• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // RepeatedField and RepeatedPtrField are used by generated protocol message
36 // classes to manipulate repeated fields.  These classes are very similar to
37 // STL's vector, but include a number of optimizations found to be useful
38 // specifically in the case of Protocol Buffers.  RepeatedPtrField is
39 // particularly different from STL vector as it manages ownership of the
40 // pointers that it contains.
41 //
42 // This header covers RepeatedPtrField.
43 
44 // IWYU pragma: private, include "net/proto2/public/repeated_field.h"
45 
46 #ifndef GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__
47 #define GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__
48 
49 #include <utility>
50 
51 #ifdef _MSC_VER
52 // This is required for min/max on VS2013 only.
53 #include <algorithm>
54 #endif
55 
56 #include <iterator>
57 #include <limits>
58 #include <string>
59 #include <type_traits>
60 
61 #include <google/protobuf/stubs/logging.h>
62 #include <google/protobuf/stubs/common.h>
63 #include <google/protobuf/arena.h>
64 #include <google/protobuf/port.h>
65 #include <google/protobuf/message_lite.h>
66 
67 
68 // Must be included last.
69 #include <google/protobuf/port_def.inc>
70 
71 #ifdef SWIG
72 #error "You cannot SWIG proto headers"
73 #endif
74 
75 namespace google {
76 namespace protobuf {
77 
78 class Message;
79 class Reflection;
80 
81 template <typename T>
82 struct WeakRepeatedPtrField;
83 
84 namespace internal {
85 
86 class MergePartialFromCodedStreamHelper;
87 class SwapFieldHelper;
88 
89 
90 }  // namespace internal
91 
92 namespace internal {
93 template <typename It>
94 class RepeatedPtrIterator;
95 template <typename It, typename VoidPtr>
96 class RepeatedPtrOverPtrsIterator;
97 }  // namespace internal
98 
99 namespace internal {
100 
101 // type-traits helper for RepeatedPtrFieldBase: we only want to invoke
102 // arena-related "copy if on different arena" behavior if the necessary methods
103 // exist on the contained type. In particular, we rely on MergeFrom() existing
104 // as a general proxy for the fact that a copy will work, and we also provide a
105 // specific override for std::string*.
106 template <typename T>
107 struct TypeImplementsMergeBehaviorProbeForMergeFrom {
108   typedef char HasMerge;
109   typedef long HasNoMerge;
110 
111   // We accept either of:
112   // - void MergeFrom(const T& other)
113   // - bool MergeFrom(const T& other)
114   //
115   // We mangle these names a bit to avoid compatibility issues in 'unclean'
116   // include environments that may have, e.g., "#define test ..." (yes, this
117   // exists).
118   template <typename U, typename RetType, RetType (U::*)(const U& arg)>
119   struct CheckType;
120   template <typename U>
121   static HasMerge Check(CheckType<U, void, &U::MergeFrom>*);
122   template <typename U>
123   static HasMerge Check(CheckType<U, bool, &U::MergeFrom>*);
124   template <typename U>
125   static HasNoMerge Check(...);
126 
127   // Resolves to either std::true_type or std::false_type.
128   typedef std::integral_constant<bool,
129                                  (sizeof(Check<T>(0)) == sizeof(HasMerge))>
130       type;
131 };
132 
133 template <typename T, typename = void>
134 struct TypeImplementsMergeBehavior
135     : TypeImplementsMergeBehaviorProbeForMergeFrom<T> {};
136 
137 
138 template <>
139 struct TypeImplementsMergeBehavior<std::string> {
140   typedef std::true_type type;
141 };
142 
143 template <typename T>
144 struct IsMovable
145     : std::integral_constant<bool, std::is_move_constructible<T>::value &&
146                                        std::is_move_assignable<T>::value> {};
147 
148 // This is the common base class for RepeatedPtrFields.  It deals only in void*
149 // pointers.  Users should not use this interface directly.
150 //
151 // The methods of this interface correspond to the methods of RepeatedPtrField,
152 // but may have a template argument called TypeHandler.  Its signature is:
153 //   class TypeHandler {
154 //    public:
155 //     typedef MyType Type;
156 //     static Type* New();
157 //     static Type* NewFromPrototype(const Type* prototype,
158 //                                       Arena* arena);
159 //     static void Delete(Type*);
160 //     static void Clear(Type*);
161 //     static void Merge(const Type& from, Type* to);
162 //
163 //     // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
164 //     static int SpaceUsedLong(const Type&);
165 //   };
166 class PROTOBUF_EXPORT RepeatedPtrFieldBase {
167  protected:
168   constexpr RepeatedPtrFieldBase()
169       : arena_(nullptr), current_size_(0), total_size_(0), rep_(nullptr) {}
170   explicit RepeatedPtrFieldBase(Arena* arena)
171       : arena_(arena), current_size_(0), total_size_(0), rep_(nullptr) {}
172 
173   RepeatedPtrFieldBase(const RepeatedPtrFieldBase&) = delete;
174   RepeatedPtrFieldBase& operator=(const RepeatedPtrFieldBase&) = delete;
175 
176   ~RepeatedPtrFieldBase() {
177 #ifndef NDEBUG
178     // Try to trigger segfault / asan failure in non-opt builds. If arena_
179     // lifetime has ended before the destructor.
180     if (arena_) (void)arena_->SpaceAllocated();
181 #endif
182   }
183 
184   bool empty() const { return current_size_ == 0; }
185   int size() const { return current_size_; }
186   int Capacity() const { return total_size_; }
187 
188   template <typename TypeHandler>
189   const typename TypeHandler::Type& at(int index) const {
190     GOOGLE_CHECK_GE(index, 0);
191     GOOGLE_CHECK_LT(index, current_size_);
192     return *cast<TypeHandler>(rep_->elements[index]);
193   }
194 
195   template <typename TypeHandler>
196   typename TypeHandler::Type& at(int index) {
197     GOOGLE_CHECK_GE(index, 0);
198     GOOGLE_CHECK_LT(index, current_size_);
199     return *cast<TypeHandler>(rep_->elements[index]);
200   }
201 
202   template <typename TypeHandler>
203   typename TypeHandler::Type* Mutable(int index) {
204     GOOGLE_DCHECK_GE(index, 0);
205     GOOGLE_DCHECK_LT(index, current_size_);
206     return cast<TypeHandler>(rep_->elements[index]);
207   }
208 
209   template <typename TypeHandler>
210   typename TypeHandler::Type* Add(
211       const typename TypeHandler::Type* prototype = nullptr) {
212     if (rep_ != nullptr && current_size_ < rep_->allocated_size) {
213       return cast<TypeHandler>(rep_->elements[current_size_++]);
214     }
215     typename TypeHandler::Type* result =
216         TypeHandler::NewFromPrototype(prototype, arena_);
217     return reinterpret_cast<typename TypeHandler::Type*>(
218         AddOutOfLineHelper(result));
219   }
220 
221   template <
222       typename TypeHandler,
223       typename std::enable_if<TypeHandler::Movable::value>::type* = nullptr>
224   inline void Add(typename TypeHandler::Type&& value) {
225     if (rep_ != nullptr && current_size_ < rep_->allocated_size) {
226       *cast<TypeHandler>(rep_->elements[current_size_++]) = std::move(value);
227       return;
228     }
229     if (!rep_ || rep_->allocated_size == total_size_) {
230       Reserve(total_size_ + 1);
231     }
232     ++rep_->allocated_size;
233     typename TypeHandler::Type* result =
234         TypeHandler::New(arena_, std::move(value));
235     rep_->elements[current_size_++] = result;
236   }
237 
238   template <typename TypeHandler>
239   void Delete(int index) {
240     GOOGLE_DCHECK_GE(index, 0);
241     GOOGLE_DCHECK_LT(index, current_size_);
242     TypeHandler::Delete(cast<TypeHandler>(rep_->elements[index]), arena_);
243   }
244 
245   // Must be called from destructor.
246   template <typename TypeHandler>
247   void Destroy() {
248     if (rep_ != nullptr && arena_ == nullptr) {
249       int n = rep_->allocated_size;
250       void* const* elements = rep_->elements;
251       for (int i = 0; i < n; i++) {
252         TypeHandler::Delete(cast<TypeHandler>(elements[i]), nullptr);
253       }
254       const size_t size = total_size_ * sizeof(elements[0]) + kRepHeaderSize;
255       internal::SizedDelete(rep_, size);
256     }
257     rep_ = nullptr;
258   }
259 
260   bool NeedsDestroy() const { return rep_ != nullptr && arena_ == nullptr; }
261   void DestroyProtos();  // implemented in the cc file
262 
263  public:
264   // The next few methods are public so that they can be called from generated
265   // code when implicit weak fields are used, but they should never be called by
266   // application code.
267 
268   template <typename TypeHandler>
269   const typename TypeHandler::Type& Get(int index) const {
270     GOOGLE_DCHECK_GE(index, 0);
271     GOOGLE_DCHECK_LT(index, current_size_);
272     return *cast<TypeHandler>(rep_->elements[index]);
273   }
274 
275   // Creates and adds an element using the given prototype, without introducing
276   // a link-time dependency on the concrete message type. This method is used to
277   // implement implicit weak fields. The prototype may be nullptr, in which case
278   // an ImplicitWeakMessage will be used as a placeholder.
