcher second_matcher) {
4985   return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher,
4986                                                             second_matcher);
4987 }
4988 
4989 namespace no_adl {
4990 // Conditional() creates a matcher that conditionally uses either the first or
4991 // second matcher provided. For example, we could create an `equal if, and only
4992 // if' matcher using the Conditional wrapper as follows:
4993 //
4994 //   EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected)));
4995 template <typename MatcherTrue, typename MatcherFalse>
4996 internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional(
4997     bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) {
4998   return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>(
4999       condition, std::move(matcher_true), std::move(matcher_false));
5000 }
5001 
5002 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
5003 // These include those that support `get<I>(obj)`, and when structured bindings
5004 // are enabled any class that supports them.
5005 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
5006 template <typename... M>
5007 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
5008     M&&... matchers) {
5009   return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
5010       std::forward<M>(matchers)...);
5011 }
5012 
5013 // Creates a matcher that matches a pointer (raw or smart) that matches
5014 // inner_matcher.
5015 template <typename InnerMatcher>
5016 inline internal::PointerMatcher<InnerMatcher> Pointer(
5017     const InnerMatcher& inner_matcher) {
5018   return internal::PointerMatcher<InnerMatcher>(inner_matcher);
5019 }
5020 
5021 // Creates a matcher that matches an object that has an address that matches
5022 // inner_matcher.
5023 template <typename InnerMatcher>
5024 inline internal::AddressMatcher<InnerMatcher> Address(
5025     const InnerMatcher& inner_matcher) {
5026   return internal::AddressMatcher<InnerMatcher>(inner_matcher);
5027 }
5028 
5029 // Matches a base64 escaped string, when the unescaped string matches the
5030 // internal matcher.
5031 template <typename MatcherType>
5032 internal::WhenBase64UnescapedMatcher WhenBase64Unescaped(
5033     const MatcherType& internal_matcher) {
5034   return internal::WhenBase64UnescapedMatcher(internal_matcher);
5035 }
5036 }  // namespace no_adl
5037 
5038 // Returns a predicate that is satisfied by anything that matches the
5039 // given matcher.
5040 template <typename M>
5041 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5042   return internal::MatcherAsPredicate<M>(matcher);
5043 }
5044 
5045 // Returns true if and only if the value matches the matcher.
5046 template <typename T, typename M>
5047 inline bool Value(const T& value, M matcher) {
5048   return testing::Matches(matcher)(value);
5049 }
5050 
5051 // Matches the value against the given matcher and explains the match
5052 // result to listener.
5053 template <typename T, typename M>
5054 inline bool ExplainMatchResult(M matcher, const T& value,
5055                                MatchResultListener* listener) {
5056   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5057 }
5058 
5059 // Returns a string representation of the given matcher.  Useful for description
5060 // strings of matchers defined using MATCHER_P* macros that accept matchers as
5061 // their arguments.  For example:
5062 //
5063 // MATCHER_P(XAndYThat, matcher,
5064 //           "X that " + DescribeMatcher<int>(matcher, negation) +
5065 //               " and Y that " + DescribeMatcher<double>(matcher, negation)) {
5066 //   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5067 //          ExplainMatchResult(matcher, arg.y(), result_listener);
5068 // }
5069 template <typename T, typename M>
5070 std::string DescribeMatcher(const M& matcher, bool negation = false) {
5071   ::std::stringstream ss;
5072   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5073   if (negation) {
5074     monomorphic_matcher.DescribeNegationTo(&ss);
5075   } else {
5076     monomorphic_matcher.DescribeTo(&ss);
5077   }
5078   return ss.str();
5079 }
5080 
5081 template <typename... Args>
5082 internal::ElementsAreMatcher<
5083     std::tuple<typename std::decay<const Args&>::type...>>
5084 ElementsAre(const Args&... matchers) {
5085   return internal::ElementsAreMatcher<
5086       std::tuple<typename std::decay<const Args&>::type...>>(
5087       std::make_tuple(matchers...));
5088 }
5089 
5090 template <typename... Args>
5091 internal::UnorderedElementsAreMatcher<
5092     std::tuple<typename std::decay<const Args&>::type...>>
5093 UnorderedElementsAre(const Args&... matchers) {
5094   return internal::UnorderedElementsAreMatcher<
5095       std::tuple<typename std::decay<const Args&>::type...>>(
5096       std::make_tuple(matchers...));
5097 }
5098 
5099 // Define variadic matcher versions.
