• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This is the main header file a user should include.
34 
35 // GOOGLETEST_CM0002 DO NOT DELETE
36 
37 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
38 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
39 
40 // This file implements the following syntax:
41 //
42 //   ON_CALL(mock_object, Method(...))
43 //     .With(...) ?
44 //     .WillByDefault(...);
45 //
46 // where With() is optional and WillByDefault() must appear exactly
47 // once.
48 //
49 //   EXPECT_CALL(mock_object, Method(...))
50 //     .With(...) ?
51 //     .Times(...) ?
52 //     .InSequence(...) *
53 //     .WillOnce(...) *
54 //     .WillRepeatedly(...) ?
55 //     .RetiresOnSaturation() ? ;
56 //
57 // where all clauses are optional and WillOnce() can be repeated.
58 
59 // Copyright 2007, Google Inc.
60 // All rights reserved.
61 //
62 // Redistribution and use in source and binary forms, with or without
63 // modification, are permitted provided that the following conditions are
64 // met:
65 //
66 //     * Redistributions of source code must retain the above copyright
67 // notice, this list of conditions and the following disclaimer.
68 //     * Redistributions in binary form must reproduce the above
69 // copyright notice, this list of conditions and the following disclaimer
70 // in the documentation and/or other materials provided with the
71 // distribution.
72 //     * Neither the name of Google Inc. nor the names of its
73 // contributors may be used to endorse or promote products derived from
74 // this software without specific prior written permission.
75 //
76 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
77 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
78 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
79 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
80 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
81 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
82 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
83 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
84 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
85 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
86 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
87 
88 
89 // Google Mock - a framework for writing C++ mock classes.
90 //
91 // The ACTION* family of macros can be used in a namespace scope to
92 // define custom actions easily.  The syntax:
93 //
94 //   ACTION(name) { statements; }
95 //
96 // will define an action with the given name that executes the
97 // statements.  The value returned by the statements will be used as
98 // the return value of the action.  Inside the statements, you can
99 // refer to the K-th (0-based) argument of the mock function by
100 // 'argK', and refer to its type by 'argK_type'.  For example:
101 //
102 //   ACTION(IncrementArg1) {
103 //     arg1_type temp = arg1;
104 //     return ++(*temp);
105 //   }
106 //
107 // allows you to write
108 //
109 //   ...WillOnce(IncrementArg1());
110 //
111 // You can also refer to the entire argument tuple and its type by
112 // 'args' and 'args_type', and refer to the mock function type and its
113 // return type by 'function_type' and 'return_type'.
114 //
115 // Note that you don't need to specify the types of the mock function
116 // arguments.  However rest assured that your code is still type-safe:
117 // you'll get a compiler error if *arg1 doesn't support the ++
118 // operator, or if the type of ++(*arg1) isn't compatible with the
119 // mock function's return type, for example.
120 //
121 // Sometimes you'll want to parameterize the action.   For that you can use
122 // another macro:
123 //
124 //   ACTION_P(name, param_name) { statements; }
125 //
126 // For example:
127 //
128 //   ACTION_P(Add, n) { return arg0 + n; }
129 //
130 // will allow you to write:
131 //
132 //   ...WillOnce(Add(5));
133 //
134 // Note that you don't need to provide the type of the parameter
135 // either.  If you need to reference the type of a parameter named
136 // 'foo', you can write 'foo_type'.  For example, in the body of
137 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
138 // of 'n'.
139 //
140 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
141 // multi-parameter actions.
142 //
143 // For the purpose of typing, you can view
144 //
145 //   ACTION_Pk(Foo, p1, ..., pk) { ... }
146 //
147 // as shorthand for
148 //
149 //   template <typename p1_type, ..., typename pk_type>
150 //   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
151 //
152 // In particular, you can provide the template type arguments
153 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
154 // although usually you can rely on the compiler to infer the types
155 // for you automatically.  You can assign the result of expression
156 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
157 // pk_type>.  This can be useful when composing actions.
158 //
159 // You can also overload actions with different numbers of parameters:
160 //
161 //   ACTION_P(Plus, a) { ... }
162 //   ACTION_P2(Plus, a, b) { ... }
163 //
164 // While it's tempting to always use the ACTION* macros when defining
165 // a new action, you should also consider implementing ActionInterface
166 // or using MakePolymorphicAction() instead, especially if you need to
167 // use the action a lot.  While these approaches require more work,
168 // they give you more control on the types of the mock function
169 // arguments and the action parameters, which in general leads to
170 // better compiler error messages that pay off in the long run.  They
171 // also allow overloading actions based on parameter types (as opposed
172 // to just based on the number of parameters).
173 //
174 // CAVEAT:
175 //
176 // ACTION*() can only be used in a namespace scope as templates cannot be
177 // declared inside of a local class.
178 // Users can, however, define any local functors (e.g. a lambda) that
179 // can be used as actions.
180 //
181 // MORE INFORMATION:
182 //
183 // To learn more about using these macros, please search for 'ACTION' on
184 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
185 
186 // GOOGLETEST_CM0002 DO NOT DELETE
187 
188 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
189 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
190 
191 #ifndef _WIN32_WCE
192 # include <errno.h>
193 #endif
194 
195 #include <algorithm>
196 #include <functional>
197 #include <memory>
198 #include <string>
199 #include <tuple>
200 #include <type_traits>
201 #include <utility>
202 
203 // Copyright 2007, Google Inc.
204 // All rights reserved.
205 //
206 // Redistribution and use in source and binary forms, with or without
207 // modification, are permitted provided that the following conditions are
208 // met:
209 //
210 //     * Redistributions of source code must retain the above copyright
211 // notice, this list of conditions and the following disclaimer.
212 //     * Redistributions in binary form must reproduce the above
213 // copyright notice, this list of conditions and the following disclaimer
214 // in the documentation and/or other materials provided with the
215 // distribution.
216 //     * Neither the name of Google Inc. nor the names of its
217 // contributors may be used to endorse or promote products derived from
218 // this software without specific prior written permission.
219 //
220 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
221 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
222 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
223 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
224 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
225 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
226 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
227 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
228 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
229 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
230 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
231 
232 
233 // Google Mock - a framework for writing C++ mock classes.
234 //
235 // This file defines some utilities useful for implementing Google
236 // Mock.  They are subject to change without notice, so please DO NOT
237 // USE THEM IN USER CODE.
238 
239 // GOOGLETEST_CM0002 DO NOT DELETE
240 
241 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
242 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
243 
244 #include <stdio.h>
245 #include <ostream>  // NOLINT
246 #include <string>
247 #include <type_traits>
248 // Copyright 2008, Google Inc.
249 // All rights reserved.
250 //
251 // Redistribution and use in source and binary forms, with or without
252 // modification, are permitted provided that the following conditions are
253 // met:
254 //
255 //     * Redistributions of source code must retain the above copyright
256 // notice, this list of conditions and the following disclaimer.
257 //     * Redistributions in binary form must reproduce the above
258 // copyright notice, this list of conditions and the following disclaimer
259 // in the documentation and/or other materials provided with the
260 // distribution.
261 //     * Neither the name of Google Inc. nor the names of its
262 // contributors may be used to endorse or promote products derived from
263 // this software without specific prior written permission.
264 //
265 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
266 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
267 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
268 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
269 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
270 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
271 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
272 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
273 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
274 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
275 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
276 
277 //
278 // Low-level types and utilities for porting Google Mock to various
279 // platforms.  All macros ending with _ and symbols defined in an
280 // internal namespace are subject to change without notice.  Code
281 // outside Google Mock MUST NOT USE THEM DIRECTLY.  Macros that don't
282 // end with _ are part of Google Mock's public API and can be used by
283 // code outside Google Mock.
284 
285 // GOOGLETEST_CM0002 DO NOT DELETE
286 
287 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
288 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
289 
290 #include <assert.h>
291 #include <stdlib.h>
292 #include <cstdint>
293 #include <iostream>
294 
295 // Most of the utilities needed for porting Google Mock are also
296 // required for Google Test and are defined in gtest-port.h.
297 //
298 // Note to maintainers: to reduce code duplication, prefer adding
299 // portability utilities to Google Test's gtest-port.h instead of
300 // here, as Google Mock depends on Google Test.  Only add a utility
301 // here if it's truly specific to Google Mock.
302 
303 #include "gtest/gtest.h"
304 // Copyright 2015, Google Inc.
305 // All rights reserved.
306 //
307 // Redistribution and use in source and binary forms, with or without
308 // modification, are permitted provided that the following conditions are
309 // met:
310 //
311 //     * Redistributions of source code must retain the above copyright
312 // notice, this list of conditions and the following disclaimer.
313 //     * Redistributions in binary form must reproduce the above
314 // copyright notice, this list of conditions and the following disclaimer
315 // in the documentation and/or other materials provided with the
316 // distribution.
317 //     * Neither the name of Google Inc. nor the names of its
318 // contributors may be used to endorse or promote products derived from
319 // this software without specific prior written permission.
320 //
321 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
322 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
323 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
324 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
325 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
326 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
327 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
328 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
329 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
330 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
331 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
332 //
333 // Injection point for custom user configurations. See README for details
334 //
335 // ** Custom implementation starts here **
336 
337 // GOOGLETEST_CM0002 DO NOT DELETE
338 
339 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
340 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
341 
342 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
343 
344 // For MS Visual C++, check the compiler version. At least VS 2015 is
345 // required to compile Google Mock.
346 #if defined(_MSC_VER) && _MSC_VER < 1900
347 # error "At least Visual C++ 2015 (14.0) is required to compile Google Mock."
348 #endif
349 
350 // Macro for referencing flags.  This is public as we want the user to
351 // use this syntax to reference Google Mock flags.
352 #define GMOCK_FLAG(name) FLAGS_gmock_##name
353 
354 #if !defined(GMOCK_DECLARE_bool_)
355 
356 // Macros for declaring flags.
357 # define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name)
358 # define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name)
359 # define GMOCK_DECLARE_string_(name) \
360     extern GTEST_API_ ::std::string GMOCK_FLAG(name)
361 
362 // Macros for defining flags.
363 # define GMOCK_DEFINE_bool_(name, default_val, doc) \
364     GTEST_API_ bool GMOCK_FLAG(name) = (default_val)
365 # define GMOCK_DEFINE_int32_(name, default_val, doc) \
366     GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val)
367 # define GMOCK_DEFINE_string_(name, default_val, doc) \
368     GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val)
369 
370 #endif  // !defined(GMOCK_DECLARE_bool_)
371 
372 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
373 
374 namespace testing {
375 
376 template <typename>
377 class Matcher;
378 
379 namespace internal {
380 
381 // Silence MSVC C4100 (unreferenced formal parameter) and
382 // C4805('==': unsafe mix of type 'const int' and type 'const bool')
383 #ifdef _MSC_VER
384 # pragma warning(push)
385 # pragma warning(disable:4100)
386 # pragma warning(disable:4805)
387 #endif
388 
389 // Joins a vector of strings as if they are fields of a tuple; returns
390 // the joined string.
391 GTEST_API_ std::string JoinAsTuple(const Strings& fields);
392 
393 // Converts an identifier name to a space-separated list of lower-case
394 // words.  Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
395 // treated as one word.  For example, both "FooBar123" and
396 // "foo_bar_123" are converted to "foo bar 123".
397 GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name);
398 
399 // GetRawPointer(p) returns the raw pointer underlying p when p is a
400 // smart pointer, or returns p itself when p is already a raw pointer.
401 // The following default implementation is for the smart pointer case.
402 template <typename Pointer>
GetRawPointer(const Pointer & p)403 inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) {
404   return p.get();
405 }
406 // This overloaded version is for the raw pointer case.
407 template <typename Element>
GetRawPointer(Element * p)408 inline Element* GetRawPointer(Element* p) { return p; }
409 
410 // MSVC treats wchar_t as a native type usually, but treats it as the
411 // same as unsigned short when the compiler option /Zc:wchar_t- is
412 // specified.  It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
413 // is a native type.
414 #if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)
415 // wchar_t is a typedef.
416 #else
417 # define GMOCK_WCHAR_T_IS_NATIVE_ 1
418 #endif
419 
420 // In what follows, we use the term "kind" to indicate whether a type
421 // is bool, an integer type (excluding bool), a floating-point type,
422 // or none of them.  This categorization is useful for determining
423 // when a matcher argument type can be safely converted to another
424 // type in the implementation of SafeMatcherCast.
425 enum TypeKind {
426   kBool, kInteger, kFloatingPoint, kOther
427 };
428 
429 // KindOf<T>::value is the kind of type T.
430 template <typename T> struct KindOf {
431   enum { value = kOther };  // The default kind.
432 };
433 
434 // This macro declares that the kind of 'type' is 'kind'.
435 #define GMOCK_DECLARE_KIND_(type, kind) \
436   template <> struct KindOf<type> { enum { value = kind }; }
437 
438 GMOCK_DECLARE_KIND_(bool, kBool);
439 
440 // All standard integer types.
441 GMOCK_DECLARE_KIND_(char, kInteger);
442 GMOCK_DECLARE_KIND_(signed char, kInteger);
443 GMOCK_DECLARE_KIND_(unsigned char, kInteger);
444 GMOCK_DECLARE_KIND_(short, kInteger);  // NOLINT
445 GMOCK_DECLARE_KIND_(unsigned short, kInteger);  // NOLINT
446 GMOCK_DECLARE_KIND_(int, kInteger);
447 GMOCK_DECLARE_KIND_(unsigned int, kInteger);
448 GMOCK_DECLARE_KIND_(long, kInteger);  // NOLINT
449 GMOCK_DECLARE_KIND_(unsigned long, kInteger);  // NOLINT
450 GMOCK_DECLARE_KIND_(long long, kInteger);  // NOLINT
451 GMOCK_DECLARE_KIND_(unsigned long long, kInteger);  // NOLINT
452 
453 #if GMOCK_WCHAR_T_IS_NATIVE_
454 GMOCK_DECLARE_KIND_(wchar_t, kInteger);
455 #endif
456 
457 // All standard floating-point types.
458 GMOCK_DECLARE_KIND_(float, kFloatingPoint);
459 GMOCK_DECLARE_KIND_(double, kFloatingPoint);
460 GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
461 
462 #undef GMOCK_DECLARE_KIND_
463 
464 // Evaluates to the kind of 'type'.
465 #define GMOCK_KIND_OF_(type) \
466   static_cast< ::testing::internal::TypeKind>( \
467       ::testing::internal::KindOf<type>::value)
468 
469 // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
470 // is true if and only if arithmetic type From can be losslessly converted to
471 // arithmetic type To.
472 //
473 // It's the user's responsibility to ensure that both From and To are
474 // raw (i.e. has no CV modifier, is not a pointer, and is not a
475 // reference) built-in arithmetic types, kFromKind is the kind of
476 // From, and kToKind is the kind of To; the value is
477 // implementation-defined when the above pre-condition is violated.
478 template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
479 using LosslessArithmeticConvertibleImpl = std::integral_constant<
480     bool,
481     // clang-format off
482       // Converting from bool is always lossless
483       (kFromKind == kBool) ? true
484       // Converting between any other type kinds will be lossy if the type
485       // kinds are not the same.
486     : (kFromKind != kToKind) ? false
487     : (kFromKind == kInteger &&
488        // Converting between integers of different widths is allowed so long
489        // as the conversion does not go from signed to unsigned.
490       (((sizeof(From) < sizeof(To)) &&
491         !(std::is_signed<From>::value && !std::is_signed<To>::value)) ||
492        // Converting between integers of the same width only requires the
493        // two types to have the same signedness.
494        ((sizeof(From) == sizeof(To)) &&
495         (std::is_signed<From>::value == std::is_signed<To>::value)))
496        ) ? true
497       // Floating point conversions are lossless if and only if `To` is at least
498       // as wide as `From`.
499     : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true
500     : false
501     // clang-format on
502     >;
503 
504 // LosslessArithmeticConvertible<From, To>::value is true if and only if
505 // arithmetic type From can be losslessly converted to arithmetic type To.
506 //
507 // It's the user's responsibility to ensure that both From and To are
508 // raw (i.e. has no CV modifier, is not a pointer, and is not a
509 // reference) built-in arithmetic types; the value is
510 // implementation-defined when the above pre-condition is violated.
511 template <typename From, typename To>
512 using LosslessArithmeticConvertible =
513     LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From,
514                                       GMOCK_KIND_OF_(To), To>;
515 
516 // This interface knows how to report a Google Mock failure (either
517 // non-fatal or fatal).
518 class FailureReporterInterface {
519  public:
520   // The type of a failure (either non-fatal or fatal).
521   enum FailureType {
522     kNonfatal, kFatal
523   };
524 
~FailureReporterInterface()525   virtual ~FailureReporterInterface() {}
526 
527   // Reports a failure that occurred at the given source file location.
528   virtual void ReportFailure(FailureType type, const char* file, int line,
529                              const std::string& message) = 0;
530 };
531 
532 // Returns the failure reporter used by Google Mock.
533 GTEST_API_ FailureReporterInterface* GetFailureReporter();
534 
535 // Asserts that condition is true; aborts the process with the given
536 // message if condition is false.  We cannot use LOG(FATAL) or CHECK()
537 // as Google Mock might be used to mock the log sink itself.  We
538 // inline this function to prevent it from showing up in the stack
539 // trace.
Assert(bool condition,const char * file,int line,const std::string & msg)540 inline void Assert(bool condition, const char* file, int line,
541                    const std::string& msg) {
542   if (!condition) {
543     GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal,
544                                         file, line, msg);
545   }
546 }
Assert(bool condition,const char * file,int line)547 inline void Assert(bool condition, const char* file, int line) {
548   Assert(condition, file, line, "Assertion failed.");
549 }
550 
551 // Verifies that condition is true; generates a non-fatal failure if
552 // condition is false.
Expect(bool condition,const char * file,int line,const std::string & msg)553 inline void Expect(bool condition, const char* file, int line,
554                    const std::string& msg) {
555   if (!condition) {
556     GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal,
557                                         file, line, msg);
558   }
559 }
Expect(bool condition,const char * file,int line)560 inline void Expect(bool condition, const char* file, int line) {
561   Expect(condition, file, line, "Expectation failed.");
562 }
563 
564 // Severity level of a log.
565 enum LogSeverity {
566   kInfo = 0,
567   kWarning = 1
568 };
569 
570 // Valid values for the --gmock_verbose flag.
571 
572 // All logs (informational and warnings) are printed.
573 const char kInfoVerbosity[] = "info";
574 // Only warnings are printed.
575 const char kWarningVerbosity[] = "warning";
576 // No logs are printed.
577 const char kErrorVerbosity[] = "error";
578 
579 // Returns true if and only if a log with the given severity is visible
580 // according to the --gmock_verbose flag.
581 GTEST_API_ bool LogIsVisible(LogSeverity severity);
582 
583 // Prints the given message to stdout if and only if 'severity' >= the level
584 // specified by the --gmock_verbose flag.  If stack_frames_to_skip >=
585 // 0, also prints the stack trace excluding the top
586 // stack_frames_to_skip frames.  In opt mode, any positive
587 // stack_frames_to_skip is treated as 0, since we don't know which
588 // function calls will be inlined by the compiler and need to be
589 // conservative.
590 GTEST_API_ void Log(LogSeverity severity, const std::string& message,
591                     int stack_frames_to_skip);
592 
593 // A marker class that is used to resolve parameterless expectations to the
594 // correct overload. This must not be instantiable, to prevent client code from
595 // accidentally resolving to the overload; for example:
596 //
597 //    ON_CALL(mock, Method({}, nullptr))...
598 //
599 class WithoutMatchers {
600  private:
WithoutMatchers()601   WithoutMatchers() {}
602   friend GTEST_API_ WithoutMatchers GetWithoutMatchers();
603 };
604 
605 // Internal use only: access the singleton instance of WithoutMatchers.
606 GTEST_API_ WithoutMatchers GetWithoutMatchers();
607 
608 // Disable MSVC warnings for infinite recursion, since in this case the
609 // the recursion is unreachable.
610 #ifdef _MSC_VER
611 # pragma warning(push)
612 # pragma warning(disable:4717)
613 #endif
614 
615 // Invalid<T>() is usable as an expression of type T, but will terminate
616 // the program with an assertion failure if actually run.  This is useful
617 // when a value of type T is needed for compilation, but the statement
618 // will not really be executed (or we don't care if the statement
619 // crashes).
620 template <typename T>
Invalid()621 inline T Invalid() {
622   Assert(false, "", -1, "Internal error: attempt to return invalid value");
623   // This statement is unreachable, and would never terminate even if it
624   // could be reached. It is provided only to placate compiler warnings
625   // about missing return statements.
626   return Invalid<T>();
627 }
628 
629 #ifdef _MSC_VER
630 # pragma warning(pop)
631 #endif
632 
633 // Given a raw type (i.e. having no top-level reference or const
634 // modifier) RawContainer that's either an STL-style container or a
635 // native array, class StlContainerView<RawContainer> has the
636 // following members:
637 //
638 //   - type is a type that provides an STL-style container view to
639 //     (i.e. implements the STL container concept for) RawContainer;
640 //   - const_reference is a type that provides a reference to a const
641 //     RawContainer;
642 //   - ConstReference(raw_container) returns a const reference to an STL-style
643 //     container view to raw_container, which is a RawContainer.
644 //   - Copy(raw_container) returns an STL-style container view of a
645 //     copy of raw_container, which is a RawContainer.
646 //
647 // This generic version is used when RawContainer itself is already an
648 // STL-style container.
649 template <class RawContainer>
650 class StlContainerView {
651  public:
652   typedef RawContainer type;
653   typedef const type& const_reference;
654 
ConstReference(const RawContainer & container)655   static const_reference ConstReference(const RawContainer& container) {
656     static_assert(!std::is_const<RawContainer>::value,
657                   "RawContainer type must not be const");
658     return container;
659   }
Copy(const RawContainer & container)660   static type Copy(const RawContainer& container) { return container; }
661 };
662 
663 // This specialization is used when RawContainer is a native array type.
664 template <typename Element, size_t N>
665 class StlContainerView<Element[N]> {
666  public:
667   typedef typename std::remove_const<Element>::type RawElement;
668   typedef internal::NativeArray<RawElement> type;
669   // NativeArray<T> can represent a native array either by value or by
670   // reference (selected by a constructor argument), so 'const type'
671   // can be used to reference a const native array.  We cannot
672   // 'typedef const type& const_reference' here, as that would mean
673   // ConstReference() has to return a reference to a local variable.
674   typedef const type const_reference;
675 
ConstReference(const Element (& array)[N])676   static const_reference ConstReference(const Element (&array)[N]) {
677     static_assert(std::is_same<Element, RawElement>::value,
678                   "Element type must not be const");
679     return type(array, N, RelationToSourceReference());
680   }
Copy(const Element (& array)[N])681   static type Copy(const Element (&array)[N]) {
682     return type(array, N, RelationToSourceCopy());
683   }
684 };
685 
686 // This specialization is used when RawContainer is a native array
687 // represented as a (pointer, size) tuple.
688 template <typename ElementPointer, typename Size>
689 class StlContainerView< ::std::tuple<ElementPointer, Size> > {
690  public:
691   typedef typename std::remove_const<
692       typename std::pointer_traits<ElementPointer>::element_type>::type
693       RawElement;
694   typedef internal::NativeArray<RawElement> type;
695   typedef const type const_reference;
696 
ConstReference(const::std::tuple<ElementPointer,Size> & array)697   static const_reference ConstReference(
698       const ::std::tuple<ElementPointer, Size>& array) {
699     return type(std::get<0>(array), std::get<1>(array),
700                 RelationToSourceReference());
701   }
Copy(const::std::tuple<ElementPointer,Size> & array)702   static type Copy(const ::std::tuple<ElementPointer, Size>& array) {
703     return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy());
704   }
705 };
706 
707 // The following specialization prevents the user from instantiating
708 // StlContainer with a reference type.
709 template <typename T> class StlContainerView<T&>;
710 
711 // A type transform to remove constness from the first part of a pair.
712 // Pairs like that are used as the value_type of associative containers,
713 // and this transform produces a similar but assignable pair.
714 template <typename T>
715 struct RemoveConstFromKey {
716   typedef T type;
717 };
718 
719 // Partially specialized to remove constness from std::pair<const K, V>.
720 template <typename K, typename V>
721 struct RemoveConstFromKey<std::pair<const K, V> > {
722   typedef std::pair<K, V> type;
723 };
724 
725 // Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to
726 // reduce code size.
727 GTEST_API_ void IllegalDoDefault(const char* file, int line);
728 
729 template <typename F, typename Tuple, size_t... Idx>
730 auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype(
731     std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) {
732   return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...);
733 }
734 
735 // Apply the function to a tuple of arguments.
736 template <typename F, typename Tuple>
737 auto Apply(F&& f, Tuple&& args) -> decltype(
738     ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
739               MakeIndexSequence<std::tuple_size<
740                   typename std::remove_reference<Tuple>::type>::value>())) {
741   return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
742                    MakeIndexSequence<std::tuple_size<
743                        typename std::remove_reference<Tuple>::type>::value>());
744 }
745 
746 // Template struct Function<F>, where F must be a function type, contains
747 // the following typedefs:
748 //
749 //   Result:               the function's return type.
750 //   Arg<N>:               the type of the N-th argument, where N starts with 0.
751 //   ArgumentTuple:        the tuple type consisting of all parameters of F.
752 //   ArgumentMatcherTuple: the tuple type consisting of Matchers for all
753 //                         parameters of F.
754 //   MakeResultVoid:       the function type obtained by substituting void
755 //                         for the return type of F.
756 //   MakeResultIgnoredValue:
757 //                         the function type obtained by substituting Something
758 //                         for the return type of F.
759 template <typename T>
760 struct Function;
761 
762 template <typename R, typename... Args>
763 struct Function<R(Args...)> {
764   using Result = R;
765   static constexpr size_t ArgumentCount = sizeof...(Args);
766   template <size_t I>
767   using Arg = ElemFromList<I, Args...>;
768   using ArgumentTuple = std::tuple<Args...>;
769   using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
770   using MakeResultVoid = void(Args...);
771   using MakeResultIgnoredValue = IgnoredValue(Args...);
772 };
773 
774 template <typename R, typename... Args>
775 constexpr size_t Function<R(Args...)>::ArgumentCount;
776 
777 #ifdef _MSC_VER
778 # pragma warning(pop)
779 #endif
780 
781 }  // namespace internal
782 }  // namespace testing
783 
784 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
785 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
786 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
787 
788 // Expands and concatenates the arguments. Constructed macros reevaluate.
789 #define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2)
790 
791 // Expands and stringifies the only argument.
792 #define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__)
793 
794 // Returns empty. Given a variadic number of arguments.
795 #define GMOCK_PP_EMPTY(...)
796 
797 // Returns a comma. Given a variadic number of arguments.
798 #define GMOCK_PP_COMMA(...) ,
799 
800 // Returns the only argument.
801 #define GMOCK_PP_IDENTITY(_1) _1
802 
803 // Evaluates to the number of arguments after expansion.
804 //
805 //   #define PAIR x, y
806 //
807 //   GMOCK_PP_NARG() => 1
808 //   GMOCK_PP_NARG(x) => 1
809 //   GMOCK_PP_NARG(x, y) => 2
810 //   GMOCK_PP_NARG(PAIR) => 2
811 //
812 // Requires: the number of arguments after expansion is at most 15.
813 #define GMOCK_PP_NARG(...) \
814   GMOCK_PP_INTERNAL_16TH(  \
815       (__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
816 
817 // Returns 1 if the expansion of arguments has an unprotected comma. Otherwise
818 // returns 0. Requires no more than 15 unprotected commas.
819 #define GMOCK_PP_HAS_COMMA(...) \
820   GMOCK_PP_INTERNAL_16TH(       \
821       (__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0))
822 
823 // Returns the first argument.
824 #define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg))
825 
826 // Returns the tail. A variadic list of all arguments minus the first. Requires
827 // at least one argument.
828 #define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__))
829 
830 // Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__)
831 #define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \
832   GMOCK_PP_IDENTITY(                        \
833       GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__))
834 
835 // If the arguments after expansion have no tokens, evaluates to `1`. Otherwise
836 // evaluates to `0`.
837 //
838 // Requires: * the number of arguments after expansion is at most 15.
839 //           * If the argument is a macro, it must be able to be called with one
840 //             argument.
841 //
842 // Implementation details:
843 //
844 // There is one case when it generates a compile error: if the argument is macro
845 // that cannot be called with one argument.
846 //
847 //   #define M(a, b)  // it doesn't matter what it expands to
848 //
849 //   // Expected: expands to `0`.
850 //   // Actual: compile error.
851 //   GMOCK_PP_IS_EMPTY(M)
852 //
853 // There are 4 cases tested:
854 //
855 // * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0.
856 // * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0.
857 // * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma.
858 //   Expected 0
859 // * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in
860 //   parenthesis, or is a macro that ()-evaluates to comma. Expected 1.
861 //
862 // We trigger detection on '0001', i.e. on empty.
863 #define GMOCK_PP_IS_EMPTY(...)                                               \
864   GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__),                \
865                              GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \
866                              GMOCK_PP_HAS_COMMA(__VA_ARGS__()),              \
867                              GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__()))
868 
869 // Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0.
870 #define GMOCK_PP_IF(_Cond, _Then, _Else) \
871   GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else)
872 
873 // Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses.
874 //
875 // GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c
876 // GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f
877 //
878 #define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \
879   GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else))
880 
881 // Evaluates to the number of arguments after expansion. Identifies 'empty' as
882 // 0.
883 //
884 //   #define PAIR x, y
885 //
886 //   GMOCK_PP_NARG0() => 0
887 //   GMOCK_PP_NARG0(x) => 1
888 //   GMOCK_PP_NARG0(x, y) => 2
889 //   GMOCK_PP_NARG0(PAIR) => 2
890 //
891 // Requires: * the number of arguments after expansion is at most 15.
892 //           * If the argument is a macro, it must be able to be called with one
893 //             argument.
894 #define GMOCK_PP_NARG0(...) \
895   GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__))
896 
897 // Expands to 1 if the first argument starts with something in parentheses,
898 // otherwise to 0.
899 #define GMOCK_PP_IS_BEGIN_PARENS(...)                              \
900   GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \
901                              GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__))
902 
903 // Expands to 1 is there is only one argument and it is enclosed in parentheses.
904 #define GMOCK_PP_IS_ENCLOSED_PARENS(...)             \
905   GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \
906               GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0)
907 
908 // Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1.
909 #define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__
910 
911 // Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data,
912 // eK) as many of GMOCK_INTERNAL_NARG0 _Tuple.
913 // Requires: * |_Macro| can be called with 3 arguments.
914 //           * |_Tuple| expansion has no more than 15 elements.
915 #define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple)                        \
916   GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \
917   (0, _Macro, _Data, _Tuple)
918 
919 // Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, )
920 // Empty if _K = 0.
921 // Requires: * |_Macro| can be called with 3 arguments.
922 //           * |_K| literal between 0 and 15
923 #define GMOCK_PP_REPEAT(_Macro, _Data, _N)           \
924   GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \
925   (0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE)
926 
927 // Increments the argument, requires the argument to be between 0 and 15.
928 #define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i)
929 
930 // Returns comma if _i != 0. Requires _i to be between 0 and 15.
931 #define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i)
932 
933 // Internal details follow. Do not use any of these symbols outside of this
934 // file or we will break your code.
935 #define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , )
936 #define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2
937 #define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__
938 #define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5
939 #define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4)                             \
940   GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \
941                                              _1, _2, _3, _4))
942 #define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 ,
943 #define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then
944 #define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else
945 
946 // Because of MSVC treating a token with a comma in it as a single token when
947 // passed to another macro, we need to force it to evaluate it as multiple
948 // tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We
949 // define one per possible macro that relies on this behavior. Note "_Args" must
950 // be parenthesized.
951 #define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \
952                                         _10, _11, _12, _13, _14, _15, _16,  \
953                                         ...)                                \
954   _16
955 #define GMOCK_PP_INTERNAL_16TH(_Args) \
956   GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args)
957 #define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1
958 #define GMOCK_PP_INTERNAL_HEAD(_Args) \
959   GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args)
960 #define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__
961 #define GMOCK_PP_INTERNAL_TAIL(_Args) \
962   GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args)
963 
964 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _
965 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1,
966 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \
967   0,
968 #define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__
969 #define GMOCK_PP_INTERNAL_INC_0 1
970 #define GMOCK_PP_INTERNAL_INC_1 2
971 #define GMOCK_PP_INTERNAL_INC_2 3
972 #define GMOCK_PP_INTERNAL_INC_3 4
973 #define GMOCK_PP_INTERNAL_INC_4 5
974 #define GMOCK_PP_INTERNAL_INC_5 6
975 #define GMOCK_PP_INTERNAL_INC_6 7
976 #define GMOCK_PP_INTERNAL_INC_7 8
977 #define GMOCK_PP_INTERNAL_INC_8 9
978 #define GMOCK_PP_INTERNAL_INC_9 10
979 #define GMOCK_PP_INTERNAL_INC_10 11
980 #define GMOCK_PP_INTERNAL_INC_11 12
981 #define GMOCK_PP_INTERNAL_INC_12 13
982 #define GMOCK_PP_INTERNAL_INC_13 14
983 #define GMOCK_PP_INTERNAL_INC_14 15
984 #define GMOCK_PP_INTERNAL_INC_15 16
985 #define GMOCK_PP_INTERNAL_COMMA_IF_0
986 #define GMOCK_PP_INTERNAL_COMMA_IF_1 ,
987 #define GMOCK_PP_INTERNAL_COMMA_IF_2 ,
988 #define GMOCK_PP_INTERNAL_COMMA_IF_3 ,
989 #define GMOCK_PP_INTERNAL_COMMA_IF_4 ,
990 #define GMOCK_PP_INTERNAL_COMMA_IF_5 ,
991 #define GMOCK_PP_INTERNAL_COMMA_IF_6 ,
992 #define GMOCK_PP_INTERNAL_COMMA_IF_7 ,
993 #define GMOCK_PP_INTERNAL_COMMA_IF_8 ,
994 #define GMOCK_PP_INTERNAL_COMMA_IF_9 ,
995 #define GMOCK_PP_INTERNAL_COMMA_IF_10 ,
996 #define GMOCK_PP_INTERNAL_COMMA_IF_11 ,
997 #define GMOCK_PP_INTERNAL_COMMA_IF_12 ,
998 #define GMOCK_PP_INTERNAL_COMMA_IF_13 ,
999 #define GMOCK_PP_INTERNAL_COMMA_IF_14 ,
1000 #define GMOCK_PP_INTERNAL_COMMA_IF_15 ,
1001 #define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \
1002   _Macro(_i, _Data, _element)
1003 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple)
1004 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \
1005   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple)
1006 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple)    \
1007   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1008   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data,    \
1009                                     (GMOCK_PP_TAIL _Tuple))
1010 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple)    \
1011   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1012   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data,    \
1013                                     (GMOCK_PP_TAIL _Tuple))
1014 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple)    \
1015   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1016   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data,    \
1017                                     (GMOCK_PP_TAIL _Tuple))
1018 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple)    \
1019   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1020   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data,    \
1021                                     (GMOCK_PP_TAIL _Tuple))
1022 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple)    \
1023   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1024   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data,    \
1025                                     (GMOCK_PP_TAIL _Tuple))
1026 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple)    \
1027   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1028   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data,    \
1029                                     (GMOCK_PP_TAIL _Tuple))
1030 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple)    \
1031   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1032   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data,    \
1033                                     (GMOCK_PP_TAIL _Tuple))
1034 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple)    \
1035   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1036   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data,    \
1037                                     (GMOCK_PP_TAIL _Tuple))
1038 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple)   \
1039   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1040   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data,    \
1041                                     (GMOCK_PP_TAIL _Tuple))
1042 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple)   \
1043   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1044   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data,   \
1045                                      (GMOCK_PP_TAIL _Tuple))
1046 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple)   \
1047   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1048   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data,   \
1049                                      (GMOCK_PP_TAIL _Tuple))
1050 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple)   \
1051   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1052   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data,   \
1053                                      (GMOCK_PP_TAIL _Tuple))
1054 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple)   \
1055   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1056   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data,   \
1057                                      (GMOCK_PP_TAIL _Tuple))
1058 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple)   \
1059   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1060   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data,   \
1061                                      (GMOCK_PP_TAIL _Tuple))
1062 
1063 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
1064 
1065 #ifdef _MSC_VER
1066 # pragma warning(push)
1067 # pragma warning(disable:4100)
1068 #endif
1069 
1070 namespace testing {
1071 
1072 // To implement an action Foo, define:
1073 //   1. a class FooAction that implements the ActionInterface interface, and
1074 //   2. a factory function that creates an Action object from a
1075 //      const FooAction*.
1076 //
1077 // The two-level delegation design follows that of Matcher, providing
1078 // consistency for extension developers.  It also eases ownership
1079 // management as Action objects can now be copied like plain values.
1080 
1081 namespace internal {
1082 
1083 // BuiltInDefaultValueGetter<T, true>::Get() returns a
1084 // default-constructed T value.  BuiltInDefaultValueGetter<T,
1085 // false>::Get() crashes with an error.
1086 //
1087 // This primary template is used when kDefaultConstructible is true.
1088 template <typename T, bool kDefaultConstructible>
1089 struct BuiltInDefaultValueGetter {
1090   static T Get() { return T(); }
1091 };
1092 template <typename T>
1093 struct BuiltInDefaultValueGetter<T, false> {
1094   static T Get() {
1095     Assert(false, __FILE__, __LINE__,
1096            "Default action undefined for the function return type.");
1097     return internal::Invalid<T>();
1098     // The above statement will never be reached, but is required in
1099     // order for this function to compile.
1100   }
1101 };
1102 
1103 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
1104 // for type T, which is NULL when T is a raw pointer type, 0 when T is
1105 // a numeric type, false when T is bool, or "" when T is string or
1106 // std::string.  In addition, in C++11 and above, it turns a
1107 // default-constructed T value if T is default constructible.  For any
1108 // other type T, the built-in default T value is undefined, and the
1109 // function will abort the process.
1110 template <typename T>
1111 class BuiltInDefaultValue {
1112  public:
1113   // This function returns true if and only if type T has a built-in default
1114   // value.
1115   static bool Exists() {
1116     return ::std::is_default_constructible<T>::value;
1117   }
1118 
1119   static T Get() {
1120     return BuiltInDefaultValueGetter<
1121         T, ::std::is_default_constructible<T>::value>::Get();
1122   }
1123 };
1124 
1125 // This partial specialization says that we use the same built-in
1126 // default value for T and const T.
1127 template <typename T>
1128 class BuiltInDefaultValue<const T> {
1129  public:
1130   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
1131   static T Get() { return BuiltInDefaultValue<T>::Get(); }
1132 };
1133 
1134 // This partial specialization defines the default values for pointer
1135 // types.
1136 template <typename T>
1137 class BuiltInDefaultValue<T*> {
1138  public:
1139   static bool Exists() { return true; }
1140   static T* Get() { return nullptr; }
1141 };
1142 
1143 // The following specializations define the default values for
1144 // specific types we care about.
1145 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
1146   template <> \
1147   class BuiltInDefaultValue<type> { \
1148    public: \
1149     static bool Exists() { return true; } \
1150     static type Get() { return value; } \
1151   }
1152 
1153 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
1154 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
1155 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
1156 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
1157 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
1158 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
1159 
1160 // There's no need for a default action for signed wchar_t, as that
1161 // type is the same as wchar_t for gcc, and invalid for MSVC.
1162 //
1163 // There's also no need for a default action for unsigned wchar_t, as
1164 // that type is the same as unsigned int for gcc, and invalid for
1165 // MSVC.
1166 #if GMOCK_WCHAR_T_IS_NATIVE_
1167 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
1168 #endif
1169 
1170 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
1171 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
1172 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
1173 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
1174 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
1175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
1176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
1177 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);  // NOLINT
1178 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
1179 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
1180 
1181 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
1182 
1183 // Simple two-arg form of std::disjunction.
1184 template <typename P, typename Q>
1185 using disjunction = typename ::std::conditional<P::value, P, Q>::type;
1186 
1187 }  // namespace internal
1188 
1189 // When an unexpected function call is encountered, Google Mock will
1190 // let it return a default value if the user has specified one for its
1191 // return type, or if the return type has a built-in default value;
1192 // otherwise Google Mock won't know what value to return and will have
1193 // to abort the process.
1194 //
1195 // The DefaultValue<T> class allows a user to specify the
1196 // default value for a type T that is both copyable and publicly
1197 // destructible (i.e. anything that can be used as a function return
1198 // type).  The usage is:
1199 //
1200 //   // Sets the default value for type T to be foo.
1201 //   DefaultValue<T>::Set(foo);
1202 template <typename T>
1203 class DefaultValue {
1204  public:
1205   // Sets the default value for type T; requires T to be
1206   // copy-constructable and have a public destructor.
1207   static void Set(T x) {
1208     delete producer_;
1209     producer_ = new FixedValueProducer(x);
1210   }
1211 
1212   // Provides a factory function to be called to generate the default value.
1213   // This method can be used even if T is only move-constructible, but it is not
1214   // limited to that case.
1215   typedef T (*FactoryFunction)();
1216   static void SetFactory(FactoryFunction factory) {
1217     delete producer_;
1218     producer_ = new FactoryValueProducer(factory);
1219   }
1220 
1221   // Unsets the default value for type T.
1222   static void Clear() {
1223     delete producer_;
1224     producer_ = nullptr;
1225   }
1226 
1227   // Returns true if and only if the user has set the default value for type T.
1228   static bool IsSet() { return producer_ != nullptr; }
1229 
1230   // Returns true if T has a default return value set by the user or there
1231   // exists a built-in default value.
1232   static bool Exists() {
1233     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
1234   }
1235 
1236   // Returns the default value for type T if the user has set one;
1237   // otherwise returns the built-in default value. Requires that Exists()
1238   // is true, which ensures that the return value is well-defined.
1239   static T Get() {
1240     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
1241                                 : producer_->Produce();
1242   }
1243 
1244  private:
1245   class ValueProducer {
1246    public:
1247     virtual ~ValueProducer() {}
1248     virtual T Produce() = 0;
1249   };
1250 
1251   class FixedValueProducer : public ValueProducer {
1252    public:
1253     explicit FixedValueProducer(T value) : value_(value) {}
1254     T Produce() override { return value_; }
1255 
1256    private:
1257     const T value_;
1258     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
1259   };
1260 
1261   class FactoryValueProducer : public ValueProducer {
1262    public:
1263     explicit FactoryValueProducer(FactoryFunction factory)
1264         : factory_(factory) {}
1265     T Produce() override { return factory_(); }
1266 
1267    private:
1268     const FactoryFunction factory_;
1269     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
1270   };
1271 
1272   static ValueProducer* producer_;
1273 };
1274 
1275 // This partial specialization allows a user to set default values for
1276 // reference types.
1277 template <typename T>
1278 class DefaultValue<T&> {
1279  public:
1280   // Sets the default value for type T&.
1281   static void Set(T& x) {  // NOLINT
1282     address_ = &x;
1283   }
1284 
1285   // Unsets the default value for type T&.
1286   static void Clear() { address_ = nullptr; }
1287 
1288   // Returns true if and only if the user has set the default value for type T&.
1289   static bool IsSet() { return address_ != nullptr; }
1290 
1291   // Returns true if T has a default return value set by the user or there
1292   // exists a built-in default value.
1293   static bool Exists() {
1294     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
1295   }
1296 
1297   // Returns the default value for type T& if the user has set one;
1298   // otherwise returns the built-in default value if there is one;
1299   // otherwise aborts the process.
1300   static T& Get() {
1301     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
1302                                : *address_;
1303   }
1304 
1305  private:
1306   static T* address_;
1307 };
1308 
1309 // This specialization allows DefaultValue<void>::Get() to
1310 // compile.
1311 template <>
1312 class DefaultValue<void> {
1313  public:
1314   static bool Exists() { return true; }
1315   static void Get() {}
1316 };
1317 
1318 // Points to the user-set default value for type T.
1319 template <typename T>
1320 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
1321 
1322 // Points to the user-set default value for type T&.
1323 template <typename T>
1324 T* DefaultValue<T&>::address_ = nullptr;
1325 
1326 // Implement this interface to define an action for function type F.
1327 template <typename F>
1328 class ActionInterface {
1329  public:
1330   typedef typename internal::Function<F>::Result Result;
1331   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1332 
1333   ActionInterface() {}
1334   virtual ~ActionInterface() {}
1335 
1336   // Performs the action.  This method is not const, as in general an
1337   // action can have side effects and be stateful.  For example, a
1338   // get-the-next-element-from-the-collection action will need to
1339   // remember the current element.