279   MessageLite* AddWeak(const MessageLite* prototype);
280 
281   template <typename TypeHandler>
282   void Clear() {
283     const int n = current_size_;
284     GOOGLE_DCHECK_GE(n, 0);
285     if (n > 0) {
286       void* const* elements = rep_->elements;
287       int i = 0;
288       do {
289         TypeHandler::Clear(cast<TypeHandler>(elements[i++]));
290       } while (i < n);
291       current_size_ = 0;
292     }
293   }
294 
295   template <typename TypeHandler>
296   void MergeFrom(const RepeatedPtrFieldBase& other) {
297     // To avoid unnecessary code duplication and reduce binary size, we use a
298     // layered approach to implementing MergeFrom(). The toplevel method is
299     // templated, so we get a small thunk per concrete message type in the
300     // binary. This calls a shared implementation with most of the logic,
301     // passing a function pointer to another type-specific piece of code that
302     // calls the object-allocate and merge handlers.
303     GOOGLE_DCHECK_NE(&other, this);
304     if (other.current_size_ == 0) return;
305     MergeFromInternal(other,
306                       &RepeatedPtrFieldBase::MergeFromInnerLoop<TypeHandler>);
307   }
308 
309   inline void InternalSwap(RepeatedPtrFieldBase* rhs) {
310     GOOGLE_DCHECK(this != rhs);
311 
312     // Swap all fields at once.
313     auto temp = std::make_tuple(rhs->arena_, rhs->current_size_,
314                                 rhs->total_size_, rhs->rep_);
315     std::tie(rhs->arena_, rhs->current_size_, rhs->total_size_, rhs->rep_) =
316         std::make_tuple(arena_, current_size_, total_size_, rep_);
317     std::tie(arena_, current_size_, total_size_, rep_) = temp;
318   }
319 
320  protected:
321   template <typename TypeHandler>
322   void RemoveLast() {
323     GOOGLE_DCHECK_GT(current_size_, 0);
324     TypeHandler::Clear(cast<TypeHandler>(rep_->elements[--current_size_]));
325   }
326 
327   template <typename TypeHandler>
328   void CopyFrom(const RepeatedPtrFieldBase& other) {
329     if (&other == this) return;
330     RepeatedPtrFieldBase::Clear<TypeHandler>();
331     RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
332   }
333 
334   void CloseGap(int start, int num);  // implemented in the cc file
335 
336   void Reserve(int new_size);  // implemented in the cc file
337 
338   template <typename TypeHandler>
339   static inline typename TypeHandler::Type* copy(
340       typename TypeHandler::Type* value) {
341     auto* new_value = TypeHandler::NewFromPrototype(value, nullptr);
342     TypeHandler::Merge(*value, new_value);
343     return new_value;
344   }
345 
346   // Used for constructing iterators.
347   void* const* raw_data() const { return rep_ ? rep_->elements : nullptr; }
348   void** raw_mutable_data() const {
349     return rep_ ? const_cast<void**>(rep_->elements) : nullptr;
350   }
351 
352   template <typename TypeHandler>
353   typename TypeHandler::Type** mutable_data() {
354     // TODO(kenton):  Breaks C++ aliasing rules.  We should probably remove this
355     //   method entirely.
356     return reinterpret_cast<typename TypeHandler::Type**>(raw_mutable_data());
357   }
358 
359   template <typename TypeHandler>
360   const typename TypeHandler::Type* const* data() const {
361     // TODO(kenton):  Breaks C++ aliasing rules.  We should probably remove this
362     //   method entirely.
363     return reinterpret_cast<const typename TypeHandler::Type* const*>(
364         raw_data());
365   }
366 
367   template <typename TypeHandler>
368   PROTOBUF_NDEBUG_INLINE void Swap(RepeatedPtrFieldBase* other) {
369 #ifdef PROTOBUF_FORCE_COPY_IN_SWAP
370     if (GetArena() != nullptr && GetArena() == other->GetArena())
371 #else   // PROTOBUF_FORCE_COPY_IN_SWAP
372     if (GetArena() == other->GetArena())
373 #endif  // !PROTOBUF_FORCE_COPY_IN_SWAP
374     {
375       InternalSwap(other);
376     } else {
377       SwapFallback<TypeHandler>(other);
378     }
379   }
380 
381   void SwapElements(int index1, int index2) {
382     using std::swap;  // enable ADL with fallback
383     swap(rep_->elements[index1], rep_->elements[index2]);
384   }
385 
386   template <typename TypeHandler>
387   size_t SpaceUsedExcludingSelfLong() const {
388     size_t allocated_bytes = static_cast<size_t>(total_size_) * sizeof(void*);
389     if (rep_ != nullptr) {
390       for (int i = 0; i < rep_->allocated_size; ++i) {
391         allocated_bytes +=
392             TypeHandler::SpaceUsedLong(*cast<TypeHandler>(rep_->elements[i]));
393       }
394       allocated_bytes += kRepHeaderSize;
395     }
396     return allocated_bytes;
397   }
398 
399   // Advanced memory management --------------------------------------
400 
401   // Like Add(), but if there are no cleared objects to use, returns nullptr.
402   template <typename TypeHandler>
403   typename TypeHandler::Type* AddFromCleared() {
404     if (rep_ != nullptr && current_size_ < rep_->allocated_size) {
405       return cast<TypeHandler>(rep_->elements[current_size_++]);
406     } else {
407       return nullptr;
408     }
409   }
410 
411   template <typename TypeHandler>
412   void AddAllocated(typename TypeHandler::Type* value) {
413     typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
414     AddAllocatedInternal<TypeHandler>(value, t);
415   }
416 
417   template <typename TypeHandler>
418   void UnsafeArenaAddAllocated(typename TypeHandler::Type* value) {
419     // Make room for the new pointer.
420     if (!rep_ || current_size_ == total_size_) {
421       // The array is completely full with no cleared objects, so grow it.
422       Reserve(total_size_ + 1);
423       ++rep_->allocated_size;
424     } else if (rep_->allocated_size == total_size_) {
425       // There is no more space in the pointer array because it contains some
426       // cleared objects awaiting reuse.  We don't want to grow the array in
427       // this case because otherwise a loop calling AddAllocated() followed by
428       // Clear() would leak memory.
429       TypeHandler::Delete(cast<TypeHandler>(rep_->elements[current_size_]),
430                           arena_);
431     } else if (current_size_ < rep_->allocated_size) {
432       // We have some cleared objects.  We don't care about their order, so we
433       // can just move the first one to the end to make space.
434       rep_->elements[rep_->allocated_size] = rep_->elements[current_size_];
435       ++rep_->allocated_size;
436     } else {
437       // There are no cleared objects.
438       ++rep_->allocated_size;
439     }
440 
441     rep_->elements[current_size_++] = value;
442   }
443 
444   template <typename TypeHandler>
445   PROTOBUF_NODISCARD typename TypeHandler::Type* ReleaseLast() {
446     typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
447     return ReleaseLastInternal<TypeHandler>(t);
448   }
449 
450   // Releases and returns the last element, but does not do out-of-arena copy.
451   // Instead, just returns the raw pointer to the contained element in the
452   // arena.
453   template <typename TypeHandler>
454   typename TypeHandler::Type* UnsafeArenaReleaseLast() {
455     GOOGLE_DCHECK_GT(current_size_, 0);
456     typename TypeHandler::Type* result =
457         cast<TypeHandler>(rep_->elements[--current_size_]);
458     --rep_->allocated_size;
459     if (current_size_ < rep_->allocated_size) {
460       // There are cleared elements on the end; replace the removed element
461       // with the last allocated element.
462       rep_->elements[current_size_] = rep_->elements[rep_->allocated_size];
463     }
464     return result;
465   }
466 
467   int ClearedCount() const {
468     return rep_ ? (rep_->allocated_size - current_size_) : 0;
469   }
470 
471   template <typename TypeHandler>
472   void AddCleared(typename TypeHandler::Type* value) {
473     GOOGLE_DCHECK(GetArena() == nullptr) << "AddCleared() can only be used on a "
474                                      "RepeatedPtrField not on an arena.";
475     GOOGLE_DCHECK(TypeHandler::GetOwningArena(value) == nullptr)
476         << "AddCleared() can only accept values not on an arena.";
477     if (!rep_ || rep_->allocated_size == total_size_) {
478       Reserve(total_size_ + 1);
479     }
480     rep_->elements[rep_->allocated_size++] = value;
481   }
482 
483   template <typename TypeHandler>
484   PROTOBUF_NODISCARD typename TypeHandler::Type* ReleaseCleared() {
485     GOOGLE_DCHECK(GetArena() == nullptr)
486         << "ReleaseCleared() can only be used on a RepeatedPtrField not on "
487         << "an arena.";
488     GOOGLE_DCHECK(GetArena() == nullptr);
489     GOOGLE_DCHECK(rep_ != nullptr);
490     GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_);
491     return cast<TypeHandler>(rep_->elements[--rep_->allocated_size]);
492   }
493 
494   template <typename TypeHandler>
495   void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type) {
496     // AddAllocated version that implements arena-safe copying behavior.