5100 template <typename... Args>
5101 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5102     const Args&... matchers) {
5103   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5104       matchers...);
5105 }
5106 
5107 template <typename... Args>
5108 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5109     const Args&... matchers) {
5110   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5111       matchers...);
5112 }
5113 
5114 // AnyOfArray(array)
5115 // AnyOfArray(pointer, count)
5116 // AnyOfArray(container)
5117 // AnyOfArray({ e1, e2, ..., en })
5118 // AnyOfArray(iterator_first, iterator_last)
5119 //
5120 // AnyOfArray() verifies whether a given value matches any member of a
5121 // collection of matchers.
5122 //
5123 // AllOfArray(array)
5124 // AllOfArray(pointer, count)
5125 // AllOfArray(container)
5126 // AllOfArray({ e1, e2, ..., en })
5127 // AllOfArray(iterator_first, iterator_last)
5128 //
5129 // AllOfArray() verifies whether a given value matches all members of a
5130 // collection of matchers.
5131 //
5132 // The matchers can be specified as an array, a pointer and count, a container,
5133 // an initializer list, or an STL iterator range. In each of these cases, the
5134 // underlying matchers can be either values or matchers.
5135 
5136 template <typename Iter>
5137 inline internal::AnyOfArrayMatcher<
5138     typename ::std::iterator_traits<Iter>::value_type>
5139 AnyOfArray(Iter first, Iter last) {
5140   return internal::AnyOfArrayMatcher<
5141       typename ::std::iterator_traits<Iter>::value_type>(first, last);
5142 }
5143 
5144 template <typename Iter>
5145 inline internal::AllOfArrayMatcher<
5146     typename ::std::iterator_traits<Iter>::value_type>
5147 AllOfArray(Iter first, Iter last) {
5148   return internal::AllOfArrayMatcher<
5149       typename ::std::iterator_traits<Iter>::value_type>(first, last);
5150 }
5151 
5152 template <typename T>
5153 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
5154   return AnyOfArray(ptr, ptr + count);
5155 }
5156 
5157 template <typename T>
5158 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
5159   return AllOfArray(ptr, ptr + count);
5160 }
5161 
5162 template <typename T, size_t N>
5163 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
5164   return AnyOfArray(array, N);
5165 }
5166 
5167 template <typename T, size_t N>
5168 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
5169   return AllOfArray(array, N);
5170 }
5171 
5172 template <typename Container>
5173 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
5174     const Container& container) {
5175   return AnyOfArray(container.begin(), container.end());
5176 }
5177 
5178 template <typename Container>
5179 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
5180     const Container& container) {
5181   return AllOfArray(container.begin(), container.end());
5182 }
5183 
5184 template <typename T>
5185 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
5186     ::std::initializer_list<T> xs) {
5187   return AnyOfArray(xs.begin(), xs.end());
5188 }
5189 
5190 template <typename T>
5191 inline internal::AllOfArrayMatcher<T> AllOfArray(
5192     ::std::initializer_list<T> xs) {
5193   return AllOfArray(xs.begin(), xs.end());
5194 }
5195 
5196 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5197 // fields of it matches a_matcher.  C++ doesn't support default
5198 // arguments for function templates, so we have to overload it.
5199 template <size_t... k, typename InnerMatcher>
5200 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5201     InnerMatcher&& matcher) {
5202   return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5203       std::forward<InnerMatcher>(matcher));
5204 }
5205 
5206 // AllArgs(m) is a synonym of m.  This is useful in
5207 //
5208 //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5209 //
5210 // which is easier to read than
5211 //
5212 //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5213 template <typename InnerMatcher>
5214 inline InnerMatcher AllArgs(const InnerMatcher& matcher) {
5215   return matcher;
5216 }
5217 
5218 // Returns a matcher that matches the value of an optional<> type variable.
5219 // The matcher implementation only uses '!arg' and requires that the optional<>
5220 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
5221 // and is printable using 'PrintToString'. It is compatible with
5222 // std::optional/std::experimental::optional.