1340   virtual Result Perform(const ArgumentTuple& args) = 0;
1341 
1342  private:
1343   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
1344 };
1345 
1346 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
1347 // object that represents an action to be taken when a mock function
1348 // of type F is called.  The implementation of Action<T> is just a
1349 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
1350 // You can view an object implementing ActionInterface<F> as a
1351 // concrete action (including its current state), and an Action<F>
1352 // object as a handle to it.
1353 template <typename F>
1354 class Action {
1355   // Adapter class to allow constructing Action from a legacy ActionInterface.
1356   // New code should create Actions from functors instead.
1357   struct ActionAdapter {
1358     // Adapter must be copyable to satisfy std::function requirements.
1359     ::std::shared_ptr<ActionInterface<F>> impl_;
1360 
1361     template <typename... Args>
1362     typename internal::Function<F>::Result operator()(Args&&... args) {
1363       return impl_->Perform(
1364           ::std::forward_as_tuple(::std::forward<Args>(args)...));
1365     }
1366   };
1367 
1368   template <typename G>
1369   using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
1370 
1371  public:
1372   typedef typename internal::Function<F>::Result Result;
1373   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1374 
1375   // Constructs a null Action.  Needed for storing Action objects in
1376   // STL containers.
1377   Action() {}
1378 
1379   // Construct an Action from a specified callable.
1380   // This cannot take std::function directly, because then Action would not be
1381   // directly constructible from lambda (it would require two conversions).
1382   template <
1383       typename G,
1384       typename = typename std::enable_if<internal::disjunction<
1385           IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
1386                                                         G>>::value>::type>
1387   Action(G&& fun) {  // NOLINT
1388     Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
1389   }
1390 
1391   // Constructs an Action from its implementation.
1392   explicit Action(ActionInterface<F>* impl)
1393       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
1394 
1395   // This constructor allows us to turn an Action<Func> object into an
1396   // Action<F>, as long as F's arguments can be implicitly converted
1397   // to Func's and Func's return type can be implicitly converted to F's.
1398   template <typename Func>
1399   explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
1400 
1401   // Returns true if and only if this is the DoDefault() action.
1402   bool IsDoDefault() const { return fun_ == nullptr; }
1403 
1404   // Performs the action.  Note that this method is const even though
1405   // the corresponding method in ActionInterface is not.  The reason
1406   // is that a const Action<F> means that it cannot be re-bound to
1407   // another concrete action, not that the concrete action it binds to
1408   // cannot change state.  (Think of the difference between a const
1409   // pointer and a pointer to const.)
1410   Result Perform(ArgumentTuple args) const {
1411     if (IsDoDefault()) {
1412       internal::IllegalDoDefault(__FILE__, __LINE__);
1413     }
1414     return internal::Apply(fun_, ::std::move(args));
1415   }
1416 
1417  private:
1418   template <typename G>
1419   friend class Action;
1420 
1421   template <typename G>
1422   void Init(G&& g, ::std::true_type) {
1423     fun_ = ::std::forward<G>(g);
1424   }
1425 
1426   template <typename G>
1427   void Init(G&& g, ::std::false_type) {
1428     fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
1429   }
1430 
1431   template <typename FunctionImpl>
1432   struct IgnoreArgs {
1433     template <typename... Args>
1434     Result operator()(const Args&...) const {
1435       return function_impl();
1436     }
1437 
1438     FunctionImpl function_impl;
1439   };
1440 
1441   // fun_ is an empty function if and only if this is the DoDefault() action.
1442   ::std::function<F> fun_;
1443 };
1444 
1445 // The PolymorphicAction class template makes it easy to implement a
1446 // polymorphic action (i.e. an action that can be used in mock
1447 // functions of than one type, e.g. Return()).
1448 //
1449 // To define a polymorphic action, a user first provides a COPYABLE
1450 // implementation class that has a Perform() method template:
1451 //
1452 //   class FooAction {
1453 //    public:
1454 //     template <typename Result, typename ArgumentTuple>
1455 //     Result Perform(const ArgumentTuple& args) const {
1456 //       // Processes the arguments and returns a result, using
1457 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
1458 //     }
1459 //     ...
1460 //   };
1461 //
1462 // Then the user creates the polymorphic action using
1463 // MakePolymorphicAction(object) where object has type FooAction.  See
1464 // the definition of Return(void) and SetArgumentPointee<N>(value) for
1465 // complete examples.
1466 template <typename Impl>
1467 class PolymorphicAction {
1468  public:
1469   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
1470 
1471   template <typename F>
1472   operator Action<F>() const {
1473     return Action<F>(new MonomorphicImpl<F>(impl_));
1474   }
1475 
1476  private:
1477   template <typename F>
1478   class MonomorphicImpl : public ActionInterface<F> {
1479    public:
1480     typedef typename internal::Function<F>::Result Result;
1481     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1482 
1483     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
1484 
1485     Result Perform(const ArgumentTuple& args) override {
1486       return impl_.template Perform<Result>(args);
1487     }
1488 
1489    private:
1490     Impl impl_;
1491   };
1492 
1493   Impl impl_;
1494 };
1495 
1496 // Creates an Action from its implementation and returns it.  The
1497 // created Action object owns the implementation.
1498 template <typename F>
1499 Action<F> MakeAction(ActionInterface<F>* impl) {
1500   return Action<F>(impl);
1501 }
1502 
1503 // Creates a polymorphic action from its implementation.  This is
1504 // easier to use than the PolymorphicAction<Impl> constructor as it
1505 // doesn't require you to explicitly write the template argument, e.g.
1506 //
1507 //   MakePolymorphicAction(foo);
1508 // vs
1509 //   PolymorphicAction<TypeOfFoo>(foo);
1510 template <typename Impl>
1511 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
1512   return PolymorphicAction<Impl>(impl);
1513 }
1514 
1515 namespace internal {
1516 
1517 // Helper struct to specialize ReturnAction to execute a move instead of a copy
1518 // on return. Useful for move-only types, but could be used on any type.
1519 template <typename T>
1520 struct ByMoveWrapper {
1521   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
1522   T payload;
1523 };
1524 
1525 // Implements the polymorphic Return(x) action, which can be used in
1526 // any function that returns the type of x, regardless of the argument
1527 // types.
1528 //
1529 // Note: The value passed into Return must be converted into
1530 // Function<F>::Result when this action is cast to Action<F> rather than
1531 // when that action is performed. This is important in scenarios like
1532 //
1533 // MOCK_METHOD1(Method, T(U));
1534 // ...
1535 // {
1536 //   Foo foo;
1537 //   X x(&foo);
1538 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
1539 // }
1540 //
1541 // In the example above the variable x holds reference to foo which leaves
1542 // scope and gets destroyed.  If copying X just copies a reference to foo,
1543 // that copy will be left with a hanging reference.  If conversion to T
1544 // makes a copy of foo, the above code is safe. To support that scenario, we
1545 // need to make sure that the type conversion happens inside the EXPECT_CALL
1546 // statement, and conversion of the result of Return to Action<T(U)> is a
1547 // good place for that.
1548 //
1549 // The real life example of the above scenario happens when an invocation
1550 // of gtl::Container() is passed into Return.
1551 //
1552 template <typename R>
1553 class ReturnAction {
1554  public:
1555   // Constructs a ReturnAction object from the value to be returned.
1556   // 'value' is passed by value instead of by const reference in order
1557   // to allow Return("string literal") to compile.
1558   explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
1559 
1560   // This template type conversion operator allows Return(x) to be
1561   // used in ANY function that returns x's type.
1562   template <typename F>
1563   operator Action<F>() const {  // NOLINT
1564     // Assert statement belongs here because this is the best place to verify
1565     // conditions on F. It produces the clearest error messages
1566     // in most compilers.
1567     // Impl really belongs in this scope as a local class but can't
1568     // because MSVC produces duplicate symbols in different translation units
1569     // in this case. Until MS fixes that bug we put Impl into the class scope
1570     // and put the typedef both here (for use in assert statement) and
1571     // in the Impl class. But both definitions must be the same.
1572     typedef typename Function<F>::Result Result;
1573     GTEST_COMPILE_ASSERT_(
1574         !std::is_reference<Result>::value,
1575         use_ReturnRef_instead_of_Return_to_return_a_reference);
1576     static_assert(!std::is_void<Result>::value,
1577                   "Can't use Return() on an action expected to return `void`.");
1578     return Action<F>(new Impl<R, F>(value_));
1579   }
1580 
1581  private:
1582   // Implements the Return(x) action for a particular function type F.
1583   template <typename R_, typename F>
1584   class Impl : public ActionInterface<F> {
1585    public:
1586     typedef typename Function<F>::Result Result;
1587     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1588 
1589     // The implicit cast is necessary when Result has more than one
1590     // single-argument constructor (e.g. Result is std::vector<int>) and R
1591     // has a type conversion operator template.  In that case, value_(value)
1592     // won't compile as the compiler doesn't known which constructor of
1593     // Result to call.  ImplicitCast_ forces the compiler to convert R to
1594     // Result without considering explicit constructors, thus resolving the
1595     // ambiguity. value_ is then initialized using its copy constructor.
1596     explicit Impl(const std::shared_ptr<R>& value)
1597         : value_before_cast_(*value),
1598           value_(ImplicitCast_<Result>(value_before_cast_)) {}
1599 
1600     Result Perform(const ArgumentTuple&) override { return value_; }
1601 
1602    private:
1603     GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
1604                           Result_cannot_be_a_reference_type);
1605     // We save the value before casting just in case it is being cast to a
1606     // wrapper type.
1607     R value_before_cast_;
1608     Result value_;
1609 
1610     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
1611   };
1612 
1613   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
1614   // move its contents instead.
1615   template <typename R_, typename F>
1616   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
1617    public:
1618     typedef typename Function<F>::Result Result;
1619     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1620 
1621     explicit Impl(const std::shared_ptr<R>& wrapper)
1622         : performed_(false), wrapper_(wrapper) {}
1623 
1624     Result Perform(const ArgumentTuple&) override {
1625       GTEST_CHECK_(!performed_)
1626           << "A ByMove() action should only be performed once.";
1627       performed_ = true;
1628       return std::move(wrapper_->payload);
1629     }
1630 
1631    private:
1632     bool performed_;
1633     const std::shared_ptr<R> wrapper_;
1634   };
1635 
1636   const std::shared_ptr<R> value_;
1637 };
1638 
1639 // Implements the ReturnNull() action.
1640 class ReturnNullAction {
1641  public:
1642   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
1643   // this is enforced by returning nullptr, and in non-C++11 by asserting a
1644   // pointer type on compile time.
1645   template <typename Result, typename ArgumentTuple>
1646   static Result Perform(const ArgumentTuple&) {
1647     return nullptr;
1648   }
1649 };
1650 
1651 // Implements the Return() action.
1652 class ReturnVoidAction {
1653  public:
1654   // Allows Return() to be used in any void-returning function.
1655   template <typename Result, typename ArgumentTuple>
1656   static void Perform(const ArgumentTuple&) {
1657     static_assert(std::is_void<Result>::value, "Result should be void.");
1658   }
1659 };
1660 
1661 // Implements the polymorphic ReturnRef(x) action, which can be used
1662 // in any function that returns a reference to the type of x,
1663 // regardless of the argument types.
1664 template <typename T>
1665 class ReturnRefAction {
1666  public:
1667   // Constructs a ReturnRefAction object from the reference to be returned.
1668   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
1669 
1670   // This template type conversion operator allows ReturnRef(x) to be
1671   // used in ANY function that returns a reference to x's type.
1672   template <typename F>
1673   operator Action<F>() const {
1674     typedef typename Function<F>::Result Result;
1675     // Asserts that the function return type is a reference.  This
1676     // catches the user error of using ReturnRef(x) when Return(x)
1677     // should be used, and generates some helpful error message.
1678     GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
1679                           use_Return_instead_of_ReturnRef_to_return_a_value);
1680     return Action<F>(new Impl<F>(ref_));
1681   }
1682 
1683  private:
1684   // Implements the ReturnRef(x) action for a particular function type F.
1685   template <typename F>
1686   class Impl : public ActionInterface<F> {
1687    public:
1688     typedef typename Function<F>::Result Result;
1689     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1690 
1691     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
1692 
1693     Result Perform(const ArgumentTuple&) override { return ref_; }
1694 
1695    private:
1696     T& ref_;
1697   };
1698 
1699   T& ref_;
1700 };
1701 
1702 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
1703 // used in any function that returns a reference to the type of x,
1704 // regardless of the argument types.
1705 template <typename T>
1706 class ReturnRefOfCopyAction {
1707  public:
1708   // Constructs a ReturnRefOfCopyAction object from the reference to
1709   // be returned.
1710   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
1711 
1712   // This template type conversion operator allows ReturnRefOfCopy(x) to be
1713   // used in ANY function that returns a reference to x's type.
1714   template <typename F>
1715   operator Action<F>() const {
1716     typedef typename Function<F>::Result Result;
1717     // Asserts that the function return type is a reference.  This
1718     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
1719     // should be used, and generates some helpful error message.
1720     GTEST_COMPILE_ASSERT_(
1721         std::is_reference<Result>::value,
1722         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
1723     return Action<F>(new Impl<F>(value_));
1724   }
1725 
1726  private:
1727   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
1728   template <typename F>
1729   class Impl : public ActionInterface<F> {
1730    public:
1731     typedef typename Function<F>::Result Result;
1732     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1733 
1734     explicit Impl(const T& value) : value_(value) {}  // NOLINT
1735 
1736     Result Perform(const ArgumentTuple&) override { return value_; }
1737 
1738    private:
1739     T value_;
1740   };
1741 
1742   const T value_;
1743 };
1744 
1745 // Implements the polymorphic ReturnRoundRobin(v) action, which can be
1746 // used in any function that returns the element_type of v.
1747 template <typename T>
1748 class ReturnRoundRobinAction {
1749  public:
1750   explicit ReturnRoundRobinAction(std::vector<T> values) {
1751     GTEST_CHECK_(!values.empty())
1752         << "ReturnRoundRobin requires at least one element.";
1753     state_->values = std::move(values);
1754   }
1755 
1756   template <typename... Args>
1757   T operator()(Args&&...) const {
1758      return state_->Next();
1759   }
1760 
1761  private:
1762   struct State {
1763     T Next() {
1764       T ret_val = values[i++];
1765       if (i == values.size()) i = 0;
1766       return ret_val;
1767     }
1768 
1769     std::vector<T> values;
1770     size_t i = 0;
1771   };
1772   std::shared_ptr<State> state_ = std::make_shared<State>();
1773 };
1774 
1775 // Implements the polymorphic DoDefault() action.
1776 class DoDefaultAction {
1777  public:
1778   // This template type conversion operator allows DoDefault() to be
1779   // used in any function.
1780   template <typename F>
1781   operator Action<F>() const { return Action<F>(); }  // NOLINT
1782 };
1783 
1784 // Implements the Assign action to set a given pointer referent to a
1785 // particular value.
1786 template <typename T1, typename T2>
1787 class AssignAction {
1788  public:
1789   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
1790 
1791   template <typename Result, typename ArgumentTuple>
1792   void Perform(const ArgumentTuple& /* args */) const {
1793     *ptr_ = value_;
1794   }
1795 
1796  private:
1797   T1* const ptr_;
1798   const T2 value_;
1799 };
1800 
1801 #if !GTEST_OS_WINDOWS_MOBILE
1802 
1803 // Implements the SetErrnoAndReturn action to simulate return from
1804 // various system calls and libc functions.
1805 template <typename T>
1806 class SetErrnoAndReturnAction {
1807  public:
1808   SetErrnoAndReturnAction(int errno_value, T result)
1809       : errno_(errno_value),
1810         result_(result) {}
1811   template <typename Result, typename ArgumentTuple>
1812   Result Perform(const ArgumentTuple& /* args */) const {
1813     errno = errno_;
1814     return result_;
1815   }
1816 
1817  private:
1818   const int errno_;
1819   const T result_;
1820 };
1821 
1822 #endif  // !GTEST_OS_WINDOWS_MOBILE
1823 
1824 // Implements the SetArgumentPointee<N>(x) action for any function
1825 // whose N-th argument (0-based) is a pointer to x's type.
1826 template <size_t N, typename A, typename = void>
1827 struct SetArgumentPointeeAction {
1828   A value;
1829 
1830   template <typename... Args>
1831   void operator()(const Args&... args) const {
1832     *::std::get<N>(std::tie(args...)) = value;
1833   }
1834 };
1835 
1836 // Implements the Invoke(object_ptr, &Class::Method) action.
1837 template <class Class, typename MethodPtr>
1838 struct InvokeMethodAction {
1839   Class* const obj_ptr;
1840   const MethodPtr method_ptr;
1841 
1842   template <typename... Args>
1843   auto operator()(Args&&... args) const
1844       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
1845     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
1846   }
1847 };
1848 
1849 // Implements the InvokeWithoutArgs(f) action.  The template argument
1850 // FunctionImpl is the implementation type of f, which can be either a
1851 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
1852 // Action<F> as long as f's type is compatible with F.
1853 template <typename FunctionImpl>
1854 struct InvokeWithoutArgsAction {
1855   FunctionImpl function_impl;
1856 
1857   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
1858   // compatible with f.
1859   template <typename... Args>
1860   auto operator()(const Args&...) -> decltype(function_impl()) {
1861     return function_impl();
1862   }
1863 };
1864 
1865 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
1866 template <class Class, typename MethodPtr>
1867 struct InvokeMethodWithoutArgsAction {
1868   Class* const obj_ptr;
1869   const MethodPtr method_ptr;
1870 
1871   using ReturnType =
1872       decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
1873 
1874   template <typename... Args>
1875   ReturnType operator()(const Args&...) const {
1876     return (obj_ptr->*method_ptr)();
1877   }
1878 };
1879 
1880 // Implements the IgnoreResult(action) action.
1881 template <typename A>
1882 class IgnoreResultAction {
1883  public:
1884   explicit IgnoreResultAction(const A& action) : action_(action) {}
1885 
1886   template <typename F>
1887   operator Action<F>() const {
1888     // Assert statement belongs here because this is the best place to verify
1889     // conditions on F. It produces the clearest error messages
1890     // in most compilers.
1891     // Impl really belongs in this scope as a local class but can't
1892     // because MSVC produces duplicate symbols in different translation units
1893     // in this case. Until MS fixes that bug we put Impl into the class scope
1894     // and put the typedef both here (for use in assert statement) and
1895     // in the Impl class. But both definitions must be the same.
1896     typedef typename internal::Function<F>::Result Result;
1897 
1898     // Asserts at compile time that F returns void.
1899     static_assert(std::is_void<Result>::value, "Result type should be void.");
1900 
1901     return Action<F>(new Impl<F>(action_));
1902   }
1903 
1904  private:
1905   template <typename F>
1906   class Impl : public ActionInterface<F> {
1907    public:
1908     typedef typename internal::Function<F>::Result Result;
1909     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1910 
1911     explicit Impl(const A& action) : action_(action) {}
1912 
1913     void Perform(const ArgumentTuple& args) override {
1914       // Performs the action and ignores its result.
1915       action_.Perform(args);
1916     }
1917 
1918    private:
1919     // Type OriginalFunction is the same as F except that its return
1920     // type is IgnoredValue.
1921     typedef typename internal::Function<F>::MakeResultIgnoredValue
1922         OriginalFunction;
1923 
1924     const Action<OriginalFunction> action_;
1925   };
1926 
1927   const A action_;
1928 };
1929 
1930 template <typename InnerAction, size_t... I>
1931 struct WithArgsAction {
1932   InnerAction action;
1933 
1934   // The inner action could be anything convertible to Action<X>.
1935   // We use the conversion operator to detect the signature of the inner Action.
1936   template <typename R, typename... Args>
1937   operator Action<R(Args...)>() const {  // NOLINT
1938     using TupleType = std::tuple<Args...>;
1939     Action<R(typename std::tuple_element<I, TupleType>::type...)>
1940         converted(action);
1941 
1942     return [converted](Args... args) -> R {
1943       return converted.Perform(std::forward_as_tuple(
1944         std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1945     };
1946   }
1947 };
1948 
1949 template <typename... Actions>
1950 struct DoAllAction {
1951  private:
1952   template <typename T>
1953   using NonFinalType =
1954       typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1955 
1956   template <typename ActionT, size_t... I>
1957   std::vector<ActionT> Convert(IndexSequence<I...>) const {
1958     return {ActionT(std::get<I>(actions))...};
1959   }
1960 
1961  public:
1962   std::tuple<Actions...> actions;
1963 
1964   template <typename R, typename... Args>
1965   operator Action<R(Args...)>() const {  // NOLINT
1966     struct Op {
1967       std::vector<Action<void(NonFinalType<Args>...)>> converted;
1968       Action<R(Args...)> last;
1969       R operator()(Args... args) const {
1970         auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
1971         for (auto& a : converted) {
1972           a.Perform(tuple_args);
1973         }
1974         return last.Perform(std::move(tuple_args));
1975       }
1976     };
1977     return Op{Convert<Action<void(NonFinalType<Args>...)>>(
1978                   MakeIndexSequence<sizeof...(Actions) - 1>()),
1979               std::get<sizeof...(Actions) - 1>(actions)};
1980   }
1981 };
1982 
1983 template <typename T, typename... Params>
1984 struct ReturnNewAction {
1985   T* operator()() const {
1986     return internal::Apply(
1987         [](const Params&... unpacked_params) {
1988           return new T(unpacked_params...);
1989         },
1990         params);
1991   }
1992   std::tuple<Params...> params;
1993 };
1994 
1995 template <size_t k>
1996 struct ReturnArgAction {
1997   template <typename... Args>
1998   auto operator()(const Args&... args) const ->
1999       typename std::tuple_element<k, std::tuple<Args...>>::type {
2000     return std::get<k>(std::tie(args...));
2001   }
2002 };
2003 
2004 template <size_t k, typename Ptr>
2005 struct SaveArgAction {
2006   Ptr pointer;
2007 
2008   template <typename... Args>
2009   void operator()(const Args&... args) const {
2010     *pointer = std::get<k>(std::tie(args...));
2011   }
2012 };
2013 
2014 template <size_t k, typename Ptr>
2015 struct SaveArgPointeeAction {
2016   Ptr pointer;
2017 
2018   template <typename... Args>
2019   void operator()(const Args&... args) const {
2020     *pointer = *std::get<k>(std::tie(args...));
2021   }
2022 };
2023 
2024 template <size_t k, typename T>
2025 struct SetArgRefereeAction {
2026   T value;
2027 
2028   template <typename... Args>
2029   void operator()(Args&&... args) const {
2030     using argk_type =
2031         typename ::std::tuple_element<k, std::tuple<Args...>>::type;
2032     static_assert(std::is_lvalue_reference<argk_type>::value,
2033                   "Argument must be a reference type.");
2034     std::get<k>(std::tie(args...)) = value;
2035   }
2036 };
2037 
2038 template <size_t k, typename I1, typename I2>
2039 struct SetArrayArgumentAction {
2040   I1 first;
2041   I2 last;
2042 
2043   template <typename... Args>
2044   void operator()(const Args&... args) const {
2045     auto value = std::get<k>(std::tie(args...));
2046     for (auto it = first; it != last; ++it, (void)++value) {
2047       *value = *it;
2048     }
2049   }
2050 };
2051 
2052 template <size_t k>
2053 struct DeleteArgAction {
2054   template <typename... Args>
2055   void operator()(const Args&... args) const {
2056     delete std::get<k>(std::tie(args...));
2057   }
2058 };
2059 
2060 template <typename Ptr>
2061 struct ReturnPointeeAction {
2062   Ptr pointer;
2063   template <typename... Args>
2064   auto operator()(const Args&...) const -> decltype(*pointer) {
2065     return *pointer;
2066   }
2067 };
2068 
2069 #if GTEST_HAS_EXCEPTIONS
2070 template <typename T>
2071 struct ThrowAction {
2072   T exception;
2073   // We use a conversion operator to adapt to any return type.
2074   template <typename R, typename... Args>
2075   operator Action<R(Args...)>() const {  // NOLINT
2076     T copy = exception;
2077     return [copy](Args...) -> R { throw copy; };
2078   }
2079 };
2080 #endif  // GTEST_HAS_EXCEPTIONS
2081 
2082 }  // namespace internal
2083 
2084 // An Unused object can be implicitly constructed from ANY value.
2085 // This is handy when defining actions that ignore some or all of the
2086 // mock function arguments.  For example, given
2087 //
2088 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
2089 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
2090 //
2091 // instead of
2092 //
2093 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
2094 //     return sqrt(x*x + y*y);
2095 //   }
2096 //   double DistanceToOriginWithIndex(int index, double x, double y) {
2097 //     return sqrt(x*x + y*y);
2098 //   }
2099 //   ...
2100 //   EXPECT_CALL(mock, Foo("abc", _, _))
2101 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
2102 //   EXPECT_CALL(mock, Bar(5, _, _))
2103 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
2104 //
2105 // you could write
2106 //
2107 //   // We can declare any uninteresting argument as Unused.
2108 //   double DistanceToOrigin(Unused, double x, double y) {
2109 //     return sqrt(x*x + y*y);
2110 //   }
2111 //   ...
2112 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
2113 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
2114 typedef internal::IgnoredValue Unused;
2115 
2116 // Creates an action that does actions a1, a2, ..., sequentially in
2117 // each invocation. All but the last action will have a readonly view of the
2118 // arguments.
2119 template <typename... Action>
2120 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
2121     Action&&... action) {
2122   return {std::forward_as_tuple(std::forward<Action>(action)...)};
2123 }
2124 
2125 // WithArg<k>(an_action) creates an action that passes the k-th
2126 // (0-based) argument of the mock function to an_action and performs
2127 // it.  It adapts an action accepting one argument to one that accepts
2128 // multiple arguments.  For convenience, we also provide
2129 // WithArgs<k>(an_action) (defined below) as a synonym.
2130 template <size_t k, typename InnerAction>
2131 internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
2132 WithArg(InnerAction&& action) {
2133   return {std::forward<InnerAction>(action)};
2134 }
2135 
2136 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
2137 // the selected arguments of the mock function to an_action and
2138 // performs it.  It serves as an adaptor between actions with
2139 // different argument lists.
2140 template <size_t k, size_t... ks, typename InnerAction>
2141 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
2142 WithArgs(InnerAction&& action) {
2143   return {std::forward<InnerAction>(action)};
2144 }
2145 
2146 // WithoutArgs(inner_action) can be used in a mock function with a
2147 // non-empty argument list to perform inner_action, which takes no
2148 // argument.  In other words, it adapts an action accepting no
2149 // argument to one that accepts (and ignores) arguments.
2150 template <typename InnerAction>
2151 internal::WithArgsAction<typename std::decay<InnerAction>::type>
2152 WithoutArgs(InnerAction&& action) {
2153   return {std::forward<InnerAction>(action)};
2154 }
2155 
2156 // Creates an action that returns 'value'.  'value' is passed by value
2157 // instead of const reference - otherwise Return("string literal")
2158 // will trigger a compiler error about using array as initializer.
2159 template <typename R>
2160 internal::ReturnAction<R> Return(R value) {
2161   return internal::ReturnAction<R>(std::move(value));
2162 }
2163 
2164 // Creates an action that returns NULL.
2165 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
2166   return MakePolymorphicAction(internal::ReturnNullAction());
2167 }
2168 
2169 // Creates an action that returns from a void function.
2170 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
2171   return MakePolymorphicAction(internal::ReturnVoidAction());
2172 }
2173 
2174 // Creates an action that returns the reference to a variable.
2175 template <typename R>
2176 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
2177   return internal::ReturnRefAction<R>(x);
2178 }
2179 
2180 // Prevent using ReturnRef on reference to temporary.
2181 template <typename R, R* = nullptr>
2182 internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
2183 
2184 // Creates an action that returns the reference to a copy of the
2185 // argument.  The copy is created when the action is constructed and
2186 // lives as long as the action.
2187 template <typename R>
2188 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
2189   return internal::ReturnRefOfCopyAction<R>(x);
2190 }
2191 
2192 // Modifies the parent action (a Return() action) to perform a move of the
2193 // argument instead of a copy.
2194 // Return(ByMove()) actions can only be executed once and will assert this
2195 // invariant.
2196 template <typename R>
2197 internal::ByMoveWrapper<R> ByMove(R x) {
2198   return internal::ByMoveWrapper<R>(std::move(x));
2199 }
2200 
2201 // Creates an action that returns an element of `vals`. Calling this action will
2202 // repeatedly return the next value from `vals` until it reaches the end and
2203 // will restart from the beginning.
2204 template <typename T>
2205 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
2206   return internal::ReturnRoundRobinAction<T>(std::move(vals));
2207 }
2208 
2209 // Creates an action that returns an element of `vals`. Calling this action will
2210 // repeatedly return the next value from `vals` until it reaches the end and
2211 // will restart from the beginning.
2212 template <typename T>
2213 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
2214     std::initializer_list<T> vals) {
2215   return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
2216 }
2217 
2218 // Creates an action that does the default action for the give mock function.
2219 inline internal::DoDefaultAction DoDefault() {
2220   return internal::DoDefaultAction();
2221 }
2222 
2223 // Creates an action that sets the variable pointed by the N-th
2224 // (0-based) function argument to 'value'.
2225 template <size_t N, typename T>
2226 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
2227   return {std::move(value)};
2228 }
2229 
2230 // The following version is DEPRECATED.
2231 template <size_t N, typename T>
2232 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
2233   return {std::move(value)};
2234 }
2235 
2236 // Creates an action that sets a pointer referent to a given value.
2237 template <typename T1, typename T2>
2238 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
2239   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
2240 }
2241 
2242 #if !GTEST_OS_WINDOWS_MOBILE
2243 
2244 // Creates an action that sets errno and returns the appropriate error.
2245 template <typename T>
2246 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
2247 SetErrnoAndReturn(int errval, T result) {
2248   return MakePolymorphicAction(
2249       internal::SetErrnoAndReturnAction<T>(errval, result));
2250 }
2251 
2252 #endif  // !GTEST_OS_WINDOWS_MOBILE
2253 
2254 // Various overloads for Invoke().
2255 
2256 // Legacy function.
2257 // Actions can now be implicitly constructed from callables. No need to create
2258 // wrapper objects.
2259 // This function exists for backwards compatibility.
2260 template <typename FunctionImpl>
2261 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
2262   return std::forward<FunctionImpl>(function_impl);
2263 }
2264 
2265 // Creates an action that invokes the given method on the given object
2266 // with the mock function's arguments.
2267 template <class Class, typename MethodPtr>
2268 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
2269                                                       MethodPtr method_ptr) {
2270   return {obj_ptr, method_ptr};
2271 }
2272 
2273 // Creates an action that invokes 'function_impl' with no argument.
2274 template <typename FunctionImpl>
2275 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
2276 InvokeWithoutArgs(FunctionImpl function_impl) {
2277   return {std::move(function_impl)};
2278 }
2279 
2280 // Creates an action that invokes the given method on the given object
2281 // with no argument.
2282 template <class Class, typename MethodPtr>
2283 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
2284     Class* obj_ptr, MethodPtr method_ptr) {
2285   return {obj_ptr, method_ptr};
2286 }
2287 
2288 // Creates an action that performs an_action and throws away its
2289 // result.  In other words, it changes the return type of an_action to
2290 // void.  an_action MUST NOT return void, or the code won't compile.
2291 template <typename A>
2292 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
2293   return internal::IgnoreResultAction<A>(an_action);
2294 }
2295 
2296 // Creates a reference wrapper for the given L-value.  If necessary,
2297 // you can explicitly specify the type of the reference.  For example,
2298 // suppose 'derived' is an object of type Derived, ByRef(derived)
2299 // would wrap a Derived&.  If you want to wrap a const Base& instead,
2300 // where Base is a base class of Derived, just write:
2301 //
2302 //   ByRef<const Base>(derived)
2303 //
2304 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
2305 // However, it may still be used for consistency with ByMove().
2306 template <typename T>
2307 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
2308   return ::std::reference_wrapper<T>(l_value);
2309 }
2310 
2311 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
2312 // instance of type T, constructed on the heap with constructor arguments
2313 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
2314 template <typename T, typename... Params>
2315 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
2316     Params&&... params) {
2317   return {std::forward_as_tuple(std::forward<Params>(params)...)};
2318 }
2319 
2320 // Action ReturnArg<k>() returns the k-th argument of the mock function.
2321 template <size_t k>
2322 internal::ReturnArgAction<k> ReturnArg() {
2323   return {};
2324 }
2325 
2326 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
2327 // mock function to *pointer.
2328 template <size_t k, typename Ptr>
2329 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
2330   return {pointer};
2331 }
2332 
2333 // Action SaveArgPointee<k>(pointer) saves the value pointed to
2334 // by the k-th (0-based) argument of the mock function to *pointer.
2335 template <size_t k, typename Ptr>
2336 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
2337   return {pointer};
2338 }
2339 
2340 // Action SetArgReferee<k>(value) assigns 'value' to the variable
2341 // referenced by the k-th (0-based) argument of the mock function.
2342 template <size_t k, typename T>
2343 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
2344     T&& value) {
2345   return {std::forward<T>(value)};
2346 }
2347 
2348 // Action SetArrayArgument<k>(first, last) copies the elements in
2349 // source range [first, last) to the array pointed to by the k-th
2350 // (0-based) argument, which can be either a pointer or an
2351 // iterator. The action does not take ownership of the elements in the
2352 // source range.
2353 template <size_t k, typename I1, typename I2>
2354 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
2355                                                              I2 last) {
2356   return {first, last};
2357 }
2358 
2359 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
2360 // function.
2361 template <size_t k>
2362 internal::DeleteArgAction<k> DeleteArg() {
2363   return {};
2364 }
2365 
2366 // This action returns the value pointed to by 'pointer'.
2367 template <typename Ptr>
2368 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
2369   return {pointer};
2370 }
2371 
2372 // Action Throw(exception) can be used in a mock function of any type
2373 // to throw the given exception.  Any copyable value can be thrown.
2374 #if GTEST_HAS_EXCEPTIONS
2375 template <typename T>
2376 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
2377   return {std::forward<T>(exception)};
2378 }
2379 #endif  // GTEST_HAS_EXCEPTIONS
2380 
2381 namespace internal {
2382 
2383 // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
2384 // defines an action that can be used in a mock function.  Typically,
2385 // these actions only care about a subset of the arguments of the mock
2386 // function.  For example, if such an action only uses the second
2387 // argument, it can be used in any mock function that takes >= 2
2388 // arguments where the type of the second argument is compatible.
2389 //
2390 // Therefore, the action implementation must be prepared to take more
2391 // arguments than it needs.  The ExcessiveArg type is used to
2392 // represent those excessive arguments.  In order to keep the compiler
2393 // error messages tractable, we define it in the testing namespace
2394 // instead of testing::internal.  However, this is an INTERNAL TYPE
2395 // and subject to change without notice, so a user MUST NOT USE THIS
2396 // TYPE DIRECTLY.
2397 struct ExcessiveArg {};
2398 
2399 // Builds an implementation of an Action<> for some particular signature, using
2400 // a class defined by an ACTION* macro.
2401 template <typename F, typename Impl> struct ActionImpl;
2402 
2403 template <typename Impl>
2404 struct ImplBase {
2405   struct Holder {
2406     // Allows each copy of the Action<> to get to the Impl.
2407     explicit operator const Impl&() const { return *ptr; }
2408     std::shared_ptr<Impl> ptr;
2409   };
2410   using type = typename std::conditional<std::is_constructible<Impl>::value,
2411                                          Impl, Holder>::type;
2412 };
2413 
2414 template <typename R, typename... Args, typename Impl>
2415 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
2416   using Base = typename ImplBase<Impl>::type;
2417   using function_type = R(Args...);
2418   using args_type = std::tuple<Args...>;
2419 
2420   ActionImpl() = default;  // Only defined if appropriate for Base.
2421   explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
2422 
2423   R operator()(Args&&... arg) const {
2424     static constexpr size_t kMaxArgs =
2425         sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
2426     return Apply(MakeIndexSequence<kMaxArgs>{},
2427                  MakeIndexSequence<10 - kMaxArgs>{},
2428                  args_type{std::forward<Args>(arg)...});
2429   }
2430 
2431   template <std::size_t... arg_id, std::size_t... excess_id>
2432   R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
2433           const args_type& args) const {
2434     // Impl need not be specific to the signature of action being implemented;
2435     // only the implementing function body needs to have all of the specific
2436     // types instantiated.  Up to 10 of the args that are provided by the
2437     // args_type get passed, followed by a dummy of unspecified type for the
2438     // remainder up to 10 explicit args.
2439     static constexpr ExcessiveArg kExcessArg{};
2440     return static_cast<const Impl&>(*this).template gmock_PerformImpl<
2441         /*function_type=*/function_type, /*return_type=*/R,
2442         /*args_type=*/args_type,
2443         /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>(
2444         /*args=*/args, std::get<arg_id>(args)...,
2445         ((void)excess_id, kExcessArg)...);
2446   }
2447 };
2448 
2449 // Stores a default-constructed Impl as part of the Action<>'s
2450 // std::function<>. The Impl should be trivial to copy.
2451 template <typename F, typename Impl>
2452 ::testing::Action<F> MakeAction() {
2453   return ::testing::Action<F>(ActionImpl<F, Impl>());
2454 }
2455 
2456 // Stores just the one given instance of Impl.
2457 template <typename F, typename Impl>
2458 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
2459   return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
2460 }
2461 
2462 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
2463   , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
2464 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_           \
2465   const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
2466       GMOCK_INTERNAL_ARG_UNUSED, , 10)
2467 
2468 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
2469 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
2470   const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
2471 
2472 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
2473 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
2474   GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
2475 
2476 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
2477 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
2478   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
2479 
2480 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
2481 #define GMOCK_ACTION_TYPE_PARAMS_(params) \
2482   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
2483 
2484 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
2485   , param##_type gmock_p##i
2486 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
2487   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
2488 
2489 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
2490   , std::forward<param##_type>(gmock_p##i)
2491 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
2492   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
2493 
2494 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
2495   , param(::std::forward<param##_type>(gmock_p##i))
2496 #define GMOCK_ACTION_INIT_PARAMS_(params) \
2497   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
2498 
2499 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
2500 #define GMOCK_ACTION_FIELD_PARAMS_(params) \
2501   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
2502 
2503 #define GMOCK_INTERNAL_ACTION(name, full_name, params)                        \
2504   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
2505   class full_name {                                                           \
2506    public:                                                                    \
2507     explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))              \
2508         : impl_(std::make_shared<gmock_Impl>(                                 \
2509                 GMOCK_ACTION_GVALUE_PARAMS_(params))) { }                     \
2510     full_name(const full_name&) = default;                                    \
2511     full_name(full_name&&) noexcept = default;                                \
2512     template <typename F>                                                     \
2513     operator ::testing::Action<F>() const {                                   \
2514       return ::testing::internal::MakeAction<F>(impl_);                       \
2515     }                                                                         \
2516    private:                                                                   \
2517     class gmock_Impl {                                                        \
2518      public:                                                                  \
2519       explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))           \
2520           : GMOCK_ACTION_INIT_PARAMS_(params) {}                              \
2521       template <typename function_type, typename return_type,                 \
2522                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
2523       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2524       GMOCK_ACTION_FIELD_PARAMS_(params)                                      \
2525     };                                                                        \
2526     std::shared_ptr<const gmock_Impl> impl_;                                  \
2527   };                                                                          \
2528   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
2529   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                   \
2530       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                             \
2531     return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                      \
2532         GMOCK_ACTION_GVALUE_PARAMS_(params));                                 \
2533   }                                                                           \
2534   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
2535   template <typename function_type, typename return_type, typename args_type, \
2536             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
2537   return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::      \
2538   gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2539 
2540 }  // namespace internal
2541 
2542 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
2543 #define ACTION(name)                                                          \
2544   class name##Action {                                                        \
2545    public:                                                                    \
2546    explicit name##Action() noexcept {}                                        \
2547    name##Action(const name##Action&) noexcept {}                              \
2548     template <typename F>                                                     \
2549     operator ::testing::Action<F>() const {                                   \
2550       return ::testing::internal::MakeAction<F, gmock_Impl>();                \
2551     }                                                                         \
2552    private:                                                                   \
2553     class gmock_Impl {                                                        \
2554      public:                                                                  \
2555       template <typename function_type, typename return_type,                 \
2556                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
2557       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2558     };                                                                        \
2559   };                                                                          \
2560   inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
2561   inline name##Action name() { return name##Action(); }                       \
2562   template <typename function_type, typename return_type, typename args_type, \
2563             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
2564   return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \
2565       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2566 
2567 #define ACTION_P(name, ...) \
2568   GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
2569 
2570 #define ACTION_P2(name, ...) \
2571   GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
2572 
2573 #define ACTION_P3(name, ...) \
2574   GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
2575 
2576 #define ACTION_P4(name, ...) \
2577   GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
2578 
2579 #define ACTION_P5(name, ...) \
2580   GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
2581 
2582 #define ACTION_P6(name, ...) \
2583   GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
2584 
2585 #define ACTION_P7(name, ...) \
2586   GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
2587 
2588 #define ACTION_P8(name, ...) \
2589   GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
2590 
2591 #define ACTION_P9(name, ...) \
2592   GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
2593 
2594 #define ACTION_P10(name, ...) \
2595   GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
2596 
2597 }  // namespace testing
2598 
2599 #ifdef _MSC_VER
2600 # pragma warning(pop)
2601 #endif
2602 
2603 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
2604 // Copyright 2007, Google Inc.
2605 // All rights reserved.
2606 //
2607 // Redistribution and use in source and binary forms, with or without
2608 // modification, are permitted provided that the following conditions are
2609 // met:
2610 //
2611 //     * Redistributions of source code must retain the above copyright
2612 // notice, this list of conditions and the following disclaimer.
2613 //     * Redistributions in binary form must reproduce the above
2614 // copyright notice, this list of conditions and the following disclaimer
2615 // in the documentation and/or other materials provided with the
2616 // distribution.
2617 //     * Neither the name of Google Inc. nor the names of its
2618 // contributors may be used to endorse or promote products derived from
2619 // this software without specific prior written permission.
2620 //
2621 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2622 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2623 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2624 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2625 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2626 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2627 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2628 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2629 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2630 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2631 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2632 
2633 
2634 // Google Mock - a framework for writing C++ mock classes.
2635 //
2636 // This file implements some commonly used cardinalities.  More
2637 // cardinalities can be defined by the user implementing the
2638 // CardinalityInterface interface if necessary.
2639 
2640 // GOOGLETEST_CM0002 DO NOT DELETE
2641 
2642 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
2643 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
2644 
2645 #include <limits.h>
2646 #include <memory>
2647 #include <ostream>  // NOLINT
2648 
2649 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
2650 /* class A needs to have dll-interface to be used by clients of class B */)
2651 
2652 namespace testing {
2653 
2654 // To implement a cardinality Foo, define:
2655 //   1. a class FooCardinality that implements the
2656 //      CardinalityInterface interface, and
2657 //   2. a factory function that creates a Cardinality object from a
2658 //      const FooCardinality*.
2659 //
2660 // The two-level delegation design follows that of Matcher, providing
2661 // consistency for extension developers.  It also eases ownership
2662 // management as Cardinality objects can now be copied like plain values.
2663 
2664 // The implementation of a cardinality.
2665 class CardinalityInterface {
2666  public:
2667   virtual ~CardinalityInterface() {}
2668 
2669   // Conservative estimate on the lower/upper bound of the number of
2670   // calls allowed.
2671   virtual int ConservativeLowerBound() const { return 0; }
2672   virtual int ConservativeUpperBound() const { return INT_MAX; }
2673 
2674   // Returns true if and only if call_count calls will satisfy this
2675   // cardinality.
2676   virtual bool IsSatisfiedByCallCount(int call_count) const = 0;
2677 
2678   // Returns true if and only if call_count calls will saturate this
2679   // cardinality.
2680   virtual bool IsSaturatedByCallCount(int call_count) const = 0;
2681 
2682   // Describes self to an ostream.
2683   virtual void DescribeTo(::std::ostream* os) const = 0;
2684 };
2685 
2686 // A Cardinality is a copyable and IMMUTABLE (except by assignment)
2687 // object that specifies how many times a mock function is expected to
2688 // be called.  The implementation of Cardinality is just a std::shared_ptr
2689 // to const CardinalityInterface. Don't inherit from Cardinality!
2690 class GTEST_API_ Cardinality {
2691  public:
2692   // Constructs a null cardinality.  Needed for storing Cardinality
2693   // objects in STL containers.
2694   Cardinality() {}
2695 
2696   // Constructs a Cardinality from its implementation.
2697   explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {}
2698 
2699   // Conservative estimate on the lower/upper bound of the number of
2700   // calls allowed.
2701   int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); }
2702   int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); }
2703 
2704   // Returns true if and only if call_count calls will satisfy this
2705   // cardinality.