497     Arena* element_arena =
498         reinterpret_cast<Arena*>(TypeHandler::GetOwningArena(value));
499     Arena* arena = GetArena();
500     if (arena == element_arena && rep_ && rep_->allocated_size < total_size_) {
501       // Fast path: underlying arena representation (tagged pointer) is equal to
502       // our arena pointer, and we can add to array without resizing it (at
503       // least one slot that is not allocated).
504       void** elems = rep_->elements;
505       if (current_size_ < rep_->allocated_size) {
506         // Make space at [current] by moving first allocated element to end of
507         // allocated list.
508         elems[rep_->allocated_size] = elems[current_size_];
509       }
510       elems[current_size_] = value;
511       current_size_ = current_size_ + 1;
512       rep_->allocated_size = rep_->allocated_size + 1;
513     } else {
514       AddAllocatedSlowWithCopy<TypeHandler>(value, element_arena, arena);
515     }
516   }
517 
518   template <typename TypeHandler>
519   void AddAllocatedInternal(
520       // AddAllocated version that does not implement arena-safe copying
521       // behavior.
522       typename TypeHandler::Type* value, std::false_type) {
523     if (rep_ && rep_->allocated_size < total_size_) {
524       // Fast path: underlying arena representation (tagged pointer) is equal to
525       // our arena pointer, and we can add to array without resizing it (at
526       // least one slot that is not allocated).
527       void** elems = rep_->elements;
528       if (current_size_ < rep_->allocated_size) {
529         // Make space at [current] by moving first allocated element to end of
530         // allocated list.
531         elems[rep_->allocated_size] = elems[current_size_];
532       }
533       elems[current_size_] = value;
534       current_size_ = current_size_ + 1;
535       ++rep_->allocated_size;
536     } else {
537       UnsafeArenaAddAllocated<TypeHandler>(value);
538     }
539   }
540 
541   // Slowpath handles all cases, copying if necessary.
542   template <typename TypeHandler>
543   PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy(
544       // Pass value_arena and my_arena to avoid duplicate virtual call (value)
545       // or load (mine).
546       typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) {
547     // Ensure that either the value is in the same arena, or if not, we do the
548     // appropriate thing: Own() it (if it's on heap and we're in an arena) or
549     // copy it to our arena/heap (otherwise).
550     if (my_arena != nullptr && value_arena == nullptr) {
551       my_arena->Own(value);
552     } else if (my_arena != value_arena) {
553       typename TypeHandler::Type* new_value =
554           TypeHandler::NewFromPrototype(value, my_arena);
555       TypeHandler::Merge(*value, new_value);
556       TypeHandler::Delete(value, value_arena);
557       value = new_value;
558     }
559 
560     UnsafeArenaAddAllocated<TypeHandler>(value);
561   }
562 
563   template <typename TypeHandler>
564   typename TypeHandler::Type* ReleaseLastInternal(std::true_type) {
565     // ReleaseLast() for types that implement merge/copy behavior.
566     // First, release an element.
567     typename TypeHandler::Type* result = UnsafeArenaReleaseLast<TypeHandler>();
568     // Now perform a copy if we're on an arena.
569     Arena* arena = GetArena();
570 
571     typename TypeHandler::Type* new_result;
572 #ifdef PROTOBUF_FORCE_COPY_IN_RELEASE
573     new_result = copy<TypeHandler>(result);
574     if (arena == nullptr) delete result;
575 #else   // PROTOBUF_FORCE_COPY_IN_RELEASE
576     new_result = (arena == nullptr) ? result : copy<TypeHandler>(result);
577 #endif  // !PROTOBUF_FORCE_COPY_IN_RELEASE
578     return new_result;
579   }
580 
581   template <typename TypeHandler>
582   typename TypeHandler::Type* ReleaseLastInternal(std::false_type) {
583     // ReleaseLast() for types that *do not* implement merge/copy behavior --
584     // this is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if
585     // we're on an arena, since the user really should implement the copy
586     // operation in this case.
587     GOOGLE_DCHECK(GetArena() == nullptr)
588         << "ReleaseLast() called on a RepeatedPtrField that is on an arena, "
589         << "with a type that does not implement MergeFrom. This is unsafe; "
590         << "please implement MergeFrom for your type.";
591     return UnsafeArenaReleaseLast<TypeHandler>();
592   }
593 
594   template <typename TypeHandler>
595   PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other) {
596 #ifdef PROTOBUF_FORCE_COPY_IN_SWAP
597     GOOGLE_DCHECK(GetArena() == nullptr || other->GetArena() != GetArena());
598 #else   // PROTOBUF_FORCE_COPY_IN_SWAP
599     GOOGLE_DCHECK(other->GetArena() != GetArena());
600 #endif  // !PROTOBUF_FORCE_COPY_IN_SWAP
601 
602     // Copy semantics in this case. We try to improve efficiency by placing the
603     // temporary on |other|'s arena so that messages are copied twice rather
604     // than three times.
605     RepeatedPtrFieldBase temp(other->GetArena());
606     temp.MergeFrom<TypeHandler>(*this);
607     this->Clear<TypeHandler>();
608     this->MergeFrom<TypeHandler>(*other);
609     other->InternalSwap(&temp);
610     temp.Destroy<TypeHandler>();  // Frees rep_ if `other` had no arena.
611   }
612 
613   inline Arena* GetArena() const { return arena_; }
614 
615  private:
616   template <typename T> friend class Arena::InternalHelper;
617 
618   inline Arena* GetOwningArena() const { return arena_; }
619 
620   static constexpr int kInitialSize = 0;
621   // A few notes on internal representation:
622   //
623   // We use an indirected approach, with struct Rep, to keep
624   // sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
625   // was added; namely, 3 8-byte machine words on x86-64. An instance of Rep is
626   // allocated only when the repeated field is non-empty, and it is a
627   // dynamically-sized struct (the header is directly followed by elements[]).
628   // We place arena_ and current_size_ directly in the object to avoid cache
629   // misses due to the indirection, because these fields are checked frequently.
630   // Placing all fields directly in the RepeatedPtrFieldBase instance would cost
631   // significant performance for memory-sensitive workloads.
632   Arena* arena_;
633   int current_size_;
634   int total_size_;
635   struct Rep {
636     int allocated_size;
637     // Here we declare a huge array as a way of approximating C's "flexible
638     // array member" feature without relying on undefined behavior.
639     void* elements[(std::numeric_limits<int>::max() - 2 * sizeof(int)) /
640                    sizeof(void*)];
641   };
642   static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
643   Rep* rep_;
644 
645   template <typename TypeHandler>
646   static inline typename TypeHandler::Type* cast(void* element) {
647     return reinterpret_cast<typename TypeHandler::Type*>(element);
648   }
649   template <typename TypeHandler>
650   static inline const typename TypeHandler::Type* cast(const void* element) {
651     return reinterpret_cast<const typename TypeHandler::Type*>(element);
652   }
653 
654   // Non-templated inner function to avoid code duplication. Takes a function
655   // pointer to the type-specific (templated) inner allocate/merge loop.
656   void MergeFromInternal(const RepeatedPtrFieldBase& other,
657                          void (RepeatedPtrFieldBase::*inner_loop)(void**,
658                                                                   void**, int,
659                                                                   int)) {
660     // Note: wrapper has already guaranteed that other.rep_ != nullptr here.
661     int other_size = other.current_size_;
662     void** other_elements = other.rep_->elements;
663     void** new_elements = InternalExtend(other_size);
664     int allocated_elems = rep_->allocated_size - current_size_;
665     (this->*inner_loop)(new_elements, other_elements, other_size,
666                         allocated_elems);
667     current_size_ += other_size;
668     if (rep_->allocated_size < current_size_) {
669       rep_->allocated_size = current_size_;
670     }
671   }
672 
673   // Merges other_elems to our_elems.
674   template <typename TypeHandler>
675   PROTOBUF_NOINLINE void MergeFromInnerLoop(void** our_elems,
676                                             void** other_elems, int length,
677                                             int already_allocated) {
678     if (already_allocated < length) {
679       Arena* arena = GetArena();
680       typename TypeHandler::Type* elem_prototype =
681           reinterpret_cast<typename TypeHandler::Type*>(other_elems[0]);
682       for (int i = already_allocated; i < length; i++) {
683         // Allocate a new empty element that we'll merge into below
684         typename TypeHandler::Type* new_elem =
685             TypeHandler::NewFromPrototype(elem_prototype, arena);
686         our_elems[i] = new_elem;
687       }
688     }
689     // Main loop that does the actual merging
690     for (int i = 0; i < length; i++) {
691       // Already allocated: use existing element.
692       typename TypeHandler::Type* other_elem =
693           reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
694       typename TypeHandler::Type* new_elem =
695           reinterpret_cast<typename TypeHandler::Type*>(our_elems[i]);
696       TypeHandler::Merge(*other_elem, new_elem);
697     }
698   }
699 
700   // Internal helper: extends array space if necessary to contain
701   // |extend_amount| more elements, and returns a pointer to the element
702   // immediately following the old list of elements.  This interface factors out
703   // common behavior from Reserve() and MergeFrom() to reduce code size.