5223 // Note that to compare an optional type variable against nullopt you should
5224 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5225 // optional value contains an optional itself.
5226 template <typename ValueMatcher>
5227 inline internal::OptionalMatcher<ValueMatcher> Optional(
5228     const ValueMatcher& value_matcher) {
5229   return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5230 }
5231 
5232 // Returns a matcher that matches the value of a absl::any type variable.
5233 template <typename T>
5234 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith(
5235     const Matcher<const T&>& matcher) {
5236   return MakePolymorphicMatcher(
5237       internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5238 }
5239 
5240 // Returns a matcher that matches the value of a variant<> type variable.
5241 // The matcher implementation uses ADL to find the holds_alternative and get
5242 // functions.
5243 // It is compatible with std::variant.
5244 template <typename T>
5245 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith(
5246     const Matcher<const T&>& matcher) {
5247   return MakePolymorphicMatcher(
5248       internal::variant_matcher::VariantMatcher<T>(matcher));
5249 }
5250 
5251 #if GTEST_HAS_EXCEPTIONS
5252 
5253 // Anything inside the `internal` namespace is internal to the implementation
5254 // and must not be used in user code!
5255 namespace internal {
5256 
5257 class WithWhatMatcherImpl {
5258  public:
5259   WithWhatMatcherImpl(Matcher<std::string> matcher)
5260       : matcher_(std::move(matcher)) {}
5261 
5262   void DescribeTo(std::ostream* os) const {
5263     *os << "contains .what() that ";
5264     matcher_.DescribeTo(os);
5265   }
5266 
5267   void DescribeNegationTo(std::ostream* os) const {
5268     *os << "contains .what() that does not ";
5269     matcher_.DescribeTo(os);
5270   }
5271 
5272   template <typename Err>
5273   bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5274     *listener << "which contains .what() (of value = " << err.what()
5275               << ") that ";
5276     return matcher_.MatchAndExplain(err.what(), listener);
5277   }
5278 
5279  private:
5280   const Matcher<std::string> matcher_;
5281 };
5282 
5283 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5284     Matcher<std::string> m) {
5285   return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5286 }
5287 
5288 template <typename Err>
5289 class ExceptionMatcherImpl {
5290   class NeverThrown {
5291    public:
5292     const char* what() const noexcept {
5293       return "this exception should never be thrown";
5294     }
5295   };
5296 
5297   // If the matchee raises an exception of a wrong type, we'd like to
5298   // catch it and print its message and type. To do that, we add an additional
5299   // catch clause:
5300   //
5301   //     try { ... }
5302   //     catch (const Err&) { /* an expected exception */ }
5303   //     catch (const std::exception&) { /* exception of a wrong type */ }
5304   //
5305   // However, if the `Err` itself is `std::exception`, we'd end up with two
5306   // identical `catch` clauses:
5307   //
5308   //     try { ... }
5309   //     catch (const std::exception&) { /* an expected exception */ }
5310   //     catch (const std::exception&) { /* exception of a wrong type */ }
5311   //
5312   // This can cause a warning or an error in some compilers. To resolve
5313   // the issue, we use a fake error type whenever `Err` is `std::exception`:
5314   //
5315   //     try { ... }
5316   //     catch (const std::exception&) { /* an expected exception */ }
5317   //     catch (const NeverThrown&) { /* exception of a wrong type */ }
5318   using DefaultExceptionType = typename std::conditional<
5319       std::is_same<typename std::remove_cv<
5320                        typename std::remove_reference<Err>::type>::type,
5321                    std::exception>::value,
5322       const NeverThrown&, const std::exception&>::type;
5323 
5324  public:
5325   ExceptionMatcherImpl(Matcher<const Err&> matcher)
5326       : matcher_(std::move(matcher)) {}
5327 
5328   void DescribeTo(std::ostream* os) const {
5329     *os << "throws an exception which is a " << GetTypeName<Err>();
5330     *os << " which ";
5331     matcher_.DescribeTo(os);
5332   }
5333 
5334   void DescribeNegationTo(std::ostream* os) const {
5335     *os << "throws an exception which is not a " << GetTypeName<Err>();
5336     *os << " which ";
5337     matcher_.DescribeNegationTo(os);
5338   }
5339 
5340   template <typename T>
5341   bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5342     try {
5343       (void)(std::forward<T>(x)());
5344     } catch (const Err& err) {
5345       *listener << "throws an exception which is a " << GetTypeName<Err>();
5346       *listener << " ";
5347       return matcher_.MatchAndExplain(err, listener);
5348     } catch (DefaultExceptionType err) {
5349 #if GTEST_HAS_RTTI
5350       *listener << "throws an exception of type " << GetTypeName(typeid(err));
5351       *listener << " ";
5352 #else
5353       *listener << "throws an std::exception-derived type ";
5354 #endif
5355       *listener << "with description \"" << err.what() << "\"";
5356       return false;
5357     } catch (...) {
5358       *listener << "throws an exception of an unknown type";
5359       return false;
5360     }
5361 
5362     *listener << "does not throw any exception";
5363     return false;
5364   }
5365 
5366  private:
5367   const Matcher<const Err&> matcher_;
5368 };
5369 
5370 }  // namespace internal
5371 
5372 // Throws()
5373 // Throws(exceptionMatcher)
5374 // ThrowsMessage(messageMatcher)
5375 //
5376 // This matcher accepts a callable and verifies that when invoked, it throws
5377 // an exception with the given type and properties.