2706   bool IsSatisfiedByCallCount(int call_count) const {
2707     return impl_->IsSatisfiedByCallCount(call_count);
2708   }
2709 
2710   // Returns true if and only if call_count calls will saturate this
2711   // cardinality.
2712   bool IsSaturatedByCallCount(int call_count) const {
2713     return impl_->IsSaturatedByCallCount(call_count);
2714   }
2715 
2716   // Returns true if and only if call_count calls will over-saturate this
2717   // cardinality, i.e. exceed the maximum number of allowed calls.
2718   bool IsOverSaturatedByCallCount(int call_count) const {
2719     return impl_->IsSaturatedByCallCount(call_count) &&
2720         !impl_->IsSatisfiedByCallCount(call_count);
2721   }
2722 
2723   // Describes self to an ostream
2724   void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
2725 
2726   // Describes the given actual call count to an ostream.
2727   static void DescribeActualCallCountTo(int actual_call_count,
2728                                         ::std::ostream* os);
2729 
2730  private:
2731   std::shared_ptr<const CardinalityInterface> impl_;
2732 };
2733 
2734 // Creates a cardinality that allows at least n calls.
2735 GTEST_API_ Cardinality AtLeast(int n);
2736 
2737 // Creates a cardinality that allows at most n calls.
2738 GTEST_API_ Cardinality AtMost(int n);
2739 
2740 // Creates a cardinality that allows any number of calls.
2741 GTEST_API_ Cardinality AnyNumber();
2742 
2743 // Creates a cardinality that allows between min and max calls.
2744 GTEST_API_ Cardinality Between(int min, int max);
2745 
2746 // Creates a cardinality that allows exactly n calls.
2747 GTEST_API_ Cardinality Exactly(int n);
2748 
2749 // Creates a cardinality from its implementation.
2750 inline Cardinality MakeCardinality(const CardinalityInterface* c) {
2751   return Cardinality(c);
2752 }
2753 
2754 }  // namespace testing
2755 
2756 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
2757 
2758 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
2759 // Copyright 2007, Google Inc.
2760 // All rights reserved.
2761 //
2762 // Redistribution and use in source and binary forms, with or without
2763 // modification, are permitted provided that the following conditions are
2764 // met:
2765 //
2766 //     * Redistributions of source code must retain the above copyright
2767 // notice, this list of conditions and the following disclaimer.
2768 //     * Redistributions in binary form must reproduce the above
2769 // copyright notice, this list of conditions and the following disclaimer
2770 // in the documentation and/or other materials provided with the
2771 // distribution.
2772 //     * Neither the name of Google Inc. nor the names of its
2773 // contributors may be used to endorse or promote products derived from
2774 // this software without specific prior written permission.
2775 //
2776 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2777 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2778 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2779 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2780 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2781 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2782 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2783 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2784 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2785 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2786 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2787 
2788 // Google Mock - a framework for writing C++ mock classes.
2789 //
2790 // This file implements MOCK_METHOD.
2791 
2792 // GOOGLETEST_CM0002 DO NOT DELETE
2793 
2794 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_  // NOLINT
2795 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_  // NOLINT
2796 
2797 #include <type_traits>  // IWYU pragma: keep
2798 #include <utility>      // IWYU pragma: keep
2799 
2800 // Copyright 2007, Google Inc.
2801 // All rights reserved.
2802 //
2803 // Redistribution and use in source and binary forms, with or without
2804 // modification, are permitted provided that the following conditions are
2805 // met:
2806 //
2807 //     * Redistributions of source code must retain the above copyright
2808 // notice, this list of conditions and the following disclaimer.
2809 //     * Redistributions in binary form must reproduce the above
2810 // copyright notice, this list of conditions and the following disclaimer
2811 // in the documentation and/or other materials provided with the
2812 // distribution.
2813 //     * Neither the name of Google Inc. nor the names of its
2814 // contributors may be used to endorse or promote products derived from
2815 // this software without specific prior written permission.
2816 //
2817 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2818 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2819 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2820 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2821 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2822 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2823 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2824 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2825 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2826 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2827 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2828 
2829 
2830 // Google Mock - a framework for writing C++ mock classes.
2831 //
2832 // This file implements the ON_CALL() and EXPECT_CALL() macros.
2833 //
2834 // A user can use the ON_CALL() macro to specify the default action of
2835 // a mock method.  The syntax is:
2836 //
2837 //   ON_CALL(mock_object, Method(argument-matchers))
2838 //       .With(multi-argument-matcher)
2839 //       .WillByDefault(action);
2840 //
2841 //  where the .With() clause is optional.
2842 //
2843 // A user can use the EXPECT_CALL() macro to specify an expectation on
2844 // a mock method.  The syntax is:
2845 //
2846 //   EXPECT_CALL(mock_object, Method(argument-matchers))
2847 //       .With(multi-argument-matchers)
2848 //       .Times(cardinality)
2849 //       .InSequence(sequences)
2850 //       .After(expectations)
2851 //       .WillOnce(action)
2852 //       .WillRepeatedly(action)
2853 //       .RetiresOnSaturation();
2854 //
2855 // where all clauses are optional, and .InSequence()/.After()/
2856 // .WillOnce() can appear any number of times.
2857 
2858 // GOOGLETEST_CM0002 DO NOT DELETE
2859 
2860 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
2861 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
2862 
2863 #include <functional>
2864 #include <map>
2865 #include <memory>
2866 #include <set>
2867 #include <sstream>
2868 #include <string>
2869 #include <type_traits>
2870 #include <utility>
2871 #include <vector>
2872 // Copyright 2007, Google Inc.
2873 // All rights reserved.
2874 //
2875 // Redistribution and use in source and binary forms, with or without
2876 // modification, are permitted provided that the following conditions are
2877 // met:
2878 //
2879 //     * Redistributions of source code must retain the above copyright
2880 // notice, this list of conditions and the following disclaimer.
2881 //     * Redistributions in binary form must reproduce the above
2882 // copyright notice, this list of conditions and the following disclaimer
2883 // in the documentation and/or other materials provided with the
2884 // distribution.
2885 //     * Neither the name of Google Inc. nor the names of its
2886 // contributors may be used to endorse or promote products derived from
2887 // this software without specific prior written permission.
2888 //
2889 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2890 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2891 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2892 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2893 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2894 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2895 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2896 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2897 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2898 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2899 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2900 
2901 
2902 // Google Mock - a framework for writing C++ mock classes.
2903 //
2904 // The MATCHER* family of macros can be used in a namespace scope to
2905 // define custom matchers easily.
2906 //
2907 // Basic Usage
2908 // ===========
2909 //
2910 // The syntax
2911 //
2912 //   MATCHER(name, description_string) { statements; }
2913 //
2914 // defines a matcher with the given name that executes the statements,
2915 // which must return a bool to indicate if the match succeeds.  Inside
2916 // the statements, you can refer to the value being matched by 'arg',
2917 // and refer to its type by 'arg_type'.
2918 //
2919 // The description string documents what the matcher does, and is used
2920 // to generate the failure message when the match fails.  Since a
2921 // MATCHER() is usually defined in a header file shared by multiple
2922 // C++ source files, we require the description to be a C-string
2923 // literal to avoid possible side effects.  It can be empty, in which
2924 // case we'll use the sequence of words in the matcher name as the
2925 // description.
2926 //
2927 // For example:
2928 //
2929 //   MATCHER(IsEven, "") { return (arg % 2) == 0; }
2930 //
2931 // allows you to write
2932 //
2933 //   // Expects mock_foo.Bar(n) to be called where n is even.
2934 //   EXPECT_CALL(mock_foo, Bar(IsEven()));
2935 //
2936 // or,
2937 //
2938 //   // Verifies that the value of some_expression is even.
2939 //   EXPECT_THAT(some_expression, IsEven());
2940 //
2941 // If the above assertion fails, it will print something like:
2942 //
2943 //   Value of: some_expression
2944 //   Expected: is even
2945 //     Actual: 7
2946 //
2947 // where the description "is even" is automatically calculated from the
2948 // matcher name IsEven.
2949 //
2950 // Argument Type
2951 // =============
2952 //
2953 // Note that the type of the value being matched (arg_type) is
2954 // determined by the context in which you use the matcher and is
2955 // supplied to you by the compiler, so you don't need to worry about
2956 // declaring it (nor can you).  This allows the matcher to be
2957 // polymorphic.  For example, IsEven() can be used to match any type
2958 // where the value of "(arg % 2) == 0" can be implicitly converted to
2959 // a bool.  In the "Bar(IsEven())" example above, if method Bar()
2960 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
2961 // 'arg_type' will be unsigned long; and so on.
2962 //
2963 // Parameterizing Matchers
2964 // =======================
2965 //
2966 // Sometimes you'll want to parameterize the matcher.  For that you
2967 // can use another macro:
2968 //
2969 //   MATCHER_P(name, param_name, description_string) { statements; }
2970 //
2971 // For example:
2972 //
2973 //   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
2974 //
2975 // will allow you to write:
2976 //
2977 //   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
2978 //
2979 // which may lead to this message (assuming n is 10):
2980 //
2981 //   Value of: Blah("a")
2982 //   Expected: has absolute value 10
2983 //     Actual: -9
2984 //
2985 // Note that both the matcher description and its parameter are
2986 // printed, making the message human-friendly.
2987 //
2988 // In the matcher definition body, you can write 'foo_type' to
2989 // reference the type of a parameter named 'foo'.  For example, in the
2990 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
2991 // 'value_type' to refer to the type of 'value'.
2992 //
2993 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
2994 // support multi-parameter matchers.
2995 //
2996 // Describing Parameterized Matchers
2997 // =================================
2998 //
2999 // The last argument to MATCHER*() is a string-typed expression.  The
3000 // expression can reference all of the matcher's parameters and a
3001 // special bool-typed variable named 'negation'.  When 'negation' is
3002 // false, the expression should evaluate to the matcher's description;
3003 // otherwise it should evaluate to the description of the negation of
3004 // the matcher.  For example,
3005 //
3006 //   using testing::PrintToString;
3007 //
3008 //   MATCHER_P2(InClosedRange, low, hi,
3009 //       std::string(negation ? "is not" : "is") + " in range [" +
3010 //       PrintToString(low) + ", " + PrintToString(hi) + "]") {
3011 //     return low <= arg && arg <= hi;
3012 //   }
3013 //   ...
3014 //   EXPECT_THAT(3, InClosedRange(4, 6));
3015 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
3016 //
3017 // would generate two failures that contain the text:
3018 //
3019 //   Expected: is in range [4, 6]
3020 //   ...
3021 //   Expected: is not in range [2, 4]
3022 //
3023 // If you specify "" as the description, the failure message will
3024 // contain the sequence of words in the matcher name followed by the
3025 // parameter values printed as a tuple.  For example,
3026 //
3027 //   MATCHER_P2(InClosedRange, low, hi, "") { ... }
3028 //   ...
3029 //   EXPECT_THAT(3, InClosedRange(4, 6));
3030 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
3031 //
3032 // would generate two failures that contain the text:
3033 //
3034 //   Expected: in closed range (4, 6)
3035 //   ...
3036 //   Expected: not (in closed range (2, 4))
3037 //
3038 // Types of Matcher Parameters
3039 // ===========================
3040 //
3041 // For the purpose of typing, you can view
3042 //
3043 //   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
3044 //
3045 // as shorthand for
3046 //
3047 //   template <typename p1_type, ..., typename pk_type>
3048 //   FooMatcherPk<p1_type, ..., pk_type>
3049 //   Foo(p1_type p1, ..., pk_type pk) { ... }
3050 //
3051 // When you write Foo(v1, ..., vk), the compiler infers the types of
3052 // the parameters v1, ..., and vk for you.  If you are not happy with
3053 // the result of the type inference, you can specify the types by
3054 // explicitly instantiating the template, as in Foo<long, bool>(5,
3055 // false).  As said earlier, you don't get to (or need to) specify
3056 // 'arg_type' as that's determined by the context in which the matcher
3057 // is used.  You can assign the result of expression Foo(p1, ..., pk)
3058 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
3059 // can be useful when composing matchers.
3060 //
3061 // While you can instantiate a matcher template with reference types,
3062 // passing the parameters by pointer usually makes your code more
3063 // readable.  If, however, you still want to pass a parameter by
3064 // reference, be aware that in the failure message generated by the
3065 // matcher you will see the value of the referenced object but not its
3066 // address.
3067 //
3068 // Explaining Match Results
3069 // ========================
3070 //
3071 // Sometimes the matcher description alone isn't enough to explain why
3072 // the match has failed or succeeded.  For example, when expecting a
3073 // long string, it can be very helpful to also print the diff between
3074 // the expected string and the actual one.  To achieve that, you can
3075 // optionally stream additional information to a special variable
3076 // named result_listener, whose type is a pointer to class
3077 // MatchResultListener:
3078 //
3079 //   MATCHER_P(EqualsLongString, str, "") {
3080 //     if (arg == str) return true;
3081 //
3082 //     *result_listener << "the difference: "
3083 ///                     << DiffStrings(str, arg);
3084 //     return false;
3085 //   }
3086 //
3087 // Overloading Matchers
3088 // ====================
3089 //
3090 // You can overload matchers with different numbers of parameters:
3091 //
3092 //   MATCHER_P(Blah, a, description_string1) { ... }
3093 //   MATCHER_P2(Blah, a, b, description_string2) { ... }
3094 //
3095 // Caveats
3096 // =======
3097 //
3098 // When defining a new matcher, you should also consider implementing
3099 // MatcherInterface or using MakePolymorphicMatcher().  These
3100 // approaches require more work than the MATCHER* macros, but also
3101 // give you more control on the types of the value being matched and
3102 // the matcher parameters, which may leads to better compiler error
3103 // messages when the matcher is used wrong.  They also allow
3104 // overloading matchers based on parameter types (as opposed to just
3105 // based on the number of parameters).
3106 //
3107 // MATCHER*() can only be used in a namespace scope as templates cannot be
3108 // declared inside of a local class.
3109 //
3110 // More Information
3111 // ================
3112 //
3113 // To learn more about using these macros, please search for 'MATCHER'
3114 // on
3115 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
3116 //
3117 // This file also implements some commonly used argument matchers.  More
3118 // matchers can be defined by the user implementing the
3119 // MatcherInterface<T> interface if necessary.
3120 //
3121 // See googletest/include/gtest/gtest-matchers.h for the definition of class
3122 // Matcher, class MatcherInterface, and others.
3123 
3124 // GOOGLETEST_CM0002 DO NOT DELETE
3125 
3126 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
3127 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
3128 
3129 #include <algorithm>
3130 #include <cmath>
3131 #include <initializer_list>
3132 #include <iterator>
3133 #include <limits>
3134 #include <memory>
3135 #include <ostream>  // NOLINT
3136 #include <sstream>
3137 #include <string>
3138 #include <type_traits>
3139 #include <utility>
3140 #include <vector>
3141 
3142 
3143 // MSVC warning C5046 is new as of VS2017 version 15.8.
3144 #if defined(_MSC_VER) && _MSC_VER >= 1915
3145 #define GMOCK_MAYBE_5046_ 5046
3146 #else
3147 #define GMOCK_MAYBE_5046_
3148 #endif
3149 
3150 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
3151     4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
3152                               clients of class B */
3153     /* Symbol involving type with internal linkage not defined */)
3154 
3155 namespace testing {
3156 
3157 // To implement a matcher Foo for type T, define:
3158 //   1. a class FooMatcherImpl that implements the
3159 //      MatcherInterface<T> interface, and
3160 //   2. a factory function that creates a Matcher<T> object from a
3161 //      FooMatcherImpl*.
3162 //
3163 // The two-level delegation design makes it possible to allow a user
3164 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
3165 // is impossible if we pass matchers by pointers.  It also eases
3166 // ownership management as Matcher objects can now be copied like
3167 // plain values.
3168 
3169 // A match result listener that stores the explanation in a string.
3170 class StringMatchResultListener : public MatchResultListener {
3171  public:
3172   StringMatchResultListener() : MatchResultListener(&ss_) {}
3173 
3174   // Returns the explanation accumulated so far.
3175   std::string str() const { return ss_.str(); }
3176 
3177   // Clears the explanation accumulated so far.
3178   void Clear() { ss_.str(""); }
3179 
3180  private:
3181   ::std::stringstream ss_;
3182 
3183   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
3184 };
3185 
3186 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
3187 // and MUST NOT BE USED IN USER CODE!!!
3188 namespace internal {
3189 
3190 // The MatcherCastImpl class template is a helper for implementing
3191 // MatcherCast().  We need this helper in order to partially
3192 // specialize the implementation of MatcherCast() (C++ allows
3193 // class/struct templates to be partially specialized, but not
3194 // function templates.).
3195 
3196 // This general version is used when MatcherCast()'s argument is a
3197 // polymorphic matcher (i.e. something that can be converted to a
3198 // Matcher but is not one yet; for example, Eq(value)) or a value (for
3199 // example, "hello").
3200 template <typename T, typename M>
3201 class MatcherCastImpl {
3202  public:
3203   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
3204     // M can be a polymorphic matcher, in which case we want to use
3205     // its conversion operator to create Matcher<T>.  Or it can be a value
3206     // that should be passed to the Matcher<T>'s constructor.
3207     //
3208     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
3209     // polymorphic matcher because it'll be ambiguous if T has an implicit
3210     // constructor from M (this usually happens when T has an implicit
3211     // constructor from any type).
3212     //
3213     // It won't work to unconditionally implicit_cast
3214     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
3215     // a user-defined conversion from M to T if one exists (assuming M is
3216     // a value).
3217     return CastImpl(polymorphic_matcher_or_value,
3218                     std::is_convertible<M, Matcher<T>>{},
3219                     std::is_convertible<M, T>{});
3220   }
3221 
3222  private:
3223   template <bool Ignore>
3224   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
3225                              std::true_type /* convertible_to_matcher */,
3226                              std::integral_constant<bool, Ignore>) {
3227     // M is implicitly convertible to Matcher<T>, which means that either
3228     // M is a polymorphic matcher or Matcher<T> has an implicit constructor
3229     // from M.  In both cases using the implicit conversion will produce a
3230     // matcher.
3231     //
3232     // Even if T has an implicit constructor from M, it won't be called because
3233     // creating Matcher<T> would require a chain of two user-defined conversions
3234     // (first to create T from M and then to create Matcher<T> from T).
3235     return polymorphic_matcher_or_value;
3236   }
3237 
3238   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
3239   // matcher. It's a value of a type implicitly convertible to T. Use direct
3240   // initialization to create a matcher.
3241   static Matcher<T> CastImpl(const M& value,
3242                              std::false_type /* convertible_to_matcher */,
3243                              std::true_type /* convertible_to_T */) {
3244     return Matcher<T>(ImplicitCast_<T>(value));
3245   }
3246 
3247   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
3248   // polymorphic matcher Eq(value) in this case.
3249   //
3250   // Note that we first attempt to perform an implicit cast on the value and
3251   // only fall back to the polymorphic Eq() matcher afterwards because the
3252   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
3253   // which might be undefined even when Rhs is implicitly convertible to Lhs
3254   // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
3255   //
3256   // We don't define this method inline as we need the declaration of Eq().
3257   static Matcher<T> CastImpl(const M& value,
3258                              std::false_type /* convertible_to_matcher */,
3259                              std::false_type /* convertible_to_T */);
3260 };
3261 
3262 // This more specialized version is used when MatcherCast()'s argument
3263 // is already a Matcher.  This only compiles when type T can be
3264 // statically converted to type U.
3265 template <typename T, typename U>
3266 class MatcherCastImpl<T, Matcher<U> > {
3267  public:
3268   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
3269     return Matcher<T>(new Impl(source_matcher));
3270   }
3271 
3272  private:
3273   class Impl : public MatcherInterface<T> {
3274    public:
3275     explicit Impl(const Matcher<U>& source_matcher)
3276         : source_matcher_(source_matcher) {}
3277 
3278     // We delegate the matching logic to the source matcher.
3279     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3280       using FromType = typename std::remove_cv<typename std::remove_pointer<
3281           typename std::remove_reference<T>::type>::type>::type;
3282       using ToType = typename std::remove_cv<typename std::remove_pointer<
3283           typename std::remove_reference<U>::type>::type>::type;
3284       // Do not allow implicitly converting base*/& to derived*/&.
3285       static_assert(
3286           // Do not trigger if only one of them is a pointer. That implies a
3287           // regular conversion and not a down_cast.
3288           (std::is_pointer<typename std::remove_reference<T>::type>::value !=
3289            std::is_pointer<typename std::remove_reference<U>::type>::value) ||
3290               std::is_same<FromType, ToType>::value ||
3291               !std::is_base_of<FromType, ToType>::value,
3292           "Can't implicitly convert from <base> to <derived>");
3293 
3294       // Do the cast to `U` explicitly if necessary.
3295       // Otherwise, let implicit conversions do the trick.
3296       using CastType =
3297           typename std::conditional<std::is_convertible<T&, const U&>::value,
3298                                     T&, U>::type;
3299 
3300       return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
3301                                              listener);
3302     }
3303 
3304     void DescribeTo(::std::ostream* os) const override {
3305       source_matcher_.DescribeTo(os);
3306     }
3307 
3308     void DescribeNegationTo(::std::ostream* os) const override {
3309       source_matcher_.DescribeNegationTo(os);
3310     }
3311 
3312    private:
3313     const Matcher<U> source_matcher_;
3314   };
3315 };
3316 
3317 // This even more specialized version is used for efficiently casting
3318 // a matcher to its own type.
3319 template <typename T>
3320 class MatcherCastImpl<T, Matcher<T> > {
3321  public:
3322   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
3323 };
3324 
3325 // Template specialization for parameterless Matcher.
3326 template <typename Derived>
3327 class MatcherBaseImpl {
3328  public:
3329   MatcherBaseImpl() = default;
3330 
3331   template <typename T>
3332   operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
3333     return ::testing::Matcher<T>(new
3334                                  typename Derived::template gmock_Impl<T>());
3335   }
3336 };
3337 
3338 // Template specialization for Matcher with parameters.
3339 template <template <typename...> class Derived, typename... Ts>
3340 class MatcherBaseImpl<Derived<Ts...>> {
3341  public:
3342   // Mark the constructor explicit for single argument T to avoid implicit
3343   // conversions.
3344   template <typename E = std::enable_if<sizeof...(Ts) == 1>,
3345             typename E::type* = nullptr>
3346   explicit MatcherBaseImpl(Ts... params)
3347       : params_(std::forward<Ts>(params)...) {}
3348   template <typename E = std::enable_if<sizeof...(Ts) != 1>,
3349             typename = typename E::type>
3350   MatcherBaseImpl(Ts... params)  // NOLINT
3351       : params_(std::forward<Ts>(params)...) {}
3352 
3353   template <typename F>
3354   operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
3355     return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
3356   }
3357 
3358  private:
3359   template <typename F, std::size_t... tuple_ids>
3360   ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
3361     return ::testing::Matcher<F>(
3362         new typename Derived<Ts...>::template gmock_Impl<F>(
3363             std::get<tuple_ids>(params_)...));
3364   }
3365 
3366   const std::tuple<Ts...> params_;
3367 };
3368 
3369 }  // namespace internal
3370 
3371 // In order to be safe and clear, casting between different matcher
3372 // types is done explicitly via MatcherCast<T>(m), which takes a
3373 // matcher m and returns a Matcher<T>.  It compiles only when T can be
3374 // statically converted to the argument type of m.
3375 template <typename T, typename M>
3376 inline Matcher<T> MatcherCast(const M& matcher) {
3377   return internal::MatcherCastImpl<T, M>::Cast(matcher);
3378 }
3379 
3380 // This overload handles polymorphic matchers and values only since
3381 // monomorphic matchers are handled by the next one.
3382 template <typename T, typename M>
3383 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
3384   return MatcherCast<T>(polymorphic_matcher_or_value);
3385 }
3386 
3387 // This overload handles monomorphic matchers.
3388 //
3389 // In general, if type T can be implicitly converted to type U, we can
3390 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
3391 // contravariant): just keep a copy of the original Matcher<U>, convert the
3392 // argument from type T to U, and then pass it to the underlying Matcher<U>.
3393 // The only exception is when U is a reference and T is not, as the
3394 // underlying Matcher<U> may be interested in the argument's address, which
3395 // is not preserved in the conversion from T to U.
3396 template <typename T, typename U>
3397 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
3398   // Enforce that T can be implicitly converted to U.
3399   static_assert(std::is_convertible<const T&, const U&>::value,
3400                 "T must be implicitly convertible to U");
3401   // Enforce that we are not converting a non-reference type T to a reference
3402   // type U.
3403   GTEST_COMPILE_ASSERT_(
3404       std::is_reference<T>::value || !std::is_reference<U>::value,
3405       cannot_convert_non_reference_arg_to_reference);
3406   // In case both T and U are arithmetic types, enforce that the
3407   // conversion is not lossy.
3408   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
3409   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
3410   constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
3411   constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
3412   GTEST_COMPILE_ASSERT_(
3413       kTIsOther || kUIsOther ||
3414       (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
3415       conversion_of_arithmetic_types_must_be_lossless);
3416   return MatcherCast<T>(matcher);
3417 }
3418 
3419 // A<T>() returns a matcher that matches any value of type T.
3420 template <typename T>
3421 Matcher<T> A();
3422 
3423 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
3424 // and MUST NOT BE USED IN USER CODE!!!
3425 namespace internal {
3426 
3427 // If the explanation is not empty, prints it to the ostream.
3428 inline void PrintIfNotEmpty(const std::string& explanation,
3429                             ::std::ostream* os) {
3430   if (explanation != "" && os != nullptr) {
3431     *os << ", " << explanation;
3432   }
3433 }
3434 
3435 // Returns true if the given type name is easy to read by a human.
3436 // This is used to decide whether printing the type of a value might
3437 // be helpful.
3438 inline bool IsReadableTypeName(const std::string& type_name) {
3439   // We consider a type name readable if it's short or doesn't contain
3440   // a template or function type.
3441   return (type_name.length() <= 20 ||
3442           type_name.find_first_of("<(") == std::string::npos);
3443 }
3444 
3445 // Matches the value against the given matcher, prints the value and explains
3446 // the match result to the listener. Returns the match result.
3447 // 'listener' must not be NULL.
3448 // Value cannot be passed by const reference, because some matchers take a
3449 // non-const argument.
3450 template <typename Value, typename T>
3451 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
3452                           MatchResultListener* listener) {
3453   if (!listener->IsInterested()) {
3454     // If the listener is not interested, we do not need to construct the
3455     // inner explanation.
3456     return matcher.Matches(value);
3457   }
3458 
3459   StringMatchResultListener inner_listener;
3460   const bool match = matcher.MatchAndExplain(value, &inner_listener);
3461 
3462   UniversalPrint(value, listener->stream());
3463 #if GTEST_HAS_RTTI
3464   const std::string& type_name = GetTypeName<Value>();
3465   if (IsReadableTypeName(type_name))
3466     *listener->stream() << " (of type " << type_name << ")";
3467 #endif
3468   PrintIfNotEmpty(inner_listener.str(), listener->stream());
3469 
3470   return match;
3471 }
3472 
3473 // An internal helper class for doing compile-time loop on a tuple's
3474 // fields.
3475 template <size_t N>
3476 class TuplePrefix {
3477  public:
3478   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
3479   // if and only if the first N fields of matcher_tuple matches
3480   // the first N fields of value_tuple, respectively.
3481   template <typename MatcherTuple, typename ValueTuple>
3482   static bool Matches(const MatcherTuple& matcher_tuple,
3483                       const ValueTuple& value_tuple) {
3484     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
3485            std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
3486   }
3487 
3488   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
3489   // describes failures in matching the first N fields of matchers
3490   // against the first N fields of values.  If there is no failure,
3491   // nothing will be streamed to os.
3492   template <typename MatcherTuple, typename ValueTuple>
3493   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
3494                                      const ValueTuple& values,
3495                                      ::std::ostream* os) {
3496     // First, describes failures in the first N - 1 fields.
3497     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
3498 
3499     // Then describes the failure (if any) in the (N - 1)-th (0-based)
3500     // field.
3501     typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
3502         std::get<N - 1>(matchers);
3503     typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
3504     const Value& value = std::get<N - 1>(values);
3505     StringMatchResultListener listener;
3506     if (!matcher.MatchAndExplain(value, &listener)) {
3507       *os << "  Expected arg #" << N - 1 << ": ";
3508       std::get<N - 1>(matchers).DescribeTo(os);
3509       *os << "\n           Actual: ";
3510       // We remove the reference in type Value to prevent the
3511       // universal printer from printing the address of value, which
3512       // isn't interesting to the user most of the time.  The
3513       // matcher's MatchAndExplain() method handles the case when
3514       // the address is interesting.
3515       internal::UniversalPrint(value, os);
3516       PrintIfNotEmpty(listener.str(), os);
3517       *os << "\n";
3518     }
3519   }
3520 };
3521 
3522 // The base case.
3523 template <>
3524 class TuplePrefix<0> {
3525  public:
3526   template <typename MatcherTuple, typename ValueTuple>
3527   static bool Matches(const MatcherTuple& /* matcher_tuple */,
3528                       const ValueTuple& /* value_tuple */) {
3529     return true;
3530   }
3531 
3532   template <typename MatcherTuple, typename ValueTuple>
3533   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
3534                                      const ValueTuple& /* values */,
3535                                      ::std::ostream* /* os */) {}
3536 };
3537 
3538 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
3539 // all matchers in matcher_tuple match the corresponding fields in
3540 // value_tuple.  It is a compiler error if matcher_tuple and
3541 // value_tuple have different number of fields or incompatible field
3542 // types.
3543 template <typename MatcherTuple, typename ValueTuple>
3544 bool TupleMatches(const MatcherTuple& matcher_tuple,
3545                   const ValueTuple& value_tuple) {
3546   // Makes sure that matcher_tuple and value_tuple have the same
3547   // number of fields.
3548   GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
3549                             std::tuple_size<ValueTuple>::value,
3550                         matcher_and_value_have_different_numbers_of_fields);
3551   return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
3552                                                                   value_tuple);
3553 }
3554 
3555 // Describes failures in matching matchers against values.  If there
3556 // is no failure, nothing will be streamed to os.
3557 template <typename MatcherTuple, typename ValueTuple>
3558 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
3559                                 const ValueTuple& values,
3560                                 ::std::ostream* os) {
3561   TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
3562       matchers, values, os);
3563 }
3564 
3565 // TransformTupleValues and its helper.
3566 //
3567 // TransformTupleValuesHelper hides the internal machinery that
3568 // TransformTupleValues uses to implement a tuple traversal.
3569 template <typename Tuple, typename Func, typename OutIter>
3570 class TransformTupleValuesHelper {
3571  private:
3572   typedef ::std::tuple_size<Tuple> TupleSize;
3573 
3574  public:
3575   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
3576   // Returns the final value of 'out' in case the caller needs it.
3577   static OutIter Run(Func f, const Tuple& t, OutIter out) {
3578     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
3579   }
3580 
3581  private:
3582   template <typename Tup, size_t kRemainingSize>
3583   struct IterateOverTuple {
3584     OutIter operator() (Func f, const Tup& t, OutIter out) const {
3585       *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
3586       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
3587     }
3588   };
3589   template <typename Tup>
3590   struct IterateOverTuple<Tup, 0> {
3591     OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
3592       return out;
3593     }
3594   };
3595 };
3596 
3597 // Successively invokes 'f(element)' on each element of the tuple 't',
3598 // appending each result to the 'out' iterator. Returns the final value
3599 // of 'out'.
3600 template <typename Tuple, typename Func, typename OutIter>
3601 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
3602   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
3603 }
3604 
3605 // Implements _, a matcher that matches any value of any
3606 // type.  This is a polymorphic matcher, so we need a template type
3607 // conversion operator to make it appearing as a Matcher<T> for any
3608 // type T.
3609 class AnythingMatcher {
3610  public:
3611   using is_gtest_matcher = void;
3612 
3613   template <typename T>
3614   bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
3615     return true;
3616   }
3617   void DescribeTo(std::ostream* os) const { *os << "is anything"; }
3618   void DescribeNegationTo(::std::ostream* os) const {
3619     // This is mostly for completeness' sake, as it's not very useful
3620     // to write Not(A<bool>()).  However we cannot completely rule out
3621     // such a possibility, and it doesn't hurt to be prepared.
3622     *os << "never matches";
3623   }
3624 };
3625 
3626 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
3627 // pointer that is NULL.
3628 class IsNullMatcher {
3629  public:
3630   template <typename Pointer>
3631   bool MatchAndExplain(const Pointer& p,
3632                        MatchResultListener* /* listener */) const {
3633     return p == nullptr;
3634   }
3635 
3636   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
3637   void DescribeNegationTo(::std::ostream* os) const {
3638     *os << "isn't NULL";
3639   }
3640 };
3641 
3642 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
3643 // pointer that is not NULL.
3644 class NotNullMatcher {
3645  public:
3646   template <typename Pointer>
3647   bool MatchAndExplain(const Pointer& p,
3648                        MatchResultListener* /* listener */) const {
3649     return p != nullptr;
3650   }
3651 
3652   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
3653   void DescribeNegationTo(::std::ostream* os) const {
3654     *os << "is NULL";
3655   }
3656 };
3657 
3658 // Ref(variable) matches any argument that is a reference to
3659 // 'variable'.  This matcher is polymorphic as it can match any
3660 // super type of the type of 'variable'.
3661 //
3662 // The RefMatcher template class implements Ref(variable).  It can
3663 // only be instantiated with a reference type.  This prevents a user
3664 // from mistakenly using Ref(x) to match a non-reference function
3665 // argument.  For example, the following will righteously cause a
3666 // compiler error:
3667 //
3668 //   int n;
3669 //   Matcher<int> m1 = Ref(n);   // This won't compile.
3670 //   Matcher<int&> m2 = Ref(n);  // This will compile.
3671 template <typename T>
3672 class RefMatcher;
3673 
3674 template <typename T>
3675 class RefMatcher<T&> {
3676   // Google Mock is a generic framework and thus needs to support
3677   // mocking any function types, including those that take non-const
3678   // reference arguments.  Therefore the template parameter T (and
3679   // Super below) can be instantiated to either a const type or a
3680   // non-const type.
3681  public:
3682   // RefMatcher() takes a T& instead of const T&, as we want the
3683   // compiler to catch using Ref(const_value) as a matcher for a
3684   // non-const reference.
3685   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
3686 
3687   template <typename Super>
3688   operator Matcher<Super&>() const {
3689     // By passing object_ (type T&) to Impl(), which expects a Super&,
3690     // we make sure that Super is a super type of T.  In particular,
3691     // this catches using Ref(const_value) as a matcher for a
3692     // non-const reference, as you cannot implicitly convert a const
3693     // reference to a non-const reference.
3694     return MakeMatcher(new Impl<Super>(object_));
3695   }
3696 
3697  private:
3698   template <typename Super>
3699   class Impl : public MatcherInterface<Super&> {
3700    public:
3701     explicit Impl(Super& x) : object_(x) {}  // NOLINT
3702 
3703     // MatchAndExplain() takes a Super& (as opposed to const Super&)
3704     // in order to match the interface MatcherInterface<Super&>.
3705     bool MatchAndExplain(Super& x,
3706                          MatchResultListener* listener) const override {
3707       *listener << "which is located @" << static_cast<const void*>(&x);
3708       return &x == &object_;
3709     }
3710 
3711     void DescribeTo(::std::ostream* os) const override {
3712       *os << "references the variable ";
3713       UniversalPrinter<Super&>::Print(object_, os);
3714     }
3715 
3716     void DescribeNegationTo(::std::ostream* os) const override {
3717       *os << "does not reference the variable ";
3718       UniversalPrinter<Super&>::Print(object_, os);
3719     }
3720 
3721    private:
3722     const Super& object_;
3723   };
3724 
3725   T& object_;
3726 };
3727 
3728 // Polymorphic helper functions for narrow and wide string matchers.
3729 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
3730   return String::CaseInsensitiveCStringEquals(lhs, rhs);
3731 }
3732 
3733 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
3734                                          const wchar_t* rhs) {
3735   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
3736 }
3737 
3738 // String comparison for narrow or wide strings that can have embedded NUL
3739 // characters.
3740 template <typename StringType>
3741 bool CaseInsensitiveStringEquals(const StringType& s1,
3742                                  const StringType& s2) {
3743   // Are the heads equal?
3744   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
3745     return false;
3746   }
3747 
3748   // Skip the equal heads.
3749   const typename StringType::value_type nul = 0;
3750   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
3751 
3752   // Are we at the end of either s1 or s2?
3753   if (i1 == StringType::npos || i2 == StringType::npos) {
3754     return i1 == i2;
3755   }
3756 
3757   // Are the tails equal?
3758   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
3759 }
3760 
3761 // String matchers.
3762 
3763 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
3764 template <typename StringType>
3765 class StrEqualityMatcher {
3766  public:
3767   StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
3768       : string_(std::move(str)),
3769         expect_eq_(expect_eq),
3770         case_sensitive_(case_sensitive) {}
3771 
3772 #if GTEST_INTERNAL_HAS_STRING_VIEW
3773   bool MatchAndExplain(const internal::StringView& s,
3774                        MatchResultListener* listener) const {
3775     // This should fail to compile if StringView is used with wide
3776     // strings.
3777     const StringType& str = std::string(s);
3778     return MatchAndExplain(str, listener);
3779   }
3780 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
3781 
3782   // Accepts pointer types, particularly:
3783   //   const char*
3784   //   char*
3785   //   const wchar_t*
3786   //   wchar_t*
3787   template <typename CharType>
3788   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3789     if (s == nullptr) {
3790       return !expect_eq_;
3791     }
3792     return MatchAndExplain(StringType(s), listener);
3793   }
3794 
3795   // Matches anything that can convert to StringType.
3796   //
3797   // This is a template, not just a plain function with const StringType&,
3798   // because StringView has some interfering non-explicit constructors.
3799   template <typename MatcheeStringType>
3800   bool MatchAndExplain(const MatcheeStringType& s,
3801                        MatchResultListener* /* listener */) const {
3802     const StringType s2(s);
3803     const bool eq = case_sensitive_ ? s2 == string_ :
3804         CaseInsensitiveStringEquals(s2, string_);
3805     return expect_eq_ == eq;
3806   }
3807 
3808   void DescribeTo(::std::ostream* os) const {
3809     DescribeToHelper(expect_eq_, os);
3810   }
3811 
3812   void DescribeNegationTo(::std::ostream* os) const {
3813     DescribeToHelper(!expect_eq_, os);
3814   }
3815 
3816  private:
3817   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
3818     *os << (expect_eq ? "is " : "isn't ");
3819     *os << "equal to ";
3820     if (!case_sensitive_) {
3821       *os << "(ignoring case) ";
3822     }
3823     UniversalPrint(string_, os);
3824   }
3825 
3826   const StringType string_;
3827   const bool expect_eq_;
3828   const bool case_sensitive_;
3829 };
3830 
3831 // Implements the polymorphic HasSubstr(substring) matcher, which
3832 // can be used as a Matcher<T> as long as T can be converted to a
3833 // string.
3834 template <typename StringType>
3835 class HasSubstrMatcher {
3836  public:
3837   explicit HasSubstrMatcher(const StringType& substring)
3838       : substring_(substring) {}
3839 
3840 #if GTEST_INTERNAL_HAS_STRING_VIEW
3841   bool MatchAndExplain(const internal::StringView& s,
3842                        MatchResultListener* listener) const {
3843     // This should fail to compile if StringView is used with wide
3844     // strings.
3845     const StringType& str = std::string(s);
3846     return MatchAndExplain(str, listener);
3847   }
3848 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
3849 
3850   // Accepts pointer types, particularly:
3851   //   const char*
3852   //   char*
3853   //   const wchar_t*
3854   //   wchar_t*
3855   template <typename CharType>
3856   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3857     return s != nullptr && MatchAndExplain(StringType(s), listener);
3858   }
3859 
3860   // Matches anything that can convert to StringType.
3861   //
3862   // This is a template, not just a plain function with const StringType&,
3863   // because StringView has some interfering non-explicit constructors.
3864   template <typename MatcheeStringType>
3865   bool MatchAndExplain(const MatcheeStringType& s,
3866                        MatchResultListener* /* listener */) const {
3867     return StringType(s).find(substring_) != StringType::npos;
3868   }
3869 
3870   // Describes what this matcher matches.
3871   void DescribeTo(::std::ostream* os) const {
3872     *os << "has substring ";
3873     UniversalPrint(substring_, os);
3874   }
3875 
3876   void DescribeNegationTo(::std::ostream* os) const {
3877     *os << "has no substring ";
3878     UniversalPrint(substring_, os);
3879   }
3880 
3881  private:
3882   const StringType substring_;
3883 };
3884 
3885 // Implements the polymorphic StartsWith(substring) matcher, which
3886 // can be used as a Matcher<T> as long as T can be converted to a
3887 // string.
3888 template <typename StringType>
3889 class StartsWithMatcher {
3890  public:
3891   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
3892   }
3893 
3894 #if GTEST_INTERNAL_HAS_STRING_VIEW
3895   bool MatchAndExplain(const internal::StringView& s,
3896                        MatchResultListener* listener) const {
3897     // This should fail to compile if StringView is used with wide
3898     // strings.
3899     const StringType& str = std::string(s);
3900     return MatchAndExplain(str, listener);
3901   }
3902 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
3903 
3904   // Accepts pointer types, particularly:
3905   //   const char*
3906   //   char*
3907   //   const wchar_t*
3908   //   wchar_t*
3909   template <typename CharType>
3910   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3911     return s != nullptr && MatchAndExplain(StringType(s), listener);
3912   }
3913 
3914   // Matches anything that can convert to StringType.
3915   //
3916   // This is a template, not just a plain function with const StringType&,
3917   // because StringView has some interfering non-explicit constructors.
3918   template <typename MatcheeStringType>
3919   bool MatchAndExplain(const MatcheeStringType& s,
3920                        MatchResultListener* /* listener */) const {
3921     const StringType& s2(s);
3922     return s2.length() >= prefix_.length() &&
3923         s2.substr(0, prefix_.length()) == prefix_;
3924   }
3925 
3926   void DescribeTo(::std::ostream* os) const {
3927     *os << "starts with ";
3928     UniversalPrint(prefix_, os);
3929   }
3930 
3931   void DescribeNegationTo(::std::ostream* os) const {
3932     *os << "doesn't start with ";
3933     UniversalPrint(prefix_, os);
3934   }
3935 
3936  private:
3937   const StringType prefix_;
3938 };
3939 
3940 // Implements the polymorphic EndsWith(substring) matcher, which
3941 // can be used as a Matcher<T> as long as T can be converted to a
3942 // string.
3943 template <typename StringType>
3944 class EndsWithMatcher {
3945  public:
3946   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
3947 
3948 #if GTEST_INTERNAL_HAS_STRING_VIEW
3949   bool MatchAndExplain(const internal::StringView& s,
3950                        MatchResultListener* listener) const {
3951     // This should fail to compile if StringView is used with wide
3952     // strings.
3953     const StringType& str = std::string(s);
3954     return MatchAndExplain(str, listener);
3955   }
3956 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
3957 
3958   // Accepts pointer types, particularly:
3959   //   const char*
3960   //   char*
3961   //   const wchar_t*
3962   //   wchar_t*
3963   template <typename CharType>
3964   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3965     return s != nullptr && MatchAndExplain(StringType(s), listener);
3966   }
3967 
3968   // Matches anything that can convert to StringType.
3969   //
3970   // This is a template, not just a plain function with const StringType&,
3971   // because StringView has some interfering non-explicit constructors.
3972   template <typename MatcheeStringType>
3973   bool MatchAndExplain(const MatcheeStringType& s,
3974                        MatchResultListener* /* listener */) const {
3975     const StringType& s2(s);
3976     return s2.length() >= suffix_.length() &&
3977         s2.substr(s2.length() - suffix_.length()) == suffix_;
3978   }
3979 
3980   void DescribeTo(::std::ostream* os) const {
3981     *os << "ends with ";
3982     UniversalPrint(suffix_, os);
3983   }
3984 
3985   void DescribeNegationTo(::std::ostream* os) const {
3986     *os << "doesn't end with ";
3987     UniversalPrint(suffix_, os);
3988   }
3989 
3990  private:
3991   const StringType suffix_;
3992 };
3993 
3994 // Implements a matcher that compares the two fields of a 2-tuple
3995 // using one of the ==, <=, <, etc, operators.  The two fields being
3996 // compared don't have to have the same type.
3997 //
3998 // The matcher defined here is polymorphic (for example, Eq() can be
3999 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
4000 // etc).  Therefore we use a template type conversion operator in the
4001 // implementation.