704   // |extend_amount| must be > 0.
705   void** InternalExtend(int extend_amount);
706 
707   // Internal helper for Add: adds "obj" as the next element in the
708   // array, including potentially resizing the array with Reserve if
709   // needed
710   void* AddOutOfLineHelper(void* obj);
711 
712   // The reflection implementation needs to call protected methods directly,
713   // reinterpreting pointers as being to Message instead of a specific Message
714   // subclass.
715   friend class ::PROTOBUF_NAMESPACE_ID::Reflection;
716   friend class ::PROTOBUF_NAMESPACE_ID::internal::SwapFieldHelper;
717 
718   // ExtensionSet stores repeated message extensions as
719   // RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
720   // SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
721   // reinterpreting MessageLite as Message.  ExtensionSet also needs to make use
722   // of AddFromCleared(), which is not part of the public interface.
723   friend class ExtensionSet;
724 
725   // The MapFieldBase implementation needs to call protected methods directly,
726   // reinterpreting pointers as being to Message instead of a specific Message
727   // subclass.
728   friend class MapFieldBase;
729   friend class MapFieldBaseStub;
730 
731   // The table-driven MergePartialFromCodedStream implementation needs to
732   // operate on RepeatedPtrField<MessageLite>.
733   friend class MergePartialFromCodedStreamHelper;
734   friend class AccessorHelper;
735   template <typename T>
736   friend struct google::protobuf::WeakRepeatedPtrField;
737   friend class internal::TcParser;  // TODO(jorg): Remove this friend.
738 };
739 
740 template <typename GenericType>
741 class GenericTypeHandler {
742  public:
743   typedef GenericType Type;
744   using Movable = IsMovable<GenericType>;
745 
746   static inline GenericType* New(Arena* arena) {
747     return Arena::CreateMaybeMessage<Type>(arena);
748   }
749   static inline GenericType* New(Arena* arena, GenericType&& value) {
750     return Arena::Create<GenericType>(arena, std::move(value));
751   }
752   static inline GenericType* NewFromPrototype(const GenericType* prototype,
753                                               Arena* arena = nullptr) {
754     return New(arena);
755   }
756   static inline void Delete(GenericType* value, Arena* arena) {
757     if (arena == nullptr) {
758       delete value;
759     }
760   }
761   static inline Arena* GetOwningArena(GenericType* value) {
762     return Arena::GetOwningArena<Type>(value);
763   }
764 
765   static inline void Clear(GenericType* value) { value->Clear(); }
766   static void Merge(const GenericType& from, GenericType* to);
767   static inline size_t SpaceUsedLong(const GenericType& value) {
768     return value.SpaceUsedLong();
769   }
770 };
771 
772 // NewFromPrototypeHelper() is not defined inline here, as we will need to do a
773 // virtual function dispatch anyways to go from Message* to call New/Merge. (The
774 // additional helper is needed as a workaround for MSVC.)
775 MessageLite* NewFromPrototypeHelper(const MessageLite* prototype, Arena* arena);
776 
777 template <>
778 inline MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
779     const MessageLite* prototype, Arena* arena) {
780   return NewFromPrototypeHelper(prototype, arena);
781 }
782 template <>
783 inline Arena* GenericTypeHandler<MessageLite>::GetOwningArena(
784     MessageLite* value) {
785   return value->GetOwningArena();
786 }
787 
788 template <typename GenericType>
789 PROTOBUF_NOINLINE inline void GenericTypeHandler<GenericType>::Merge(
790     const GenericType& from, GenericType* to) {
791   to->MergeFrom(from);
792 }
793 template <>
794 void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
795                                             MessageLite* to);
796 
797 template <>
798 inline void GenericTypeHandler<std::string>::Clear(std::string* value) {
799   value->clear();
800 }
801 template <>
802 void GenericTypeHandler<std::string>::Merge(const std::string& from,
803                                             std::string* to);
804 
805 // Message specialization bodies defined in message.cc. This split is necessary
806 // to allow proto2-lite (which includes this header) to be independent of
807 // Message.
808 template <>
809 PROTOBUF_EXPORT Message* GenericTypeHandler<Message>::NewFromPrototype(
810     const Message* prototype, Arena* arena);
811 template <>
812 PROTOBUF_EXPORT Arena* GenericTypeHandler<Message>::GetOwningArena(
813     Message* value);
814 
815 class StringTypeHandler {
816  public:
817   typedef std::string Type;
818   using Movable = IsMovable<Type>;
819 
820   static inline std::string* New(Arena* arena) {
821     return Arena::Create<std::string>(arena);
822   }
823   static inline std::string* New(Arena* arena, std::string&& value) {
824     return Arena::Create<std::string>(arena, std::move(value));
825   }
826   static inline std::string* NewFromPrototype(const std::string*,
827                                               Arena* arena) {
828     return New(arena);
829   }
830   static inline Arena* GetOwningArena(std::string*) { return nullptr; }
831   static inline void Delete(std::string* value, Arena* arena) {
832     if (arena == nullptr) {
833       delete value;
834     }
835   }
836   static inline void Clear(std::string* value) { value->clear(); }
837   static inline void Merge(const std::string& from, std::string* to) {
838     *to = from;
839   }
840   static size_t SpaceUsedLong(const std::string& value) {
841     return sizeof(value) + StringSpaceUsedExcludingSelfLong(value);
842   }
843 };
844 
845 }  // namespace internal
846 
847 // RepeatedPtrField is like RepeatedField, but used for repeated strings or
848 // Messages.
849 template <typename Element>
850 class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {
851 
852  public:
853   constexpr RepeatedPtrField();
854   explicit RepeatedPtrField(Arena* arena);
855 
856   RepeatedPtrField(const RepeatedPtrField& other);
857 
858   template <typename Iter,
859             typename = typename std::enable_if<std::is_constructible<
860                 Element, decltype(*std::declval<Iter>())>::value>::type>
861   RepeatedPtrField(Iter begin, Iter end);
862 
863   ~RepeatedPtrField();
864 
865   RepeatedPtrField& operator=(const RepeatedPtrField& other);
866 
867   RepeatedPtrField(RepeatedPtrField&& other) noexcept;
868   RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept;
869 
870   bool empty() const;
871   int size() const;
872 
873   const Element& Get(int index) const;
874   Element* Mutable(int index);
875   Element* Add();
876   void Add(Element&& value);
877   // Append elements in the range [begin, end) after reserving
878   // the appropriate number of elements.
879   template <typename Iter>
880   void Add(Iter begin, Iter end);
881 
882   const Element& operator[](int index) const { return Get(index); }
883   Element& operator[](int index) { return *Mutable(index); }
884 
885   const Element& at(int index) const;
886   Element& at(int index);
887 
888   // Removes the last element in the array.
889   // Ownership of the element is retained by the array.
890   void RemoveLast();
891 
892   // Deletes elements with indices in the range [start .. start+num-1].
893   // Caution: moves all elements with indices [start+num .. ].
894   // Calling this routine inside a loop can cause quadratic behavior.
895   void DeleteSubrange(int start, int num);
896 
897   PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear();
898   void MergeFrom(const RepeatedPtrField& other);
899   PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedPtrField& other);
900 
901   // Replaces the contents with RepeatedPtrField(begin, end).
902   template <typename Iter>
903   PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);
904 
905   // Reserves space to expand the field to at least the given size.  This only
906   // resizes the pointer array; it doesn't allocate any objects.  If the
907   // array is grown, it will always be at least doubled in size.
908   void Reserve(int new_size);
909 
910   int Capacity() const;
911 
912   // Gets the underlying array.  This pointer is possibly invalidated by
913   // any add or remove operation.
914   //
915   // This API is deprecated. Instead of directly working with element array,
916   // use APIs in repeated_field_util.h; e.g. sorting, etc.
917   PROTOBUF_DEPRECATED_MSG("Use APIs in repeated_field_util.h")
918   Element** mutable_data();
919   const Element* const* data() const;
920 
921   // Swaps entire contents with "other". If they are on separate arenas, then
922   // copies data.
923   void Swap(RepeatedPtrField* other);
924 
925   // Swaps entire contents with "other". Caller should guarantee that either
926   // both fields are on the same arena or both are on the heap. Swapping between
927   // different arenas with this function is disallowed and is caught via
928   // GOOGLE_DCHECK.
929   void UnsafeArenaSwap(RepeatedPtrField* other);
930 
931   // Swaps two elements.
932   void SwapElements(int index1, int index2);
933 
934   // STL-like iterator support
935   typedef internal::RepeatedPtrIterator<Element> iterator;
936   typedef internal::RepeatedPtrIterator<const Element> const_iterator;
937   typedef Element value_type;
938   typedef value_type& reference;
939   typedef const value_type& const_reference;
940   typedef value_type* pointer;
941   typedef const value_type* const_pointer;
942   typedef int size_type;
943   typedef ptrdiff_t difference_type;
944 
945   iterator begin();
946   const_iterator begin() const;
947   const_iterator cbegin() const;
948   iterator end();
949   const_iterator end() const;
950   const_iterator cend() const;
951 
952   // Reverse iterator support
953   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
954   typedef std::reverse_iterator<iterator> reverse_iterator;
955   reverse_iterator rbegin() { return reverse_iterator(end()); }
956   const_reverse_iterator rbegin() const {
957     return const_reverse_iterator(end());
958   }
959   reverse_iterator rend() { return reverse_iterator(begin()); }
960   const_reverse_iterator rend() const {
961     return const_reverse_iterator(begin());
962   }
963 
964   // Custom STL-like iterator that iterates over and returns the underlying
965   // pointers to Element rather than Element itself.