5378 //
5379 // Examples:
5380 //
5381 //   EXPECT_THAT(
5382 //       []() { throw std::runtime_error("message"); },
5383 //       Throws<std::runtime_error>());
5384 //
5385 //   EXPECT_THAT(
5386 //       []() { throw std::runtime_error("message"); },
5387 //       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5388 //
5389 //   EXPECT_THAT(
5390 //       []() { throw std::runtime_error("message"); },
5391 //       Throws<std::runtime_error>(
5392 //           Property(&std::runtime_error::what, HasSubstr("message"))));
5393 
5394 template <typename Err>
5395 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5396   return MakePolymorphicMatcher(
5397       internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5398 }
5399 
5400 template <typename Err, typename ExceptionMatcher>
5401 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5402     const ExceptionMatcher& exception_matcher) {
5403   // Using matcher cast allows users to pass a matcher of a more broad type.
5404   // For example user may want to pass Matcher<std::exception>
5405   // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5406   return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5407       SafeMatcherCast<const Err&>(exception_matcher)));
5408 }
5409 
5410 template <typename Err, typename MessageMatcher>
5411 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5412     MessageMatcher&& message_matcher) {
5413   static_assert(std::is_base_of<std::exception, Err>::value,
5414                 "expected an std::exception-derived type");
5415   return Throws<Err>(internal::WithWhat(
5416       MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5417 }
5418 
5419 #endif  // GTEST_HAS_EXCEPTIONS
5420 
5421 // These macros allow using matchers to check values in Google Test
5422 // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5423 // succeed if and only if the value matches the matcher.  If the assertion
5424 // fails, the value and the description of the matcher will be printed.
5425 #define ASSERT_THAT(value, matcher) \
5426   ASSERT_PRED_FORMAT1(              \
5427       ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5428 #define EXPECT_THAT(value, matcher) \
5429   EXPECT_PRED_FORMAT1(              \
5430       ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5431 
5432 // MATCHER* macros itself are listed below.