4002 template <typename D, typename Op>
4003 class PairMatchBase {
4004  public:
4005   template <typename T1, typename T2>
4006   operator Matcher<::std::tuple<T1, T2>>() const {
4007     return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
4008   }
4009   template <typename T1, typename T2>
4010   operator Matcher<const ::std::tuple<T1, T2>&>() const {
4011     return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
4012   }
4013 
4014  private:
4015   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
4016     return os << D::Desc();
4017   }
4018 
4019   template <typename Tuple>
4020   class Impl : public MatcherInterface<Tuple> {
4021    public:
4022     bool MatchAndExplain(Tuple args,
4023                          MatchResultListener* /* listener */) const override {
4024       return Op()(::std::get<0>(args), ::std::get<1>(args));
4025     }
4026     void DescribeTo(::std::ostream* os) const override {
4027       *os << "are " << GetDesc;
4028     }
4029     void DescribeNegationTo(::std::ostream* os) const override {
4030       *os << "aren't " << GetDesc;
4031     }
4032   };
4033 };
4034 
4035 class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
4036  public:
4037   static const char* Desc() { return "an equal pair"; }
4038 };
4039 class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
4040  public:
4041   static const char* Desc() { return "an unequal pair"; }
4042 };
4043 class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
4044  public:
4045   static const char* Desc() { return "a pair where the first < the second"; }
4046 };
4047 class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
4048  public:
4049   static const char* Desc() { return "a pair where the first > the second"; }
4050 };
4051 class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
4052  public:
4053   static const char* Desc() { return "a pair where the first <= the second"; }
4054 };
4055 class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
4056  public:
4057   static const char* Desc() { return "a pair where the first >= the second"; }
4058 };
4059 
4060 // Implements the Not(...) matcher for a particular argument type T.
4061 // We do not nest it inside the NotMatcher class template, as that
4062 // will prevent different instantiations of NotMatcher from sharing
4063 // the same NotMatcherImpl<T> class.
4064 template <typename T>
4065 class NotMatcherImpl : public MatcherInterface<const T&> {
4066  public:
4067   explicit NotMatcherImpl(const Matcher<T>& matcher)
4068       : matcher_(matcher) {}
4069 
4070   bool MatchAndExplain(const T& x,
4071                        MatchResultListener* listener) const override {
4072     return !matcher_.MatchAndExplain(x, listener);
4073   }
4074 
4075   void DescribeTo(::std::ostream* os) const override {
4076     matcher_.DescribeNegationTo(os);
4077   }
4078 
4079   void DescribeNegationTo(::std::ostream* os) const override {
4080     matcher_.DescribeTo(os);
4081   }
4082 
4083  private:
4084   const Matcher<T> matcher_;
4085 };
4086 
4087 // Implements the Not(m) matcher, which matches a value that doesn't
4088 // match matcher m.
4089 template <typename InnerMatcher>
4090 class NotMatcher {
4091  public:
4092   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
4093 
4094   // This template type conversion operator allows Not(m) to be used
4095   // to match any type m can match.
4096   template <typename T>
4097   operator Matcher<T>() const {
4098     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
4099   }
4100 
4101  private:
4102   InnerMatcher matcher_;
4103 };
4104 
4105 // Implements the AllOf(m1, m2) matcher for a particular argument type
4106 // T. We do not nest it inside the BothOfMatcher class template, as
4107 // that will prevent different instantiations of BothOfMatcher from
4108 // sharing the same BothOfMatcherImpl<T> class.
4109 template <typename T>
4110 class AllOfMatcherImpl : public MatcherInterface<const T&> {
4111  public:
4112   explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
4113       : matchers_(std::move(matchers)) {}
4114 
4115   void DescribeTo(::std::ostream* os) const override {
4116     *os << "(";
4117     for (size_t i = 0; i < matchers_.size(); ++i) {
4118       if (i != 0) *os << ") and (";
4119       matchers_[i].DescribeTo(os);
4120     }
4121     *os << ")";
4122   }
4123 
4124   void DescribeNegationTo(::std::ostream* os) const override {
4125     *os << "(";
4126     for (size_t i = 0; i < matchers_.size(); ++i) {
4127       if (i != 0) *os << ") or (";
4128       matchers_[i].DescribeNegationTo(os);
4129     }
4130     *os << ")";
4131   }
4132 
4133   bool MatchAndExplain(const T& x,
4134                        MatchResultListener* listener) const override {
4135     // If either matcher1_ or matcher2_ doesn't match x, we only need
4136     // to explain why one of them fails.
4137     std::string all_match_result;
4138 
4139     for (size_t i = 0; i < matchers_.size(); ++i) {
4140       StringMatchResultListener slistener;
4141       if (matchers_[i].MatchAndExplain(x, &slistener)) {
4142         if (all_match_result.empty()) {
4143           all_match_result = slistener.str();
4144         } else {
4145           std::string result = slistener.str();
4146           if (!result.empty()) {
4147             all_match_result += ", and ";
4148             all_match_result += result;
4149           }
4150         }
4151       } else {
4152         *listener << slistener.str();
4153         return false;
4154       }
4155     }
4156 
4157     // Otherwise we need to explain why *both* of them match.
4158     *listener << all_match_result;
4159     return true;
4160   }
4161 
4162  private:
4163   const std::vector<Matcher<T> > matchers_;
4164 };
4165 
4166 // VariadicMatcher is used for the variadic implementation of
4167 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
4168 // CombiningMatcher<T> is used to recursively combine the provided matchers
4169 // (of type Args...).
4170 template <template <typename T> class CombiningMatcher, typename... Args>
4171 class VariadicMatcher {
4172  public:
4173   VariadicMatcher(const Args&... matchers)  // NOLINT
4174       : matchers_(matchers...) {
4175     static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
4176   }
4177 
4178   VariadicMatcher(const VariadicMatcher&) = default;
4179   VariadicMatcher& operator=(const VariadicMatcher&) = delete;
4180 
4181   // This template type conversion operator allows an
4182   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
4183   // all of the provided matchers (Matcher1, Matcher2, ...) can match.
4184   template <typename T>
4185   operator Matcher<T>() const {
4186     std::vector<Matcher<T> > values;
4187     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
4188     return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
4189   }
4190 
4191  private:
4192   template <typename T, size_t I>
4193   void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
4194                              std::integral_constant<size_t, I>) const {
4195     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
4196     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
4197   }
4198 
4199   template <typename T>
4200   void CreateVariadicMatcher(
4201       std::vector<Matcher<T> >*,
4202       std::integral_constant<size_t, sizeof...(Args)>) const {}
4203 
4204   std::tuple<Args...> matchers_;
4205 };
4206 
4207 template <typename... Args>
4208 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
4209 
4210 // Implements the AnyOf(m1, m2) matcher for a particular argument type
4211 // T.  We do not nest it inside the AnyOfMatcher class template, as
4212 // that will prevent different instantiations of AnyOfMatcher from
4213 // sharing the same EitherOfMatcherImpl<T> class.
4214 template <typename T>
4215 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
4216  public:
4217   explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
4218       : matchers_(std::move(matchers)) {}
4219 
4220   void DescribeTo(::std::ostream* os) const override {
4221     *os << "(";
4222     for (size_t i = 0; i < matchers_.size(); ++i) {
4223       if (i != 0) *os << ") or (";
4224       matchers_[i].DescribeTo(os);
4225     }
4226     *os << ")";
4227   }
4228 
4229   void DescribeNegationTo(::std::ostream* os) const override {
4230     *os << "(";
4231     for (size_t i = 0; i < matchers_.size(); ++i) {
4232       if (i != 0) *os << ") and (";
4233       matchers_[i].DescribeNegationTo(os);
4234     }
4235     *os << ")";
4236   }
4237 
4238   bool MatchAndExplain(const T& x,
4239                        MatchResultListener* listener) const override {
4240     std::string no_match_result;
4241 
4242     // If either matcher1_ or matcher2_ matches x, we just need to
4243     // explain why *one* of them matches.
4244     for (size_t i = 0; i < matchers_.size(); ++i) {
4245       StringMatchResultListener slistener;
4246       if (matchers_[i].MatchAndExplain(x, &slistener)) {
4247         *listener << slistener.str();
4248         return true;
4249       } else {
4250         if (no_match_result.empty()) {
4251           no_match_result = slistener.str();
4252         } else {
4253           std::string result = slistener.str();
4254           if (!result.empty()) {
4255             no_match_result += ", and ";
4256             no_match_result += result;
4257           }
4258         }
4259       }
4260     }
4261 
4262     // Otherwise we need to explain why *both* of them fail.
4263     *listener << no_match_result;
4264     return false;
4265   }
4266 
4267  private:
4268   const std::vector<Matcher<T> > matchers_;
4269 };
4270 
4271 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
4272 template <typename... Args>
4273 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
4274 
4275 // Wrapper for implementation of Any/AllOfArray().
4276 template <template <class> class MatcherImpl, typename T>
4277 class SomeOfArrayMatcher {
4278  public:
4279   // Constructs the matcher from a sequence of element values or
4280   // element matchers.
4281   template <typename Iter>
4282   SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
4283 
4284   template <typename U>
4285   operator Matcher<U>() const {  // NOLINT
4286     using RawU = typename std::decay<U>::type;
4287     std::vector<Matcher<RawU>> matchers;
4288     for (const auto& matcher : matchers_) {
4289       matchers.push_back(MatcherCast<RawU>(matcher));
4290     }
4291     return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
4292   }
4293 
4294  private:
4295   const ::std::vector<T> matchers_;
4296 };
4297 
4298 template <typename T>
4299 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
4300 
4301 template <typename T>
4302 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
4303 
4304 // Used for implementing Truly(pred), which turns a predicate into a
4305 // matcher.
4306 template <typename Predicate>
4307 class TrulyMatcher {
4308  public:
4309   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
4310 
4311   // This method template allows Truly(pred) to be used as a matcher
4312   // for type T where T is the argument type of predicate 'pred'.  The
4313   // argument is passed by reference as the predicate may be
4314   // interested in the address of the argument.
4315   template <typename T>
4316   bool MatchAndExplain(T& x,  // NOLINT
4317                        MatchResultListener* listener) const {
4318     // Without the if-statement, MSVC sometimes warns about converting
4319     // a value to bool (warning 4800).
4320     //
4321     // We cannot write 'return !!predicate_(x);' as that doesn't work
4322     // when predicate_(x) returns a class convertible to bool but
4323     // having no operator!().
4324     if (predicate_(x))
4325       return true;
4326     *listener << "didn't satisfy the given predicate";
4327     return false;
4328   }
4329 
4330   void DescribeTo(::std::ostream* os) const {
4331     *os << "satisfies the given predicate";
4332   }
4333 
4334   void DescribeNegationTo(::std::ostream* os) const {
4335     *os << "doesn't satisfy the given predicate";
4336   }
4337 
4338  private:
4339   Predicate predicate_;
4340 };
4341 
4342 // Used for implementing Matches(matcher), which turns a matcher into
4343 // a predicate.
4344 template <typename M>
4345 class MatcherAsPredicate {
4346  public:
4347   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
4348 
4349   // This template operator() allows Matches(m) to be used as a
4350   // predicate on type T where m is a matcher on type T.
4351   //
4352   // The argument x is passed by reference instead of by value, as
4353   // some matcher may be interested in its address (e.g. as in
4354   // Matches(Ref(n))(x)).
4355   template <typename T>
4356   bool operator()(const T& x) const {
4357     // We let matcher_ commit to a particular type here instead of
4358     // when the MatcherAsPredicate object was constructed.  This
4359     // allows us to write Matches(m) where m is a polymorphic matcher
4360     // (e.g. Eq(5)).
4361     //
4362     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
4363     // compile when matcher_ has type Matcher<const T&>; if we write
4364     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
4365     // when matcher_ has type Matcher<T>; if we just write
4366     // matcher_.Matches(x), it won't compile when matcher_ is
4367     // polymorphic, e.g. Eq(5).
4368     //
4369     // MatcherCast<const T&>() is necessary for making the code work
4370     // in all of the above situations.
4371     return MatcherCast<const T&>(matcher_).Matches(x);
4372   }
4373 
4374  private:
4375   M matcher_;
4376 };
4377 
4378 // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
4379 // argument M must be a type that can be converted to a matcher.
4380 template <typename M>
4381 class PredicateFormatterFromMatcher {
4382  public:
4383   explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
4384 
4385   // This template () operator allows a PredicateFormatterFromMatcher
4386   // object to act as a predicate-formatter suitable for using with
4387   // Google Test's EXPECT_PRED_FORMAT1() macro.
4388   template <typename T>
4389   AssertionResult operator()(const char* value_text, const T& x) const {
4390     // We convert matcher_ to a Matcher<const T&> *now* instead of
4391     // when the PredicateFormatterFromMatcher object was constructed,
4392     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
4393     // know which type to instantiate it to until we actually see the
4394     // type of x here.
4395     //
4396     // We write SafeMatcherCast<const T&>(matcher_) instead of
4397     // Matcher<const T&>(matcher_), as the latter won't compile when
4398     // matcher_ has type Matcher<T> (e.g. An<int>()).
4399     // We don't write MatcherCast<const T&> either, as that allows
4400     // potentially unsafe downcasting of the matcher argument.
4401     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
4402 
4403     // The expected path here is that the matcher should match (i.e. that most
4404     // tests pass) so optimize for this case.
4405     if (matcher.Matches(x)) {
4406       return AssertionSuccess();
4407     }
4408 
4409     ::std::stringstream ss;
4410     ss << "Value of: " << value_text << "\n"
4411        << "Expected: ";
4412     matcher.DescribeTo(&ss);
4413 
4414     // Rerun the matcher to "PrintAndExplain" the failure.
4415     StringMatchResultListener listener;
4416     if (MatchPrintAndExplain(x, matcher, &listener)) {
4417       ss << "\n  The matcher failed on the initial attempt; but passed when "
4418             "rerun to generate the explanation.";
4419     }
4420     ss << "\n  Actual: " << listener.str();
4421     return AssertionFailure() << ss.str();
4422   }
4423 
4424  private:
4425   const M matcher_;
4426 };
4427 
4428 // A helper function for converting a matcher to a predicate-formatter
4429 // without the user needing to explicitly write the type.  This is
4430 // used for implementing ASSERT_THAT() and EXPECT_THAT().
4431 // Implementation detail: 'matcher' is received by-value to force decaying.
4432 template <typename M>
4433 inline PredicateFormatterFromMatcher<M>
4434 MakePredicateFormatterFromMatcher(M matcher) {
4435   return PredicateFormatterFromMatcher<M>(std::move(matcher));
4436 }
4437 
4438 // Implements the polymorphic IsNan() matcher, which matches any floating type
4439 // value that is Nan.
4440 class IsNanMatcher {
4441  public:
4442   template <typename FloatType>
4443   bool MatchAndExplain(const FloatType& f,
4444                        MatchResultListener* /* listener */) const {
4445     return (::std::isnan)(f);
4446   }
4447 
4448   void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
4449   void DescribeNegationTo(::std::ostream* os) const {
4450     *os << "isn't NaN";
4451   }
4452 };
4453 
4454 // Implements the polymorphic floating point equality matcher, which matches
4455 // two float values using ULP-based approximation or, optionally, a
4456 // user-specified epsilon.  The template is meant to be instantiated with
4457 // FloatType being either float or double.
4458 template <typename FloatType>
4459 class FloatingEqMatcher {
4460  public:
4461   // Constructor for FloatingEqMatcher.
4462   // The matcher's input will be compared with expected.  The matcher treats two
4463   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
4464   // equality comparisons between NANs will always return false.  We specify a
4465   // negative max_abs_error_ term to indicate that ULP-based approximation will
4466   // be used for comparison.
4467   FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
4468     expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
4469   }
4470 
4471   // Constructor that supports a user-specified max_abs_error that will be used
4472   // for comparison instead of ULP-based approximation.  The max absolute
4473   // should be non-negative.
4474   FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
4475                     FloatType max_abs_error)
4476       : expected_(expected),
4477         nan_eq_nan_(nan_eq_nan),
4478         max_abs_error_(max_abs_error) {
4479     GTEST_CHECK_(max_abs_error >= 0)
4480         << ", where max_abs_error is" << max_abs_error;
4481   }
4482 
4483   // Implements floating point equality matcher as a Matcher<T>.
4484   template <typename T>
4485   class Impl : public MatcherInterface<T> {
4486    public:
4487     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
4488         : expected_(expected),
4489           nan_eq_nan_(nan_eq_nan),
4490           max_abs_error_(max_abs_error) {}
4491 
4492     bool MatchAndExplain(T value,
4493                          MatchResultListener* listener) const override {
4494       const FloatingPoint<FloatType> actual(value), expected(expected_);
4495 
4496       // Compares NaNs first, if nan_eq_nan_ is true.
4497       if (actual.is_nan() || expected.is_nan()) {
4498         if (actual.is_nan() && expected.is_nan()) {
4499           return nan_eq_nan_;
4500         }
4501         // One is nan; the other is not nan.
4502         return false;
4503       }
4504       if (HasMaxAbsError()) {
4505         // We perform an equality check so that inf will match inf, regardless
4506         // of error bounds.  If the result of value - expected_ would result in
4507         // overflow or if either value is inf, the default result is infinity,
4508         // which should only match if max_abs_error_ is also infinity.
4509         if (value == expected_) {
4510           return true;
4511         }
4512 
4513         const FloatType diff = value - expected_;
4514         if (::std::fabs(diff) <= max_abs_error_) {
4515           return true;
4516         }
4517 
4518         if (listener->IsInterested()) {
4519           *listener << "which is " << diff << " from " << expected_;
4520         }
4521         return false;
4522       } else {
4523         return actual.AlmostEquals(expected);
4524       }
4525     }
4526 
4527     void DescribeTo(::std::ostream* os) const override {
4528       // os->precision() returns the previously set precision, which we
4529       // store to restore the ostream to its original configuration
4530       // after outputting.
4531       const ::std::streamsize old_precision = os->precision(
4532           ::std::numeric_limits<FloatType>::digits10 + 2);
4533       if (FloatingPoint<FloatType>(expected_).is_nan()) {
4534         if (nan_eq_nan_) {
4535           *os << "is NaN";
4536         } else {
4537           *os << "never matches";
4538         }
4539       } else {
4540         *os << "is approximately " << expected_;
4541         if (HasMaxAbsError()) {
4542           *os << " (absolute error <= " << max_abs_error_ << ")";
4543         }
4544       }
4545       os->precision(old_precision);
4546     }
4547 
4548     void DescribeNegationTo(::std::ostream* os) const override {
4549       // As before, get original precision.
4550       const ::std::streamsize old_precision = os->precision(
4551           ::std::numeric_limits<FloatType>::digits10 + 2);
4552       if (FloatingPoint<FloatType>(expected_).is_nan()) {
4553         if (nan_eq_nan_) {
4554           *os << "isn't NaN";
4555         } else {
4556           *os << "is anything";
4557         }
4558       } else {
4559         *os << "isn't approximately " << expected_;
4560         if (HasMaxAbsError()) {
4561           *os << " (absolute error > " << max_abs_error_ << ")";
4562         }
4563       }
4564       // Restore original precision.
4565       os->precision(old_precision);
4566     }
4567 
4568    private:
4569     bool HasMaxAbsError() const {
4570       return max_abs_error_ >= 0;
4571     }
4572 
4573     const FloatType expected_;
4574     const bool nan_eq_nan_;
4575     // max_abs_error will be used for value comparison when >= 0.
4576     const FloatType max_abs_error_;
4577   };
4578 
4579   // The following 3 type conversion operators allow FloatEq(expected) and
4580   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
4581   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
4582   operator Matcher<FloatType>() const {
4583     return MakeMatcher(
4584         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
4585   }
4586 
4587   operator Matcher<const FloatType&>() const {
4588     return MakeMatcher(
4589         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
4590   }
4591 
4592   operator Matcher<FloatType&>() const {
4593     return MakeMatcher(
4594         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
4595   }
4596 
4597  private:
4598   const FloatType expected_;
4599   const bool nan_eq_nan_;
4600   // max_abs_error will be used for value comparison when >= 0.
4601   const FloatType max_abs_error_;
4602 };
4603 
4604 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
4605 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
4606 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
4607 // against y. The former implements "Eq", the latter "Near". At present, there
4608 // is no version that compares NaNs as equal.
4609 template <typename FloatType>
4610 class FloatingEq2Matcher {
4611  public:
4612   FloatingEq2Matcher() { Init(-1, false); }
4613 
4614   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
4615 
4616   explicit FloatingEq2Matcher(FloatType max_abs_error) {
4617     Init(max_abs_error, false);
4618   }
4619 
4620   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
4621     Init(max_abs_error, nan_eq_nan);
4622   }
4623 
4624   template <typename T1, typename T2>
4625   operator Matcher<::std::tuple<T1, T2>>() const {
4626     return MakeMatcher(
4627         new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
4628   }
4629   template <typename T1, typename T2>
4630   operator Matcher<const ::std::tuple<T1, T2>&>() const {
4631     return MakeMatcher(
4632         new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
4633   }
4634 
4635  private:
4636   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
4637     return os << "an almost-equal pair";
4638   }
4639 
4640   template <typename Tuple>
4641   class Impl : public MatcherInterface<Tuple> {
4642    public:
4643     Impl(FloatType max_abs_error, bool nan_eq_nan) :
4644         max_abs_error_(max_abs_error),
4645         nan_eq_nan_(nan_eq_nan) {}
4646 
4647     bool MatchAndExplain(Tuple args,
4648                          MatchResultListener* listener) const override {
4649       if (max_abs_error_ == -1) {
4650         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
4651         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
4652             ::std::get<1>(args), listener);
4653       } else {
4654         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
4655                                         max_abs_error_);
4656         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
4657             ::std::get<1>(args), listener);
4658       }
4659     }
4660     void DescribeTo(::std::ostream* os) const override {
4661       *os << "are " << GetDesc;
4662     }
4663     void DescribeNegationTo(::std::ostream* os) const override {
4664       *os << "aren't " << GetDesc;
4665     }
4666 
4667    private:
4668     FloatType max_abs_error_;
4669     const bool nan_eq_nan_;
4670   };
4671 
4672   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
4673     max_abs_error_ = max_abs_error_val;
4674     nan_eq_nan_ = nan_eq_nan_val;
4675   }
4676   FloatType max_abs_error_;
4677   bool nan_eq_nan_;
4678 };
4679 
4680 // Implements the Pointee(m) matcher for matching a pointer whose
4681 // pointee matches matcher m.  The pointer can be either raw or smart.
4682 template <typename InnerMatcher>
4683 class PointeeMatcher {
4684  public:
4685   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
4686 
4687   // This type conversion operator template allows Pointee(m) to be
4688   // used as a matcher for any pointer type whose pointee type is
4689   // compatible with the inner matcher, where type Pointer can be
4690   // either a raw pointer or a smart pointer.
4691   //
4692   // The reason we do this instead of relying on
4693   // MakePolymorphicMatcher() is that the latter is not flexible
4694   // enough for implementing the DescribeTo() method of Pointee().
4695   template <typename Pointer>
4696   operator Matcher<Pointer>() const {
4697     return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
4698   }
4699 
4700  private:
4701   // The monomorphic implementation that works for a particular pointer type.
4702   template <typename Pointer>
4703   class Impl : public MatcherInterface<Pointer> {
4704    public:
4705     using Pointee =
4706         typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
4707             Pointer)>::element_type;
4708 
4709     explicit Impl(const InnerMatcher& matcher)
4710         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
4711 
4712     void DescribeTo(::std::ostream* os) const override {
4713       *os << "points to a value that ";
4714       matcher_.DescribeTo(os);
4715     }
4716 
4717     void DescribeNegationTo(::std::ostream* os) const override {
4718       *os << "does not point to a value that ";
4719       matcher_.DescribeTo(os);
4720     }
4721 
4722     bool MatchAndExplain(Pointer pointer,
4723                          MatchResultListener* listener) const override {
4724       if (GetRawPointer(pointer) == nullptr) return false;
4725 
4726       *listener << "which points to ";
4727       return MatchPrintAndExplain(*pointer, matcher_, listener);
4728     }
4729 
4730    private:
4731     const Matcher<const Pointee&> matcher_;
4732   };
4733 
4734   const InnerMatcher matcher_;
4735 };
4736 
4737 // Implements the Pointer(m) matcher
4738 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
4739 // m.  The pointer can be either raw or smart, and will match `m` against the
4740 // raw pointer.
4741 template <typename InnerMatcher>
4742 class PointerMatcher {
4743  public:
4744   explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
4745 
4746   // This type conversion operator template allows Pointer(m) to be
4747   // used as a matcher for any pointer type whose pointer type is
4748   // compatible with the inner matcher, where type PointerType can be
4749   // either a raw pointer or a smart pointer.
4750   //
4751   // The reason we do this instead of relying on
4752   // MakePolymorphicMatcher() is that the latter is not flexible
4753   // enough for implementing the DescribeTo() method of Pointer().
4754   template <typename PointerType>
4755   operator Matcher<PointerType>() const {  // NOLINT
4756     return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
4757   }
4758 
4759  private:
4760   // The monomorphic implementation that works for a particular pointer type.
4761   template <typename PointerType>
4762   class Impl : public MatcherInterface<PointerType> {
4763    public:
4764     using Pointer =
4765         const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
4766             PointerType)>::element_type*;
4767 
4768     explicit Impl(const InnerMatcher& matcher)
4769         : matcher_(MatcherCast<Pointer>(matcher)) {}
4770 
4771     void DescribeTo(::std::ostream* os) const override {
4772       *os << "is a pointer that ";
4773       matcher_.DescribeTo(os);
4774     }
4775 
4776     void DescribeNegationTo(::std::ostream* os) const override {
4777       *os << "is not a pointer that ";
4778       matcher_.DescribeTo(os);
4779     }
4780 
4781     bool MatchAndExplain(PointerType pointer,
4782                          MatchResultListener* listener) const override {
4783       *listener << "which is a pointer that ";
4784       Pointer p = GetRawPointer(pointer);
4785       return MatchPrintAndExplain(p, matcher_, listener);
4786     }
4787 
4788    private:
4789     Matcher<Pointer> matcher_;
4790   };
4791 
4792   const InnerMatcher matcher_;
4793 };
4794 
4795 #if GTEST_HAS_RTTI
4796 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
4797 // reference that matches inner_matcher when dynamic_cast<T> is applied.
4798 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4799 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4800 // If To is a reference and the cast fails, this matcher returns false
4801 // immediately.
4802 template <typename To>
4803 class WhenDynamicCastToMatcherBase {
4804  public:
4805   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
4806       : matcher_(matcher) {}
4807 
4808   void DescribeTo(::std::ostream* os) const {
4809     GetCastTypeDescription(os);
4810     matcher_.DescribeTo(os);
4811   }
4812 
4813   void DescribeNegationTo(::std::ostream* os) const {
4814     GetCastTypeDescription(os);
4815     matcher_.DescribeNegationTo(os);
4816   }
4817 
4818  protected:
4819   const Matcher<To> matcher_;
4820 
4821   static std::string GetToName() {
4822     return GetTypeName<To>();
4823   }
4824 
4825  private:
4826   static void GetCastTypeDescription(::std::ostream* os) {
4827     *os << "when dynamic_cast to " << GetToName() << ", ";
4828   }
4829 };
4830 
4831 // Primary template.
4832 // To is a pointer. Cast and forward the result.
4833 template <typename To>
4834 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
4835  public:
4836   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
4837       : WhenDynamicCastToMatcherBase<To>(matcher) {}
4838 
4839   template <typename From>
4840   bool MatchAndExplain(From from, MatchResultListener* listener) const {
4841     To to = dynamic_cast<To>(from);
4842     return MatchPrintAndExplain(to, this->matcher_, listener);
4843   }
4844 };
4845 
4846 // Specialize for references.
4847 // In this case we return false if the dynamic_cast fails.
4848 template <typename To>
4849 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
4850  public:
4851   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
4852       : WhenDynamicCastToMatcherBase<To&>(matcher) {}
4853 
4854   template <typename From>
4855   bool MatchAndExplain(From& from, MatchResultListener* listener) const {
4856     // We don't want an std::bad_cast here, so do the cast with pointers.
4857     To* to = dynamic_cast<To*>(&from);
4858     if (to == nullptr) {
4859       *listener << "which cannot be dynamic_cast to " << this->GetToName();
4860       return false;
4861     }
4862     return MatchPrintAndExplain(*to, this->matcher_, listener);
4863   }
4864 };
4865 #endif  // GTEST_HAS_RTTI
4866 
4867 // Implements the Field() matcher for matching a field (i.e. member
4868 // variable) of an object.
4869 template <typename Class, typename FieldType>
4870 class FieldMatcher {
4871  public:
4872   FieldMatcher(FieldType Class::*field,
4873                const Matcher<const FieldType&>& matcher)
4874       : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
4875 
4876   FieldMatcher(const std::string& field_name, FieldType Class::*field,
4877                const Matcher<const FieldType&>& matcher)
4878       : field_(field),
4879         matcher_(matcher),
4880         whose_field_("whose field `" + field_name + "` ") {}
4881 
4882   void DescribeTo(::std::ostream* os) const {
4883     *os << "is an object " << whose_field_;
4884     matcher_.DescribeTo(os);
4885   }
4886 
4887   void DescribeNegationTo(::std::ostream* os) const {
4888     *os << "is an object " << whose_field_;
4889     matcher_.DescribeNegationTo(os);
4890   }
4891 
4892   template <typename T>
4893   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
4894     // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
4895     // a compiler bug, and can now be removed.
4896     return MatchAndExplainImpl(
4897         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
4898         value, listener);
4899   }
4900 
4901  private:
4902   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
4903                            const Class& obj,
4904                            MatchResultListener* listener) const {
4905     *listener << whose_field_ << "is ";
4906     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
4907   }
4908 
4909   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
4910                            MatchResultListener* listener) const {
4911     if (p == nullptr) return false;
4912 
4913     *listener << "which points to an object ";
4914     // Since *p has a field, it must be a class/struct/union type and
4915     // thus cannot be a pointer.  Therefore we pass false_type() as
4916     // the first argument.
4917     return MatchAndExplainImpl(std::false_type(), *p, listener);
4918   }
4919 
4920   const FieldType Class::*field_;
4921   const Matcher<const FieldType&> matcher_;
4922 
4923   // Contains either "whose given field " if the name of the field is unknown
4924   // or "whose field `name_of_field` " if the name is known.
4925   const std::string whose_field_;
4926 };
4927 
4928 // Implements the Property() matcher for matching a property
4929 // (i.e. return value of a getter method) of an object.
4930 //
4931 // Property is a const-qualified member function of Class returning
4932 // PropertyType.
4933 template <typename Class, typename PropertyType, typename Property>
4934 class PropertyMatcher {
4935  public:
4936   typedef const PropertyType& RefToConstProperty;
4937 
4938   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
4939       : property_(property),
4940         matcher_(matcher),
4941         whose_property_("whose given property ") {}
4942 
4943   PropertyMatcher(const std::string& property_name, Property property,
4944                   const Matcher<RefToConstProperty>& matcher)
4945       : property_(property),
4946         matcher_(matcher),
4947         whose_property_("whose property `" + property_name + "` ") {}
4948 
4949   void DescribeTo(::std::ostream* os) const {
4950     *os << "is an object " << whose_property_;
4951     matcher_.DescribeTo(os);
4952   }
4953 
4954   void DescribeNegationTo(::std::ostream* os) const {
4955     *os << "is an object " << whose_property_;
4956     matcher_.DescribeNegationTo(os);
4957   }
4958 
4959   template <typename T>
4960   bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
4961     return MatchAndExplainImpl(
4962         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
4963         value, listener);
4964   }
4965 
4966  private:
4967   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
4968                            const Class& obj,
4969                            MatchResultListener* listener) const {
4970     *listener << whose_property_ << "is ";
4971     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
4972     // which takes a non-const reference as argument.
4973     RefToConstProperty result = (obj.*property_)();
4974     return MatchPrintAndExplain(result, matcher_, listener);
4975   }
4976 
4977   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
4978                            MatchResultListener* listener) const {
4979     if (p == nullptr) return false;
4980 
4981     *listener << "which points to an object ";
4982     // Since *p has a property method, it must be a class/struct/union
4983     // type and thus cannot be a pointer.  Therefore we pass
4984     // false_type() as the first argument.
4985     return MatchAndExplainImpl(std::false_type(), *p, listener);
4986   }
4987 
4988   Property property_;
4989   const Matcher<RefToConstProperty> matcher_;
4990 
4991   // Contains either "whose given property " if the name of the property is
4992   // unknown or "whose property `name_of_property` " if the name is known.
4993   const std::string whose_property_;
4994 };
4995 
4996 // Type traits specifying various features of different functors for ResultOf.
4997 // The default template specifies features for functor objects.
4998 template <typename Functor>
4999 struct CallableTraits {
5000   typedef Functor StorageType;
5001 
5002   static void CheckIsValid(Functor /* functor */) {}
5003 
5004   template <typename T>
5005   static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
5006     return f(arg);
5007   }
5008 };
5009 
5010 // Specialization for function pointers.
5011 template <typename ArgType, typename ResType>
5012 struct CallableTraits<ResType(*)(ArgType)> {
5013   typedef ResType ResultType;
5014   typedef ResType(*StorageType)(ArgType);
5015 
5016   static void CheckIsValid(ResType(*f)(ArgType)) {
5017     GTEST_CHECK_(f != nullptr)
5018         << "NULL function pointer is passed into ResultOf().";
5019   }
5020   template <typename T>
5021   static ResType Invoke(ResType(*f)(ArgType), T arg) {
5022     return (*f)(arg);
5023   }
5024 };
5025 
5026 // Implements the ResultOf() matcher for matching a return value of a
5027 // unary function of an object.
5028 template <typename Callable, typename InnerMatcher>
5029 class ResultOfMatcher {
5030  public:
5031   ResultOfMatcher(Callable callable, InnerMatcher matcher)
5032       : callable_(std::move(callable)), matcher_(std::move(matcher)) {
5033     CallableTraits<Callable>::CheckIsValid(callable_);
5034   }
5035 
5036   template <typename T>
5037   operator Matcher<T>() const {
5038     return Matcher<T>(new Impl<const T&>(callable_, matcher_));
5039   }
5040 
5041  private:
5042   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
5043 
5044   template <typename T>
5045   class Impl : public MatcherInterface<T> {
5046     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
5047         std::declval<CallableStorageType>(), std::declval<T>()));
5048 
5049    public:
5050     template <typename M>
5051     Impl(const CallableStorageType& callable, const M& matcher)
5052         : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
5053 
5054     void DescribeTo(::std::ostream* os) const override {
5055       *os << "is mapped by the given callable to a value that ";
5056       matcher_.DescribeTo(os);
5057     }
5058 
5059     void DescribeNegationTo(::std::ostream* os) const override {
5060       *os << "is mapped by the given callable to a value that ";
5061       matcher_.DescribeNegationTo(os);
5062     }
5063 
5064     bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
5065       *listener << "which is mapped by the given callable to ";
5066       // Cannot pass the return value directly to MatchPrintAndExplain, which
5067       // takes a non-const reference as argument.
5068       // Also, specifying template argument explicitly is needed because T could
5069       // be a non-const reference (e.g. Matcher<Uncopyable&>).
5070       ResultType result =
5071           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
5072       return MatchPrintAndExplain(result, matcher_, listener);
5073     }
5074 
5075    private:
5076     // Functors often define operator() as non-const method even though
5077     // they are actually stateless. But we need to use them even when
5078     // 'this' is a const pointer. It's the user's responsibility not to
5079     // use stateful callables with ResultOf(), which doesn't guarantee
5080     // how many times the callable will be invoked.
5081     mutable CallableStorageType callable_;
5082     const Matcher<ResultType> matcher_;
5083   };  // class Impl
5084 
5085   const CallableStorageType callable_;
5086   const InnerMatcher matcher_;
5087 };
5088 
5089 // Implements a matcher that checks the size of an STL-style container.
5090 template <typename SizeMatcher>
5091 class SizeIsMatcher {
5092  public:
5093   explicit SizeIsMatcher(const SizeMatcher& size_matcher)
5094        : size_matcher_(size_matcher) {
5095   }
5096 
5097   template <typename Container>
5098   operator Matcher<Container>() const {
5099     return Matcher<Container>(new Impl<const Container&>(size_matcher_));
5100   }
5101 
5102   template <typename Container>
5103   class Impl : public MatcherInterface<Container> {
5104    public:
5105     using SizeType = decltype(std::declval<Container>().size());
5106     explicit Impl(const SizeMatcher& size_matcher)
5107         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
5108 
5109     void DescribeTo(::std::ostream* os) const override {
5110       *os << "size ";
5111       size_matcher_.DescribeTo(os);
5112     }
5113     void DescribeNegationTo(::std::ostream* os) const override {
5114       *os << "size ";
5115       size_matcher_.DescribeNegationTo(os);
5116     }
5117 
5118     bool MatchAndExplain(Container container,
5119                          MatchResultListener* listener) const override {
5120       SizeType size = container.size();
5121       StringMatchResultListener size_listener;
5122       const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
5123       *listener
5124           << "whose size " << size << (result ? " matches" : " doesn't match");
5125       PrintIfNotEmpty(size_listener.str(), listener->stream());
5126       return result;
5127     }
5128 
5129    private:
5130     const Matcher<SizeType> size_matcher_;
5131   };
5132 
5133  private:
5134   const SizeMatcher size_matcher_;
5135 };
5136 
5137 // Implements a matcher that checks the begin()..end() distance of an STL-style
5138 // container.
5139 template <typename DistanceMatcher>
5140 class BeginEndDistanceIsMatcher {
5141  public:
5142   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
5143       : distance_matcher_(distance_matcher) {}
5144 
5145   template <typename Container>
5146   operator Matcher<Container>() const {
5147     return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
5148   }
5149 
5150   template <typename Container>
5151   class Impl : public MatcherInterface<Container> {
5152    public:
5153     typedef internal::StlContainerView<
5154         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
5155     typedef typename std::iterator_traits<
5156         typename ContainerView::type::const_iterator>::difference_type
5157         DistanceType;
5158     explicit Impl(const DistanceMatcher& distance_matcher)
5159         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
5160 
5161     void DescribeTo(::std::ostream* os) const override {
5162       *os << "distance between begin() and end() ";
5163       distance_matcher_.DescribeTo(os);
5164     }
5165     void DescribeNegationTo(::std::ostream* os) const override {
5166       *os << "distance between begin() and end() ";
5167       distance_matcher_.DescribeNegationTo(os);
5168     }
5169 
5170     bool MatchAndExplain(Container container,
5171                          MatchResultListener* listener) const override {
5172       using std::begin;
5173       using std::end;
5174       DistanceType distance = std::distance(begin(container), end(container));
5175       StringMatchResultListener distance_listener;
5176       const bool result =
5177           distance_matcher_.MatchAndExplain(distance, &distance_listener);
5178       *listener << "whose distance between begin() and end() " << distance
5179                 << (result ? " matches" : " doesn't match");
5180       PrintIfNotEmpty(distance_listener.str(), listener->stream());
5181       return result;
5182     }
5183 
5184    private:
5185     const Matcher<DistanceType> distance_matcher_;
5186   };
5187 
5188  private:
5189   const DistanceMatcher distance_matcher_;
5190 };
5191 
5192 // Implements an equality matcher for any STL-style container whose elements
5193 // support ==. This matcher is like Eq(), but its failure explanations provide
5194 // more detailed information that is useful when the container is used as a set.
5195 // The failure message reports elements that are in one of the operands but not
5196 // the other. The failure messages do not report duplicate or out-of-order
5197 // elements in the containers (which don't properly matter to sets, but can
5198 // occur if the containers are vectors or lists, for example).
5199 //
5200 // Uses the container's const_iterator, value_type, operator ==,
5201 // begin(), and end().
5202 template <typename Container>
5203 class ContainerEqMatcher {
5204  public:
5205   typedef internal::StlContainerView<Container> View;
5206   typedef typename View::type StlContainer;
5207   typedef typename View::const_reference StlContainerReference;
5208 
5209   static_assert(!std::is_const<Container>::value,
5210                 "Container type must not be const");
5211   static_assert(!std::is_reference<Container>::value,
5212                 "Container type must not be a reference");
5213 
5214   // We make a copy of expected in case the elements in it are modified
5215   // after this matcher is created.
5216   explicit ContainerEqMatcher(const Container& expected)
5217       : expected_(View::Copy(expected)) {}
5218 
5219   void DescribeTo(::std::ostream* os) const {
5220     *os << "equals ";
5221     UniversalPrint(expected_, os);
5222   }
5223   void DescribeNegationTo(::std::ostream* os) const {
5224     *os << "does not equal ";
5225     UniversalPrint(expected_, os);
5226   }
5227 
5228   template <typename LhsContainer>
5229   bool MatchAndExplain(const LhsContainer& lhs,
5230                        MatchResultListener* listener) const {
5231     typedef internal::StlContainerView<
5232         typename std::remove_const<LhsContainer>::type>
5233         LhsView;
5234     typedef typename LhsView::type LhsStlContainer;
5235     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
5236     if (lhs_stl_container == expected_)
5237       return true;
5238 
5239     ::std::ostream* const os = listener->stream();
5240     if (os != nullptr) {
5241       // Something is different. Check for extra values first.
5242       bool printed_header = false;
5243       for (typename LhsStlContainer::const_iterator it =
5244                lhs_stl_container.begin();
5245            it != lhs_stl_container.end(); ++it) {
5246         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
5247             expected_.end()) {
5248           if (printed_header) {
5249             *os << ", ";
5250           } else {
5251             *os << "which has these unexpected elements: ";
5252             printed_header = true;
5253           }
5254           UniversalPrint(*it, os);
5255         }
5256       }
5257 
5258       // Now check for missing values.
5259       bool printed_header2 = false;
5260       for (typename StlContainer::const_iterator it = expected_.begin();
5261            it != expected_.end(); ++it) {
5262         if (internal::ArrayAwareFind(
5263                 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
5264             lhs_stl_container.end()) {
5265           if (printed_header2) {
5266             *os << ", ";
5267           } else {
5268             *os << (printed_header ? ",\nand" : "which")
5269                 << " doesn't have these expected elements: ";
5270             printed_header2 = true;
5271           }
5272           UniversalPrint(*it, os);
5273         }
5274       }
5275     }
5276 
5277     return false;
5278   }
5279 
5280  private:
5281   const StlContainer expected_;
5282 };
5283 
5284 // A comparator functor that uses the < operator to compare two values.
5285 struct LessComparator {
5286   template <typename T, typename U>
5287   bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
5288 };
5289 
5290 // Implements WhenSortedBy(comparator, container_matcher).
5291 template <typename Comparator, typename ContainerMatcher>
5292 class WhenSortedByMatcher {
5293  public:
5294   WhenSortedByMatcher(const Comparator& comparator,
5295                       const ContainerMatcher& matcher)
5296       : comparator_(comparator), matcher_(matcher) {}
5297 
5298   template <typename LhsContainer>
5299   operator Matcher<LhsContainer>() const {
5300     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
5301   }
5302 
5303   template <typename LhsContainer>
5304   class Impl : public MatcherInterface<LhsContainer> {
5305    public:
5306     typedef internal::StlContainerView<
5307          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
5308     typedef typename LhsView::type LhsStlContainer;
5309     typedef typename LhsView::const_reference LhsStlContainerReference;
5310     // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
5311     // so that we can match associative containers.
5312     typedef typename RemoveConstFromKey<
5313         typename LhsStlContainer::value_type>::type LhsValue;
5314 
5315     Impl(const Comparator& comparator, const ContainerMatcher& matcher)
5316         : comparator_(comparator), matcher_(matcher) {}
5317 
5318     void DescribeTo(::std::ostream* os) const override {
5319       *os << "(when sorted) ";
5320       matcher_.DescribeTo(os);
5321     }
5322 
5323     void DescribeNegationTo(::std::ostream* os) const override {
5324       *os << "(when sorted) ";
5325       matcher_.DescribeNegationTo(os);
5326     }
5327 
5328     bool MatchAndExplain(LhsContainer lhs,
5329                          MatchResultListener* listener) const override {
5330       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
5331       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
5332                                                lhs_stl_container.end());
5333       ::std::sort(
5334            sorted_container.begin(), sorted_container.end(), comparator_);
5335 
5336       if (!listener->IsInterested()) {
5337         // If the listener is not interested, we do not need to
5338         // construct the inner explanation.
5339         return matcher_.Matches(sorted_container);
5340       }
5341 
5342       *listener << "which is ";
5343       UniversalPrint(sorted_container, listener->stream());
5344       *listener << " when sorted";
5345 
5346       StringMatchResultListener inner_listener;
5347       const bool match = matcher_.MatchAndExplain(sorted_container,
5348                                                   &inner_listener);
5349       PrintIfNotEmpty(inner_listener.str(), listener->stream());
5350       return match;
5351     }
5352 
5353    private:
5354     const Comparator comparator_;
5355     const Matcher<const ::std::vector<LhsValue>&> matcher_;
5356 
5357     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
5358   };
5359 
5360  private:
5361   const Comparator comparator_;
5362   const ContainerMatcher matcher_;
5363 };
5364 
5365 // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
5366 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
5367 // T2&> >, where T1 and T2 are the types of elements in the LHS
5368 // container and the RHS container respectively.