966   typedef internal::RepeatedPtrOverPtrsIterator<Element*, void*>
967       pointer_iterator;
968   typedef internal::RepeatedPtrOverPtrsIterator<const Element* const,
969                                                 const void* const>
970       const_pointer_iterator;
971   pointer_iterator pointer_begin();
972   const_pointer_iterator pointer_begin() const;
973   pointer_iterator pointer_end();
974   const_pointer_iterator pointer_end() const;
975 
976   // Returns (an estimate of) the number of bytes used by the repeated field,
977   // excluding sizeof(*this).
978   size_t SpaceUsedExcludingSelfLong() const;
979 
980   int SpaceUsedExcludingSelf() const {
981     return internal::ToIntSize(SpaceUsedExcludingSelfLong());
982   }
983 
984   // Advanced memory management --------------------------------------
985   // When hardcore memory management becomes necessary -- as it sometimes
986   // does here at Google -- the following methods may be useful.
987 
988   // Adds an already-allocated object, passing ownership to the
989   // RepeatedPtrField.
990   //
991   // Note that some special behavior occurs with respect to arenas:
992   //
993   //   (i) if this field holds submessages, the new submessage will be copied if
994   //   the original is in an arena and this RepeatedPtrField is either in a
995   //   different arena, or on the heap.
996   //   (ii) if this field holds strings, the passed-in string *must* be
997   //   heap-allocated, not arena-allocated. There is no way to dynamically check
998   //   this at runtime, so User Beware.
999   void AddAllocated(Element* value);
1000 
1001   // Removes and returns the last element, passing ownership to the caller.
1002   // Requires:  size() > 0
1003   //
1004   // If this RepeatedPtrField is on an arena, an object copy is required to pass
1005   // ownership back to the user (for compatible semantics). Use
1006   // UnsafeArenaReleaseLast() if this behavior is undesired.
1007   PROTOBUF_NODISCARD Element* ReleaseLast();
1008 
1009   // Adds an already-allocated object, skipping arena-ownership checks. The user
1010   // must guarantee that the given object is in the same arena as this
1011   // RepeatedPtrField.
1012   // It is also useful in legacy code that uses temporary ownership to avoid
1013   // copies. Example:
1014   //   RepeatedPtrField<T> temp_field;
1015   //   temp_field.UnsafeArenaAddAllocated(new T);
1016   //   ... // Do something with temp_field
1017   //   temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr);
1018   // If you put temp_field on the arena this fails, because the ownership
1019   // transfers to the arena at the "AddAllocated" call and is not released
1020   // anymore, causing a double delete. UnsafeArenaAddAllocated prevents this.
1021   void UnsafeArenaAddAllocated(Element* value);
1022 
1023   // Removes and returns the last element.  Unlike ReleaseLast, the returned
1024   // pointer is always to the original object.  This may be in an arena, in
1025   // which case it would have the arena's lifetime.
1026   // Requires: current_size_ > 0
1027   Element* UnsafeArenaReleaseLast();
1028 
1029   // Extracts elements with indices in the range "[start .. start+num-1]".
1030   // The caller assumes ownership of the extracted elements and is responsible
1031   // for deleting them when they are no longer needed.
1032   // If "elements" is non-nullptr, then pointers to the extracted elements
1033   // are stored in "elements[0 .. num-1]" for the convenience of the caller.
1034   // If "elements" is nullptr, then the caller must use some other mechanism
1035   // to perform any further operations (like deletion) on these elements.
1036   // Caution: implementation also moves elements with indices [start+num ..].
1037   // Calling this routine inside a loop can cause quadratic behavior.
1038   //
1039   // Memory copying behavior is identical to ReleaseLast(), described above: if
1040   // this RepeatedPtrField is on an arena, an object copy is performed for each
1041   // returned element, so that all returned element pointers are to
1042   // heap-allocated copies. If this copy is not desired, the user should call
1043   // UnsafeArenaExtractSubrange().
1044   void ExtractSubrange(int start, int num, Element** elements);
1045 
1046   // Identical to ExtractSubrange() described above, except that no object
1047   // copies are ever performed. Instead, the raw object pointers are returned.
1048   // Thus, if on an arena, the returned objects must not be freed, because they
1049   // will not be heap-allocated objects.
1050   void UnsafeArenaExtractSubrange(int start, int num, Element** elements);
1051 
1052   // When elements are removed by calls to RemoveLast() or Clear(), they
1053   // are not actually freed.  Instead, they are cleared and kept so that
1054   // they can be reused later.  This can save lots of CPU time when
1055   // repeatedly reusing a protocol message for similar purposes.
1056   //
1057   // Hardcore programs may choose to manipulate these cleared objects
1058   // to better optimize memory management using the following routines.
1059 
1060   // Gets the number of cleared objects that are currently being kept
1061   // around for reuse.
1062   int ClearedCount() const;
1063 #ifndef PROTOBUF_FUTURE_BREAKING_CHANGES
1064   // Adds an element to the pool of cleared objects, passing ownership to
1065   // the RepeatedPtrField.  The element must be cleared prior to calling
1066   // this method.
1067   //
1068   // This method cannot be called when either the repeated field or |value| is
1069   // on an arena; both cases will trigger a GOOGLE_DCHECK-failure.
1070   void AddCleared(Element* value);
1071   // Removes and returns a single element from the cleared pool, passing
1072   // ownership to the caller.  The element is guaranteed to be cleared.
1073   // Requires:  ClearedCount() > 0
1074   //
1075   // This method cannot be called when the repeated field is on an arena; doing
1076   // so will trigger a GOOGLE_DCHECK-failure.
1077   PROTOBUF_NODISCARD Element* ReleaseCleared();
1078 #endif  // !PROTOBUF_FUTURE_BREAKING_CHANGES
1079 
1080   // Removes the element referenced by position.
1081   //
1082   // Returns an iterator to the element immediately following the removed
1083   // element.
1084   //
1085   // Invalidates all iterators at or after the removed element, including end().
1086   iterator erase(const_iterator position);
1087 
1088   // Removes the elements in the range [first, last).
1089   //
1090   // Returns an iterator to the element immediately following the removed range.
1091   //
1092   // Invalidates all iterators at or after the removed range, including end().
1093   iterator erase(const_iterator first, const_iterator last);
1094 
1095   // Gets the arena on which this RepeatedPtrField stores its elements.
1096   inline Arena* GetArena() const;
1097 
1098   // For internal use only.
1099   //
1100   // This is public due to it being called by generated code.
1101   void InternalSwap(RepeatedPtrField* other) {
1102     internal::RepeatedPtrFieldBase::InternalSwap(other);
1103   }
1104 
1105  private:
1106   // Note:  RepeatedPtrField SHOULD NOT be subclassed by users.
1107   class TypeHandler;
1108 
1109   // Implementations for ExtractSubrange(). The copying behavior must be
1110   // included only if the type supports the necessary operations (e.g.,
1111   // MergeFrom()), so we must resolve this at compile time. ExtractSubrange()
1112   // uses SFINAE to choose one of the below implementations.
1113   void ExtractSubrangeInternal(int start, int num, Element** elements,
1114                                std::true_type);
1115   void ExtractSubrangeInternal(int start, int num, Element** elements,
1116                                std::false_type);
1117 
1118   friend class Arena;
1119 
1120   template <typename T>
1121   friend struct WeakRepeatedPtrField;
1122 
1123   typedef void InternalArenaConstructable_;
1124 
1125 };
1126 
1127 // -------------------------------------------------------------------
1128 
1129 template <typename Element>
1130 class RepeatedPtrField<Element>::TypeHandler
1131     : public internal::GenericTypeHandler<Element> {};
1132 
1133 template <>
1134 class RepeatedPtrField<std::string>::TypeHandler
1135     : public internal::StringTypeHandler {};
1136 
1137 template <typename Element>
1138 constexpr RepeatedPtrField<Element>::RepeatedPtrField()
1139     : RepeatedPtrFieldBase() {}
1140 
1141 template <typename Element>
1142 inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena)
1143     : RepeatedPtrFieldBase(arena) {}
1144 
1145 template <typename Element>
1146 inline RepeatedPtrField<Element>::RepeatedPtrField(
1147     const RepeatedPtrField& other)
1148     : RepeatedPtrFieldBase() {
1149   MergeFrom(other);
1150 }
1151 
1152 template <typename Element>
1153 template <typename Iter, typename>
1154 inline RepeatedPtrField<Element>::RepeatedPtrField(Iter begin, Iter end) {
1155   Add(begin, end);
1156 }
1157 
1158 template <typename Element>
1159 RepeatedPtrField<Element>::~RepeatedPtrField() {
1160 #ifdef __cpp_if_constexpr
1161   if constexpr (std::is_base_of<MessageLite, Element>::value) {
1162 #else
1163   if (std::is_base_of<MessageLite, Element>::value) {
1164 #endif
1165     if (NeedsDestroy()) DestroyProtos();
1166   } else {
1167     Destroy<TypeHandler>();
1168   }
1169 }
1170 
1171 template <typename Element>
1172 inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
1173     const RepeatedPtrField& other) {
1174   if (this != &other) CopyFrom(other);
1175   return *this;
1176 }
1177 
1178 template <typename Element>
1179 inline RepeatedPtrField<Element>::RepeatedPtrField(
1180     RepeatedPtrField&& other) noexcept
1181     : RepeatedPtrField() {
1182 #ifdef PROTOBUF_FORCE_COPY_IN_MOVE
1183   CopyFrom(other);
1184 #else   // PROTOBUF_FORCE_COPY_IN_MOVE
1185   // We don't just call Swap(&other) here because it would perform 3 copies if
1186   // other is on an arena. This field can't be on an arena because arena
1187   // construction always uses the Arena* accepting constructor.