5433 #define MATCHER(name, description)                                             \
5434   class name##Matcher                                                          \
5435       : public ::testing::internal::MatcherBaseImpl<name##Matcher> {           \
5436    public:                                                                     \
5437     template <typename arg_type>                                               \
5438     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5439      public:                                                                   \
5440       gmock_Impl() {}                                                          \
5441       bool MatchAndExplain(                                                    \
5442           const arg_type& arg,                                                 \
5443           ::testing::MatchResultListener* result_listener) const override;     \
5444       void DescribeTo(::std::ostream* gmock_os) const override {               \
5445         *gmock_os << FormatDescription(false);                                 \
5446       }                                                                        \
5447       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5448         *gmock_os << FormatDescription(true);                                  \
5449       }                                                                        \
5450                                                                                \
5451      private:                                                                  \
5452       ::std::string FormatDescription(bool negation) const {                   \
5453         /* NOLINTNEXTLINE readability-redundant-string-init */                 \
5454         ::std::string gmock_description = (description);                       \
5455         if (!gmock_description.empty()) {                                      \
5456           return gmock_description;                                            \
5457         }                                                                      \
5458         return ::testing::internal::FormatMatcherDescription(negation, #name,  \
5459                                                              {}, {});          \
5460       }                                                                        \
5461     };                                                                         \
5462   };                                                                           \
5463   GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; }           \
5464   template <typename arg_type>                                                 \
5465   bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                   \
5466       const arg_type& arg,                                                     \
5467       ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
5468       const
5469 
5470 #define MATCHER_P(name, p0, description) \
5471   GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0))
5472 #define MATCHER_P2(name, p0, p1, description)                            \
5473   GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \
5474                          (p0, p1))
5475 #define MATCHER_P3(name, p0, p1, p2, description)                             \
5476   GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \
5477                          (p0, p1, p2))
5478 #define MATCHER_P4(name, p0, p1, p2, p3, description)        \
5479   GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \
5480                          (#p0, #p1, #p2, #p3), (p0, p1, p2, p3))
5481 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
5482   GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5483                          (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4))
5484 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5485   GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
5486                          (#p0, #p1, #p2, #p3, #p4, #p5),      \
5487                          (p0, p1, p2, p3, p4, p5))
5488 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5489   GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
5490                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6),     \
5491                          (p0, p1, p2, p3, p4, p5, p6))
5492 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5493   GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
5494                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7),    \
5495                          (p0, p1, p2, p3, p4, p5, p6, p7))
5496 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5497   GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
5498                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8),   \
5499                          (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5500 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5501   GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
5502                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9),   \
5503                          (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5504 
5505 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args)  \
5506   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5507   class full_name : public ::testing::internal::MatcherBaseImpl<               \
5508                         full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5509    public:                                                                     \
5510     using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
5511     template <typename arg_type>                                               \
5512     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5513      public:                                                                   \
5514       explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
5515           : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
5516       bool MatchAndExplain(                                                    \
5517           const arg_type& arg,                                                 \
5518           ::testing::MatchResultListener* result_listener) const override;     \
5519       void DescribeTo(::std::ostream* gmock_os) const override {               \
5520         *gmock_os << FormatDescription(false);                                 \
5521       }                                                                        \
5522       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5523         *gmock_os << FormatDescription(true);                                  \
5524       }                                                                        \
5525       GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
5526                                                                                \
5527      private:                                                                  \
5528       ::std::string FormatDescription(bool negation) const {                   \
5529         ::std::string gmock_description = (description);                       \
5530         if (!gmock_description.empty()) {                                      \
5531           return gmock_description;                                            \
5532         }                                                                      \
5533         return ::testing::internal::FormatMatcherDescription(                  \
5534             negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)},              \
5535             ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
5536                 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
5537                     GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
5538       }                                                                        \
5539     };                                                                         \
5540   };                                                                           \
5541   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5542   inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
5543       GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
5544     return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
5545         GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
5546   }                                                                            \
5547   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5548   template <typename arg_type>                                                 \
5549   bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl<        \
5550       arg_type>::MatchAndExplain(const arg_type& arg,                          \
5551                                  ::testing::MatchResultListener*               \
5552                                      result_listener GTEST_ATTRIBUTE_UNUSED_)  \
5553       const
5554 
5555 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5556   GMOCK_PP_TAIL(                                     \
5557       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5558 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5559   , typename arg##_type
5560 
5561 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5562   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5563 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5564   , arg##_type
5565 
5566 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5567   GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
5568       GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5569 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5570   , arg##_type gmock_p##i
5571 
5572 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5573   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5574 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5575   , arg(::std::forward<arg##_type>(gmock_p##i))
5576 
5577 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5578   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5579 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5580   const arg##_type arg;
5581 
5582 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5583   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5584 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5585 
5586 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5587   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5588 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
5589   , gmock_p##i
5590 
5591 // To prevent ADL on certain functions we put them on a separate namespace.
5592 using namespace no_adl;  // NOLINT
5593 
5594 }  // namespace testing
5595 
5596 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046
5597 
5598 // Include any custom callback matchers added by the local installation.
5599 // We must include this header at the end to make sure it can use the
5600 // declarations from this file.
5601 #include "gmock/internal/custom/gmock-matchers.h"
5602 
5603 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5604