5369 template <typename TupleMatcher, typename RhsContainer>
5370 class PointwiseMatcher {
5371   GTEST_COMPILE_ASSERT_(
5372       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
5373       use_UnorderedPointwise_with_hash_tables);
5374 
5375  public:
5376   typedef internal::StlContainerView<RhsContainer> RhsView;
5377   typedef typename RhsView::type RhsStlContainer;
5378   typedef typename RhsStlContainer::value_type RhsValue;
5379 
5380   static_assert(!std::is_const<RhsContainer>::value,
5381                 "RhsContainer type must not be const");
5382   static_assert(!std::is_reference<RhsContainer>::value,
5383                 "RhsContainer type must not be a reference");
5384 
5385   // Like ContainerEq, we make a copy of rhs in case the elements in
5386   // it are modified after this matcher is created.
5387   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
5388       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
5389 
5390   template <typename LhsContainer>
5391   operator Matcher<LhsContainer>() const {
5392     GTEST_COMPILE_ASSERT_(
5393         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
5394         use_UnorderedPointwise_with_hash_tables);
5395 
5396     return Matcher<LhsContainer>(
5397         new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
5398   }
5399 
5400   template <typename LhsContainer>
5401   class Impl : public MatcherInterface<LhsContainer> {
5402    public:
5403     typedef internal::StlContainerView<
5404          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
5405     typedef typename LhsView::type LhsStlContainer;
5406     typedef typename LhsView::const_reference LhsStlContainerReference;
5407     typedef typename LhsStlContainer::value_type LhsValue;
5408     // We pass the LHS value and the RHS value to the inner matcher by
5409     // reference, as they may be expensive to copy.  We must use tuple
5410     // instead of pair here, as a pair cannot hold references (C++ 98,
5411     // 20.2.2 [lib.pairs]).
5412     typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
5413 
5414     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
5415         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
5416         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
5417           rhs_(rhs) {}
5418 
5419     void DescribeTo(::std::ostream* os) const override {
5420       *os << "contains " << rhs_.size()
5421           << " values, where each value and its corresponding value in ";
5422       UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
5423       *os << " ";
5424       mono_tuple_matcher_.DescribeTo(os);
5425     }
5426     void DescribeNegationTo(::std::ostream* os) const override {
5427       *os << "doesn't contain exactly " << rhs_.size()
5428           << " values, or contains a value x at some index i"
5429           << " where x and the i-th value of ";
5430       UniversalPrint(rhs_, os);
5431       *os << " ";
5432       mono_tuple_matcher_.DescribeNegationTo(os);
5433     }
5434 
5435     bool MatchAndExplain(LhsContainer lhs,
5436                          MatchResultListener* listener) const override {
5437       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
5438       const size_t actual_size = lhs_stl_container.size();
5439       if (actual_size != rhs_.size()) {
5440         *listener << "which contains " << actual_size << " values";
5441         return false;
5442       }
5443 
5444       typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
5445       typename RhsStlContainer::const_iterator right = rhs_.begin();
5446       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
5447         if (listener->IsInterested()) {
5448           StringMatchResultListener inner_listener;
5449           // Create InnerMatcherArg as a temporarily object to avoid it outlives
5450           // *left and *right. Dereference or the conversion to `const T&` may
5451           // return temp objects, e.g for vector<bool>.
5452           if (!mono_tuple_matcher_.MatchAndExplain(
5453                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
5454                                   ImplicitCast_<const RhsValue&>(*right)),
5455                   &inner_listener)) {
5456             *listener << "where the value pair (";
5457             UniversalPrint(*left, listener->stream());
5458             *listener << ", ";
5459             UniversalPrint(*right, listener->stream());
5460             *listener << ") at index #" << i << " don't match";
5461             PrintIfNotEmpty(inner_listener.str(), listener->stream());
5462             return false;
5463           }
5464         } else {
5465           if (!mono_tuple_matcher_.Matches(
5466                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
5467                                   ImplicitCast_<const RhsValue&>(*right))))
5468             return false;
5469         }
5470       }
5471 
5472       return true;
5473     }
5474 
5475    private:
5476     const Matcher<InnerMatcherArg> mono_tuple_matcher_;
5477     const RhsStlContainer rhs_;
5478   };
5479 
5480  private:
5481   const TupleMatcher tuple_matcher_;
5482   const RhsStlContainer rhs_;
5483 };
5484 
5485 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
5486 template <typename Container>
5487 class QuantifierMatcherImpl : public MatcherInterface<Container> {
5488  public:
5489   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
5490   typedef StlContainerView<RawContainer> View;
5491   typedef typename View::type StlContainer;
5492   typedef typename View::const_reference StlContainerReference;
5493   typedef typename StlContainer::value_type Element;
5494 
5495   template <typename InnerMatcher>
5496   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
5497       : inner_matcher_(
5498            testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
5499 
5500   // Checks whether:
5501   // * All elements in the container match, if all_elements_should_match.
5502   // * Any element in the container matches, if !all_elements_should_match.
5503   bool MatchAndExplainImpl(bool all_elements_should_match,
5504                            Container container,
5505                            MatchResultListener* listener) const {
5506     StlContainerReference stl_container = View::ConstReference(container);
5507     size_t i = 0;
5508     for (typename StlContainer::const_iterator it = stl_container.begin();
5509          it != stl_container.end(); ++it, ++i) {
5510       StringMatchResultListener inner_listener;
5511       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
5512 
5513       if (matches != all_elements_should_match) {
5514         *listener << "whose element #" << i
5515                   << (matches ? " matches" : " doesn't match");
5516         PrintIfNotEmpty(inner_listener.str(), listener->stream());
5517         return !all_elements_should_match;
5518       }
5519     }
5520     return all_elements_should_match;
5521   }
5522 
5523  protected:
5524   const Matcher<const Element&> inner_matcher_;
5525 };
5526 
5527 // Implements Contains(element_matcher) for the given argument type Container.
5528 // Symmetric to EachMatcherImpl.
5529 template <typename Container>
5530 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
5531  public:
5532   template <typename InnerMatcher>
5533   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
5534       : QuantifierMatcherImpl<Container>(inner_matcher) {}
5535 
5536   // Describes what this matcher does.
5537   void DescribeTo(::std::ostream* os) const override {
5538     *os << "contains at least one element that ";
5539     this->inner_matcher_.DescribeTo(os);
5540   }
5541 
5542   void DescribeNegationTo(::std::ostream* os) const override {
5543     *os << "doesn't contain any element that ";
5544     this->inner_matcher_.DescribeTo(os);
5545   }
5546 
5547   bool MatchAndExplain(Container container,
5548                        MatchResultListener* listener) const override {
5549     return this->MatchAndExplainImpl(false, container, listener);
5550   }
5551 };
5552 
5553 // Implements Each(element_matcher) for the given argument type Container.
5554 // Symmetric to ContainsMatcherImpl.
5555 template <typename Container>
5556 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
5557  public:
5558   template <typename InnerMatcher>
5559   explicit EachMatcherImpl(InnerMatcher inner_matcher)
5560       : QuantifierMatcherImpl<Container>(inner_matcher) {}
5561 
5562   // Describes what this matcher does.
5563   void DescribeTo(::std::ostream* os) const override {
5564     *os << "only contains elements that ";
5565     this->inner_matcher_.DescribeTo(os);
5566   }
5567 
5568   void DescribeNegationTo(::std::ostream* os) const override {
5569     *os << "contains some element that ";
5570     this->inner_matcher_.DescribeNegationTo(os);
5571   }
5572 
5573   bool MatchAndExplain(Container container,
5574                        MatchResultListener* listener) const override {
5575     return this->MatchAndExplainImpl(true, container, listener);
5576   }
5577 };
5578 
5579 // Implements polymorphic Contains(element_matcher).
5580 template <typename M>
5581 class ContainsMatcher {
5582  public:
5583   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
5584 
5585   template <typename Container>
5586   operator Matcher<Container>() const {
5587     return Matcher<Container>(
5588         new ContainsMatcherImpl<const Container&>(inner_matcher_));
5589   }
5590 
5591  private:
5592   const M inner_matcher_;
5593 };
5594 
5595 // Implements polymorphic Each(element_matcher).
5596 template <typename M>
5597 class EachMatcher {
5598  public:
5599   explicit EachMatcher(M m) : inner_matcher_(m) {}
5600 
5601   template <typename Container>
5602   operator Matcher<Container>() const {
5603     return Matcher<Container>(
5604         new EachMatcherImpl<const Container&>(inner_matcher_));
5605   }
5606 
5607  private:
5608   const M inner_matcher_;
5609 };
5610 
5611 struct Rank1 {};
5612 struct Rank0 : Rank1 {};
5613 
5614 namespace pair_getters {
5615 using std::get;
5616 template <typename T>
5617 auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT
5618   return get<0>(x);
5619 }
5620 template <typename T>
5621 auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT
5622   return x.first;
5623 }
5624 
5625 template <typename T>
5626 auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT
5627   return get<1>(x);
5628 }
5629 template <typename T>
5630 auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT
5631   return x.second;
5632 }
5633 }  // namespace pair_getters
5634 
5635 // Implements Key(inner_matcher) for the given argument pair type.
5636 // Key(inner_matcher) matches an std::pair whose 'first' field matches
5637 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
5638 // std::map that contains at least one element whose key is >= 5.
5639 template <typename PairType>
5640 class KeyMatcherImpl : public MatcherInterface<PairType> {
5641  public:
5642   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
5643   typedef typename RawPairType::first_type KeyType;
5644 
5645   template <typename InnerMatcher>
5646   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
5647       : inner_matcher_(
5648           testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
5649   }
5650 
5651   // Returns true if and only if 'key_value.first' (the key) matches the inner
5652   // matcher.
5653   bool MatchAndExplain(PairType key_value,
5654                        MatchResultListener* listener) const override {
5655     StringMatchResultListener inner_listener;
5656     const bool match = inner_matcher_.MatchAndExplain(
5657         pair_getters::First(key_value, Rank0()), &inner_listener);
5658     const std::string explanation = inner_listener.str();
5659     if (explanation != "") {
5660       *listener << "whose first field is a value " << explanation;
5661     }
5662     return match;
5663   }
5664 
5665   // Describes what this matcher does.
5666   void DescribeTo(::std::ostream* os) const override {
5667     *os << "has a key that ";
5668     inner_matcher_.DescribeTo(os);
5669   }
5670 
5671   // Describes what the negation of this matcher does.
5672   void DescribeNegationTo(::std::ostream* os) const override {
5673     *os << "doesn't have a key that ";
5674     inner_matcher_.DescribeTo(os);
5675   }
5676 
5677  private:
5678   const Matcher<const KeyType&> inner_matcher_;
5679 };
5680 
5681 // Implements polymorphic Key(matcher_for_key).
5682 template <typename M>
5683 class KeyMatcher {
5684  public:
5685   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
5686 
5687   template <typename PairType>
5688   operator Matcher<PairType>() const {
5689     return Matcher<PairType>(
5690         new KeyMatcherImpl<const PairType&>(matcher_for_key_));
5691   }
5692 
5693  private:
5694   const M matcher_for_key_;
5695 };
5696 
5697 // Implements polymorphic Address(matcher_for_address).
5698 template <typename InnerMatcher>
5699 class AddressMatcher {
5700  public:
5701   explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
5702 
5703   template <typename Type>
5704   operator Matcher<Type>() const {  // NOLINT
5705     return Matcher<Type>(new Impl<const Type&>(matcher_));
5706   }
5707 
5708  private:
5709   // The monomorphic implementation that works for a particular object type.
5710   template <typename Type>
5711   class Impl : public MatcherInterface<Type> {
5712    public:
5713     using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
5714     explicit Impl(const InnerMatcher& matcher)
5715         : matcher_(MatcherCast<Address>(matcher)) {}
5716 
5717     void DescribeTo(::std::ostream* os) const override {
5718       *os << "has address that ";
5719       matcher_.DescribeTo(os);
5720     }
5721 
5722     void DescribeNegationTo(::std::ostream* os) const override {
5723       *os << "does not have address that ";
5724       matcher_.DescribeTo(os);
5725     }
5726 
5727     bool MatchAndExplain(Type object,
5728                          MatchResultListener* listener) const override {
5729       *listener << "which has address ";
5730       Address address = std::addressof(object);
5731       return MatchPrintAndExplain(address, matcher_, listener);
5732     }
5733 
5734    private:
5735     const Matcher<Address> matcher_;
5736   };
5737   const InnerMatcher matcher_;
5738 };
5739 
5740 // Implements Pair(first_matcher, second_matcher) for the given argument pair
5741 // type with its two matchers. See Pair() function below.
5742 template <typename PairType>
5743 class PairMatcherImpl : public MatcherInterface<PairType> {
5744  public:
5745   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
5746   typedef typename RawPairType::first_type FirstType;
5747   typedef typename RawPairType::second_type SecondType;
5748 
5749   template <typename FirstMatcher, typename SecondMatcher>
5750   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
5751       : first_matcher_(
5752             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
5753         second_matcher_(
5754             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
5755   }
5756 
5757   // Describes what this matcher does.
5758   void DescribeTo(::std::ostream* os) const override {
5759     *os << "has a first field that ";
5760     first_matcher_.DescribeTo(os);
5761     *os << ", and has a second field that ";
5762     second_matcher_.DescribeTo(os);
5763   }
5764 
5765   // Describes what the negation of this matcher does.
5766   void DescribeNegationTo(::std::ostream* os) const override {
5767     *os << "has a first field that ";
5768     first_matcher_.DescribeNegationTo(os);
5769     *os << ", or has a second field that ";
5770     second_matcher_.DescribeNegationTo(os);
5771   }
5772 
5773   // Returns true if and only if 'a_pair.first' matches first_matcher and
5774   // 'a_pair.second' matches second_matcher.
5775   bool MatchAndExplain(PairType a_pair,
5776                        MatchResultListener* listener) const override {
5777     if (!listener->IsInterested()) {
5778       // If the listener is not interested, we don't need to construct the
5779       // explanation.
5780       return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
5781              second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
5782     }
5783     StringMatchResultListener first_inner_listener;
5784     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
5785                                         &first_inner_listener)) {
5786       *listener << "whose first field does not match";
5787       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
5788       return false;
5789     }
5790     StringMatchResultListener second_inner_listener;
5791     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
5792                                          &second_inner_listener)) {
5793       *listener << "whose second field does not match";
5794       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
5795       return false;
5796     }
5797     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
5798                    listener);
5799     return true;
5800   }
5801 
5802  private:
5803   void ExplainSuccess(const std::string& first_explanation,
5804                       const std::string& second_explanation,
5805                       MatchResultListener* listener) const {
5806     *listener << "whose both fields match";
5807     if (first_explanation != "") {
5808       *listener << ", where the first field is a value " << first_explanation;
5809     }
5810     if (second_explanation != "") {
5811       *listener << ", ";
5812       if (first_explanation != "") {
5813         *listener << "and ";
5814       } else {
5815         *listener << "where ";
5816       }
5817       *listener << "the second field is a value " << second_explanation;
5818     }
5819   }
5820 
5821   const Matcher<const FirstType&> first_matcher_;
5822   const Matcher<const SecondType&> second_matcher_;
5823 };
5824 
5825 // Implements polymorphic Pair(first_matcher, second_matcher).
5826 template <typename FirstMatcher, typename SecondMatcher>
5827 class PairMatcher {
5828  public:
5829   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
5830       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
5831 
5832   template <typename PairType>
5833   operator Matcher<PairType> () const {
5834     return Matcher<PairType>(
5835         new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
5836   }
5837 
5838  private:
5839   const FirstMatcher first_matcher_;
5840   const SecondMatcher second_matcher_;
5841 };
5842 
5843 template <typename T, size_t... I>
5844 auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
5845     -> decltype(std::tie(get<I>(t)...)) {
5846   static_assert(std::tuple_size<T>::value == sizeof...(I),
5847                 "Number of arguments doesn't match the number of fields.");
5848   return std::tie(get<I>(t)...);
5849 }
5850 
5851 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
5852 template <typename T>
5853 auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
5854   const auto& [a] = t;
5855   return std::tie(a);
5856 }
5857 template <typename T>
5858 auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
5859   const auto& [a, b] = t;
5860   return std::tie(a, b);
5861 }
5862 template <typename T>
5863 auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
5864   const auto& [a, b, c] = t;
5865   return std::tie(a, b, c);
5866 }
5867 template <typename T>
5868 auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
5869   const auto& [a, b, c, d] = t;
5870   return std::tie(a, b, c, d);
5871 }
5872 template <typename T>
5873 auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
5874   const auto& [a, b, c, d, e] = t;
5875   return std::tie(a, b, c, d, e);
5876 }
5877 template <typename T>
5878 auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
5879   const auto& [a, b, c, d, e, f] = t;
5880   return std::tie(a, b, c, d, e, f);
5881 }
5882 template <typename T>
5883 auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
5884   const auto& [a, b, c, d, e, f, g] = t;
5885   return std::tie(a, b, c, d, e, f, g);
5886 }
5887 template <typename T>
5888 auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
5889   const auto& [a, b, c, d, e, f, g, h] = t;
5890   return std::tie(a, b, c, d, e, f, g, h);
5891 }
5892 template <typename T>
5893 auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
5894   const auto& [a, b, c, d, e, f, g, h, i] = t;
5895   return std::tie(a, b, c, d, e, f, g, h, i);
5896 }
5897 template <typename T>
5898 auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
5899   const auto& [a, b, c, d, e, f, g, h, i, j] = t;
5900   return std::tie(a, b, c, d, e, f, g, h, i, j);
5901 }
5902 template <typename T>
5903 auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
5904   const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
5905   return std::tie(a, b, c, d, e, f, g, h, i, j, k);
5906 }
5907 template <typename T>
5908 auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
5909   const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
5910   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
5911 }
5912 template <typename T>
5913 auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
5914   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
5915   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
5916 }
5917 template <typename T>
5918 auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
5919   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
5920   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
5921 }
5922 template <typename T>
5923 auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
5924   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
5925   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
5926 }
5927 template <typename T>
5928 auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
5929   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
5930   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
5931 }
5932 #endif  // defined(__cpp_structured_bindings)
5933 
5934 template <size_t I, typename T>
5935 auto UnpackStruct(const T& t)
5936     -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
5937   return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
5938 }
5939 
5940 // Helper function to do comma folding in C++11.
5941 // The array ensures left-to-right order of evaluation.
5942 // Usage: VariadicExpand({expr...});
5943 template <typename T, size_t N>
5944 void VariadicExpand(const T (&)[N]) {}
5945 
5946 template <typename Struct, typename StructSize>
5947 class FieldsAreMatcherImpl;
5948 
5949 template <typename Struct, size_t... I>
5950 class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
5951     : public MatcherInterface<Struct> {
5952   using UnpackedType =
5953       decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
5954   using MatchersType = std::tuple<
5955       Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
5956 
5957  public:
5958   template <typename Inner>
5959   explicit FieldsAreMatcherImpl(const Inner& matchers)
5960       : matchers_(testing::SafeMatcherCast<
5961                   const typename std::tuple_element<I, UnpackedType>::type&>(
5962             std::get<I>(matchers))...) {}
5963 
5964   void DescribeTo(::std::ostream* os) const override {
5965     const char* separator = "";
5966     VariadicExpand(
5967         {(*os << separator << "has field #" << I << " that ",
5968           std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
5969   }
5970 
5971   void DescribeNegationTo(::std::ostream* os) const override {
5972     const char* separator = "";
5973     VariadicExpand({(*os << separator << "has field #" << I << " that ",
5974                      std::get<I>(matchers_).DescribeNegationTo(os),
5975                      separator = ", or ")...});
5976   }
5977 
5978   bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
5979     return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
5980   }
5981 
5982  private:
5983   bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
5984     if (!listener->IsInterested()) {
5985       // If the listener is not interested, we don't need to construct the
5986       // explanation.
5987       bool good = true;
5988       VariadicExpand({good = good && std::get<I>(matchers_).Matches(
5989                                          std::get<I>(tuple))...});
5990       return good;
5991     }
5992 
5993     size_t failed_pos = ~size_t{};
5994 
5995     std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
5996 
5997     VariadicExpand(
5998         {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
5999                                         std::get<I>(tuple), &inner_listener[I])
6000              ? failed_pos = I
6001              : 0 ...});
6002     if (failed_pos != ~size_t{}) {
6003       *listener << "whose field #" << failed_pos << " does not match";
6004       PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
6005       return false;
6006     }
6007 
6008     *listener << "whose all elements match";
6009     const char* separator = ", where";
6010     for (size_t index = 0; index < sizeof...(I); ++index) {
6011       const std::string str = inner_listener[index].str();
6012       if (!str.empty()) {
6013         *listener << separator << " field #" << index << " is a value " << str;
6014         separator = ", and";
6015       }
6016     }
6017 
6018     return true;
6019   }
6020 
6021   MatchersType matchers_;
6022 };
6023 
6024 template <typename... Inner>
6025 class FieldsAreMatcher {
6026  public:
6027   explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
6028 
6029   template <typename Struct>
6030   operator Matcher<Struct>() const {  // NOLINT
6031     return Matcher<Struct>(
6032         new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
6033             matchers_));
6034   }
6035 
6036  private:
6037   std::tuple<Inner...> matchers_;
6038 };
6039 
6040 // Implements ElementsAre() and ElementsAreArray().
6041 template <typename Container>
6042 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
6043  public:
6044   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6045   typedef internal::StlContainerView<RawContainer> View;
6046   typedef typename View::type StlContainer;
6047   typedef typename View::const_reference StlContainerReference;
6048   typedef typename StlContainer::value_type Element;
6049 
6050   // Constructs the matcher from a sequence of element values or
6051   // element matchers.
6052   template <typename InputIter>
6053   ElementsAreMatcherImpl(InputIter first, InputIter last) {
6054     while (first != last) {
6055       matchers_.push_back(MatcherCast<const Element&>(*first++));
6056     }
6057   }
6058 
6059   // Describes what this matcher does.
6060   void DescribeTo(::std::ostream* os) const override {
6061     if (count() == 0) {
6062       *os << "is empty";
6063     } else if (count() == 1) {
6064       *os << "has 1 element that ";
6065       matchers_[0].DescribeTo(os);
6066     } else {
6067       *os << "has " << Elements(count()) << " where\n";
6068       for (size_t i = 0; i != count(); ++i) {
6069         *os << "element #" << i << " ";
6070         matchers_[i].DescribeTo(os);
6071         if (i + 1 < count()) {
6072           *os << ",\n";
6073         }
6074       }
6075     }
6076   }
6077 
6078   // Describes what the negation of this matcher does.
6079   void DescribeNegationTo(::std::ostream* os) const override {
6080     if (count() == 0) {
6081       *os << "isn't empty";
6082       return;
6083     }
6084 
6085     *os << "doesn't have " << Elements(count()) << ", or\n";
6086     for (size_t i = 0; i != count(); ++i) {
6087       *os << "element #" << i << " ";
6088       matchers_[i].DescribeNegationTo(os);
6089       if (i + 1 < count()) {
6090         *os << ", or\n";
6091       }
6092     }
6093   }
6094 
6095   bool MatchAndExplain(Container container,
6096                        MatchResultListener* listener) const override {
6097     // To work with stream-like "containers", we must only walk
6098     // through the elements in one pass.
6099 
6100     const bool listener_interested = listener->IsInterested();
6101 
6102     // explanations[i] is the explanation of the element at index i.
6103     ::std::vector<std::string> explanations(count());
6104     StlContainerReference stl_container = View::ConstReference(container);
6105     typename StlContainer::const_iterator it = stl_container.begin();
6106     size_t exam_pos = 0;
6107     bool mismatch_found = false;  // Have we found a mismatched element yet?
6108 
6109     // Go through the elements and matchers in pairs, until we reach
6110     // the end of either the elements or the matchers, or until we find a
6111     // mismatch.
6112     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
6113       bool match;  // Does the current element match the current matcher?
6114       if (listener_interested) {
6115         StringMatchResultListener s;
6116         match = matchers_[exam_pos].MatchAndExplain(*it, &s);
6117         explanations[exam_pos] = s.str();
6118       } else {
6119         match = matchers_[exam_pos].Matches(*it);
6120       }
6121 
6122       if (!match) {
6123         mismatch_found = true;
6124         break;
6125       }
6126     }
6127     // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
6128 
6129     // Find how many elements the actual container has.  We avoid
6130     // calling size() s.t. this code works for stream-like "containers"
6131     // that don't define size().
6132     size_t actual_count = exam_pos;
6133     for (; it != stl_container.end(); ++it) {
6134       ++actual_count;
6135     }
6136 
6137     if (actual_count != count()) {
6138       // The element count doesn't match.  If the container is empty,
6139       // there's no need to explain anything as Google Mock already
6140       // prints the empty container.  Otherwise we just need to show
6141       // how many elements there actually are.
6142       if (listener_interested && (actual_count != 0)) {
6143         *listener << "which has " << Elements(actual_count);
6144       }
6145       return false;
6146     }
6147 
6148     if (mismatch_found) {
6149       // The element count matches, but the exam_pos-th element doesn't match.
6150       if (listener_interested) {
6151         *listener << "whose element #" << exam_pos << " doesn't match";
6152         PrintIfNotEmpty(explanations[exam_pos], listener->stream());
6153       }
6154       return false;
6155     }
6156 
6157     // Every element matches its expectation.  We need to explain why
6158     // (the obvious ones can be skipped).
6159     if (listener_interested) {
6160       bool reason_printed = false;
6161       for (size_t i = 0; i != count(); ++i) {
6162         const std::string& s = explanations[i];
6163         if (!s.empty()) {
6164           if (reason_printed) {
6165             *listener << ",\nand ";
6166           }
6167           *listener << "whose element #" << i << " matches, " << s;
6168           reason_printed = true;
6169         }
6170       }
6171     }
6172     return true;
6173   }
6174 
6175  private:
6176   static Message Elements(size_t count) {
6177     return Message() << count << (count == 1 ? " element" : " elements");
6178   }
6179 
6180   size_t count() const { return matchers_.size(); }
6181 
6182   ::std::vector<Matcher<const Element&> > matchers_;
6183 };
6184 
6185 // Connectivity matrix of (elements X matchers), in element-major order.
6186 // Initially, there are no edges.
6187 // Use NextGraph() to iterate over all possible edge configurations.
6188 // Use Randomize() to generate a random edge configuration.
6189 class GTEST_API_ MatchMatrix {
6190  public:
6191   MatchMatrix(size_t num_elements, size_t num_matchers)
6192       : num_elements_(num_elements),
6193         num_matchers_(num_matchers),
6194         matched_(num_elements_* num_matchers_, 0) {
6195   }
6196 
6197   size_t LhsSize() const { return num_elements_; }
6198   size_t RhsSize() const { return num_matchers_; }
6199   bool HasEdge(size_t ilhs, size_t irhs) const {
6200     return matched_[SpaceIndex(ilhs, irhs)] == 1;
6201   }
6202   void SetEdge(size_t ilhs, size_t irhs, bool b) {
6203     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
6204   }
6205 
6206   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
6207   // adds 1 to that number; returns false if incrementing the graph left it
6208   // empty.
6209   bool NextGraph();
6210 
6211   void Randomize();
6212 
6213   std::string DebugString() const;
6214 
6215  private:
6216   size_t SpaceIndex(size_t ilhs, size_t irhs) const {
6217     return ilhs * num_matchers_ + irhs;
6218   }
6219 
6220   size_t num_elements_;
6221   size_t num_matchers_;
6222 
6223   // Each element is a char interpreted as bool. They are stored as a
6224   // flattened array in lhs-major order, use 'SpaceIndex()' to translate
6225   // a (ilhs, irhs) matrix coordinate into an offset.
6226   ::std::vector<char> matched_;
6227 };
6228 
6229 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
6230 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
6231 
6232 // Returns a maximum bipartite matching for the specified graph 'g'.
6233 // The matching is represented as a vector of {element, matcher} pairs.
6234 GTEST_API_ ElementMatcherPairs
6235 FindMaxBipartiteMatching(const MatchMatrix& g);
6236 
6237 struct UnorderedMatcherRequire {
6238   enum Flags {
6239     Superset = 1 << 0,
6240     Subset = 1 << 1,
6241     ExactMatch = Superset | Subset,
6242   };
6243 };
6244 
6245 // Untyped base class for implementing UnorderedElementsAre.  By
6246 // putting logic that's not specific to the element type here, we
6247 // reduce binary bloat and increase compilation speed.
6248 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
6249  protected:
6250   explicit UnorderedElementsAreMatcherImplBase(
6251       UnorderedMatcherRequire::Flags matcher_flags)
6252       : match_flags_(matcher_flags) {}
6253 
6254   // A vector of matcher describers, one for each element matcher.
6255   // Does not own the describers (and thus can be used only when the
6256   // element matchers are alive).
6257   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
6258 
6259   // Describes this UnorderedElementsAre matcher.
6260   void DescribeToImpl(::std::ostream* os) const;
6261 
6262   // Describes the negation of this UnorderedElementsAre matcher.
6263   void DescribeNegationToImpl(::std::ostream* os) const;
6264 
6265   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
6266                          const MatchMatrix& matrix,
6267                          MatchResultListener* listener) const;
6268 
6269   bool FindPairing(const MatchMatrix& matrix,
6270                    MatchResultListener* listener) const;
6271 
6272   MatcherDescriberVec& matcher_describers() {
6273     return matcher_describers_;
6274   }
6275 
6276   static Message Elements(size_t n) {
6277     return Message() << n << " element" << (n == 1 ? "" : "s");
6278   }
6279 
6280   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
6281 
6282  private:
6283   UnorderedMatcherRequire::Flags match_flags_;
6284   MatcherDescriberVec matcher_describers_;
6285 };
6286 
6287 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
6288 // IsSupersetOf.
6289 template <typename Container>
6290 class UnorderedElementsAreMatcherImpl
6291     : public MatcherInterface<Container>,
6292       public UnorderedElementsAreMatcherImplBase {
6293  public:
6294   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6295   typedef internal::StlContainerView<RawContainer> View;
6296   typedef typename View::type StlContainer;
6297   typedef typename View::const_reference StlContainerReference;
6298   typedef typename StlContainer::const_iterator StlContainerConstIterator;
6299   typedef typename StlContainer::value_type Element;
6300 
6301   template <typename InputIter>
6302   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
6303                                   InputIter first, InputIter last)
6304       : UnorderedElementsAreMatcherImplBase(matcher_flags) {
6305     for (; first != last; ++first) {
6306       matchers_.push_back(MatcherCast<const Element&>(*first));
6307     }
6308     for (const auto& m : matchers_) {
6309       matcher_describers().push_back(m.GetDescriber());
6310     }
6311   }
6312 
6313   // Describes what this matcher does.
6314   void DescribeTo(::std::ostream* os) const override {
6315     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
6316   }
6317 
6318   // Describes what the negation of this matcher does.
6319   void DescribeNegationTo(::std::ostream* os) const override {
6320     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
6321   }
6322 
6323   bool MatchAndExplain(Container container,
6324                        MatchResultListener* listener) const override {
6325     StlContainerReference stl_container = View::ConstReference(container);
6326     ::std::vector<std::string> element_printouts;
6327     MatchMatrix matrix =
6328         AnalyzeElements(stl_container.begin(), stl_container.end(),
6329                         &element_printouts, listener);
6330 
6331     if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
6332       return true;
6333     }
6334 
6335     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
6336       if (matrix.LhsSize() != matrix.RhsSize()) {
6337         // The element count doesn't match.  If the container is empty,
6338         // there's no need to explain anything as Google Mock already
6339         // prints the empty container. Otherwise we just need to show
6340         // how many elements there actually are.
6341         if (matrix.LhsSize() != 0 && listener->IsInterested()) {
6342           *listener << "which has " << Elements(matrix.LhsSize());
6343         }
6344         return false;
6345       }
6346     }
6347 
6348     return VerifyMatchMatrix(element_printouts, matrix, listener) &&
6349            FindPairing(matrix, listener);
6350   }
6351 
6352  private:
6353   template <typename ElementIter>
6354   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
6355                               ::std::vector<std::string>* element_printouts,
6356                               MatchResultListener* listener) const {
6357     element_printouts->clear();
6358     ::std::vector<char> did_match;
6359     size_t num_elements = 0;
6360     DummyMatchResultListener dummy;
6361     for (; elem_first != elem_last; ++num_elements, ++elem_first) {
6362       if (listener->IsInterested()) {
6363         element_printouts->push_back(PrintToString(*elem_first));
6364       }
6365       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
6366         did_match.push_back(
6367             matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
6368       }
6369     }
6370 
6371     MatchMatrix matrix(num_elements, matchers_.size());
6372     ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
6373     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
6374       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
6375         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
6376       }
6377     }
6378     return matrix;
6379   }
6380 
6381   ::std::vector<Matcher<const Element&> > matchers_;
6382 };
6383 
6384 // Functor for use in TransformTuple.
6385 // Performs MatcherCast<Target> on an input argument of any type.
6386 template <typename Target>
6387 struct CastAndAppendTransform {
6388   template <typename Arg>
6389   Matcher<Target> operator()(const Arg& a) const {
6390     return MatcherCast<Target>(a);
6391   }
6392 };
6393 
6394 // Implements UnorderedElementsAre.
6395 template <typename MatcherTuple>
6396 class UnorderedElementsAreMatcher {
6397  public:
6398   explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
6399       : matchers_(args) {}
6400 
6401   template <typename Container>
6402   operator Matcher<Container>() const {
6403     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6404     typedef typename internal::StlContainerView<RawContainer>::type View;
6405     typedef typename View::value_type Element;
6406     typedef ::std::vector<Matcher<const Element&> > MatcherVec;
6407     MatcherVec matchers;
6408     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
6409     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
6410                          ::std::back_inserter(matchers));
6411     return Matcher<Container>(
6412         new UnorderedElementsAreMatcherImpl<const Container&>(
6413             UnorderedMatcherRequire::ExactMatch, matchers.begin(),
6414             matchers.end()));
6415   }
6416 
6417  private:
6418   const MatcherTuple matchers_;
6419 };
6420 
6421 // Implements ElementsAre.
6422 template <typename MatcherTuple>
6423 class ElementsAreMatcher {
6424  public:
6425   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
6426 
6427   template <typename Container>
6428   operator Matcher<Container>() const {
6429     GTEST_COMPILE_ASSERT_(
6430         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
6431             ::std::tuple_size<MatcherTuple>::value < 2,
6432         use_UnorderedElementsAre_with_hash_tables);
6433 
6434     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6435     typedef typename internal::StlContainerView<RawContainer>::type View;
6436     typedef typename View::value_type Element;
6437     typedef ::std::vector<Matcher<const Element&> > MatcherVec;
6438     MatcherVec matchers;
6439     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
6440     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
6441                          ::std::back_inserter(matchers));
6442     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
6443         matchers.begin(), matchers.end()));
6444   }
6445 
6446  private:
6447   const MatcherTuple matchers_;
6448 };
6449 
6450 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
6451 template <typename T>
6452 class UnorderedElementsAreArrayMatcher {
6453  public:
6454   template <typename Iter>
6455   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
6456                                    Iter first, Iter last)
6457       : match_flags_(match_flags), matchers_(first, last) {}
6458 
6459   template <typename Container>
6460   operator Matcher<Container>() const {
6461     return Matcher<Container>(
6462         new UnorderedElementsAreMatcherImpl<const Container&>(
6463             match_flags_, matchers_.begin(), matchers_.end()));
6464   }
6465 
6466  private:
6467   UnorderedMatcherRequire::Flags match_flags_;
6468   ::std::vector<T> matchers_;
6469 };
6470 
6471 // Implements ElementsAreArray().
6472 template <typename T>
6473 class ElementsAreArrayMatcher {
6474  public:
6475   template <typename Iter>
6476   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
6477 
6478   template <typename Container>
6479   operator Matcher<Container>() const {
6480     GTEST_COMPILE_ASSERT_(
6481         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
6482         use_UnorderedElementsAreArray_with_hash_tables);
6483 
6484     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
6485         matchers_.begin(), matchers_.end()));
6486   }
6487 
6488  private:
6489   const ::std::vector<T> matchers_;
6490 };
6491 
6492 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
6493 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
6494 // second) is a polymorphic matcher that matches a value x if and only if
6495 // tm matches tuple (x, second).  Useful for implementing
6496 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
6497 //
6498 // BoundSecondMatcher is copyable and assignable, as we need to put
6499 // instances of this class in a vector when implementing
6500 // UnorderedPointwise().
6501 template <typename Tuple2Matcher, typename Second>
6502 class BoundSecondMatcher {
6503  public:
6504   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
6505       : tuple2_matcher_(tm), second_value_(second) {}
6506 
6507   BoundSecondMatcher(const BoundSecondMatcher& other) = default;
6508 
6509   template <typename T>
6510   operator Matcher<T>() const {
6511     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
6512   }
6513 
6514   // We have to define this for UnorderedPointwise() to compile in
6515   // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
6516   // which requires the elements to be assignable in C++98.  The
6517   // compiler cannot generate the operator= for us, as Tuple2Matcher
6518   // and Second may not be assignable.
6519   //
6520   // However, this should never be called, so the implementation just
6521   // need to assert.
6522   void operator=(const BoundSecondMatcher& /*rhs*/) {
6523     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
6524   }
6525 
6526  private:
6527   template <typename T>
6528   class Impl : public MatcherInterface<T> {
6529    public:
6530     typedef ::std::tuple<T, Second> ArgTuple;
6531 
6532     Impl(const Tuple2Matcher& tm, const Second& second)
6533         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
6534           second_value_(second) {}
6535 
6536     void DescribeTo(::std::ostream* os) const override {
6537       *os << "and ";
6538       UniversalPrint(second_value_, os);
6539       *os << " ";
6540       mono_tuple2_matcher_.DescribeTo(os);
6541     }
6542 
6543     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
6544       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
6545                                                   listener);
6546     }
6547 
6548    private:
6549     const Matcher<const ArgTuple&> mono_tuple2_matcher_;
6550     const Second second_value_;
6551   };
6552 
6553   const Tuple2Matcher tuple2_matcher_;
6554   const Second second_value_;
6555 };
6556 
6557 // Given a 2-tuple matcher tm and a value second,
6558 // MatcherBindSecond(tm, second) returns a matcher that matches a
6559 // value x if and only if tm matches tuple (x, second).  Useful for
6560 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
6561 template <typename Tuple2Matcher, typename Second>
6562 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
6563     const Tuple2Matcher& tm, const Second& second) {
6564   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
6565 }
6566 
6567 // Returns the description for a matcher defined using the MATCHER*()
6568 // macro where the user-supplied description string is "", if
6569 // 'negation' is false; otherwise returns the description of the
6570 // negation of the matcher.  'param_values' contains a list of strings
6571 // that are the print-out of the matcher's parameters.
6572 GTEST_API_ std::string FormatMatcherDescription(bool negation,
6573                                                 const char* matcher_name,
6574                                                 const Strings& param_values);
6575 
6576 // Implements a matcher that checks the value of a optional<> type variable.
6577 template <typename ValueMatcher>
6578 class OptionalMatcher {
6579  public:
6580   explicit OptionalMatcher(const ValueMatcher& value_matcher)
6581       : value_matcher_(value_matcher) {}
6582 
6583   template <typename Optional>
6584   operator Matcher<Optional>() const {
6585     return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
6586   }
6587 
6588   template <typename Optional>
6589   class Impl : public MatcherInterface<Optional> {
6590    public:
6591     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
6592     typedef typename OptionalView::value_type ValueType;
6593     explicit Impl(const ValueMatcher& value_matcher)
6594         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
6595 
6596     void DescribeTo(::std::ostream* os) const override {
6597       *os << "value ";
6598       value_matcher_.DescribeTo(os);
6599     }
6600 
6601     void DescribeNegationTo(::std::ostream* os) const override {
6602       *os << "value ";
6603       value_matcher_.DescribeNegationTo(os);
6604     }
6605 
6606     bool MatchAndExplain(Optional optional,
6607                          MatchResultListener* listener) const override {
6608       if (!optional) {
6609         *listener << "which is not engaged";
6610         return false;
6611       }
6612       const ValueType& value = *optional;
6613       StringMatchResultListener value_listener;
6614       const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
6615       *listener << "whose value " << PrintToString(value)
6616                 << (match ? " matches" : " doesn't match");
6617       PrintIfNotEmpty(value_listener.str(), listener->stream());
6618       return match;
6619     }
6620 
6621    private:
6622     const Matcher<ValueType> value_matcher_;
6623   };
6624 
6625  private:
6626   const ValueMatcher value_matcher_;
6627 };
6628 
6629 namespace variant_matcher {
6630 // Overloads to allow VariantMatcher to do proper ADL lookup.
6631 template <typename T>
6632 void holds_alternative() {}
6633 template <typename T>
6634 void get() {}
6635 
6636 // Implements a matcher that checks the value of a variant<> type variable.
6637 template <typename T>
6638 class VariantMatcher {
6639  public:
6640   explicit VariantMatcher(::testing::Matcher<const T&> matcher)
6641       : matcher_(std::move(matcher)) {}
6642 
6643   template <typename Variant>
6644   bool MatchAndExplain(const Variant& value,
6645                        ::testing::MatchResultListener* listener) const {
6646     using std::get;
6647     if (!listener->IsInterested()) {
6648       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
6649     }
6650 
6651     if (!holds_alternative<T>(value)) {
6652       *listener << "whose value is not of type '" << GetTypeName() << "'";
6653       return false;
6654     }
6655 
6656     const T& elem = get<T>(value);
6657     StringMatchResultListener elem_listener;
6658     const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
6659     *listener << "whose value " << PrintToString(elem)
6660               << (match ? " matches" : " doesn't match");
6661     PrintIfNotEmpty(elem_listener.str(), listener->stream());
6662     return match;
6663   }
6664 
6665   void DescribeTo(std::ostream* os) const {
6666     *os << "is a variant<> with value of type '" << GetTypeName()
6667         << "' and the value ";
6668     matcher_.DescribeTo(os);
6669   }
6670 
6671   void DescribeNegationTo(std::ostream* os) const {
6672     *os << "is a variant<> with value of type other than '" << GetTypeName()
6673         << "' or the value ";
6674     matcher_.DescribeNegationTo(os);
6675   }
6676 
6677  private:
6678   static std::string GetTypeName() {
6679 #if GTEST_HAS_RTTI
6680     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
6681         return internal::GetTypeName<T>());
6682 #endif
6683     return "the element type";
6684   }
6685 
6686   const ::testing::Matcher<const T&> matcher_;
6687 };
6688 
6689 }  // namespace variant_matcher
6690 
6691 namespace any_cast_matcher {
6692 
6693 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
6694 template <typename T>
6695 void any_cast() {}
6696 
6697 // Implements a matcher that any_casts the value.
6698 template <typename T>
6699 class AnyCastMatcher {
6700  public:
6701   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
6702       : matcher_(matcher) {}
6703 
6704   template <typename AnyType>
6705   bool MatchAndExplain(const AnyType& value,
6706                        ::testing::MatchResultListener* listener) const {
6707     if (!listener->IsInterested()) {
6708       const T* ptr = any_cast<T>(&value);
6709       return ptr != nullptr && matcher_.Matches(*ptr);
6710     }
6711 
6712     const T* elem = any_cast<T>(&value);
6713     if (elem == nullptr) {
6714       *listener << "whose value is not of type '" << GetTypeName() << "'";
6715       return false;
6716     }
6717 
6718     StringMatchResultListener elem_listener;
6719     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
6720     *listener << "whose value " << PrintToString(*elem)
6721               << (match ? " matches" : " doesn't match");
6722     PrintIfNotEmpty(elem_listener.str(), listener->stream());
6723     return match;
6724   }
6725 
6726   void DescribeTo(std::ostream* os) const {
6727     *os << "is an 'any' type with value of type '" << GetTypeName()
6728         << "' and the value ";
6729     matcher_.DescribeTo(os);
6730   }
6731 
6732   void DescribeNegationTo(std::ostream* os) const {
6733     *os << "is an 'any' type with value of type other than '" << GetTypeName()
6734         << "' or the value ";
6735     matcher_.DescribeNegationTo(os);
6736   }
6737 
6738  private:
6739   static std::string GetTypeName() {
6740 #if GTEST_HAS_RTTI
6741     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
6742         return internal::GetTypeName<T>());
6743 #endif
6744     return "the element type";
6745   }
6746 
6747   const ::testing::Matcher<const T&> matcher_;
6748 };
6749 
6750 }  // namespace any_cast_matcher
6751 
6752 // Implements the Args() matcher.