1188   if (other.GetArena()) {
1189     CopyFrom(other);
1190   } else {
1191     InternalSwap(&other);
1192   }
1193 #endif  // !PROTOBUF_FORCE_COPY_IN_MOVE
1194 }
1195 
1196 template <typename Element>
1197 inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
1198     RepeatedPtrField&& other) noexcept {
1199   // We don't just call Swap(&other) here because it would perform 3 copies if
1200   // the two fields are on different arenas.
1201   if (this != &other) {
1202     if (GetArena() != other.GetArena()
1203 #ifdef PROTOBUF_FORCE_COPY_IN_MOVE
1204         || GetArena() == nullptr
1205 #endif  // !PROTOBUF_FORCE_COPY_IN_MOVE
1206     ) {
1207       CopyFrom(other);
1208     } else {
1209       InternalSwap(&other);
1210     }
1211   }
1212   return *this;
1213 }
1214 
1215 template <typename Element>
1216 inline bool RepeatedPtrField<Element>::empty() const {
1217   return RepeatedPtrFieldBase::empty();
1218 }
1219 
1220 template <typename Element>
1221 inline int RepeatedPtrField<Element>::size() const {
1222   return RepeatedPtrFieldBase::size();
1223 }
1224 
1225 template <typename Element>
1226 inline const Element& RepeatedPtrField<Element>::Get(int index) const {
1227   return RepeatedPtrFieldBase::Get<TypeHandler>(index);
1228 }
1229 
1230 template <typename Element>
1231 inline const Element& RepeatedPtrField<Element>::at(int index) const {
1232   return RepeatedPtrFieldBase::at<TypeHandler>(index);
1233 }
1234 
1235 template <typename Element>
1236 inline Element& RepeatedPtrField<Element>::at(int index) {
1237   return RepeatedPtrFieldBase::at<TypeHandler>(index);
1238 }
1239 
1240 
1241 template <typename Element>
1242 inline Element* RepeatedPtrField<Element>::Mutable(int index) {
1243   return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
1244 }
1245 
1246 template <typename Element>
1247 inline Element* RepeatedPtrField<Element>::Add() {
1248   return RepeatedPtrFieldBase::Add<TypeHandler>();
1249 }
1250 
1251 template <typename Element>
1252 inline void RepeatedPtrField<Element>::Add(Element&& value) {
1253   RepeatedPtrFieldBase::Add<TypeHandler>(std::move(value));
1254 }
1255 
1256 template <typename Element>
1257 template <typename Iter>
1258 inline void RepeatedPtrField<Element>::Add(Iter begin, Iter end) {
1259   if (std::is_base_of<
1260           std::forward_iterator_tag,
1261           typename std::iterator_traits<Iter>::iterator_category>::value) {
1262     int reserve = std::distance(begin, end);
1263     Reserve(size() + reserve);
1264   }
1265   for (; begin != end; ++begin) {
1266     *Add() = *begin;
1267   }
1268 }
1269 
1270 template <typename Element>
1271 inline void RepeatedPtrField<Element>::RemoveLast() {
1272   RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
1273 }
1274 
1275 template <typename Element>
1276 inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
1277   GOOGLE_DCHECK_GE(start, 0);
1278   GOOGLE_DCHECK_GE(num, 0);
1279   GOOGLE_DCHECK_LE(start + num, size());
1280   for (int i = 0; i < num; ++i) {
1281     RepeatedPtrFieldBase::Delete<TypeHandler>(start + i);
1282   }
1283   UnsafeArenaExtractSubrange(start, num, nullptr);
1284 }
1285 
1286 template <typename Element>
1287 inline void RepeatedPtrField<Element>::ExtractSubrange(int start, int num,
1288                                                        Element** elements) {
1289   typename internal::TypeImplementsMergeBehavior<
1290       typename TypeHandler::Type>::type t;
1291   ExtractSubrangeInternal(start, num, elements, t);
1292 }
1293 
1294 // ExtractSubrange() implementation for types that implement merge/copy
1295 // behavior.
1296 template <typename Element>
1297 inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
1298     int start, int num, Element** elements, std::true_type) {
1299   GOOGLE_DCHECK_GE(start, 0);
1300   GOOGLE_DCHECK_GE(num, 0);
1301   GOOGLE_DCHECK_LE(start + num, size());
1302 
1303   if (num == 0) return;
1304 
1305   GOOGLE_DCHECK_NE(elements, nullptr)
1306       << "Releasing elements without transferring ownership is an unsafe "
1307          "operation.  Use UnsafeArenaExtractSubrange.";
1308   if (elements == nullptr) {
1309     CloseGap(start, num);
1310     return;
1311   }
1312 
1313   Arena* arena = GetArena();
1314 #ifdef PROTOBUF_FORCE_COPY_IN_RELEASE
1315   // Always copy.
1316   for (int i = 0; i < num; ++i) {
1317     elements[i] = copy<TypeHandler>(
1318         RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start));
1319   }
1320   if (arena == nullptr) {
1321     for (int i = 0; i < num; ++i) {
1322       delete RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
1323     }
1324   }
1325 #else   // PROTOBUF_FORCE_COPY_IN_RELEASE
1326   // If we're on an arena, we perform a copy for each element so that the
1327   // returned elements are heap-allocated. Otherwise, just forward it.
1328   if (arena != nullptr) {
1329     for (int i = 0; i < num; ++i) {
1330       elements[i] = copy<TypeHandler>(
1331           RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start));
1332     }
1333   } else {
1334     for (int i = 0; i < num; ++i) {
1335       elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
1336     }
1337   }
1338 #endif  // !PROTOBUF_FORCE_COPY_IN_RELEASE
1339   CloseGap(start, num);
1340 }
1341 
1342 // ExtractSubrange() implementation for types that do not implement merge/copy
1343 // behavior.
1344 template <typename Element>
1345 inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
1346     int start, int num, Element** elements, std::false_type) {
1347   // This case is identical to UnsafeArenaExtractSubrange(). However, since
1348   // ExtractSubrange() must return heap-allocated objects by contract, and we
1349   // cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that
1350   // we are not on an arena.
1351   GOOGLE_DCHECK(GetArena() == nullptr)
1352       << "ExtractSubrange() when arena is non-nullptr is only supported when "
1353       << "the Element type supplies a MergeFrom() operation to make copies.";
1354   UnsafeArenaExtractSubrange(start, num, elements);
1355 }
1356 
1357 template <typename Element>
1358 inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
1359     int start, int num, Element** elements) {
1360   GOOGLE_DCHECK_GE(start, 0);
1361   GOOGLE_DCHECK_GE(num, 0);
1362   GOOGLE_DCHECK_LE(start + num, size());
1363 
1364   if (num > 0) {
1365     // Save the values of the removed elements if requested.