6753 template <class ArgsTuple, size_t... k>
6754 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
6755  public:
6756   using RawArgsTuple = typename std::decay<ArgsTuple>::type;
6757   using SelectedArgs =
6758       std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
6759   using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
6760 
6761   template <typename InnerMatcher>
6762   explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
6763       : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
6764 
6765   bool MatchAndExplain(ArgsTuple args,
6766                        MatchResultListener* listener) const override {
6767     // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
6768     (void)args;
6769     const SelectedArgs& selected_args =
6770         std::forward_as_tuple(std::get<k>(args)...);
6771     if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
6772 
6773     PrintIndices(listener->stream());
6774     *listener << "are " << PrintToString(selected_args);
6775 
6776     StringMatchResultListener inner_listener;
6777     const bool match =
6778         inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
6779     PrintIfNotEmpty(inner_listener.str(), listener->stream());
6780     return match;
6781   }
6782 
6783   void DescribeTo(::std::ostream* os) const override {
6784     *os << "are a tuple ";
6785     PrintIndices(os);
6786     inner_matcher_.DescribeTo(os);
6787   }
6788 
6789   void DescribeNegationTo(::std::ostream* os) const override {
6790     *os << "are a tuple ";
6791     PrintIndices(os);
6792     inner_matcher_.DescribeNegationTo(os);
6793   }
6794 
6795  private:
6796   // Prints the indices of the selected fields.
6797   static void PrintIndices(::std::ostream* os) {
6798     *os << "whose fields (";
6799     const char* sep = "";
6800     // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
6801     (void)sep;
6802     const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
6803     (void)dummy;
6804     *os << ") ";
6805   }
6806 
6807   MonomorphicInnerMatcher inner_matcher_;
6808 };
6809 
6810 template <class InnerMatcher, size_t... k>
6811 class ArgsMatcher {
6812  public:
6813   explicit ArgsMatcher(InnerMatcher inner_matcher)
6814       : inner_matcher_(std::move(inner_matcher)) {}
6815 
6816   template <typename ArgsTuple>
6817   operator Matcher<ArgsTuple>() const {  // NOLINT
6818     return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
6819   }
6820 
6821  private:
6822   InnerMatcher inner_matcher_;
6823 };
6824 
6825 }  // namespace internal
6826 
6827 // ElementsAreArray(iterator_first, iterator_last)
6828 // ElementsAreArray(pointer, count)
6829 // ElementsAreArray(array)
6830 // ElementsAreArray(container)
6831 // ElementsAreArray({ e1, e2, ..., en })
6832 //
6833 // The ElementsAreArray() functions are like ElementsAre(...), except
6834 // that they are given a homogeneous sequence rather than taking each
6835 // element as a function argument. The sequence can be specified as an
6836 // array, a pointer and count, a vector, an initializer list, or an
6837 // STL iterator range. In each of these cases, the underlying sequence
6838 // can be either a sequence of values or a sequence of matchers.
6839 //
6840 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
6841 
6842 template <typename Iter>
6843 inline internal::ElementsAreArrayMatcher<
6844     typename ::std::iterator_traits<Iter>::value_type>
6845 ElementsAreArray(Iter first, Iter last) {
6846   typedef typename ::std::iterator_traits<Iter>::value_type T;
6847   return internal::ElementsAreArrayMatcher<T>(first, last);
6848 }
6849 
6850 template <typename T>
6851 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
6852     const T* pointer, size_t count) {
6853   return ElementsAreArray(pointer, pointer + count);
6854 }
6855 
6856 template <typename T, size_t N>
6857 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
6858     const T (&array)[N]) {
6859   return ElementsAreArray(array, N);
6860 }
6861 
6862 template <typename Container>
6863 inline internal::ElementsAreArrayMatcher<typename Container::value_type>
6864 ElementsAreArray(const Container& container) {
6865   return ElementsAreArray(container.begin(), container.end());
6866 }
6867 
6868 template <typename T>
6869 inline internal::ElementsAreArrayMatcher<T>
6870 ElementsAreArray(::std::initializer_list<T> xs) {
6871   return ElementsAreArray(xs.begin(), xs.end());
6872 }
6873 
6874 // UnorderedElementsAreArray(iterator_first, iterator_last)
6875 // UnorderedElementsAreArray(pointer, count)
6876 // UnorderedElementsAreArray(array)
6877 // UnorderedElementsAreArray(container)
6878 // UnorderedElementsAreArray({ e1, e2, ..., en })
6879 //
6880 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
6881 // collection of matchers exists.
6882 //
6883 // The matchers can be specified as an array, a pointer and count, a container,
6884 // an initializer list, or an STL iterator range. In each of these cases, the
6885 // underlying matchers can be either values or matchers.
6886 
6887 template <typename Iter>
6888 inline internal::UnorderedElementsAreArrayMatcher<
6889     typename ::std::iterator_traits<Iter>::value_type>
6890 UnorderedElementsAreArray(Iter first, Iter last) {
6891   typedef typename ::std::iterator_traits<Iter>::value_type T;
6892   return internal::UnorderedElementsAreArrayMatcher<T>(
6893       internal::UnorderedMatcherRequire::ExactMatch, first, last);
6894 }
6895 
6896 template <typename T>
6897 inline internal::UnorderedElementsAreArrayMatcher<T>
6898 UnorderedElementsAreArray(const T* pointer, size_t count) {
6899   return UnorderedElementsAreArray(pointer, pointer + count);
6900 }
6901 
6902 template <typename T, size_t N>
6903 inline internal::UnorderedElementsAreArrayMatcher<T>
6904 UnorderedElementsAreArray(const T (&array)[N]) {
6905   return UnorderedElementsAreArray(array, N);
6906 }
6907 
6908 template <typename Container>
6909 inline internal::UnorderedElementsAreArrayMatcher<
6910     typename Container::value_type>
6911 UnorderedElementsAreArray(const Container& container) {
6912   return UnorderedElementsAreArray(container.begin(), container.end());
6913 }
6914 
6915 template <typename T>
6916 inline internal::UnorderedElementsAreArrayMatcher<T>
6917 UnorderedElementsAreArray(::std::initializer_list<T> xs) {
6918   return UnorderedElementsAreArray(xs.begin(), xs.end());
6919 }
6920 
6921 // _ is a matcher that matches anything of any type.
6922 //
6923 // This definition is fine as:
6924 //
6925 //   1. The C++ standard permits using the name _ in a namespace that
6926 //      is not the global namespace or ::std.
6927 //   2. The AnythingMatcher class has no data member or constructor,
6928 //      so it's OK to create global variables of this type.
6929 //   3. c-style has approved of using _ in this case.
6930 const internal::AnythingMatcher _ = {};
6931 // Creates a matcher that matches any value of the given type T.
6932 template <typename T>
6933 inline Matcher<T> A() {
6934   return _;
6935 }
6936 
6937 // Creates a matcher that matches any value of the given type T.
6938 template <typename T>
6939 inline Matcher<T> An() {
6940   return _;
6941 }
6942 
6943 template <typename T, typename M>
6944 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
6945     const M& value, std::false_type /* convertible_to_matcher */,
6946     std::false_type /* convertible_to_T */) {
6947   return Eq(value);
6948 }
6949 
6950 // Creates a polymorphic matcher that matches any NULL pointer.
6951 inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
6952   return MakePolymorphicMatcher(internal::IsNullMatcher());
6953 }
6954 
6955 // Creates a polymorphic matcher that matches any non-NULL pointer.
6956 // This is convenient as Not(NULL) doesn't compile (the compiler
6957 // thinks that that expression is comparing a pointer with an integer).
6958 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
6959   return MakePolymorphicMatcher(internal::NotNullMatcher());
6960 }
6961 
6962 // Creates a polymorphic matcher that matches any argument that
6963 // references variable x.
6964 template <typename T>
6965 inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
6966   return internal::RefMatcher<T&>(x);
6967 }
6968 
6969 // Creates a polymorphic matcher that matches any NaN floating point.
6970 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
6971   return MakePolymorphicMatcher(internal::IsNanMatcher());
6972 }
6973 
6974 // Creates a matcher that matches any double argument approximately
6975 // equal to rhs, where two NANs are considered unequal.
6976 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
6977   return internal::FloatingEqMatcher<double>(rhs, false);
6978 }
6979 
6980 // Creates a matcher that matches any double argument approximately
6981 // equal to rhs, including NaN values when rhs is NaN.
6982 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
6983   return internal::FloatingEqMatcher<double>(rhs, true);
6984 }
6985 
6986 // Creates a matcher that matches any double argument approximately equal to
6987 // rhs, up to the specified max absolute error bound, where two NANs are
6988 // considered unequal.  The max absolute error bound must be non-negative.
6989 inline internal::FloatingEqMatcher<double> DoubleNear(
6990     double rhs, double max_abs_error) {
6991   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
6992 }
6993 
6994 // Creates a matcher that matches any double argument approximately equal to
6995 // rhs, up to the specified max absolute error bound, including NaN values when
6996 // rhs is NaN.  The max absolute error bound must be non-negative.
6997 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
6998     double rhs, double max_abs_error) {
6999   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
7000 }
7001 
7002 // Creates a matcher that matches any float argument approximately
7003 // equal to rhs, where two NANs are considered unequal.
7004 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
7005   return internal::FloatingEqMatcher<float>(rhs, false);
7006 }
7007 
7008 // Creates a matcher that matches any float argument approximately
7009 // equal to rhs, including NaN values when rhs is NaN.
7010 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
7011   return internal::FloatingEqMatcher<float>(rhs, true);
7012 }
7013 
7014 // Creates a matcher that matches any float argument approximately equal to
7015 // rhs, up to the specified max absolute error bound, where two NANs are
7016 // considered unequal.  The max absolute error bound must be non-negative.
7017 inline internal::FloatingEqMatcher<float> FloatNear(
7018     float rhs, float max_abs_error) {
7019   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
7020 }
7021 
7022 // Creates a matcher that matches any float argument approximately equal to
7023 // rhs, up to the specified max absolute error bound, including NaN values when
7024 // rhs is NaN.  The max absolute error bound must be non-negative.
7025 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
7026     float rhs, float max_abs_error) {
7027   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
7028 }
7029 
7030 // Creates a matcher that matches a pointer (raw or smart) that points
7031 // to a value that matches inner_matcher.
7032 template <typename InnerMatcher>
7033 inline internal::PointeeMatcher<InnerMatcher> Pointee(
7034     const InnerMatcher& inner_matcher) {
7035   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
7036 }
7037 
7038 #if GTEST_HAS_RTTI
7039 // Creates a matcher that matches a pointer or reference that matches
7040 // inner_matcher when dynamic_cast<To> is applied.
7041 // The result of dynamic_cast<To> is forwarded to the inner matcher.
7042 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
7043 // If To is a reference and the cast fails, this matcher returns false
7044 // immediately.
7045 template <typename To>
7046 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
7047 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
7048   return MakePolymorphicMatcher(
7049       internal::WhenDynamicCastToMatcher<To>(inner_matcher));
7050 }
7051 #endif  // GTEST_HAS_RTTI
7052 
7053 // Creates a matcher that matches an object whose given field matches
7054 // 'matcher'.  For example,
7055 //   Field(&Foo::number, Ge(5))
7056 // matches a Foo object x if and only if x.number >= 5.
7057 template <typename Class, typename FieldType, typename FieldMatcher>
7058 inline PolymorphicMatcher<
7059   internal::FieldMatcher<Class, FieldType> > Field(
7060     FieldType Class::*field, const FieldMatcher& matcher) {
7061   return MakePolymorphicMatcher(
7062       internal::FieldMatcher<Class, FieldType>(
7063           field, MatcherCast<const FieldType&>(matcher)));
7064   // The call to MatcherCast() is required for supporting inner
7065   // matchers of compatible types.  For example, it allows
7066   //   Field(&Foo::bar, m)
7067   // to compile where bar is an int32 and m is a matcher for int64.
7068 }
7069 
7070 // Same as Field() but also takes the name of the field to provide better error
7071 // messages.
7072 template <typename Class, typename FieldType, typename FieldMatcher>
7073 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
7074     const std::string& field_name, FieldType Class::*field,
7075     const FieldMatcher& matcher) {
7076   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
7077       field_name, field, MatcherCast<const FieldType&>(matcher)));
7078 }
7079 
7080 // Creates a matcher that matches an object whose given property
7081 // matches 'matcher'.  For example,
7082 //   Property(&Foo::str, StartsWith("hi"))
7083 // matches a Foo object x if and only if x.str() starts with "hi".
7084 template <typename Class, typename PropertyType, typename PropertyMatcher>
7085 inline PolymorphicMatcher<internal::PropertyMatcher<
7086     Class, PropertyType, PropertyType (Class::*)() const> >
7087 Property(PropertyType (Class::*property)() const,
7088          const PropertyMatcher& matcher) {
7089   return MakePolymorphicMatcher(
7090       internal::PropertyMatcher<Class, PropertyType,
7091                                 PropertyType (Class::*)() const>(
7092           property, MatcherCast<const PropertyType&>(matcher)));
7093   // The call to MatcherCast() is required for supporting inner
7094   // matchers of compatible types.  For example, it allows
7095   //   Property(&Foo::bar, m)
7096   // to compile where bar() returns an int32 and m is a matcher for int64.
7097 }
7098 
7099 // Same as Property() above, but also takes the name of the property to provide
7100 // better error messages.
7101 template <typename Class, typename PropertyType, typename PropertyMatcher>
7102 inline PolymorphicMatcher<internal::PropertyMatcher<
7103     Class, PropertyType, PropertyType (Class::*)() const> >
7104 Property(const std::string& property_name,
7105          PropertyType (Class::*property)() const,
7106          const PropertyMatcher& matcher) {
7107   return MakePolymorphicMatcher(
7108       internal::PropertyMatcher<Class, PropertyType,
7109                                 PropertyType (Class::*)() const>(
7110           property_name, property, MatcherCast<const PropertyType&>(matcher)));
7111 }
7112 
7113 // The same as above but for reference-qualified member functions.
7114 template <typename Class, typename PropertyType, typename PropertyMatcher>
7115 inline PolymorphicMatcher<internal::PropertyMatcher<
7116     Class, PropertyType, PropertyType (Class::*)() const &> >
7117 Property(PropertyType (Class::*property)() const &,
7118          const PropertyMatcher& matcher) {
7119   return MakePolymorphicMatcher(
7120       internal::PropertyMatcher<Class, PropertyType,
7121                                 PropertyType (Class::*)() const&>(
7122           property, MatcherCast<const PropertyType&>(matcher)));
7123 }
7124 
7125 // Three-argument form for reference-qualified member functions.
7126 template <typename Class, typename PropertyType, typename PropertyMatcher>
7127 inline PolymorphicMatcher<internal::PropertyMatcher<
7128     Class, PropertyType, PropertyType (Class::*)() const &> >
7129 Property(const std::string& property_name,
7130          PropertyType (Class::*property)() const &,
7131          const PropertyMatcher& matcher) {
7132   return MakePolymorphicMatcher(
7133       internal::PropertyMatcher<Class, PropertyType,
7134                                 PropertyType (Class::*)() const&>(
7135           property_name, property, MatcherCast<const PropertyType&>(matcher)));
7136 }
7137 
7138 // Creates a matcher that matches an object if and only if the result of
7139 // applying a callable to x matches 'matcher'. For example,
7140 //   ResultOf(f, StartsWith("hi"))
7141 // matches a Foo object x if and only if f(x) starts with "hi".
7142 // `callable` parameter can be a function, function pointer, or a functor. It is
7143 // required to keep no state affecting the results of the calls on it and make
7144 // no assumptions about how many calls will be made. Any state it keeps must be
7145 // protected from the concurrent access.
7146 template <typename Callable, typename InnerMatcher>
7147 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
7148     Callable callable, InnerMatcher matcher) {
7149   return internal::ResultOfMatcher<Callable, InnerMatcher>(
7150       std::move(callable), std::move(matcher));
7151 }
7152 
7153 // String matchers.
7154 
7155 // Matches a string equal to str.
7156 template <typename T = std::string>
7157 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
7158     const internal::StringLike<T>& str) {
7159   return MakePolymorphicMatcher(
7160       internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
7161 }
7162 
7163 // Matches a string not equal to str.
7164 template <typename T = std::string>
7165 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
7166     const internal::StringLike<T>& str) {
7167   return MakePolymorphicMatcher(
7168       internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
7169 }
7170 
7171 // Matches a string equal to str, ignoring case.
7172 template <typename T = std::string>
7173 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
7174     const internal::StringLike<T>& str) {
7175   return MakePolymorphicMatcher(
7176       internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
7177 }
7178 
7179 // Matches a string not equal to str, ignoring case.
7180 template <typename T = std::string>
7181 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
7182     const internal::StringLike<T>& str) {
7183   return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
7184       std::string(str), false, false));
7185 }
7186 
7187 // Creates a matcher that matches any string, std::string, or C string
7188 // that contains the given substring.
7189 template <typename T = std::string>
7190 PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
7191     const internal::StringLike<T>& substring) {
7192   return MakePolymorphicMatcher(
7193       internal::HasSubstrMatcher<std::string>(std::string(substring)));
7194 }
7195 
7196 // Matches a string that starts with 'prefix' (case-sensitive).
7197 template <typename T = std::string>
7198 PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
7199     const internal::StringLike<T>& prefix) {
7200   return MakePolymorphicMatcher(
7201       internal::StartsWithMatcher<std::string>(std::string(prefix)));
7202 }
7203 
7204 // Matches a string that ends with 'suffix' (case-sensitive).
7205 template <typename T = std::string>
7206 PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
7207     const internal::StringLike<T>& suffix) {
7208   return MakePolymorphicMatcher(
7209       internal::EndsWithMatcher<std::string>(std::string(suffix)));
7210 }
7211 
7212 #if GTEST_HAS_STD_WSTRING
7213 // Wide string matchers.
7214 
7215 // Matches a string equal to str.
7216 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
7217     const std::wstring& str) {
7218   return MakePolymorphicMatcher(
7219       internal::StrEqualityMatcher<std::wstring>(str, true, true));
7220 }
7221 
7222 // Matches a string not equal to str.
7223 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
7224     const std::wstring& str) {
7225   return MakePolymorphicMatcher(
7226       internal::StrEqualityMatcher<std::wstring>(str, false, true));
7227 }
7228 
7229 // Matches a string equal to str, ignoring case.
7230 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
7231 StrCaseEq(const std::wstring& str) {
7232   return MakePolymorphicMatcher(
7233       internal::StrEqualityMatcher<std::wstring>(str, true, false));
7234 }
7235 
7236 // Matches a string not equal to str, ignoring case.
7237 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
7238 StrCaseNe(const std::wstring& str) {
7239   return MakePolymorphicMatcher(
7240       internal::StrEqualityMatcher<std::wstring>(str, false, false));
7241 }
7242 
7243 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
7244 // that contains the given substring.
7245 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
7246     const std::wstring& substring) {
7247   return MakePolymorphicMatcher(
7248       internal::HasSubstrMatcher<std::wstring>(substring));
7249 }
7250 
7251 // Matches a string that starts with 'prefix' (case-sensitive).
7252 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
7253 StartsWith(const std::wstring& prefix) {
7254   return MakePolymorphicMatcher(
7255       internal::StartsWithMatcher<std::wstring>(prefix));
7256 }
7257 
7258 // Matches a string that ends with 'suffix' (case-sensitive).
7259 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
7260     const std::wstring& suffix) {
7261   return MakePolymorphicMatcher(
7262       internal::EndsWithMatcher<std::wstring>(suffix));
7263 }
7264 
7265 #endif  // GTEST_HAS_STD_WSTRING
7266 
7267 // Creates a polymorphic matcher that matches a 2-tuple where the
7268 // first field == the second field.
7269 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
7270 
7271 // Creates a polymorphic matcher that matches a 2-tuple where the
7272 // first field >= the second field.
7273 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
7274 
7275 // Creates a polymorphic matcher that matches a 2-tuple where the
7276 // first field > the second field.
7277 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
7278 
7279 // Creates a polymorphic matcher that matches a 2-tuple where the
7280 // first field <= the second field.
7281 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
7282 
7283 // Creates a polymorphic matcher that matches a 2-tuple where the
7284 // first field < the second field.
7285 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
7286 
7287 // Creates a polymorphic matcher that matches a 2-tuple where the
7288 // first field != the second field.
7289 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
7290 
7291 // Creates a polymorphic matcher that matches a 2-tuple where
7292 // FloatEq(first field) matches the second field.
7293 inline internal::FloatingEq2Matcher<float> FloatEq() {
7294   return internal::FloatingEq2Matcher<float>();
7295 }
7296 
7297 // Creates a polymorphic matcher that matches a 2-tuple where
7298 // DoubleEq(first field) matches the second field.
7299 inline internal::FloatingEq2Matcher<double> DoubleEq() {
7300   return internal::FloatingEq2Matcher<double>();
7301 }
7302 
7303 // Creates a polymorphic matcher that matches a 2-tuple where
7304 // FloatEq(first field) matches the second field with NaN equality.
7305 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
7306   return internal::FloatingEq2Matcher<float>(true);
7307 }
7308 
7309 // Creates a polymorphic matcher that matches a 2-tuple where
7310 // DoubleEq(first field) matches the second field with NaN equality.
7311 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
7312   return internal::FloatingEq2Matcher<double>(true);
7313 }
7314 
7315 // Creates a polymorphic matcher that matches a 2-tuple where
7316 // FloatNear(first field, max_abs_error) matches the second field.
7317 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
7318   return internal::FloatingEq2Matcher<float>(max_abs_error);
7319 }
7320 
7321 // Creates a polymorphic matcher that matches a 2-tuple where
7322 // DoubleNear(first field, max_abs_error) matches the second field.
7323 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
7324   return internal::FloatingEq2Matcher<double>(max_abs_error);
7325 }
7326 
7327 // Creates a polymorphic matcher that matches a 2-tuple where
7328 // FloatNear(first field, max_abs_error) matches the second field with NaN
7329 // equality.
7330 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
7331     float max_abs_error) {
7332   return internal::FloatingEq2Matcher<float>(max_abs_error, true);
7333 }
7334 
7335 // Creates a polymorphic matcher that matches a 2-tuple where
7336 // DoubleNear(first field, max_abs_error) matches the second field with NaN
7337 // equality.
7338 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
7339     double max_abs_error) {
7340   return internal::FloatingEq2Matcher<double>(max_abs_error, true);
7341 }
7342 
7343 // Creates a matcher that matches any value of type T that m doesn't
7344 // match.
7345 template <typename InnerMatcher>
7346 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
7347   return internal::NotMatcher<InnerMatcher>(m);
7348 }
7349 
7350 // Returns a matcher that matches anything that satisfies the given
7351 // predicate.  The predicate can be any unary function or functor
7352 // whose return type can be implicitly converted to bool.
7353 template <typename Predicate>
7354 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
7355 Truly(Predicate pred) {
7356   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
7357 }
7358 
7359 // Returns a matcher that matches the container size. The container must
7360 // support both size() and size_type which all STL-like containers provide.
7361 // Note that the parameter 'size' can be a value of type size_type as well as
7362 // matcher. For instance:
7363 //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
7364 //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
7365 template <typename SizeMatcher>
7366 inline internal::SizeIsMatcher<SizeMatcher>
7367 SizeIs(const SizeMatcher& size_matcher) {
7368   return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
7369 }
7370 
7371 // Returns a matcher that matches the distance between the container's begin()
7372 // iterator and its end() iterator, i.e. the size of the container. This matcher
7373 // can be used instead of SizeIs with containers such as std::forward_list which
7374 // do not implement size(). The container must provide const_iterator (with
7375 // valid iterator_traits), begin() and end().
7376 template <typename DistanceMatcher>
7377 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
7378 BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
7379   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
7380 }
7381 
7382 // Returns a matcher that matches an equal container.
7383 // This matcher behaves like Eq(), but in the event of mismatch lists the
7384 // values that are included in one container but not the other. (Duplicate
7385 // values and order differences are not explained.)
7386 template <typename Container>
7387 inline PolymorphicMatcher<internal::ContainerEqMatcher<
7388     typename std::remove_const<Container>::type>>
7389 ContainerEq(const Container& rhs) {
7390   return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
7391 }
7392 
7393 // Returns a matcher that matches a container that, when sorted using
7394 // the given comparator, matches container_matcher.
7395 template <typename Comparator, typename ContainerMatcher>
7396 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
7397 WhenSortedBy(const Comparator& comparator,
7398              const ContainerMatcher& container_matcher) {
7399   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
7400       comparator, container_matcher);
7401 }
7402 
7403 // Returns a matcher that matches a container that, when sorted using
7404 // the < operator, matches container_matcher.
7405 template <typename ContainerMatcher>
7406 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
7407 WhenSorted(const ContainerMatcher& container_matcher) {
7408   return
7409       internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
7410           internal::LessComparator(), container_matcher);
7411 }
7412 
7413 // Matches an STL-style container or a native array that contains the
7414 // same number of elements as in rhs, where its i-th element and rhs's
7415 // i-th element (as a pair) satisfy the given pair matcher, for all i.
7416 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
7417 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
7418 // LHS container and the RHS container respectively.
7419 template <typename TupleMatcher, typename Container>
7420 inline internal::PointwiseMatcher<TupleMatcher,
7421                                   typename std::remove_const<Container>::type>
7422 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
7423   return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
7424                                                              rhs);
7425 }
7426 
7427 
7428 // Supports the Pointwise(m, {a, b, c}) syntax.
7429 template <typename TupleMatcher, typename T>
7430 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
7431     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
7432   return Pointwise(tuple_matcher, std::vector<T>(rhs));
7433 }
7434 
7435 
7436 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
7437 // container or a native array that contains the same number of
7438 // elements as in rhs, where in some permutation of the container, its
7439 // i-th element and rhs's i-th element (as a pair) satisfy the given
7440 // pair matcher, for all i.  Tuple2Matcher must be able to be safely
7441 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
7442 // the types of elements in the LHS container and the RHS container
7443 // respectively.
7444 //
7445 // This is like Pointwise(pair_matcher, rhs), except that the element
7446 // order doesn't matter.
7447 template <typename Tuple2Matcher, typename RhsContainer>
7448 inline internal::UnorderedElementsAreArrayMatcher<
7449     typename internal::BoundSecondMatcher<
7450         Tuple2Matcher,
7451         typename internal::StlContainerView<
7452             typename std::remove_const<RhsContainer>::type>::type::value_type>>
7453 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
7454                    const RhsContainer& rhs_container) {
7455   // RhsView allows the same code to handle RhsContainer being a
7456   // STL-style container and it being a native C-style array.
7457   typedef typename internal::StlContainerView<RhsContainer> RhsView;
7458   typedef typename RhsView::type RhsStlContainer;
7459   typedef typename RhsStlContainer::value_type Second;
7460   const RhsStlContainer& rhs_stl_container =
7461       RhsView::ConstReference(rhs_container);
7462 
7463   // Create a matcher for each element in rhs_container.
7464   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
7465   for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
7466        it != rhs_stl_container.end(); ++it) {
7467     matchers.push_back(
7468         internal::MatcherBindSecond(tuple2_matcher, *it));
7469   }
7470 
7471   // Delegate the work to UnorderedElementsAreArray().
7472   return UnorderedElementsAreArray(matchers);
7473 }
7474 
7475 
7476 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
7477 template <typename Tuple2Matcher, typename T>
7478 inline internal::UnorderedElementsAreArrayMatcher<
7479     typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
7480 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
7481                    std::initializer_list<T> rhs) {
7482   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
7483 }
7484 
7485 
7486 // Matches an STL-style container or a native array that contains at
7487 // least one element matching the given value or matcher.
7488 //
7489 // Examples:
7490 //   ::std::set<int> page_ids;
7491 //   page_ids.insert(3);
7492 //   page_ids.insert(1);
7493 //   EXPECT_THAT(page_ids, Contains(1));
7494 //   EXPECT_THAT(page_ids, Contains(Gt(2)));
7495 //   EXPECT_THAT(page_ids, Not(Contains(4)));
7496 //
7497 //   ::std::map<int, size_t> page_lengths;
7498 //   page_lengths[1] = 100;
7499 //   EXPECT_THAT(page_lengths,
7500 //               Contains(::std::pair<const int, size_t>(1, 100)));
7501 //
7502 //   const char* user_ids[] = { "joe", "mike", "tom" };
7503 //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
7504 template <typename M>
7505 inline internal::ContainsMatcher<M> Contains(M matcher) {
7506   return internal::ContainsMatcher<M>(matcher);
7507 }
7508 
7509 // IsSupersetOf(iterator_first, iterator_last)
7510 // IsSupersetOf(pointer, count)
7511 // IsSupersetOf(array)
7512 // IsSupersetOf(container)
7513 // IsSupersetOf({e1, e2, ..., en})
7514 //
7515 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
7516 // of matchers exists. In other words, a container matches
7517 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
7518 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
7519 // ..., and yn matches en. Obviously, the size of the container must be >= n
7520 // in order to have a match. Examples:
7521 //
7522 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
7523 //   1 matches Ne(0).
7524 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
7525 //   both Eq(1) and Lt(2). The reason is that different matchers must be used
7526 //   for elements in different slots of the container.
7527 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
7528 //   Eq(1) and (the second) 1 matches Lt(2).
7529 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
7530 //   Gt(1) and 3 matches (the second) Gt(1).
7531 //
7532 // The matchers can be specified as an array, a pointer and count, a container,
7533 // an initializer list, or an STL iterator range. In each of these cases, the
7534 // underlying matchers can be either values or matchers.
7535 
7536 template <typename Iter>
7537 inline internal::UnorderedElementsAreArrayMatcher<
7538     typename ::std::iterator_traits<Iter>::value_type>
7539 IsSupersetOf(Iter first, Iter last) {
7540   typedef typename ::std::iterator_traits<Iter>::value_type T;
7541   return internal::UnorderedElementsAreArrayMatcher<T>(
7542       internal::UnorderedMatcherRequire::Superset, first, last);
7543 }
7544 
7545 template <typename T>
7546 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
7547     const T* pointer, size_t count) {
7548   return IsSupersetOf(pointer, pointer + count);
7549 }
7550 
7551 template <typename T, size_t N>
7552 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
7553     const T (&array)[N]) {
7554   return IsSupersetOf(array, N);
7555 }
7556 
7557 template <typename Container>
7558 inline internal::UnorderedElementsAreArrayMatcher<
7559     typename Container::value_type>
7560 IsSupersetOf(const Container& container) {
7561   return IsSupersetOf(container.begin(), container.end());
7562 }
7563 
7564 template <typename T>
7565 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
7566     ::std::initializer_list<T> xs) {
7567   return IsSupersetOf(xs.begin(), xs.end());
7568 }
7569 
7570 // IsSubsetOf(iterator_first, iterator_last)
7571 // IsSubsetOf(pointer, count)
7572 // IsSubsetOf(array)
7573 // IsSubsetOf(container)
7574 // IsSubsetOf({e1, e2, ..., en})
7575 //
7576 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
7577 // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
7578 // only if there is a subset of matchers {m1, ..., mk} which would match the
7579 // container using UnorderedElementsAre.  Obviously, the size of the container
7580 // must be <= n in order to have a match. Examples:
7581 //
7582 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
7583 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
7584 //   matches Lt(0).
7585 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
7586 //   match Gt(0). The reason is that different matchers must be used for
7587 //   elements in different slots of the container.
7588 //
7589 // The matchers can be specified as an array, a pointer and count, a container,
7590 // an initializer list, or an STL iterator range. In each of these cases, the
7591 // underlying matchers can be either values or matchers.
7592 
7593 template <typename Iter>
7594 inline internal::UnorderedElementsAreArrayMatcher<
7595     typename ::std::iterator_traits<Iter>::value_type>
7596 IsSubsetOf(Iter first, Iter last) {
7597   typedef typename ::std::iterator_traits<Iter>::value_type T;
7598   return internal::UnorderedElementsAreArrayMatcher<T>(
7599       internal::UnorderedMatcherRequire::Subset, first, last);
7600 }
7601 
7602 template <typename T>
7603 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
7604     const T* pointer, size_t count) {
7605   return IsSubsetOf(pointer, pointer + count);
7606 }
7607 
7608 template <typename T, size_t N>
7609 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
7610     const T (&array)[N]) {
7611   return IsSubsetOf(array, N);
7612 }
7613 
7614 template <typename Container>
7615 inline internal::UnorderedElementsAreArrayMatcher<
7616     typename Container::value_type>
7617 IsSubsetOf(const Container& container) {
7618   return IsSubsetOf(container.begin(), container.end());
7619 }
7620 
7621 template <typename T>
7622 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
7623     ::std::initializer_list<T> xs) {
7624   return IsSubsetOf(xs.begin(), xs.end());
7625 }
7626 
7627 // Matches an STL-style container or a native array that contains only
7628 // elements matching the given value or matcher.
7629 //
7630 // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
7631 // the messages are different.
7632 //
7633 // Examples:
7634 //   ::std::set<int> page_ids;
7635 //   // Each(m) matches an empty container, regardless of what m is.
7636 //   EXPECT_THAT(page_ids, Each(Eq(1)));
7637 //   EXPECT_THAT(page_ids, Each(Eq(77)));
7638 //
7639 //   page_ids.insert(3);
7640 //   EXPECT_THAT(page_ids, Each(Gt(0)));
7641 //   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
7642 //   page_ids.insert(1);
7643 //   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
7644 //
7645 //   ::std::map<int, size_t> page_lengths;
7646 //   page_lengths[1] = 100;
7647 //   page_lengths[2] = 200;
7648 //   page_lengths[3] = 300;
7649 //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
7650 //   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
7651 //
7652 //   const char* user_ids[] = { "joe", "mike", "tom" };
7653 //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
7654 template <typename M>
7655 inline internal::EachMatcher<M> Each(M matcher) {
7656   return internal::EachMatcher<M>(matcher);
7657 }
7658 
7659 // Key(inner_matcher) matches an std::pair whose 'first' field matches
7660 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
7661 // std::map that contains at least one element whose key is >= 5.
7662 template <typename M>
7663 inline internal::KeyMatcher<M> Key(M inner_matcher) {
7664   return internal::KeyMatcher<M>(inner_matcher);
7665 }
7666 
7667 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
7668 // matches first_matcher and whose 'second' field matches second_matcher.  For
7669 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
7670 // to match a std::map<int, string> that contains exactly one element whose key
7671 // is >= 5 and whose value equals "foo".
7672 template <typename FirstMatcher, typename SecondMatcher>
7673 inline internal::PairMatcher<FirstMatcher, SecondMatcher>
7674 Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
7675   return internal::PairMatcher<FirstMatcher, SecondMatcher>(
7676       first_matcher, second_matcher);
7677 }
7678 
7679 namespace no_adl {
7680 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
7681 // These include those that support `get<I>(obj)`, and when structured bindings
7682 // are enabled any class that supports them.
7683 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
7684 template <typename... M>
7685 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
7686     M&&... matchers) {
7687   return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
7688       std::forward<M>(matchers)...);
7689 }
7690 
7691 // Creates a matcher that matches a pointer (raw or smart) that matches
7692 // inner_matcher.
7693 template <typename InnerMatcher>
7694 inline internal::PointerMatcher<InnerMatcher> Pointer(
7695     const InnerMatcher& inner_matcher) {
7696   return internal::PointerMatcher<InnerMatcher>(inner_matcher);
7697 }
7698 
7699 // Creates a matcher that matches an object that has an address that matches
7700 // inner_matcher.
7701 template <typename InnerMatcher>
7702 inline internal::AddressMatcher<InnerMatcher> Address(
7703     const InnerMatcher& inner_matcher) {
7704   return internal::AddressMatcher<InnerMatcher>(inner_matcher);
7705 }
7706 }  // namespace no_adl
7707 
7708 // Returns a predicate that is satisfied by anything that matches the
7709 // given matcher.
7710 template <typename M>
7711 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
7712   return internal::MatcherAsPredicate<M>(matcher);
7713 }
7714 
7715 // Returns true if and only if the value matches the matcher.
7716 template <typename T, typename M>
7717 inline bool Value(const T& value, M matcher) {
7718   return testing::Matches(matcher)(value);
7719 }
7720 
7721 // Matches the value against the given matcher and explains the match
7722 // result to listener.
7723 template <typename T, typename M>
7724 inline bool ExplainMatchResult(
7725     M matcher, const T& value, MatchResultListener* listener) {
7726   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
7727 }
7728 
7729 // Returns a string representation of the given matcher.  Useful for description
7730 // strings of matchers defined using MATCHER_P* macros that accept matchers as
7731 // their arguments.  For example:
7732 //
7733 // MATCHER_P(XAndYThat, matcher,
7734 //           "X that " + DescribeMatcher<int>(matcher, negation) +
7735 //               " and Y that " + DescribeMatcher<double>(matcher, negation)) {
7736 //   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
7737 //          ExplainMatchResult(matcher, arg.y(), result_listener);
7738 // }
7739 template <typename T, typename M>
7740 std::string DescribeMatcher(const M& matcher, bool negation = false) {
7741   ::std::stringstream ss;
7742   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
7743   if (negation) {
7744     monomorphic_matcher.DescribeNegationTo(&ss);
7745   } else {
7746     monomorphic_matcher.DescribeTo(&ss);
7747   }
7748   return ss.str();
7749 }
7750 
7751 template <typename... Args>
7752 internal::ElementsAreMatcher<
7753     std::tuple<typename std::decay<const Args&>::type...>>
7754 ElementsAre(const Args&... matchers) {
7755   return internal::ElementsAreMatcher<
7756       std::tuple<typename std::decay<const Args&>::type...>>(
7757       std::make_tuple(matchers...));
7758 }
7759 
7760 template <typename... Args>
7761 internal::UnorderedElementsAreMatcher<
7762     std::tuple<typename std::decay<const Args&>::type...>>
7763 UnorderedElementsAre(const Args&... matchers) {
7764   return internal::UnorderedElementsAreMatcher<
7765       std::tuple<typename std::decay<const Args&>::type...>>(
7766       std::make_tuple(matchers...));
7767 }
7768 
7769 // Define variadic matcher versions.
7770 template <typename... Args>
7771 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
7772     const Args&... matchers) {
7773   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
7774       matchers...);
7775 }
7776 
7777 template <typename... Args>
7778 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
7779     const Args&... matchers) {
7780   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
7781       matchers...);
7782 }
7783 
7784 // AnyOfArray(array)
7785 // AnyOfArray(pointer, count)
7786 // AnyOfArray(container)
7787 // AnyOfArray({ e1, e2, ..., en })
7788 // AnyOfArray(iterator_first, iterator_last)
7789 //
7790 // AnyOfArray() verifies whether a given value matches any member of a
7791 // collection of matchers.
7792 //
7793 // AllOfArray(array)
7794 // AllOfArray(pointer, count)
7795 // AllOfArray(container)
7796 // AllOfArray({ e1, e2, ..., en })
7797 // AllOfArray(iterator_first, iterator_last)
7798 //
7799 // AllOfArray() verifies whether a given value matches all members of a
7800 // collection of matchers.
7801 //
7802 // The matchers can be specified as an array, a pointer and count, a container,
7803 // an initializer list, or an STL iterator range. In each of these cases, the
7804 // underlying matchers can be either values or matchers.
7805 
7806 template <typename Iter>
7807 inline internal::AnyOfArrayMatcher<
7808     typename ::std::iterator_traits<Iter>::value_type>
7809 AnyOfArray(Iter first, Iter last) {
7810   return internal::AnyOfArrayMatcher<
7811       typename ::std::iterator_traits<Iter>::value_type>(first, last);
7812 }
7813 
7814 template <typename Iter>
7815 inline internal::AllOfArrayMatcher<
7816     typename ::std::iterator_traits<Iter>::value_type>
7817 AllOfArray(Iter first, Iter last) {
7818   return internal::AllOfArrayMatcher<
7819       typename ::std::iterator_traits<Iter>::value_type>(first, last);
7820 }
7821 
7822 template <typename T>
7823 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
7824   return AnyOfArray(ptr, ptr + count);
7825 }
7826 
7827 template <typename T>
7828 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
7829   return AllOfArray(ptr, ptr + count);
7830 }
7831 
7832 template <typename T, size_t N>
7833 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
7834   return AnyOfArray(array, N);
7835 }
7836 
7837 template <typename T, size_t N>
7838 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
7839   return AllOfArray(array, N);
7840 }
7841 
7842 template <typename Container>
7843 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
7844     const Container& container) {
7845   return AnyOfArray(container.begin(), container.end());
7846 }
7847 
7848 template <typename Container>
7849 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
7850     const Container& container) {
7851   return AllOfArray(container.begin(), container.end());
7852 }
7853 
7854 template <typename T>
7855 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
7856     ::std::initializer_list<T> xs) {
7857   return AnyOfArray(xs.begin(), xs.end());
7858 }
7859 
7860 template <typename T>
7861 inline internal::AllOfArrayMatcher<T> AllOfArray(
7862     ::std::initializer_list<T> xs) {
7863   return AllOfArray(xs.begin(), xs.end());
7864 }
7865 
7866 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
7867 // fields of it matches a_matcher.  C++ doesn't support default
7868 // arguments for function templates, so we have to overload it.
7869 template <size_t... k, typename InnerMatcher>
7870 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
7871     InnerMatcher&& matcher) {
7872   return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
7873       std::forward<InnerMatcher>(matcher));
7874 }
7875 
7876 // AllArgs(m) is a synonym of m.  This is useful in
7877 //
7878 //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
7879 //
7880 // which is easier to read than
7881 //
7882 //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
7883 template <typename InnerMatcher>
7884 inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
7885 
7886 // Returns a matcher that matches the value of an optional<> type variable.
7887 // The matcher implementation only uses '!arg' and requires that the optional<>
7888 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
7889 // and is printable using 'PrintToString'. It is compatible with
7890 // std::optional/std::experimental::optional.
7891 // Note that to compare an optional type variable against nullopt you should
7892 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
7893 // optional value contains an optional itself.
7894 template <typename ValueMatcher>
7895 inline internal::OptionalMatcher<ValueMatcher> Optional(
7896     const ValueMatcher& value_matcher) {
7897   return internal::OptionalMatcher<ValueMatcher>(value_matcher);
7898 }
7899 
7900 // Returns a matcher that matches the value of a absl::any type variable.
7901 template <typename T>
7902 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
7903     const Matcher<const T&>& matcher) {
7904   return MakePolymorphicMatcher(
7905       internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
7906 }
7907 
7908 // Returns a matcher that matches the value of a variant<> type variable.
7909 // The matcher implementation uses ADL to find the holds_alternative and get
7910 // functions.
7911 // It is compatible with std::variant.
7912 template <typename T>
7913 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
7914     const Matcher<const T&>& matcher) {
7915   return MakePolymorphicMatcher(
7916       internal::variant_matcher::VariantMatcher<T>(matcher));
7917 }
7918 
7919 #if GTEST_HAS_EXCEPTIONS
7920 
7921 // Anything inside the `internal` namespace is internal to the implementation
7922 // and must not be used in user code!
7923 namespace internal {
7924 
7925 class WithWhatMatcherImpl {
7926  public:
7927   WithWhatMatcherImpl(Matcher<std::string> matcher)
7928       : matcher_(std::move(matcher)) {}
7929 
7930   void DescribeTo(std::ostream* os) const {
7931     *os << "contains .what() that ";
7932     matcher_.DescribeTo(os);
7933   }
7934 
7935   void DescribeNegationTo(std::ostream* os) const {
7936     *os << "contains .what() that does not ";
7937     matcher_.DescribeTo(os);
7938   }
7939 
7940   template <typename Err>
7941   bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
7942     *listener << "which contains .what() that ";
7943     return matcher_.MatchAndExplain(err.what(), listener);
7944   }
7945 
7946  private:
7947   const Matcher<std::string> matcher_;
7948 };
7949 
7950 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
7951     Matcher<std::string> m) {
7952   return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
7953 }
7954 
7955 template <typename Err>
7956 class ExceptionMatcherImpl {
7957   class NeverThrown {
7958    public:
7959     const char* what() const noexcept {
7960       return "this exception should never be thrown";
7961     }
7962   };
7963 
7964   // If the matchee raises an exception of a wrong type, we'd like to
7965   // catch it and print its message and type. To do that, we add an additional
7966   // catch clause:
7967   //
7968   //     try { ... }
7969   //     catch (const Err&) { /* an expected exception */ }
7970   //     catch (const std::exception&) { /* exception of a wrong type */ }
7971   //
7972   // However, if the `Err` itself is `std::exception`, we'd end up with two
7973   // identical `catch` clauses:
7974   //
7975   //     try { ... }
7976   //     catch (const std::exception&) { /* an expected exception */ }
7977   //     catch (const std::exception&) { /* exception of a wrong type */ }
7978   //
7979   // This can cause a warning or an error in some compilers. To resolve
7980   // the issue, we use a fake error type whenever `Err` is `std::exception`:
7981   //
7982   //     try { ... }
7983   //     catch (const std::exception&) { /* an expected exception */ }
7984   //     catch (const NeverThrown&) { /* exception of a wrong type */ }
7985   using DefaultExceptionType = typename std::conditional<
7986       std::is_same<typename std::remove_cv<
7987                        typename std::remove_reference<Err>::type>::type,
7988                    std::exception>::value,
7989       const NeverThrown&, const std::exception&>::type;
7990 
7991  public:
7992   ExceptionMatcherImpl(Matcher<const Err&> matcher)
7993       : matcher_(std::move(matcher)) {}
7994 
7995   void DescribeTo(std::ostream* os) const {
7996     *os << "throws an exception which is a " << GetTypeName<Err>();
7997     *os << " which ";
7998     matcher_.DescribeTo(os);
7999   }
8000 
8001   void DescribeNegationTo(std::ostream* os) const {
8002     *os << "throws an exception which is not a " << GetTypeName<Err>();
8003     *os << " which ";
8004     matcher_.DescribeNegationTo(os);
8005   }
8006 
8007   template <typename T>
8008   bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
8009     try {
8010       (void)(std::forward<T>(x)());
8011     } catch (const Err& err) {
8012       *listener << "throws an exception which is a " << GetTypeName<Err>();
8013       *listener << " ";
8014       return matcher_.MatchAndExplain(err, listener);
8015     } catch (DefaultExceptionType err) {
8016 #if GTEST_HAS_RTTI
8017       *listener << "throws an exception of type " << GetTypeName(typeid(err));
8018       *listener << " ";
8019 #else
8020       *listener << "throws an std::exception-derived type ";
8021 #endif
8022       *listener << "with description \"" << err.what() << "\"";
8023       return false;
8024     } catch (...) {
8025       *listener << "throws an exception of an unknown type";
8026       return false;
8027     }
8028 
8029     *listener << "does not throw any exception";
8030     return false;
8031   }
8032 
8033  private:
8034   const Matcher<const Err&> matcher_;
8035 };
8036 
8037 }  // namespace internal
8038 
8039 // Throws()
8040 // Throws(exceptionMatcher)
8041 // ThrowsMessage(messageMatcher)
8042 //
8043 // This matcher accepts a callable and verifies that when invoked, it throws
8044 // an exception with the given type and properties.
8045 //
8046 // Examples:
8047 //
8048 //   EXPECT_THAT(
8049 //       []() { throw std::runtime_error("message"); },
8050 //       Throws<std::runtime_error>());
8051 //
8052 //   EXPECT_THAT(
8053 //       []() { throw std::runtime_error("message"); },
8054 //       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
8055 //
8056 //   EXPECT_THAT(
8057 //       []() { throw std::runtime_error("message"); },
8058 //       Throws<std::runtime_error>(
8059 //           Property(&std::runtime_error::what, HasSubstr("message"))));
8060 
8061 template <typename Err>
8062 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
8063   return MakePolymorphicMatcher(
8064       internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
8065 }
8066 
8067 template <typename Err, typename ExceptionMatcher>
8068 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
8069     const ExceptionMatcher& exception_matcher) {
8070   // Using matcher cast allows users to pass a matcher of a more broad type.
8071   // For example user may want to pass Matcher<std::exception>
8072   // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
8073   return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
8074       SafeMatcherCast<const Err&>(exception_matcher)));
8075 }
8076 
8077 template <typename Err, typename MessageMatcher>
8078 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
8079     MessageMatcher&& message_matcher) {
8080   static_assert(std::is_base_of<std::exception, Err>::value,
8081                 "expected an std::exception-derived type");
8082   return Throws<Err>(internal::WithWhat(
8083       MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
8084 }
8085 
8086 #endif  // GTEST_HAS_EXCEPTIONS
8087 
8088 // These macros allow using matchers to check values in Google Test
8089 // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
8090 // succeed if and only if the value matches the matcher.  If the assertion
8091 // fails, the value and the description of the matcher will be printed.
8092 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
8093     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
8094 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
8095     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
8096 
8097 // MATCHER* macroses itself are listed below.
8098 #define MATCHER(name, description)                                             \
8099   class name##Matcher                                                          \
8100       : public ::testing::internal::MatcherBaseImpl<name##Matcher> {           \
8101    public:                                                                     \
8102     template <typename arg_type>                                               \
8103     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
8104      public:                                                                   \
8105       gmock_Impl() {}                                                          \
8106       bool MatchAndExplain(                                                    \
8107           const arg_type& arg,                                                 \
8108           ::testing::MatchResultListener* result_listener) const override;     \
8109       void DescribeTo(::std::ostream* gmock_os) const override {               \
8110         *gmock_os << FormatDescription(false);                                 \
8111       }                                                                        \
8112       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
8113         *gmock_os << FormatDescription(true);                                  \
8114       }                                                                        \
8115                                                                                \
8116      private:                                                                  \
8117       ::std::string FormatDescription(bool negation) const {                   \
8118         ::std::string gmock_description = (description);                       \
8119         if (!gmock_description.empty()) {                                      \
8120           return gmock_description;                                            \
8121         }                                                                      \
8122         return ::testing::internal::FormatMatcherDescription(negation, #name,  \
8123                                                              {});              \
8124       }                                                                        \
8125     };                                                                         \
8126   };                                                                           \
8127   GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; }           \
8128   template <typename arg_type>                                                 \
8129   bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                   \
8130       const arg_type& arg,                                                     \
8131       ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
8132       const
8133 
8134 #define MATCHER_P(name, p0, description) \
8135   GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
8136 #define MATCHER_P2(name, p0, p1, description) \
8137   GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
8138 #define MATCHER_P3(name, p0, p1, p2, description) \
8139   GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
8140 #define MATCHER_P4(name, p0, p1, p2, p3, description) \
8141   GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
8142 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
8143   GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
8144                          (p0, p1, p2, p3, p4))
8145 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
8146   GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
8147                          (p0, p1, p2, p3, p4, p5))
8148 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
8149   GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
8150                          (p0, p1, p2, p3, p4, p5, p6))
8151 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
8152   GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
8153                          (p0, p1, p2, p3, p4, p5, p6, p7))
8154 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
8155   GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
8156                          (p0, p1, p2, p3, p4, p5, p6, p7, p8))
8157 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
8158   GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
8159                          (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
8160 
8161 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args)             \
8162   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
8163   class full_name : public ::testing::internal::MatcherBaseImpl<               \
8164                         full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
8165    public:                                                                     \
8166     using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
8167     template <typename arg_type>                                               \
8168     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
8169      public:                                                                   \
8170       explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
8171           : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
8172       bool MatchAndExplain(                                                    \
8173           const arg_type& arg,                                                 \
8174           ::testing::MatchResultListener* result_listener) const override;     \
8175       void DescribeTo(::std::ostream* gmock_os) const override {               \
8176         *gmock_os << FormatDescription(false);                                 \
8177       }                                                                        \
8178       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
8179         *gmock_os << FormatDescription(true);                                  \
8180       }                                                                        \
8181       GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
8182                                                                                \
8183      private:                                                                  \
8184       ::std::string FormatDescription(bool negation) const {                   \
8185         ::std::string gmock_description = (description);                       \
8186         if (!gmock_description.empty()) {                                      \
8187           return gmock_description;                                            \
8188         }                                                                      \
8189         return ::testing::internal::FormatMatcherDescription(                  \
8190             negation, #name,                                                   \
8191             ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
8192                 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
8193                     GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
8194       }                                                                        \
8195     };                                                                         \
8196   };                                                                           \
8197   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
8198   inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
8199       GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
8200     return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
8201         GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
8202   }                                                                            \
8203   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
8204   template <typename arg_type>                                                 \
8205   bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl<        \
8206       arg_type>::MatchAndExplain(const arg_type& arg,                          \
8207                                  ::testing::MatchResultListener*               \
8208                                      result_listener GTEST_ATTRIBUTE_UNUSED_)  \
8209       const
8210 
8211 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
8212   GMOCK_PP_TAIL(                                     \
8213       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
8214 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
8215   , typename arg##_type
8216 
8217 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
8218   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
8219 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
8220   , arg##_type
8221 
8222 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
8223   GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
8224       GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
8225 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
8226   , arg##_type gmock_p##i
8227 
8228 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
8229   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
8230 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
8231   , arg(::std::forward<arg##_type>(gmock_p##i))
8232 
8233 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
8234   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
8235 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
8236   const arg##_type arg;
8237 
8238 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
8239   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
8240 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
8241 
8242 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
8243   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
8244 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
8245   , gmock_p##i
8246 
8247 // To prevent ADL on certain functions we put them on a separate namespace.
8248 using namespace no_adl;  // NOLINT
8249 
8250 }  // namespace testing
8251 
8252 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046
8253 
8254 // Include any custom callback matchers added by the local installation.
8255 // We must include this header at the end to make sure it can use the
8256 // declarations from this file.
8257 // Copyright 2015, Google Inc.
8258 // All rights reserved.
8259 //
8260 // Redistribution and use in source and binary forms, with or without
8261 // modification, are permitted provided that the following conditions are
8262 // met:
8263 //
8264 //     * Redistributions of source code must retain the above copyright
8265 // notice, this list of conditions and the following disclaimer.
8266 //     * Redistributions in binary form must reproduce the above
8267 // copyright notice, this list of conditions and the following disclaimer
8268 // in the documentation and/or other materials provided with the
8269 // distribution.
8270 //     * Neither the name of Google Inc. nor the names of its
8271 // contributors may be used to endorse or promote products derived from
8272 // this software without specific prior written permission.
8273 //
8274 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
8275 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
8276 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
8277 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
8278 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
8279 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
8280 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
8281 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
8282 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
8283 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
8284 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
8285 //
8286 // Injection point for custom user configurations. See README for details
8287 //
8288 // GOOGLETEST_CM0002 DO NOT DELETE
8289 
8290 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
8291 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
8292 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
8293 
8294 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
8295 
8296 #if GTEST_HAS_EXCEPTIONS
8297 # include <stdexcept>  // NOLINT
8298 #endif
8299 
8300 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
8301 /* class A needs to have dll-interface to be used by clients of class B */)
8302 
8303 namespace testing {
8304 
8305 // An abstract handle of an expectation.
8306 class Expectation;
8307 
8308 // A set of expectation handles.
8309 class ExpectationSet;
8310 
8311 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
8312 // and MUST NOT BE USED IN USER CODE!!!
8313 namespace internal {
8314 
8315 // Implements a mock function.
8316 template <typename F> class FunctionMocker;
8317 
8318 // Base class for expectations.
8319 class ExpectationBase;
8320 
8321 // Implements an expectation.
8322 template <typename F> class TypedExpectation;
8323 
8324 // Helper class for testing the Expectation class template.
8325 class ExpectationTester;
8326 
8327 // Helper classes for implementing NiceMock, StrictMock, and NaggyMock.
8328 template <typename MockClass>
8329 class NiceMockImpl;
8330 template <typename MockClass>
8331 class StrictMockImpl;
8332 template <typename MockClass>
8333 class NaggyMockImpl;
8334 
8335 // Protects the mock object registry (in class Mock), all function
8336 // mockers, and all expectations.
8337 //
8338 // The reason we don't use more fine-grained protection is: when a
8339 // mock function Foo() is called, it needs to consult its expectations
8340 // to see which one should be picked.  If another thread is allowed to
8341 // call a mock function (either Foo() or a different one) at the same
8342 // time, it could affect the "retired" attributes of Foo()'s
8343 // expectations when InSequence() is used, and thus affect which
8344 // expectation gets picked.  Therefore, we sequence all mock function
8345 // calls to ensure the integrity of the mock objects' states.
8346 GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex);
8347 
8348 // Untyped base class for ActionResultHolder<R>.
8349 class UntypedActionResultHolderBase;
8350 
8351 // Abstract base class of FunctionMocker.  This is the
8352 // type-agnostic part of the function mocker interface.  Its pure
8353 // virtual methods are implemented by FunctionMocker.
8354 class GTEST_API_ UntypedFunctionMockerBase {
8355  public:
8356   UntypedFunctionMockerBase();
8357   virtual ~UntypedFunctionMockerBase();
8358 
8359   // Verifies that all expectations on this mock function have been
8360   // satisfied.  Reports one or more Google Test non-fatal failures
8361   // and returns false if not.
8362   bool VerifyAndClearExpectationsLocked()
8363       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
8364 
8365   // Clears the ON_CALL()s set on this mock function.
8366   virtual void ClearDefaultActionsLocked()
8367       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0;
8368 
8369   // In all of the following Untyped* functions, it's the caller's
8370   // responsibility to guarantee the correctness of the arguments'
8371   // types.
8372 
8373   // Performs the default action with the given arguments and returns
8374   // the action's result.  The call description string will be used in
8375   // the error message to describe the call in the case the default
8376   // action fails.
8377   // L = *
8378   virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction(
8379       void* untyped_args, const std::string& call_description) const = 0;
8380 
8381   // Performs the given action with the given arguments and returns
8382   // the action's result.
8383   // L = *
8384   virtual UntypedActionResultHolderBase* UntypedPerformAction(
8385       const void* untyped_action, void* untyped_args) const = 0;
8386 
8387   // Writes a message that the call is uninteresting (i.e. neither
8388   // explicitly expected nor explicitly unexpected) to the given
8389   // ostream.
8390   virtual void UntypedDescribeUninterestingCall(
8391       const void* untyped_args,
8392       ::std::ostream* os) const
8393           GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
8394 
8395   // Returns the expectation that matches the given function arguments
8396   // (or NULL is there's no match); when a match is found,
8397   // untyped_action is set to point to the action that should be
8398   // performed (or NULL if the action is "do default"), and
8399   // is_excessive is modified to indicate whether the call exceeds the
8400   // expected number.
8401   virtual const ExpectationBase* UntypedFindMatchingExpectation(
8402       const void* untyped_args,
8403       const void** untyped_action, bool* is_excessive,
8404       ::std::ostream* what, ::std::ostream* why)
8405           GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
8406 
8407   // Prints the given function arguments to the ostream.
8408   virtual void UntypedPrintArgs(const void* untyped_args,
8409                                 ::std::ostream* os) const = 0;
8410 
8411   // Sets the mock object this mock method belongs to, and registers
8412   // this information in the global mock registry.  Will be called
8413   // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock
8414   // method.
8415   void RegisterOwner(const void* mock_obj)
8416       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8417 
8418   // Sets the mock object this mock method belongs to, and sets the
8419   // name of the mock function.  Will be called upon each invocation
8420   // of this mock function.
8421   void SetOwnerAndName(const void* mock_obj, const char* name)
8422       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8423 
8424   // Returns the mock object this mock method belongs to.  Must be
8425   // called after RegisterOwner() or SetOwnerAndName() has been
8426   // called.
8427   const void* MockObject() const
8428       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8429 
8430   // Returns the name of this mock method.  Must be called after
8431   // SetOwnerAndName() has been called.
8432   const char* Name() const
8433       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8434 
8435   // Returns the result of invoking this mock function with the given
8436   // arguments.  This function can be safely called from multiple
8437   // threads concurrently.  The caller is responsible for deleting the
8438   // result.
8439   UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args)
8440       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8441 
8442  protected:
8443   typedef std::vector<const void*> UntypedOnCallSpecs;
8444 
8445   using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>;
8446 
8447   // Returns an Expectation object that references and co-owns exp,
8448   // which must be an expectation on this mock function.
8449   Expectation GetHandleOf(ExpectationBase* exp);
8450 
8451   // Address of the mock object this mock method belongs to.  Only
8452   // valid after this mock method has been called or
8453   // ON_CALL/EXPECT_CALL has been invoked on it.
8454   const void* mock_obj_;  // Protected by g_gmock_mutex.
8455 
8456   // Name of the function being mocked.  Only valid after this mock
8457   // method has been called.
8458   const char* name_;  // Protected by g_gmock_mutex.
8459 
8460   // All default action specs for this function mocker.
8461   UntypedOnCallSpecs untyped_on_call_specs_;
8462 
8463   // All expectations for this function mocker.
8464   //
8465   // It's undefined behavior to interleave expectations (EXPECT_CALLs
8466   // or ON_CALLs) and mock function calls.  Also, the order of
8467   // expectations is important.  Therefore it's a logic race condition
8468   // to read/write untyped_expectations_ concurrently.  In order for
8469   // tools like tsan to catch concurrent read/write accesses to
8470   // untyped_expectations, we deliberately leave accesses to it
8471   // unprotected.
8472   UntypedExpectations untyped_expectations_;
8473 };  // class UntypedFunctionMockerBase
8474 
8475 // Untyped base class for OnCallSpec<F>.
8476 class UntypedOnCallSpecBase {
8477  public:
8478   // The arguments are the location of the ON_CALL() statement.
8479   UntypedOnCallSpecBase(const char* a_file, int a_line)
8480       : file_(a_file), line_(a_line), last_clause_(kNone) {}
8481 
8482   // Where in the source file was the default action spec defined?
8483   const char* file() const { return file_; }
8484   int line() const { return line_; }
8485 
8486  protected:
8487   // Gives each clause in the ON_CALL() statement a name.
8488   enum Clause {
8489     // Do not change the order of the enum members!  The run-time
8490     // syntax checking relies on it.
8491     kNone,
8492     kWith,
8493     kWillByDefault
8494   };
8495 
8496   // Asserts that the ON_CALL() statement has a certain property.
8497   void AssertSpecProperty(bool property,
8498                           const std::string& failure_message) const {
8499     Assert(property, file_, line_, failure_message);
8500   }
8501 
8502   // Expects that the ON_CALL() statement has a certain property.
8503   void ExpectSpecProperty(bool property,
8504                           const std::string& failure_message) const {
8505     Expect(property, file_, line_, failure_message);
8506   }
8507 
8508   const char* file_;
8509   int line_;
8510 
8511   // The last clause in the ON_CALL() statement as seen so far.
8512   // Initially kNone and changes as the statement is parsed.
8513   Clause last_clause_;
8514 };  // class UntypedOnCallSpecBase
8515 
8516 // This template class implements an ON_CALL spec.
8517 template <typename F>
8518 class OnCallSpec : public UntypedOnCallSpecBase {
8519  public:
8520   typedef typename Function<F>::ArgumentTuple ArgumentTuple;
8521   typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
8522 
8523   // Constructs an OnCallSpec object from the information inside
8524   // the parenthesis of an ON_CALL() statement.
8525   OnCallSpec(const char* a_file, int a_line,
8526              const ArgumentMatcherTuple& matchers)
8527       : UntypedOnCallSpecBase(a_file, a_line),
8528         matchers_(matchers),
8529         // By default, extra_matcher_ should match anything.  However,
8530         // we cannot initialize it with _ as that causes ambiguity between
8531         // Matcher's copy and move constructor for some argument types.
8532         extra_matcher_(A<const ArgumentTuple&>()) {}
8533 
8534   // Implements the .With() clause.
8535   OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) {
8536     // Makes sure this is called at most once.
8537     ExpectSpecProperty(last_clause_ < kWith,
8538                        ".With() cannot appear "
8539                        "more than once in an ON_CALL().");
8540     last_clause_ = kWith;
8541 
8542     extra_matcher_ = m;
8543     return *this;
8544   }
8545 
8546   // Implements the .WillByDefault() clause.
8547   OnCallSpec& WillByDefault(const Action<F>& action) {
8548     ExpectSpecProperty(last_clause_ < kWillByDefault,
8549                        ".WillByDefault() must appear "
8550                        "exactly once in an ON_CALL().");
8551     last_clause_ = kWillByDefault;
8552 
8553     ExpectSpecProperty(!action.IsDoDefault(),
8554                        "DoDefault() cannot be used in ON_CALL().");
8555     action_ = action;
8556     return *this;
8557   }
8558 
8559   // Returns true if and only if the given arguments match the matchers.
8560   bool Matches(const ArgumentTuple& args) const {
8561     return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
8562   }
8563 
8564   // Returns the action specified by the user.
8565   const Action<F>& GetAction() const {
8566     AssertSpecProperty(last_clause_ == kWillByDefault,
8567                        ".WillByDefault() must appear exactly "
8568                        "once in an ON_CALL().");
8569     return action_;
8570   }
8571 
8572  private:
8573   // The information in statement
8574   //
8575   //   ON_CALL(mock_object, Method(matchers))
8576   //       .With(multi-argument-matcher)
8577   //       .WillByDefault(action);
8578   //
8579   // is recorded in the data members like this:
8580   //
8581   //   source file that contains the statement => file_
8582   //   line number of the statement            => line_
8583   //   matchers                                => matchers_
8584   //   multi-argument-matcher                  => extra_matcher_
8585   //   action                                  => action_
8586   ArgumentMatcherTuple matchers_;
8587   Matcher<const ArgumentTuple&> extra_matcher_;
8588   Action<F> action_;
8589 };  // class OnCallSpec
8590 
8591 // Possible reactions on uninteresting calls.
8592 enum CallReaction {
8593   kAllow,
8594   kWarn,
8595   kFail,
8596 };
8597 
8598 }  // namespace internal
8599 
8600 // Utilities for manipulating mock objects.
8601 class GTEST_API_ Mock {
8602  public:
8603   // The following public methods can be called concurrently.
8604 
8605   // Tells Google Mock to ignore mock_obj when checking for leaked
8606   // mock objects.
8607   static void AllowLeak(const void* mock_obj)
8608       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8609 
8610   // Verifies and clears all expectations on the given mock object.
8611   // If the expectations aren't satisfied, generates one or more
8612   // Google Test non-fatal failures and returns false.
8613   static bool VerifyAndClearExpectations(void* mock_obj)
8614       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8615 
8616   // Verifies all expectations on the given mock object and clears its
8617   // default actions and expectations.  Returns true if and only if the
8618   // verification was successful.
8619   static bool VerifyAndClear(void* mock_obj)
8620       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8621 
8622   // Returns whether the mock was created as a naggy mock (default)
8623   static bool IsNaggy(void* mock_obj)
8624       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8625   // Returns whether the mock was created as a nice mock
8626   static bool IsNice(void* mock_obj)
8627       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8628   // Returns whether the mock was created as a strict mock
8629   static bool IsStrict(void* mock_obj)
8630       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8631 
8632  private:
8633   friend class internal::UntypedFunctionMockerBase;
8634 
8635   // Needed for a function mocker to register itself (so that we know
8636   // how to clear a mock object).
8637   template <typename F>
8638   friend class internal::FunctionMocker;
8639 
8640   template <typename MockClass>
8641   friend class internal::NiceMockImpl;
8642   template <typename MockClass>
8643   friend class internal::NaggyMockImpl;
8644   template <typename MockClass>
8645   friend class internal::StrictMockImpl;
8646 
8647   // Tells Google Mock to allow uninteresting calls on the given mock
8648   // object.
8649   static void AllowUninterestingCalls(const void* mock_obj)
8650       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8651 
8652   // Tells Google Mock to warn the user about uninteresting calls on
8653   // the given mock object.
8654   static void WarnUninterestingCalls(const void* mock_obj)
8655       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8656 
8657   // Tells Google Mock to fail uninteresting calls on the given mock
8658   // object.
8659   static void FailUninterestingCalls(const void* mock_obj)
8660       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8661 
8662   // Tells Google Mock the given mock object is being destroyed and
8663   // its entry in the call-reaction table should be removed.
8664   static void UnregisterCallReaction(const void* mock_obj)
8665       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8666 
8667   // Returns the reaction Google Mock will have on uninteresting calls
8668   // made on the given mock object.
8669   static internal::CallReaction GetReactionOnUninterestingCalls(
8670       const void* mock_obj)
8671           GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8672 
8673   // Verifies that all expectations on the given mock object have been
8674   // satisfied.  Reports one or more Google Test non-fatal failures
8675   // and returns false if not.
8676   static bool VerifyAndClearExpectationsLocked(void* mock_obj)
8677       GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
8678 
8679   // Clears all ON_CALL()s set on the given mock object.
8680   static void ClearDefaultActionsLocked(void* mock_obj)
8681       GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
8682 
8683   // Registers a mock object and a mock method it owns.
8684   static void Register(
8685       const void* mock_obj,
8686       internal::UntypedFunctionMockerBase* mocker)
8687           GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8688 
8689   // Tells Google Mock where in the source code mock_obj is used in an
8690   // ON_CALL or EXPECT_CALL.  In case mock_obj is leaked, this
8691   // information helps the user identify which object it is.
8692   static void RegisterUseByOnCallOrExpectCall(
8693       const void* mock_obj, const char* file, int line)
8694           GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8695 
8696   // Unregisters a mock method; removes the owning mock object from
8697   // the registry when the last mock method associated with it has
8698   // been unregistered.  This is called only in the destructor of
8699   // FunctionMocker.
8700   static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker)
8701       GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
8702 };  // class Mock
8703 
8704 // An abstract handle of an expectation.  Useful in the .After()
8705 // clause of EXPECT_CALL() for setting the (partial) order of
8706 // expectations.  The syntax:
8707 //
8708 //   Expectation e1 = EXPECT_CALL(...)...;
8709 //   EXPECT_CALL(...).After(e1)...;
8710 //
8711 // sets two expectations where the latter can only be matched after
8712 // the former has been satisfied.
8713 //
8714 // Notes:
8715 //   - This class is copyable and has value semantics.
8716 //   - Constness is shallow: a const Expectation object itself cannot
8717 //     be modified, but the mutable methods of the ExpectationBase
8718 //     object it references can be called via expectation_base().
8719 
8720 class GTEST_API_ Expectation {
8721  public:
8722   // Constructs a null object that doesn't reference any expectation.
8723   Expectation();
8724   Expectation(Expectation&&) = default;
8725   Expectation(const Expectation&) = default;
8726   Expectation& operator=(Expectation&&) = default;
8727   Expectation& operator=(const Expectation&) = default;
8728   ~Expectation();
8729 
8730   // This single-argument ctor must not be explicit, in order to support the
8731   //   Expectation e = EXPECT_CALL(...);
8732   // syntax.
8733   //
8734   // A TypedExpectation object stores its pre-requisites as
8735   // Expectation objects, and needs to call the non-const Retire()
8736   // method on the ExpectationBase objects they reference.  Therefore
8737   // Expectation must receive a *non-const* reference to the
8738   // ExpectationBase object.
8739   Expectation(internal::ExpectationBase& exp);  // NOLINT
8740 
8741   // The compiler-generated copy ctor and operator= work exactly as
8742   // intended, so we don't need to define our own.
8743 
8744   // Returns true if and only if rhs references the same expectation as this
8745   // object does.
8746   bool operator==(const Expectation& rhs) const {
8747     return expectation_base_ == rhs.expectation_base_;
8748   }
8749 
8750   bool operator!=(const Expectation& rhs) const { return !(*this == rhs); }
8751 
8752  private:
8753   friend class ExpectationSet;
8754   friend class Sequence;
8755   friend class ::testing::internal::ExpectationBase;
8756   friend class ::testing::internal::UntypedFunctionMockerBase;
8757 
8758   template <typename F>
8759   friend class ::testing::internal::FunctionMocker;
8760 
8761   template <typename F>
8762   friend class ::testing::internal::TypedExpectation;
8763 
8764   // This comparator is needed for putting Expectation objects into a set.
8765   class Less {
8766    public:
8767     bool operator()(const Expectation& lhs, const Expectation& rhs) const {
8768       return lhs.expectation_base_.get() < rhs.expectation_base_.get();
8769     }
8770   };
8771 
8772   typedef ::std::set<Expectation, Less> Set;
8773 
8774   Expectation(
8775       const std::shared_ptr<internal::ExpectationBase>& expectation_base);
8776 
8777   // Returns the expectation this object references.
8778   const std::shared_ptr<internal::ExpectationBase>& expectation_base() const {
8779     return expectation_base_;
8780   }
8781 
8782   // A shared_ptr that co-owns the expectation this handle references.
8783   std::shared_ptr<internal::ExpectationBase> expectation_base_;
8784 };
8785 
8786 // A set of expectation handles.  Useful in the .After() clause of
8787 // EXPECT_CALL() for setting the (partial) order of expectations.  The
8788 // syntax:
8789 //
8790 //   ExpectationSet es;
8791 //   es += EXPECT_CALL(...)...;
8792 //   es += EXPECT_CALL(...)...;
8793 //   EXPECT_CALL(...).After(es)...;
8794 //
8795 // sets three expectations where the last one can only be matched
8796 // after the first two have both been satisfied.
8797 //
8798 // This class is copyable and has value semantics.
8799 class ExpectationSet {
8800  public:
8801   // A bidirectional iterator that can read a const element in the set.
8802   typedef Expectation::Set::const_iterator const_iterator;
8803 
8804   // An object stored in the set.  This is an alias of Expectation.
8805   typedef Expectation::Set::value_type value_type;
8806 
8807   // Constructs an empty set.
8808   ExpectationSet() {}
8809 
8810   // This single-argument ctor must not be explicit, in order to support the
8811   //   ExpectationSet es = EXPECT_CALL(...);
8812   // syntax.
8813   ExpectationSet(internal::ExpectationBase& exp) {  // NOLINT
8814     *this += Expectation(exp);
8815   }
8816 
8817   // This single-argument ctor implements implicit conversion from
8818   // Expectation and thus must not be explicit.  This allows either an
8819   // Expectation or an ExpectationSet to be used in .After().
8820   ExpectationSet(const Expectation& e) {  // NOLINT
8821     *this += e;
8822   }
8823 
8824   // The compiler-generator ctor and operator= works exactly as
8825   // intended, so we don't need to define our own.
8826 
8827   // Returns true if and only if rhs contains the same set of Expectation
8828   // objects as this does.
8829   bool operator==(const ExpectationSet& rhs) const {
8830     return expectations_ == rhs.expectations_;
8831   }
8832 
8833   bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); }
8834 
8835   // Implements the syntax
8836   //   expectation_set += EXPECT_CALL(...);
8837   ExpectationSet& operator+=(const Expectation& e) {
8838     expectations_.insert(e);
8839     return *this;
8840   }
8841 
8842   int size() const { return static_cast<int>(expectations_.size()); }
8843 
8844   const_iterator begin() const { return expectations_.begin(); }
8845   const_iterator end() const { return expectations_.end(); }
8846 
8847  private:
8848   Expectation::Set expectations_;
8849 };
8850 
8851 
8852 // Sequence objects are used by a user to specify the relative order
8853 // in which the expectations should match.  They are copyable (we rely
8854 // on the compiler-defined copy constructor and assignment operator).
8855 class GTEST_API_ Sequence {
8856  public:
8857   // Constructs an empty sequence.
8858   Sequence() : last_expectation_(new Expectation) {}
8859 
8860   // Adds an expectation to this sequence.  The caller must ensure
8861   // that no other thread is accessing this Sequence object.
8862   void AddExpectation(const Expectation& expectation) const;
8863 
8864  private:
8865   // The last expectation in this sequence.
8866   std::shared_ptr<Expectation> last_expectation_;
8867 };  // class Sequence
8868 
8869 // An object of this type causes all EXPECT_CALL() statements
8870 // encountered in its scope to be put in an anonymous sequence.  The
8871 // work is done in the constructor and destructor.  You should only
8872 // create an InSequence object on the stack.
8873 //
8874 // The sole purpose for this class is to support easy definition of
8875 // sequential expectations, e.g.
8876 //
8877 //   {
8878 //     InSequence dummy;  // The name of the object doesn't matter.
8879 //
8880 //     // The following expectations must match in the order they appear.
8881 //     EXPECT_CALL(a, Bar())...;
8882 //     EXPECT_CALL(a, Baz())...;
8883 //     ...
8884 //     EXPECT_CALL(b, Xyz())...;
8885 //   }
8886 //
8887 // You can create InSequence objects in multiple threads, as long as
8888 // they are used to affect different mock objects.  The idea is that
8889 // each thread can create and set up its own mocks as if it's the only
8890 // thread.  However, for clarity of your tests we recommend you to set
8891 // up mocks in the main thread unless you have a good reason not to do
8892 // so.
8893 class GTEST_API_ InSequence {
8894  public:
8895   InSequence();
8896   ~InSequence();
8897  private:
8898   bool sequence_created_;
8899 
8900   GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence);  // NOLINT
8901 } GTEST_ATTRIBUTE_UNUSED_;
8902 
8903 namespace internal {
8904 
8905 // Points to the implicit sequence introduced by a living InSequence
8906 // object (if any) in the current thread or NULL.
8907 GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence;
8908 
8909 // Base class for implementing expectations.
8910 //
8911 // There are two reasons for having a type-agnostic base class for
8912 // Expectation:
8913 //
8914 //   1. We need to store collections of expectations of different
8915 //   types (e.g. all pre-requisites of a particular expectation, all
8916 //   expectations in a sequence).  Therefore these expectation objects
8917 //   must share a common base class.
8918 //
8919 //   2. We can avoid binary code bloat by moving methods not depending
8920 //   on the template argument of Expectation to the base class.
8921 //
8922 // This class is internal and mustn't be used by user code directly.
8923 class GTEST_API_ ExpectationBase {
8924  public:
8925   // source_text is the EXPECT_CALL(...) source that created this Expectation.
8926   ExpectationBase(const char* file, int line, const std::string& source_text);
8927 
8928   virtual ~ExpectationBase();
8929 
8930   // Where in the source file was the expectation spec defined?
8931   const char* file() const { return file_; }
8932   int line() const { return line_; }
8933   const char* source_text() const { return source_text_.c_str(); }
8934   // Returns the cardinality specified in the expectation spec.
8935   const Cardinality& cardinality() const { return cardinality_; }
8936 
8937   // Describes the source file location of this expectation.
8938   void DescribeLocationTo(::std::ostream* os) const {
8939     *os << FormatFileLocation(file(), line()) << " ";
8940   }
8941 
8942   // Describes how many times a function call matching this
8943   // expectation has occurred.
8944   void DescribeCallCountTo(::std::ostream* os) const
8945       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
8946 
8947   // If this mock method has an extra matcher (i.e. .With(matcher)),
8948   // describes it to the ostream.
8949   virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0;
8950 
8951  protected:
8952   friend class ::testing::Expectation;
8953   friend class UntypedFunctionMockerBase;
8954 
8955   enum Clause {
8956     // Don't change the order of the enum members!
8957     kNone,
8958     kWith,
8959     kTimes,
8960     kInSequence,
8961     kAfter,
8962     kWillOnce,
8963     kWillRepeatedly,
8964     kRetiresOnSaturation
8965   };
8966 
8967   typedef std::vector<const void*> UntypedActions;
8968 
8969   // Returns an Expectation object that references and co-owns this
8970   // expectation.
8971   virtual Expectation GetHandle() = 0;
8972 
8973   // Asserts that the EXPECT_CALL() statement has the given property.
8974   void AssertSpecProperty(bool property,
8975                           const std::string& failure_message) const {
8976     Assert(property, file_, line_, failure_message);
8977   }
8978 
8979   // Expects that the EXPECT_CALL() statement has the given property.
8980   void ExpectSpecProperty(bool property,
8981                           const std::string& failure_message) const {
8982     Expect(property, file_, line_, failure_message);
8983   }
8984 
8985   // Explicitly specifies the cardinality of this expectation.  Used
8986   // by the subclasses to implement the .Times() clause.
8987   void SpecifyCardinality(const Cardinality& cardinality);
8988 
8989   // Returns true if and only if the user specified the cardinality
8990   // explicitly using a .Times().
8991   bool cardinality_specified() const { return cardinality_specified_; }
8992 
8993   // Sets the cardinality of this expectation spec.
8994   void set_cardinality(const Cardinality& a_cardinality) {
8995     cardinality_ = a_cardinality;
8996   }
8997 
8998   // The following group of methods should only be called after the
8999   // EXPECT_CALL() statement, and only when g_gmock_mutex is held by
9000   // the current thread.
9001 
9002   // Retires all pre-requisites of this expectation.
9003   void RetireAllPreRequisites()
9004       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
9005 
9006   // Returns true if and only if this expectation is retired.
9007   bool is_retired() const
9008       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9009     g_gmock_mutex.AssertHeld();
9010     return retired_;
9011   }
9012 
9013   // Retires this expectation.
9014   void Retire()
9015       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9016     g_gmock_mutex.AssertHeld();
9017     retired_ = true;
9018   }
9019 
9020   // Returns true if and only if this expectation is satisfied.
9021   bool IsSatisfied() const
9022       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9023     g_gmock_mutex.AssertHeld();
9024     return cardinality().IsSatisfiedByCallCount(call_count_);
9025   }
9026 
9027   // Returns true if and only if this expectation is saturated.
9028   bool IsSaturated() const
9029       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9030     g_gmock_mutex.AssertHeld();
9031     return cardinality().IsSaturatedByCallCount(call_count_);
9032   }
9033 
9034   // Returns true if and only if this expectation is over-saturated.
9035   bool IsOverSaturated() const
9036       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9037     g_gmock_mutex.AssertHeld();
9038     return cardinality().IsOverSaturatedByCallCount(call_count_);
9039   }
9040 
9041   // Returns true if and only if all pre-requisites of this expectation are
9042   // satisfied.
9043   bool AllPrerequisitesAreSatisfied() const
9044       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
9045 
9046   // Adds unsatisfied pre-requisites of this expectation to 'result'.
9047   void FindUnsatisfiedPrerequisites(ExpectationSet* result) const
9048       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
9049 
9050   // Returns the number this expectation has been invoked.
9051   int call_count() const
9052       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9053     g_gmock_mutex.AssertHeld();
9054     return call_count_;
9055   }
9056 
9057   // Increments the number this expectation has been invoked.
9058   void IncrementCallCount()
9059       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9060     g_gmock_mutex.AssertHeld();
9061     call_count_++;
9062   }
9063 
9064   // Checks the action count (i.e. the number of WillOnce() and
9065   // WillRepeatedly() clauses) against the cardinality if this hasn't
9066   // been done before.  Prints a warning if there are too many or too
9067   // few actions.
9068   void CheckActionCountIfNotDone() const
9069       GTEST_LOCK_EXCLUDED_(mutex_);
9070 
9071   friend class ::testing::Sequence;
9072   friend class ::testing::internal::ExpectationTester;
9073 
9074   template <typename Function>
9075   friend class TypedExpectation;
9076 
9077   // Implements the .Times() clause.
9078   void UntypedTimes(const Cardinality& a_cardinality);
9079 
9080   // This group of fields are part of the spec and won't change after
9081   // an EXPECT_CALL() statement finishes.
9082   const char* file_;          // The file that contains the expectation.
9083   int line_;                  // The line number of the expectation.
9084   const std::string source_text_;  // The EXPECT_CALL(...) source text.
9085   // True if and only if the cardinality is specified explicitly.
9086   bool cardinality_specified_;
9087   Cardinality cardinality_;            // The cardinality of the expectation.
9088   // The immediate pre-requisites (i.e. expectations that must be
9089   // satisfied before this expectation can be matched) of this
9090   // expectation.  We use std::shared_ptr in the set because we want an
9091   // Expectation object to be co-owned by its FunctionMocker and its
9092   // successors.  This allows multiple mock objects to be deleted at
9093   // different times.
9094   ExpectationSet immediate_prerequisites_;
9095 
9096   // This group of fields are the current state of the expectation,
9097   // and can change as the mock function is called.
9098   int call_count_;  // How many times this expectation has been invoked.
9099   bool retired_;    // True if and only if this expectation has retired.
9100   UntypedActions untyped_actions_;
9101   bool extra_matcher_specified_;
9102   bool repeated_action_specified_;  // True if a WillRepeatedly() was specified.
9103   bool retires_on_saturation_;
9104   Clause last_clause_;
9105   mutable bool action_count_checked_;  // Under mutex_.
9106   mutable Mutex mutex_;  // Protects action_count_checked_.
9107 };  // class ExpectationBase
9108 
9109 // Impements an expectation for the given function type.
9110 template <typename F>
9111 class TypedExpectation : public ExpectationBase {
9112  public:
9113   typedef typename Function<F>::ArgumentTuple ArgumentTuple;
9114   typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
9115   typedef typename Function<F>::Result Result;
9116 
9117   TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line,
9118                    const std::string& a_source_text,
9119                    const ArgumentMatcherTuple& m)
9120       : ExpectationBase(a_file, a_line, a_source_text),
9121         owner_(owner),
9122         matchers_(m),
9123         // By default, extra_matcher_ should match anything.  However,
9124         // we cannot initialize it with _ as that causes ambiguity between
9125         // Matcher's copy and move constructor for some argument types.
9126         extra_matcher_(A<const ArgumentTuple&>()),
9127         repeated_action_(DoDefault()) {}
9128 
9129   ~TypedExpectation() override {
9130     // Check the validity of the action count if it hasn't been done
9131     // yet (for example, if the expectation was never used).
9132     CheckActionCountIfNotDone();
9133     for (UntypedActions::const_iterator it = untyped_actions_.begin();
9134          it != untyped_actions_.end(); ++it) {
9135       delete static_cast<const Action<F>*>(*it);
9136     }
9137   }
9138 
9139   // Implements the .With() clause.
9140   TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) {
9141     if (last_clause_ == kWith) {
9142       ExpectSpecProperty(false,
9143                          ".With() cannot appear "
9144                          "more than once in an EXPECT_CALL().");
9145     } else {
9146       ExpectSpecProperty(last_clause_ < kWith,
9147                          ".With() must be the first "
9148                          "clause in an EXPECT_CALL().");
9149     }
9150     last_clause_ = kWith;
9151 
9152     extra_matcher_ = m;
9153     extra_matcher_specified_ = true;
9154     return *this;
9155   }
9156 
9157   // Implements the .Times() clause.
9158   TypedExpectation& Times(const Cardinality& a_cardinality) {
9159     ExpectationBase::UntypedTimes(a_cardinality);
9160     return *this;
9161   }
9162 
9163   // Implements the .Times() clause.
9164   TypedExpectation& Times(int n) {
9165     return Times(Exactly(n));
9166   }
9167 
9168   // Implements the .InSequence() clause.
9169   TypedExpectation& InSequence(const Sequence& s) {
9170     ExpectSpecProperty(last_clause_ <= kInSequence,
9171                        ".InSequence() cannot appear after .After(),"
9172                        " .WillOnce(), .WillRepeatedly(), or "
9173                        ".RetiresOnSaturation().");
9174     last_clause_ = kInSequence;
9175 
9176     s.AddExpectation(GetHandle());
9177     return *this;
9178   }
9179   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) {
9180     return InSequence(s1).InSequence(s2);
9181   }
9182   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
9183                                const Sequence& s3) {
9184     return InSequence(s1, s2).InSequence(s3);
9185   }
9186   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
9187                                const Sequence& s3, const Sequence& s4) {
9188     return InSequence(s1, s2, s3).InSequence(s4);
9189   }
9190   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
9191                                const Sequence& s3, const Sequence& s4,
9192                                const Sequence& s5) {
9193     return InSequence(s1, s2, s3, s4).InSequence(s5);
9194   }
9195 
9196   // Implements that .After() clause.
9197   TypedExpectation& After(const ExpectationSet& s) {
9198     ExpectSpecProperty(last_clause_ <= kAfter,
9199                        ".After() cannot appear after .WillOnce(),"
9200                        " .WillRepeatedly(), or "
9201                        ".RetiresOnSaturation().");
9202     last_clause_ = kAfter;
9203 
9204     for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) {
9205       immediate_prerequisites_ += *it;
9206     }
9207     return *this;
9208   }
9209   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) {
9210     return After(s1).After(s2);
9211   }
9212   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
9213                           const ExpectationSet& s3) {
9214     return After(s1, s2).After(s3);
9215   }
9216   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
9217                           const ExpectationSet& s3, const ExpectationSet& s4) {
9218     return After(s1, s2, s3).After(s4);
9219   }
9220   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
9221                           const ExpectationSet& s3, const ExpectationSet& s4,
9222                           const ExpectationSet& s5) {
9223     return After(s1, s2, s3, s4).After(s5);
9224   }
9225 
9226   // Implements the .WillOnce() clause.
9227   TypedExpectation& WillOnce(const Action<F>& action) {
9228     ExpectSpecProperty(last_clause_ <= kWillOnce,
9229                        ".WillOnce() cannot appear after "
9230                        ".WillRepeatedly() or .RetiresOnSaturation().");
9231     last_clause_ = kWillOnce;
9232 
9233     untyped_actions_.push_back(new Action<F>(action));
9234     if (!cardinality_specified()) {
9235       set_cardinality(Exactly(static_cast<int>(untyped_actions_.size())));
9236     }
9237     return *this;
9238   }
9239 
9240   // Implements the .WillRepeatedly() clause.