1366     if (elements != nullptr) {
1367       for (int i = 0; i < num; ++i) {
1368         elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
1369       }
1370     }
1371     CloseGap(start, num);
1372   }
1373 }
1374 
1375 template <typename Element>
1376 inline void RepeatedPtrField<Element>::Clear() {
1377   RepeatedPtrFieldBase::Clear<TypeHandler>();
1378 }
1379 
1380 template <typename Element>
1381 inline void RepeatedPtrField<Element>::MergeFrom(
1382     const RepeatedPtrField& other) {
1383   RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
1384 }
1385 
1386 template <typename Element>
1387 inline void RepeatedPtrField<Element>::CopyFrom(const RepeatedPtrField& other) {
1388   RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
1389 }
1390 
1391 template <typename Element>
1392 template <typename Iter>
1393 inline void RepeatedPtrField<Element>::Assign(Iter begin, Iter end) {
1394   Clear();
1395   Add(begin, end);
1396 }
1397 
1398 template <typename Element>
1399 inline typename RepeatedPtrField<Element>::iterator
1400 RepeatedPtrField<Element>::erase(const_iterator position) {
1401   return erase(position, position + 1);
1402 }
1403 
1404 template <typename Element>
1405 inline typename RepeatedPtrField<Element>::iterator
1406 RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last) {
1407   size_type pos_offset = std::distance(cbegin(), first);
1408   size_type last_offset = std::distance(cbegin(), last);
1409   DeleteSubrange(pos_offset, last_offset - pos_offset);
1410   return begin() + pos_offset;
1411 }
1412 
1413 template <typename Element>
1414 inline Element** RepeatedPtrField<Element>::mutable_data() {
1415   return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
1416 }
1417 
1418 template <typename Element>
1419 inline const Element* const* RepeatedPtrField<Element>::data() const {
1420   return RepeatedPtrFieldBase::data<TypeHandler>();
1421 }
1422 
1423 template <typename Element>
1424 inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
1425   if (this == other) return;
1426   RepeatedPtrFieldBase::Swap<TypeHandler>(other);
1427 }
1428 
1429 template <typename Element>
1430 inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
1431     RepeatedPtrField* other) {
1432   if (this == other) return;
1433   GOOGLE_DCHECK_EQ(GetArena(), other->GetArena());
1434   RepeatedPtrFieldBase::InternalSwap(other);
1435 }
1436 
1437 template <typename Element>
1438 inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
1439   RepeatedPtrFieldBase::SwapElements(index1, index2);
1440 }
1441 
1442 template <typename Element>
1443 inline Arena* RepeatedPtrField<Element>::GetArena() const {
1444   return RepeatedPtrFieldBase::GetArena();
1445 }
1446 
1447 template <typename Element>
1448 inline size_t RepeatedPtrField<Element>::SpaceUsedExcludingSelfLong() const {
1449   return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong<TypeHandler>();
1450 }
1451 
1452 template <typename Element>
1453 inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
1454   RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
1455 }
1456 
1457 template <typename Element>
1458 inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
1459   RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
1460 }
1461 
1462 template <typename Element>
1463 inline Element* RepeatedPtrField<Element>::ReleaseLast() {
1464   return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
1465 }
1466 
1467 template <typename Element>
1468 inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
1469   return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
1470 }
1471 
1472 template <typename Element>
1473 inline int RepeatedPtrField<Element>::ClearedCount() const {
1474   return RepeatedPtrFieldBase::ClearedCount();
1475 }
1476 
1477 #ifndef PROTOBUF_FUTURE_BREAKING_CHANGES
1478 template <typename Element>
1479 inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
1480   return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
1481 }
1482 
1483 template <typename Element>
1484 inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
1485   return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
1486 }
1487 #endif  // !PROTOBUF_FUTURE_BREAKING_CHANGES
1488 
1489 template <typename Element>
1490 inline void RepeatedPtrField<Element>::Reserve(int new_size) {
1491   return RepeatedPtrFieldBase::Reserve(new_size);
1492 }
1493 
1494 template <typename Element>
1495 inline int RepeatedPtrField<Element>::Capacity() const {
1496   return RepeatedPtrFieldBase::Capacity();
1497 }
1498 
1499 // -------------------------------------------------------------------
1500 
1501 namespace internal {
1502 
1503 // STL-like iterator implementation for RepeatedPtrField.  You should not
1504 // refer to this class directly; use RepeatedPtrField<T>::iterator instead.
1505 //
1506 // The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
1507 // very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
1508 // but adds random-access operators and is modified to wrap a void** base
1509 // iterator (since RepeatedPtrField stores its array as a void* array and
1510 // casting void** to T** would violate C++ aliasing rules).
1511 //
1512 // This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
1513 // (jyasskin@google.com).
1514 template <typename Element>
1515 class RepeatedPtrIterator {
1516  public:
1517   using iterator = RepeatedPtrIterator<Element>;
1518   using iterator_category = std::random_access_iterator_tag;
1519   using value_type = typename std::remove_const<Element>::type;
1520   using difference_type = std::ptrdiff_t;
1521   using pointer = Element*;
1522   using reference = Element&;
1523 
1524   RepeatedPtrIterator() : it_(nullptr) {}
1525   explicit RepeatedPtrIterator(void* const* it) : it_(it) {}
1526 
1527   // Allows "upcasting" from RepeatedPtrIterator<T**> to
1528   // RepeatedPtrIterator<const T*const*>.
1529   template <typename OtherElement,
1530             typename std::enable_if<std::is_convertible<
1531                 OtherElement*, pointer>::value>::type* = nullptr>
1532   RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
1533       : it_(other.it_) {}
1534 
1535   // dereferenceable
1536   reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
1537   pointer operator->() const { return &(operator*()); }
1538 
1539   // {inc,dec}rementable
1540   iterator& operator++() {
1541     ++it_;
1542     return *this;
1543   }
1544   iterator operator++(int) { return iterator(it_++); }
1545   iterator& operator--() {
1546     --it_;
1547     return *this;
1548   }
1549   iterator operator--(int) { return iterator(it_--); }
1550 
1551   // equality_comparable
1552   friend bool operator==(const iterator& x, const iterator& y) {
1553     return x.it_ == y.it_;
1554   }
1555   friend bool operator!=(const iterator& x, const iterator& y) {
1556     return x.it_ != y.it_;
1557   }
1558 
1559   // less_than_comparable
1560   friend bool operator<(const iterator& x, const iterator& y) {
1561     return x.it_ < y.it_;
1562   }
1563   friend bool operator<=(const iterator& x, const iterator& y) {
1564     return x.it_ <= y.it_;
1565   }
1566   friend bool operator>(const iterator& x, const iterator& y) {
1567     return x.it_ > y.it_;
1568   }
1569   friend bool operator>=(const iterator& x, const iterator& y) {
1570     return x.it_ >= y.it_;
1571   }
1572 
1573   // addable, subtractable
1574   iterator& operator+=(difference_type d) {
1575     it_ += d;
1576     return *this;
1577   }
1578   friend iterator operator+(iterator it, const difference_type d) {
1579     it += d;
1580     return it;
1581   }
1582   friend iterator operator+(const difference_type d, iterator it) {
1583     it += d;
1584     return it;
1585   }
1586   iterator& operator-=(difference_type d) {
1587     it_ -= d;
1588     return *this;
1589   }
1590   friend iterator operator-(iterator it, difference_type d) {
1591     it -= d;
1592     return it;
1593   }
1594 
1595   // indexable
1596   reference operator[](difference_type d) const { return *(*this + d); }
1597 
1598   // random access iterator
1599   friend difference_type operator-(iterator it1, iterator it2) {
1600     return it1.it_ - it2.it_;
1601   }
1602 
1603  private:
1604   template <typename OtherElement>
1605   friend class RepeatedPtrIterator;
1606 
1607   // The internal iterator.
1608   void* const* it_;
1609 };
1610 
1611 // Provides an iterator that operates on pointers to the underlying objects
1612 // rather than the objects themselves as RepeatedPtrIterator does.
1613 // Consider using this when working with stl algorithms that change
1614 // the array.
1615 // The VoidPtr template parameter holds the type-agnostic pointer value
1616 // referenced by the iterator.  It should either be "void *" for a mutable
1617 // iterator, or "const void* const" for a constant iterator.
1618 template <typename Element, typename VoidPtr>
1619 class RepeatedPtrOverPtrsIterator {
1620  public:
1621   using iterator = RepeatedPtrOverPtrsIterator<Element, VoidPtr>;
1622   using iterator_category = std::random_access_iterator_tag;
1623   using value_type = typename std::remove_const<Element>::type;
1624   using difference_type = std::ptrdiff_t;
1625   using pointer = Element*;
1626   using reference = Element&;
1627 
1628   RepeatedPtrOverPtrsIterator() : it_(nullptr) {}
1629   explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}
1630 
1631   // Allows "upcasting" from RepeatedPtrOverPtrsIterator<T**> to
1632   // RepeatedPtrOverPtrsIterator<const T*const*>.
1633   template <
1634       typename OtherElement, typename OtherVoidPtr,
1635       typename std::enable_if<
1636           std::is_convertible<OtherElement*, pointer>::value &&
1637           std::is_convertible<OtherVoidPtr*, VoidPtr>::value>::type* = nullptr>
1638   RepeatedPtrOverPtrsIterator(
1639       const RepeatedPtrOverPtrsIterator<OtherElement, OtherVoidPtr>& other)
1640       : it_(other.it_) {}
1641 
1642   // dereferenceable
1643   reference operator*() const { return *reinterpret_cast<Element*>(it_); }
1644   pointer operator->() const { return &(operator*()); }
1645 
1646   // {inc,dec}rementable
1647   iterator& operator++() {
1648     ++it_;
1649     return *this;
1650   }
1651   iterator operator++(int) { return iterator(it_++); }
1652   iterator& operator--() {
1653     --it_;
1654     return *this;
1655   }
1656   iterator operator--(int) { return iterator(it_--); }
1657 
1658   // equality_comparable
1659   friend bool operator==(const iterator& x, const iterator& y) {
1660     return x.it_ == y.it_;
1661   }
1662   friend bool operator!=(const iterator& x, const iterator& y) {
1663     return x.it_ != y.it_;
1664   }
1665 
1666   // less_than_comparable
1667   friend bool operator<(const iterator& x, const iterator& y) {
1668     return x.it_ < y.it_;
1669   }
1670   friend bool operator<=(const iterator& x, const iterator& y) {
1671     return x.it_ <= y.it_;
1672   }
1673   friend bool operator>(const iterator& x, const iterator& y) {
1674     return x.it_ > y.it_;
1675   }
1676   friend bool operator>=(const iterator& x, const iterator& y) {
1677     return x.it_ >= y.it_;
1678   }
1679 
1680   // addable, subtractable
1681   iterator& operator+=(difference_type d) {
1682     it_ += d;
1683     return *this;
1684   }
1685   friend iterator operator+(iterator it, difference_type d) {
1686     it += d;
1687     return it;
1688   }
1689   friend iterator operator+(difference_type d, iterator it) {
1690     it += d;
1691     return it;
1692   }
1693   iterator& operator-=(difference_type d) {
1694     it_ -= d;
1695     return *this;
1696   }
1697   friend iterator operator-(iterator it, difference_type d) {
1698     it -= d;
1699     return it;
1700   }
1701 
1702   // indexable
1703   reference operator[](difference_type d) const { return *(*this + d); }
1704 
1705   // random access iterator
1706   friend difference_type operator-(iterator it1, iterator it2) {
1707     return it1.it_ - it2.it_;
1708   }
1709 
1710  private:
1711   template <typename OtherElement, typename OtherVoidPtr>
1712   friend class RepeatedPtrOverPtrsIterator;
1713 
1714   // The internal iterator.
1715   VoidPtr* it_;
1716 };
1717 
1718 }  // namespace internal
1719 
1720 template <typename Element>
1721 inline typename RepeatedPtrField<Element>::iterator
1722 RepeatedPtrField<Element>::begin() {
1723   return iterator(raw_data());
1724 }
1725 template <typename Element>
1726 inline typename RepeatedPtrField<Element>::const_iterator
1727 RepeatedPtrField<Element>::begin() const {
1728   return iterator(raw_data());
1729 }
1730 template <typename Element>
1731 inline typename RepeatedPtrField<Element>::const_iterator
1732 RepeatedPtrField<Element>::cbegin() const {
1733   return begin();
1734 }
1735 template <typename Element>
1736 inline typename RepeatedPtrField<Element>::iterator
1737 RepeatedPtrField<Element>::end() {
1738   return iterator(raw_data() + size());
1739 }
1740 template <typename Element>
1741 inline typename RepeatedPtrField<Element>::const_iterator
1742 RepeatedPtrField<Element>::end() const {
1743   return iterator(raw_data() + size());
1744 }
1745 template <typename Element>
1746 inline typename RepeatedPtrField<Element>::const_iterator
1747 RepeatedPtrField<Element>::cend() const {
1748   return end();
1749 }
1750 
1751 template <typename Element>
1752 inline typename RepeatedPtrField<Element>::pointer_iterator
1753 RepeatedPtrField<Element>::pointer_begin() {
1754   return pointer_iterator(raw_mutable_data());
1755 }
1756 template <typename Element>
1757 inline typename RepeatedPtrField<Element>::const_pointer_iterator
1758 RepeatedPtrField<Element>::pointer_begin() const {
1759   return const_pointer_iterator(const_cast<const void* const*>(raw_data()));
1760 }
1761 template <typename Element>
1762 inline typename RepeatedPtrField<Element>::pointer_iterator
1763 RepeatedPtrField<Element>::pointer_end() {
1764   return pointer_iterator(raw_mutable_data() + size());
1765 }
1766 template <typename Element>
1767 inline typename RepeatedPtrField<Element>::const_pointer_iterator
1768 RepeatedPtrField<Element>::pointer_end() const {
1769   return const_pointer_iterator(
1770       const_cast<const void* const*>(raw_data() + size()));
1771 }
1772 
1773 // Iterators and helper functions that follow the spirit of the STL
1774 // std::back_insert_iterator and std::back_inserter but are tailor-made
1775 // for RepeatedField and RepeatedPtrField. Typical usage would be:
1776 //
1777 //   std::copy(some_sequence.begin(), some_sequence.end(),
1778 //             RepeatedFieldBackInserter(proto.mutable_sequence()));
1779 //
1780 // Ported by johannes from util/gtl/proto-array-iterators.h
1781 
1782 namespace internal {
1783 
1784 // A back inserter for RepeatedPtrField objects.
1785 template <typename T>
1786 class RepeatedPtrFieldBackInsertIterator {
1787  public:
1788   using iterator_category = std::output_iterator_tag;
1789   using value_type = T;
1790   using pointer = void;
1791   using reference = void;
1792   using difference_type = std::ptrdiff_t;
1793 
1794   RepeatedPtrFieldBackInsertIterator(RepeatedPtrField<T>* const mutable_field)
1795       : field_(mutable_field) {}
1796   RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
1797     *field_->Add() = value;
1798     return *this;
1799   }
1800   RepeatedPtrFieldBackInsertIterator<T>& operator=(
1801       const T* const ptr_to_value) {
1802     *field_->Add() = *ptr_to_value;
1803     return *this;
1804   }
1805   RepeatedPtrFieldBackInsertIterator<T>& operator=(T&& value) {
1806     *field_->Add() = std::move(value);
1807     return *this;
1808   }
1809   RepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
1810   RepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
1811   RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
1812     return *this;
1813   }
1814 
1815  private:
1816   RepeatedPtrField<T>* field_;
1817 };
1818 
1819 // A back inserter for RepeatedPtrFields that inserts by transferring ownership
1820 // of a pointer.
1821 template <typename T>
1822 class AllocatedRepeatedPtrFieldBackInsertIterator {
1823  public:
1824   using iterator_category = std::output_iterator_tag;
1825   using value_type = T;
1826   using pointer = void;
1827   using reference = void;
1828   using difference_type = std::ptrdiff_t;
1829 
1830   explicit AllocatedRepeatedPtrFieldBackInsertIterator(
1831       RepeatedPtrField<T>* const mutable_field)
1832       : field_(mutable_field) {}
1833   AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
1834       T* const ptr_to_value) {
1835     field_->AddAllocated(ptr_to_value);
1836     return *this;
1837   }
1838   AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
1839   AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
1840   AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
1841     return *this;
1842   }
1843 
1844  private:
1845   RepeatedPtrField<T>* field_;
1846 };
1847 
1848 // Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
1849 // uses the UnsafeArenaAddAllocated instead.
1850 template <typename T>
1851 class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator {
1852  public:
1853   using iterator_category = std::output_iterator_tag;
1854   using value_type = T;
1855   using pointer = void;
1856   using reference = void;
1857   using difference_type = std::ptrdiff_t;
1858 
1859   explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
1860       RepeatedPtrField<T>* const mutable_field)
1861       : field_(mutable_field) {}
1862   UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
1863       T const* const ptr_to_value) {
1864     field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
1865     return *this;
1866   }
1867   UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
1868     return *this;
1869   }
1870   UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
1871     return *this;
1872   }
1873   UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
1874       int /* unused */) {
1875     return *this;
1876   }
1877 
1878  private:
1879   RepeatedPtrField<T>* field_;
1880 };
1881 
1882 }  // namespace internal
1883 
1884 // Provides a back insert iterator for RepeatedPtrField instances,
1885 // similar to std::back_inserter().
1886 template <typename T>
1887 internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedPtrFieldBackInserter(
1888     RepeatedPtrField<T>* const mutable_field) {
1889   return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
1890 }
1891 
1892 // Special back insert iterator for RepeatedPtrField instances, just in
1893 // case someone wants to write generic template code that can access both
1894 // RepeatedFields and RepeatedPtrFields using a common name.
1895 template <typename T>
1896 internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedFieldBackInserter(
1897     RepeatedPtrField<T>* const mutable_field) {
1898   return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
1899 }
1900 
1901 // Provides a back insert iterator for RepeatedPtrField instances
1902 // similar to std::back_inserter() which transfers the ownership while
1903 // copying elements.
1904 template <typename T>
1905 internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
1906 AllocatedRepeatedPtrFieldBackInserter(
1907     RepeatedPtrField<T>* const mutable_field) {
1908   return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
1909       mutable_field);
1910 }
1911 
1912 // Similar to AllocatedRepeatedPtrFieldBackInserter, using
1913 // UnsafeArenaAddAllocated instead of AddAllocated.
1914 // This is slightly faster if that matters. It is also useful in legacy code
1915 // that uses temporary ownership to avoid copies. Example:
1916 //   RepeatedPtrField<T> temp_field;
1917 //   temp_field.UnsafeArenaAddAllocated(new T);
1918 //   ... // Do something with temp_field
1919 //   temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr);
1920 // Putting temp_field on the arena fails because the ownership transfers to the
1921 // arena at the "AddAllocated" call and is not released anymore causing a
1922 // double delete. This function uses UnsafeArenaAddAllocated to prevent this.
1923 template <typename T>
1924 internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
1925 UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
1926     RepeatedPtrField<T>* const mutable_field) {
1927   return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
1928       mutable_field);
1929 }
1930 
1931 extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
1932     RepeatedPtrField<std::string>;
1933 
1934 }  // namespace protobuf
1935 }  // namespace google
1936 
1937 #include <google/protobuf/port_undef.inc>
1938 
1939 #endif  // GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__
1940