9241   TypedExpectation& WillRepeatedly(const Action<F>& action) {
9242     if (last_clause_ == kWillRepeatedly) {
9243       ExpectSpecProperty(false,
9244                          ".WillRepeatedly() cannot appear "
9245                          "more than once in an EXPECT_CALL().");
9246     } else {
9247       ExpectSpecProperty(last_clause_ < kWillRepeatedly,
9248                          ".WillRepeatedly() cannot appear "
9249                          "after .RetiresOnSaturation().");
9250     }
9251     last_clause_ = kWillRepeatedly;
9252     repeated_action_specified_ = true;
9253 
9254     repeated_action_ = action;
9255     if (!cardinality_specified()) {
9256       set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size())));
9257     }
9258 
9259     // Now that no more action clauses can be specified, we check
9260     // whether their count makes sense.
9261     CheckActionCountIfNotDone();
9262     return *this;
9263   }
9264 
9265   // Implements the .RetiresOnSaturation() clause.
9266   TypedExpectation& RetiresOnSaturation() {
9267     ExpectSpecProperty(last_clause_ < kRetiresOnSaturation,
9268                        ".RetiresOnSaturation() cannot appear "
9269                        "more than once.");
9270     last_clause_ = kRetiresOnSaturation;
9271     retires_on_saturation_ = true;
9272 
9273     // Now that no more action clauses can be specified, we check
9274     // whether their count makes sense.
9275     CheckActionCountIfNotDone();
9276     return *this;
9277   }
9278 
9279   // Returns the matchers for the arguments as specified inside the
9280   // EXPECT_CALL() macro.
9281   const ArgumentMatcherTuple& matchers() const {
9282     return matchers_;
9283   }
9284 
9285   // Returns the matcher specified by the .With() clause.
9286   const Matcher<const ArgumentTuple&>& extra_matcher() const {
9287     return extra_matcher_;
9288   }
9289 
9290   // Returns the action specified by the .WillRepeatedly() clause.
9291   const Action<F>& repeated_action() const { return repeated_action_; }
9292 
9293   // If this mock method has an extra matcher (i.e. .With(matcher)),
9294   // describes it to the ostream.
9295   void MaybeDescribeExtraMatcherTo(::std::ostream* os) override {
9296     if (extra_matcher_specified_) {
9297       *os << "    Expected args: ";
9298       extra_matcher_.DescribeTo(os);
9299       *os << "\n";
9300     }
9301   }
9302 
9303  private:
9304   template <typename Function>
9305   friend class FunctionMocker;
9306 
9307   // Returns an Expectation object that references and co-owns this
9308   // expectation.
9309   Expectation GetHandle() override { return owner_->GetHandleOf(this); }
9310 
9311   // The following methods will be called only after the EXPECT_CALL()
9312   // statement finishes and when the current thread holds
9313   // g_gmock_mutex.
9314 
9315   // Returns true if and only if this expectation matches the given arguments.
9316   bool Matches(const ArgumentTuple& args) const
9317       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9318     g_gmock_mutex.AssertHeld();
9319     return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
9320   }
9321 
9322   // Returns true if and only if this expectation should handle the given
9323   // arguments.
9324   bool ShouldHandleArguments(const ArgumentTuple& args) const
9325       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9326     g_gmock_mutex.AssertHeld();
9327 
9328     // In case the action count wasn't checked when the expectation
9329     // was defined (e.g. if this expectation has no WillRepeatedly()
9330     // or RetiresOnSaturation() clause), we check it when the
9331     // expectation is used for the first time.
9332     CheckActionCountIfNotDone();
9333     return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args);
9334   }
9335 
9336   // Describes the result of matching the arguments against this
9337   // expectation to the given ostream.
9338   void ExplainMatchResultTo(
9339       const ArgumentTuple& args,
9340       ::std::ostream* os) const
9341           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9342     g_gmock_mutex.AssertHeld();
9343 
9344     if (is_retired()) {
9345       *os << "         Expected: the expectation is active\n"
9346           << "           Actual: it is retired\n";
9347     } else if (!Matches(args)) {
9348       if (!TupleMatches(matchers_, args)) {
9349         ExplainMatchFailureTupleTo(matchers_, args, os);
9350       }
9351       StringMatchResultListener listener;
9352       if (!extra_matcher_.MatchAndExplain(args, &listener)) {
9353         *os << "    Expected args: ";
9354         extra_matcher_.DescribeTo(os);
9355         *os << "\n           Actual: don't match";
9356 
9357         internal::PrintIfNotEmpty(listener.str(), os);
9358         *os << "\n";
9359       }
9360     } else if (!AllPrerequisitesAreSatisfied()) {
9361       *os << "         Expected: all pre-requisites are satisfied\n"
9362           << "           Actual: the following immediate pre-requisites "
9363           << "are not satisfied:\n";
9364       ExpectationSet unsatisfied_prereqs;
9365       FindUnsatisfiedPrerequisites(&unsatisfied_prereqs);
9366       int i = 0;
9367       for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin();
9368            it != unsatisfied_prereqs.end(); ++it) {
9369         it->expectation_base()->DescribeLocationTo(os);
9370         *os << "pre-requisite #" << i++ << "\n";
9371       }
9372       *os << "                   (end of pre-requisites)\n";
9373     } else {
9374       // This line is here just for completeness' sake.  It will never
9375       // be executed as currently the ExplainMatchResultTo() function
9376       // is called only when the mock function call does NOT match the
9377       // expectation.
9378       *os << "The call matches the expectation.\n";
9379     }
9380   }
9381 
9382   // Returns the action that should be taken for the current invocation.
9383   const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker,
9384                                     const ArgumentTuple& args) const
9385       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9386     g_gmock_mutex.AssertHeld();
9387     const int count = call_count();
9388     Assert(count >= 1, __FILE__, __LINE__,
9389            "call_count() is <= 0 when GetCurrentAction() is "
9390            "called - this should never happen.");
9391 
9392     const int action_count = static_cast<int>(untyped_actions_.size());
9393     if (action_count > 0 && !repeated_action_specified_ &&
9394         count > action_count) {
9395       // If there is at least one WillOnce() and no WillRepeatedly(),
9396       // we warn the user when the WillOnce() clauses ran out.
9397       ::std::stringstream ss;
9398       DescribeLocationTo(&ss);
9399       ss << "Actions ran out in " << source_text() << "...\n"
9400          << "Called " << count << " times, but only "
9401          << action_count << " WillOnce()"
9402          << (action_count == 1 ? " is" : "s are") << " specified - ";
9403       mocker->DescribeDefaultActionTo(args, &ss);
9404       Log(kWarning, ss.str(), 1);
9405     }
9406 
9407     return count <= action_count
9408                ? *static_cast<const Action<F>*>(
9409                      untyped_actions_[static_cast<size_t>(count - 1)])
9410                : repeated_action();
9411   }
9412 
9413   // Given the arguments of a mock function call, if the call will
9414   // over-saturate this expectation, returns the default action;
9415   // otherwise, returns the next action in this expectation.  Also
9416   // describes *what* happened to 'what', and explains *why* Google
9417   // Mock does it to 'why'.  This method is not const as it calls
9418   // IncrementCallCount().  A return value of NULL means the default
9419   // action.
9420   const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker,
9421                                          const ArgumentTuple& args,
9422                                          ::std::ostream* what,
9423                                          ::std::ostream* why)
9424       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9425     g_gmock_mutex.AssertHeld();
9426     if (IsSaturated()) {
9427       // We have an excessive call.
9428       IncrementCallCount();
9429       *what << "Mock function called more times than expected - ";
9430       mocker->DescribeDefaultActionTo(args, what);
9431       DescribeCallCountTo(why);
9432 
9433       return nullptr;
9434     }
9435 
9436     IncrementCallCount();
9437     RetireAllPreRequisites();
9438 
9439     if (retires_on_saturation_ && IsSaturated()) {
9440       Retire();
9441     }
9442 
9443     // Must be done after IncrementCount()!
9444     *what << "Mock function call matches " << source_text() <<"...\n";
9445     return &(GetCurrentAction(mocker, args));
9446   }
9447 
9448   // All the fields below won't change once the EXPECT_CALL()
9449   // statement finishes.
9450   FunctionMocker<F>* const owner_;
9451   ArgumentMatcherTuple matchers_;
9452   Matcher<const ArgumentTuple&> extra_matcher_;
9453   Action<F> repeated_action_;
9454 
9455   GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation);
9456 };  // class TypedExpectation
9457 
9458 // A MockSpec object is used by ON_CALL() or EXPECT_CALL() for
9459 // specifying the default behavior of, or expectation on, a mock
9460 // function.
9461 
9462 // Note: class MockSpec really belongs to the ::testing namespace.
9463 // However if we define it in ::testing, MSVC will complain when
9464 // classes in ::testing::internal declare it as a friend class
9465 // template.  To workaround this compiler bug, we define MockSpec in
9466 // ::testing::internal and import it into ::testing.
9467 
9468 // Logs a message including file and line number information.
9469 GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity,
9470                                 const char* file, int line,
9471                                 const std::string& message);
9472 
9473 template <typename F>
9474 class MockSpec {
9475  public:
9476   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
9477   typedef typename internal::Function<F>::ArgumentMatcherTuple
9478       ArgumentMatcherTuple;
9479 
9480   // Constructs a MockSpec object, given the function mocker object
9481   // that the spec is associated with.
9482   MockSpec(internal::FunctionMocker<F>* function_mocker,
9483            const ArgumentMatcherTuple& matchers)
9484       : function_mocker_(function_mocker), matchers_(matchers) {}
9485 
9486   // Adds a new default action spec to the function mocker and returns
9487   // the newly created spec.
9488   internal::OnCallSpec<F>& InternalDefaultActionSetAt(
9489       const char* file, int line, const char* obj, const char* call) {
9490     LogWithLocation(internal::kInfo, file, line,
9491                     std::string("ON_CALL(") + obj + ", " + call + ") invoked");
9492     return function_mocker_->AddNewOnCallSpec(file, line, matchers_);
9493   }
9494 
9495   // Adds a new expectation spec to the function mocker and returns
9496   // the newly created spec.
9497   internal::TypedExpectation<F>& InternalExpectedAt(
9498       const char* file, int line, const char* obj, const char* call) {
9499     const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " +
9500                                   call + ")");
9501     LogWithLocation(internal::kInfo, file, line, source_text + " invoked");
9502     return function_mocker_->AddNewExpectation(
9503         file, line, source_text, matchers_);
9504   }
9505 
9506   // This operator overload is used to swallow the superfluous parameter list
9507   // introduced by the ON/EXPECT_CALL macros. See the macro comments for more
9508   // explanation.
9509   MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) {
9510     return *this;
9511   }
9512 
9513  private:
9514   template <typename Function>
9515   friend class internal::FunctionMocker;
9516 
9517   // The function mocker that owns this spec.
9518   internal::FunctionMocker<F>* const function_mocker_;
9519   // The argument matchers specified in the spec.
9520   ArgumentMatcherTuple matchers_;
9521 };  // class MockSpec
9522 
9523 // Wrapper type for generically holding an ordinary value or lvalue reference.
9524 // If T is not a reference type, it must be copyable or movable.
9525 // ReferenceOrValueWrapper<T> is movable, and will also be copyable unless
9526 // T is a move-only value type (which means that it will always be copyable
9527 // if the current platform does not support move semantics).
9528 //
9529 // The primary template defines handling for values, but function header
9530 // comments describe the contract for the whole template (including
9531 // specializations).
9532 template <typename T>
9533 class ReferenceOrValueWrapper {
9534  public:
9535   // Constructs a wrapper from the given value/reference.
9536   explicit ReferenceOrValueWrapper(T value)
9537       : value_(std::move(value)) {
9538   }
9539 
9540   // Unwraps and returns the underlying value/reference, exactly as
9541   // originally passed. The behavior of calling this more than once on
9542   // the same object is unspecified.
9543   T Unwrap() { return std::move(value_); }
9544 
9545   // Provides nondestructive access to the underlying value/reference.
9546   // Always returns a const reference (more precisely,
9547   // const std::add_lvalue_reference<T>::type). The behavior of calling this
9548   // after calling Unwrap on the same object is unspecified.
9549   const T& Peek() const {
9550     return value_;
9551   }
9552 
9553  private:
9554   T value_;
9555 };
9556 
9557 // Specialization for lvalue reference types. See primary template
9558 // for documentation.
9559 template <typename T>
9560 class ReferenceOrValueWrapper<T&> {
9561  public:
9562   // Workaround for debatable pass-by-reference lint warning (c-library-team
9563   // policy precludes NOLINT in this context)
9564   typedef T& reference;
9565   explicit ReferenceOrValueWrapper(reference ref)
9566       : value_ptr_(&ref) {}
9567   T& Unwrap() { return *value_ptr_; }
9568   const T& Peek() const { return *value_ptr_; }
9569 
9570  private:
9571   T* value_ptr_;
9572 };
9573 
9574 // C++ treats the void type specially.  For example, you cannot define
9575 // a void-typed variable or pass a void value to a function.
9576 // ActionResultHolder<T> holds a value of type T, where T must be a
9577 // copyable type or void (T doesn't need to be default-constructable).
9578 // It hides the syntactic difference between void and other types, and
9579 // is used to unify the code for invoking both void-returning and
9580 // non-void-returning mock functions.
9581 
9582 // Untyped base class for ActionResultHolder<T>.
9583 class UntypedActionResultHolderBase {
9584  public:
9585   virtual ~UntypedActionResultHolderBase() {}
9586 
9587   // Prints the held value as an action's result to os.
9588   virtual void PrintAsActionResult(::std::ostream* os) const = 0;
9589 };
9590 
9591 // This generic definition is used when T is not void.
9592 template <typename T>
9593 class ActionResultHolder : public UntypedActionResultHolderBase {
9594  public:
9595   // Returns the held value. Must not be called more than once.
9596   T Unwrap() {
9597     return result_.Unwrap();
9598   }
9599 
9600   // Prints the held value as an action's result to os.
9601   void PrintAsActionResult(::std::ostream* os) const override {
9602     *os << "\n          Returns: ";
9603     // T may be a reference type, so we don't use UniversalPrint().
9604     UniversalPrinter<T>::Print(result_.Peek(), os);
9605   }
9606 
9607   // Performs the given mock function's default action and returns the
9608   // result in a new-ed ActionResultHolder.
9609   template <typename F>
9610   static ActionResultHolder* PerformDefaultAction(
9611       const FunctionMocker<F>* func_mocker,
9612       typename Function<F>::ArgumentTuple&& args,
9613       const std::string& call_description) {
9614     return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction(
9615         std::move(args), call_description)));
9616   }
9617 
9618   // Performs the given action and returns the result in a new-ed
9619   // ActionResultHolder.
9620   template <typename F>
9621   static ActionResultHolder* PerformAction(
9622       const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
9623     return new ActionResultHolder(
9624         Wrapper(action.Perform(std::move(args))));
9625   }
9626 
9627  private:
9628   typedef ReferenceOrValueWrapper<T> Wrapper;
9629 
9630   explicit ActionResultHolder(Wrapper result)
9631       : result_(std::move(result)) {
9632   }
9633 
9634   Wrapper result_;
9635 
9636   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
9637 };
9638 
9639 // Specialization for T = void.
9640 template <>
9641 class ActionResultHolder<void> : public UntypedActionResultHolderBase {
9642  public:
9643   void Unwrap() { }
9644 
9645   void PrintAsActionResult(::std::ostream* /* os */) const override {}
9646 
9647   // Performs the given mock function's default action and returns ownership
9648   // of an empty ActionResultHolder*.
9649   template <typename F>
9650   static ActionResultHolder* PerformDefaultAction(
9651       const FunctionMocker<F>* func_mocker,
9652       typename Function<F>::ArgumentTuple&& args,
9653       const std::string& call_description) {
9654     func_mocker->PerformDefaultAction(std::move(args), call_description);
9655     return new ActionResultHolder;
9656   }
9657 
9658   // Performs the given action and returns ownership of an empty
9659   // ActionResultHolder*.
9660   template <typename F>
9661   static ActionResultHolder* PerformAction(
9662       const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
9663     action.Perform(std::move(args));
9664     return new ActionResultHolder;
9665   }
9666 
9667  private:
9668   ActionResultHolder() {}
9669   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
9670 };
9671 
9672 template <typename F>
9673 class FunctionMocker;
9674 
9675 template <typename R, typename... Args>
9676 class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase {
9677   using F = R(Args...);
9678 
9679  public:
9680   using Result = R;
9681   using ArgumentTuple = std::tuple<Args...>;
9682   using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
9683 
9684   FunctionMocker() {}
9685 
9686   // There is no generally useful and implementable semantics of
9687   // copying a mock object, so copying a mock is usually a user error.
9688   // Thus we disallow copying function mockers.  If the user really
9689   // wants to copy a mock object, they should implement their own copy
9690   // operation, for example:
9691   //
9692   //   class MockFoo : public Foo {
9693   //    public:
9694   //     // Defines a copy constructor explicitly.
9695   //     MockFoo(const MockFoo& src) {}
9696   //     ...
9697   //   };
9698   FunctionMocker(const FunctionMocker&) = delete;
9699   FunctionMocker& operator=(const FunctionMocker&) = delete;
9700 
9701   // The destructor verifies that all expectations on this mock
9702   // function have been satisfied.  If not, it will report Google Test
9703   // non-fatal failures for the violations.
9704   ~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9705     MutexLock l(&g_gmock_mutex);
9706     VerifyAndClearExpectationsLocked();
9707     Mock::UnregisterLocked(this);
9708     ClearDefaultActionsLocked();
9709   }
9710 
9711   // Returns the ON_CALL spec that matches this mock function with the
9712   // given arguments; returns NULL if no matching ON_CALL is found.
9713   // L = *
9714   const OnCallSpec<F>* FindOnCallSpec(
9715       const ArgumentTuple& args) const {
9716     for (UntypedOnCallSpecs::const_reverse_iterator it
9717              = untyped_on_call_specs_.rbegin();
9718          it != untyped_on_call_specs_.rend(); ++it) {
9719       const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it);
9720       if (spec->Matches(args))
9721         return spec;
9722     }
9723 
9724     return nullptr;
9725   }
9726 
9727   // Performs the default action of this mock function on the given
9728   // arguments and returns the result. Asserts (or throws if
9729   // exceptions are enabled) with a helpful call descrption if there
9730   // is no valid return value. This method doesn't depend on the
9731   // mutable state of this object, and thus can be called concurrently
9732   // without locking.
9733   // L = *
9734   Result PerformDefaultAction(ArgumentTuple&& args,
9735                               const std::string& call_description) const {
9736     const OnCallSpec<F>* const spec =
9737         this->FindOnCallSpec(args);
9738     if (spec != nullptr) {
9739       return spec->GetAction().Perform(std::move(args));
9740     }
9741     const std::string message =
9742         call_description +
9743         "\n    The mock function has no default action "
9744         "set, and its return type has no default value set.";
9745 #if GTEST_HAS_EXCEPTIONS
9746     if (!DefaultValue<Result>::Exists()) {
9747       throw std::runtime_error(message);
9748     }
9749 #else
9750     Assert(DefaultValue<Result>::Exists(), "", -1, message);
9751 #endif
9752     return DefaultValue<Result>::Get();
9753   }
9754 
9755   // Performs the default action with the given arguments and returns
9756   // the action's result.  The call description string will be used in
9757   // the error message to describe the call in the case the default
9758   // action fails.  The caller is responsible for deleting the result.
9759   // L = *
9760   UntypedActionResultHolderBase* UntypedPerformDefaultAction(
9761       void* untyped_args,  // must point to an ArgumentTuple
9762       const std::string& call_description) const override {
9763     ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
9764     return ResultHolder::PerformDefaultAction(this, std::move(*args),
9765                                               call_description);
9766   }
9767 
9768   // Performs the given action with the given arguments and returns
9769   // the action's result.  The caller is responsible for deleting the
9770   // result.
9771   // L = *
9772   UntypedActionResultHolderBase* UntypedPerformAction(
9773       const void* untyped_action, void* untyped_args) const override {
9774     // Make a copy of the action before performing it, in case the
9775     // action deletes the mock object (and thus deletes itself).
9776     const Action<F> action = *static_cast<const Action<F>*>(untyped_action);
9777     ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
9778     return ResultHolder::PerformAction(action, std::move(*args));
9779   }
9780 
9781   // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked():
9782   // clears the ON_CALL()s set on this mock function.
9783   void ClearDefaultActionsLocked() override
9784       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9785     g_gmock_mutex.AssertHeld();
9786 
9787     // Deleting our default actions may trigger other mock objects to be
9788     // deleted, for example if an action contains a reference counted smart
9789     // pointer to that mock object, and that is the last reference. So if we
9790     // delete our actions within the context of the global mutex we may deadlock
9791     // when this method is called again. Instead, make a copy of the set of
9792     // actions to delete, clear our set within the mutex, and then delete the
9793     // actions outside of the mutex.
9794     UntypedOnCallSpecs specs_to_delete;
9795     untyped_on_call_specs_.swap(specs_to_delete);
9796 
9797     g_gmock_mutex.Unlock();
9798     for (UntypedOnCallSpecs::const_iterator it =
9799              specs_to_delete.begin();
9800          it != specs_to_delete.end(); ++it) {
9801       delete static_cast<const OnCallSpec<F>*>(*it);
9802     }
9803 
9804     // Lock the mutex again, since the caller expects it to be locked when we
9805     // return.
9806     g_gmock_mutex.Lock();
9807   }
9808 
9809   // Returns the result of invoking this mock function with the given
9810   // arguments.  This function can be safely called from multiple
9811   // threads concurrently.
9812   Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9813     ArgumentTuple tuple(std::forward<Args>(args)...);
9814     std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>(
9815         this->UntypedInvokeWith(static_cast<void*>(&tuple))));
9816     return holder->Unwrap();
9817   }
9818 
9819   MockSpec<F> With(Matcher<Args>... m) {
9820     return MockSpec<F>(this, ::std::make_tuple(std::move(m)...));
9821   }
9822 
9823  protected:
9824   template <typename Function>
9825   friend class MockSpec;
9826 
9827   typedef ActionResultHolder<Result> ResultHolder;
9828 
9829   // Adds and returns a default action spec for this mock function.
9830   OnCallSpec<F>& AddNewOnCallSpec(
9831       const char* file, int line,
9832       const ArgumentMatcherTuple& m)
9833           GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9834     Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
9835     OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m);
9836     untyped_on_call_specs_.push_back(on_call_spec);
9837     return *on_call_spec;
9838   }
9839 
9840   // Adds and returns an expectation spec for this mock function.
9841   TypedExpectation<F>& AddNewExpectation(const char* file, int line,
9842                                          const std::string& source_text,
9843                                          const ArgumentMatcherTuple& m)
9844       GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9845     Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
9846     TypedExpectation<F>* const expectation =
9847         new TypedExpectation<F>(this, file, line, source_text, m);
9848     const std::shared_ptr<ExpectationBase> untyped_expectation(expectation);
9849     // See the definition of untyped_expectations_ for why access to
9850     // it is unprotected here.
9851     untyped_expectations_.push_back(untyped_expectation);
9852 
9853     // Adds this expectation into the implicit sequence if there is one.
9854     Sequence* const implicit_sequence = g_gmock_implicit_sequence.get();
9855     if (implicit_sequence != nullptr) {
9856       implicit_sequence->AddExpectation(Expectation(untyped_expectation));
9857     }
9858 
9859     return *expectation;
9860   }
9861 
9862  private:
9863   template <typename Func> friend class TypedExpectation;
9864 
9865   // Some utilities needed for implementing UntypedInvokeWith().
9866 
9867   // Describes what default action will be performed for the given
9868   // arguments.
9869   // L = *
9870   void DescribeDefaultActionTo(const ArgumentTuple& args,
9871                                ::std::ostream* os) const {
9872     const OnCallSpec<F>* const spec = FindOnCallSpec(args);
9873 
9874     if (spec == nullptr) {
9875       *os << (std::is_void<Result>::value ? "returning directly.\n"
9876                                           : "returning default value.\n");
9877     } else {
9878       *os << "taking default action specified at:\n"
9879           << FormatFileLocation(spec->file(), spec->line()) << "\n";
9880     }
9881   }
9882 
9883   // Writes a message that the call is uninteresting (i.e. neither
9884   // explicitly expected nor explicitly unexpected) to the given
9885   // ostream.
9886   void UntypedDescribeUninterestingCall(const void* untyped_args,
9887                                         ::std::ostream* os) const override
9888       GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9889     const ArgumentTuple& args =
9890         *static_cast<const ArgumentTuple*>(untyped_args);
9891     *os << "Uninteresting mock function call - ";
9892     DescribeDefaultActionTo(args, os);
9893     *os << "    Function call: " << Name();
9894     UniversalPrint(args, os);
9895   }
9896 
9897   // Returns the expectation that matches the given function arguments
9898   // (or NULL is there's no match); when a match is found,
9899   // untyped_action is set to point to the action that should be
9900   // performed (or NULL if the action is "do default"), and
9901   // is_excessive is modified to indicate whether the call exceeds the
9902   // expected number.
9903   //
9904   // Critical section: We must find the matching expectation and the
9905   // corresponding action that needs to be taken in an ATOMIC
9906   // transaction.  Otherwise another thread may call this mock
9907   // method in the middle and mess up the state.
9908   //
9909   // However, performing the action has to be left out of the critical
9910   // section.  The reason is that we have no control on what the
9911   // action does (it can invoke an arbitrary user function or even a
9912   // mock function) and excessive locking could cause a dead lock.
9913   const ExpectationBase* UntypedFindMatchingExpectation(
9914       const void* untyped_args, const void** untyped_action, bool* is_excessive,
9915       ::std::ostream* what, ::std::ostream* why) override
9916       GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9917     const ArgumentTuple& args =
9918         *static_cast<const ArgumentTuple*>(untyped_args);
9919     MutexLock l(&g_gmock_mutex);
9920     TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args);
9921     if (exp == nullptr) {  // A match wasn't found.
9922       this->FormatUnexpectedCallMessageLocked(args, what, why);
9923       return nullptr;
9924     }
9925 
9926     // This line must be done before calling GetActionForArguments(),
9927     // which will increment the call count for *exp and thus affect
9928     // its saturation status.
9929     *is_excessive = exp->IsSaturated();
9930     const Action<F>* action = exp->GetActionForArguments(this, args, what, why);
9931     if (action != nullptr && action->IsDoDefault())
9932       action = nullptr;  // Normalize "do default" to NULL.
9933     *untyped_action = action;
9934     return exp;
9935   }
9936 
9937   // Prints the given function arguments to the ostream.
9938   void UntypedPrintArgs(const void* untyped_args,
9939                         ::std::ostream* os) const override {
9940     const ArgumentTuple& args =
9941         *static_cast<const ArgumentTuple*>(untyped_args);
9942     UniversalPrint(args, os);
9943   }
9944 
9945   // Returns the expectation that matches the arguments, or NULL if no
9946   // expectation matches them.
9947   TypedExpectation<F>* FindMatchingExpectationLocked(
9948       const ArgumentTuple& args) const
9949           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9950     g_gmock_mutex.AssertHeld();
9951     // See the definition of untyped_expectations_ for why access to
9952     // it is unprotected here.
9953     for (typename UntypedExpectations::const_reverse_iterator it =
9954              untyped_expectations_.rbegin();
9955          it != untyped_expectations_.rend(); ++it) {
9956       TypedExpectation<F>* const exp =
9957           static_cast<TypedExpectation<F>*>(it->get());
9958       if (exp->ShouldHandleArguments(args)) {
9959         return exp;
9960       }
9961     }
9962     return nullptr;
9963   }
9964 
9965   // Returns a message that the arguments don't match any expectation.
9966   void FormatUnexpectedCallMessageLocked(
9967       const ArgumentTuple& args,
9968       ::std::ostream* os,
9969       ::std::ostream* why) const
9970           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9971     g_gmock_mutex.AssertHeld();
9972     *os << "\nUnexpected mock function call - ";
9973     DescribeDefaultActionTo(args, os);
9974     PrintTriedExpectationsLocked(args, why);
9975   }
9976 
9977   // Prints a list of expectations that have been tried against the
9978   // current mock function call.
9979   void PrintTriedExpectationsLocked(
9980       const ArgumentTuple& args,
9981       ::std::ostream* why) const
9982           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9983     g_gmock_mutex.AssertHeld();
9984     const size_t count = untyped_expectations_.size();
9985     *why << "Google Mock tried the following " << count << " "
9986          << (count == 1 ? "expectation, but it didn't match" :
9987              "expectations, but none matched")
9988          << ":\n";
9989     for (size_t i = 0; i < count; i++) {
9990       TypedExpectation<F>* const expectation =
9991           static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get());
9992       *why << "\n";
9993       expectation->DescribeLocationTo(why);
9994       if (count > 1) {
9995         *why << "tried expectation #" << i << ": ";
9996       }
9997       *why << expectation->source_text() << "...\n";
9998       expectation->ExplainMatchResultTo(args, why);
9999       expectation->DescribeCallCountTo(why);
10000     }
10001   }
10002 };  // class FunctionMocker
10003 
10004 // Reports an uninteresting call (whose description is in msg) in the
10005 // manner specified by 'reaction'.
10006 void ReportUninterestingCall(CallReaction reaction, const std::string& msg);
10007 
10008 }  // namespace internal
10009 
10010 namespace internal {
10011 
10012 template <typename F>
10013 class MockFunction;
10014 
10015 template <typename R, typename... Args>
10016 class MockFunction<R(Args...)> {
10017  public:
10018   MockFunction(const MockFunction&) = delete;
10019   MockFunction& operator=(const MockFunction&) = delete;
10020 
10021   std::function<R(Args...)> AsStdFunction() {
10022     return [this](Args... args) -> R {
10023       return this->Call(std::forward<Args>(args)...);
10024     };
10025   }
10026 
10027   // Implementation detail: the expansion of the MOCK_METHOD macro.
10028   R Call(Args... args) {
10029     mock_.SetOwnerAndName(this, "Call");
10030     return mock_.Invoke(std::forward<Args>(args)...);
10031   }
10032 
10033   MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) {
10034     mock_.RegisterOwner(this);
10035     return mock_.With(std::move(m)...);
10036   }
10037 
10038   MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) {
10039     return this->gmock_Call(::testing::A<Args>()...);
10040   }
10041 
10042  protected:
10043   MockFunction() = default;
10044   ~MockFunction() = default;
10045 
10046  private:
10047   FunctionMocker<R(Args...)> mock_;
10048 };
10049 
10050 /*
10051 The SignatureOf<F> struct is a meta-function returning function signature
10052 corresponding to the provided F argument.
10053 
10054 It makes use of MockFunction easier by allowing it to accept more F arguments
10055 than just function signatures.
10056 
10057 Specializations provided here cover only a signature type itself and
10058 std::function. However, if need be it can be easily extended to cover also other
10059 types (like for example boost::function).
10060 */
10061 
10062 template <typename F>
10063 struct SignatureOf;
10064 
10065 template <typename R, typename... Args>
10066 struct SignatureOf<R(Args...)> {
10067   using type = R(Args...);
10068 };
10069 
10070 template <typename F>
10071 struct SignatureOf<std::function<F>> : SignatureOf<F> {};
10072 
10073 template <typename F>
10074 using SignatureOfT = typename SignatureOf<F>::type;
10075 
10076 }  // namespace internal
10077 
10078 // A MockFunction<F> type has one mock method whose type is
10079 // internal::SignatureOfT<F>.  It is useful when you just want your
10080 // test code to emit some messages and have Google Mock verify the
10081 // right messages are sent (and perhaps at the right times).  For
10082 // example, if you are exercising code:
10083 //
10084 //   Foo(1);
10085 //   Foo(2);
10086 //   Foo(3);
10087 //
10088 // and want to verify that Foo(1) and Foo(3) both invoke
10089 // mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write:
10090 //
10091 // TEST(FooTest, InvokesBarCorrectly) {
10092 //   MyMock mock;
10093 //   MockFunction<void(string check_point_name)> check;
10094 //   {
10095 //     InSequence s;
10096 //
10097 //     EXPECT_CALL(mock, Bar("a"));
10098 //     EXPECT_CALL(check, Call("1"));
10099 //     EXPECT_CALL(check, Call("2"));
10100 //     EXPECT_CALL(mock, Bar("a"));
10101 //   }
10102 //   Foo(1);
10103 //   check.Call("1");
10104 //   Foo(2);
10105 //   check.Call("2");
10106 //   Foo(3);
10107 // }
10108 //
10109 // The expectation spec says that the first Bar("a") must happen
10110 // before check point "1", the second Bar("a") must happen after check
10111 // point "2", and nothing should happen between the two check
10112 // points. The explicit check points make it easy to tell which
10113 // Bar("a") is called by which call to Foo().
10114 //
10115 // MockFunction<F> can also be used to exercise code that accepts
10116 // std::function<internal::SignatureOfT<F>> callbacks. To do so, use
10117 // AsStdFunction() method to create std::function proxy forwarding to
10118 // original object's Call. Example:
10119 //
10120 // TEST(FooTest, RunsCallbackWithBarArgument) {
10121 //   MockFunction<int(string)> callback;
10122 //   EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1));
10123 //   Foo(callback.AsStdFunction());
10124 // }
10125 //
10126 // The internal::SignatureOfT<F> indirection allows to use other types
10127 // than just function signature type. This is typically useful when
10128 // providing a mock for a predefined std::function type. Example:
10129 //
10130 // using FilterPredicate = std::function<bool(string)>;
10131 // void MyFilterAlgorithm(FilterPredicate predicate);
10132 //
10133 // TEST(FooTest, FilterPredicateAlwaysAccepts) {
10134 //   MockFunction<FilterPredicate> predicateMock;
10135 //   EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true));
10136 //   MyFilterAlgorithm(predicateMock.AsStdFunction());
10137 // }
10138 template <typename F>
10139 class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> {
10140   using Base = internal::MockFunction<internal::SignatureOfT<F>>;
10141 
10142  public:
10143   using Base::Base;
10144 };
10145 
10146 // The style guide prohibits "using" statements in a namespace scope
10147 // inside a header file.  However, the MockSpec class template is
10148 // meant to be defined in the ::testing namespace.  The following line
10149 // is just a trick for working around a bug in MSVC 8.0, which cannot
10150 // handle it if we define MockSpec in ::testing.
10151 using internal::MockSpec;
10152 
10153 // Const(x) is a convenient function for obtaining a const reference
10154 // to x.  This is useful for setting expectations on an overloaded
10155 // const mock method, e.g.
10156 //
10157 //   class MockFoo : public FooInterface {
10158 //    public:
10159 //     MOCK_METHOD0(Bar, int());
10160 //     MOCK_CONST_METHOD0(Bar, int&());
10161 //   };
10162 //
10163 //   MockFoo foo;
10164 //   // Expects a call to non-const MockFoo::Bar().
10165 //   EXPECT_CALL(foo, Bar());
10166 //   // Expects a call to const MockFoo::Bar().
10167 //   EXPECT_CALL(Const(foo), Bar());
10168 template <typename T>
10169 inline const T& Const(const T& x) { return x; }
10170 
10171 // Constructs an Expectation object that references and co-owns exp.
10172 inline Expectation::Expectation(internal::ExpectationBase& exp)  // NOLINT
10173     : expectation_base_(exp.GetHandle().expectation_base()) {}
10174 
10175 }  // namespace testing
10176 
10177 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
10178 
10179 // Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is
10180 // required to avoid compile errors when the name of the method used in call is
10181 // a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro
10182 // tests in internal/gmock-spec-builders_test.cc for more details.
10183 //
10184 // This macro supports statements both with and without parameter matchers. If
10185 // the parameter list is omitted, gMock will accept any parameters, which allows
10186 // tests to be written that don't need to encode the number of method
10187 // parameter. This technique may only be used for non-overloaded methods.
10188 //
10189 //   // These are the same:
10190 //   ON_CALL(mock, NoArgsMethod()).WillByDefault(...);
10191 //   ON_CALL(mock, NoArgsMethod).WillByDefault(...);
10192 //
10193 //   // As are these:
10194 //   ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...);
10195 //   ON_CALL(mock, TwoArgsMethod).WillByDefault(...);
10196 //
10197 //   // Can also specify args if you want, of course:
10198 //   ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...);
10199 //
10200 //   // Overloads work as long as you specify parameters:
10201 //   ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...);
10202 //   ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...);
10203 //
10204 //   // Oops! Which overload did you want?
10205 //   ON_CALL(mock, OverloadedMethod).WillByDefault(...);
10206 //     => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous
10207 //
10208 // How this works: The mock class uses two overloads of the gmock_Method
10209 // expectation setter method plus an operator() overload on the MockSpec object.
10210 // In the matcher list form, the macro expands to:
10211 //
10212 //   // This statement:
10213 //   ON_CALL(mock, TwoArgsMethod(_, 45))...
10214 //
10215 //   // ...expands to:
10216 //   mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)...
10217 //   |-------------v---------------||------------v-------------|
10218 //       invokes first overload        swallowed by operator()
10219 //
10220 //   // ...which is essentially:
10221 //   mock.gmock_TwoArgsMethod(_, 45)...
10222 //
10223 // Whereas the form without a matcher list:
10224 //
10225 //   // This statement:
10226 //   ON_CALL(mock, TwoArgsMethod)...
10227 //
10228 //   // ...expands to:
10229 //   mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)...
10230 //   |-----------------------v--------------------------|
10231 //                 invokes second overload
10232 //
10233 //   // ...which is essentially:
10234 //   mock.gmock_TwoArgsMethod(_, _)...
10235 //
10236 // The WithoutMatchers() argument is used to disambiguate overloads and to
10237 // block the caller from accidentally invoking the second overload directly. The
10238 // second argument is an internal type derived from the method signature. The
10239 // failure to disambiguate two overloads of this method in the ON_CALL statement
10240 // is how we block callers from setting expectations on overloaded methods.
10241 #define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call)                    \
10242   ((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \
10243                              nullptr)                                   \
10244       .Setter(__FILE__, __LINE__, #mock_expr, #call)
10245 
10246 #define ON_CALL(obj, call) \
10247   GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call)
10248 
10249 #define EXPECT_CALL(obj, call) \
10250   GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call)
10251 
10252 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
10253 
10254 namespace testing {
10255 namespace internal {
10256 template <typename T>
10257 using identity_t = T;
10258 
10259 template <typename Pattern>
10260 struct ThisRefAdjuster {
10261   template <typename T>
10262   using AdjustT = typename std::conditional<
10263       std::is_const<typename std::remove_reference<Pattern>::type>::value,
10264       typename std::conditional<std::is_lvalue_reference<Pattern>::value,
10265                                 const T&, const T&&>::type,
10266       typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&,
10267                                 T&&>::type>::type;
10268 
10269   template <typename MockType>
10270   static AdjustT<MockType> Adjust(const MockType& mock) {
10271     return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock));
10272   }
10273 };
10274 
10275 }  // namespace internal
10276 
10277 // The style guide prohibits "using" statements in a namespace scope
10278 // inside a header file.  However, the FunctionMocker class template
10279 // is meant to be defined in the ::testing namespace.  The following
10280 // line is just a trick for working around a bug in MSVC 8.0, which
10281 // cannot handle it if we define FunctionMocker in ::testing.
10282 using internal::FunctionMocker;
10283 }  // namespace testing
10284 
10285 #define MOCK_METHOD(...) \
10286   GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__)
10287 
10288 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \
10289   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10290 
10291 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \
10292   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10293 
10294 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \
10295   GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ())
10296 
10297 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec)     \
10298   GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args);                                   \
10299   GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec);                                   \
10300   GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(                                      \
10301       GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args));           \
10302   GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec)                                     \
10303   GMOCK_INTERNAL_MOCK_METHOD_IMPL(                                            \
10304       GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec),     \
10305       GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec),    \
10306       GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec),                                \
10307       GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \
10308       (GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)))
10309 
10310 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \
10311   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10312 
10313 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \
10314   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10315 
10316 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \
10317   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10318 
10319 #define GMOCK_INTERNAL_WRONG_ARITY(...)                                      \
10320   static_assert(                                                             \
10321       false,                                                                 \
10322       "MOCK_METHOD must be called with 3 or 4 arguments. _Ret, "             \
10323       "_MethodName, _Args and optionally _Spec. _Args and _Spec must be "    \
10324       "enclosed in parentheses. If _Ret is a type with unprotected commas, " \
10325       "it must also be enclosed in parentheses.")
10326 
10327 #define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \
10328   static_assert(                                  \
10329       GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple),        \
10330       GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.")
10331 
10332 #define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...)                 \
10333   static_assert(                                                       \
10334       std::is_function<__VA_ARGS__>::value,                            \
10335       "Signature must be a function type, maybe return type contains " \
10336       "unprotected comma.");                                           \
10337   static_assert(                                                       \
10338       ::testing::tuple_size<typename ::testing::internal::Function<    \
10339               __VA_ARGS__>::ArgumentTuple>::value == _N,               \
10340       "This method does not take " GMOCK_PP_STRINGIZE(                 \
10341           _N) " arguments. Parenthesize all types with unprotected commas.")
10342 
10343 #define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
10344   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec)
10345 
10346 #define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness,           \
10347                                         _Override, _Final, _NoexceptSpec,      \
10348                                         _CallType, _RefSpec, _Signature)       \
10349   typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS(               \
10350       _Signature)>::Result                                                     \
10351   GMOCK_INTERNAL_EXPAND(_CallType)                                             \
10352       _MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N))   \
10353           GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec              \
10354           GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) {    \
10355     GMOCK_MOCKER_(_N, _Constness, _MethodName)                                 \
10356         .SetOwnerAndName(this, #_MethodName);                                  \
10357     return GMOCK_MOCKER_(_N, _Constness, _MethodName)                          \
10358         .Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N));  \
10359   }                                                                            \
10360   ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
10361       GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N))       \
10362       GMOCK_PP_IF(_Constness, const, ) _RefSpec {                              \
10363     GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this);            \
10364     return GMOCK_MOCKER_(_N, _Constness, _MethodName)                          \
10365         .With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N));         \
10366   }                                                                            \
10367   ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
10368       const ::testing::internal::WithoutMatchers&,                             \
10369       GMOCK_PP_IF(_Constness, const, )::testing::internal::Function<           \
10370           GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \
10371     return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF(                   \
10372         _Constness, const, ) int _RefSpec>::Adjust(*this)                      \
10373         .gmock_##_MethodName(GMOCK_PP_REPEAT(                                  \
10374             GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N));               \
10375   }                                                                            \
10376   mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)>        \
10377       GMOCK_MOCKER_(_N, _Constness, _MethodName)
10378 
10379 #define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__
10380 
10381 // Five Valid modifiers.
10382 #define GMOCK_INTERNAL_HAS_CONST(_Tuple) \
10383   GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple))
10384 
10385 #define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \
10386   GMOCK_PP_HAS_COMMA(                       \
10387       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple))
10388 
10389 #define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \
10390   GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple))
10391 
10392 #define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \
10393   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple)
10394 
10395 #define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem)          \
10396   GMOCK_PP_IF(                                                          \
10397       GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \
10398       _elem, )
10399 
10400 #define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \
10401   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple)
10402 
10403 #define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem)                       \
10404   GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \
10405               GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), )
10406 
10407 #define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \
10408   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple)
10409 
10410 #define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem)            \
10411   static_assert(                                                          \
10412       (GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) +    \
10413        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \
10414        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) +    \
10415        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \
10416        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) +      \
10417        GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1,                           \
10418       GMOCK_PP_STRINGIZE(                                                 \
10419           _elem) " cannot be recognized as a valid specification modifier.");
10420 
10421 // Modifiers implementation.
10422 #define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \
10423   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem)
10424 
10425 #define GMOCK_INTERNAL_DETECT_CONST_I_const ,
10426 
10427 #define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \
10428   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem)
10429 
10430 #define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override ,
10431 
10432 #define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \
10433   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem)
10434 
10435 #define GMOCK_INTERNAL_DETECT_FINAL_I_final ,
10436 
10437 #define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \
10438   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem)
10439 
10440 #define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept ,
10441 
10442 #define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \
10443   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem)
10444 
10445 #define GMOCK_INTERNAL_DETECT_REF_I_ref ,
10446 
10447 #define GMOCK_INTERNAL_UNPACK_ref(x) x
10448 
10449 #define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem)           \
10450   GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem),                 \
10451               GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \
10452   (_elem)
10453 
10454 // TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and
10455 // GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows
10456 // maybe they can be simplified somehow.
10457 #define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \
10458   GMOCK_INTERNAL_IS_CALLTYPE_I(          \
10459       GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
10460 #define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg)
10461 
10462 #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \
10463   GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(          \
10464       GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
10465 #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \
10466   GMOCK_PP_IDENTITY _arg
10467 
10468 #define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype
10469 
10470 // Note: The use of `identity_t` here allows _Ret to represent return types that
10471 // would normally need to be specified in a different way. For example, a method
10472 // returning a function pointer must be written as
10473 //
10474 // fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...)
10475 //
10476 // But we only support placing the return type at the beginning. To handle this,
10477 // we wrap all calls in identity_t, so that a declaration will be expanded to
10478 //
10479 // identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...)
10480 //
10481 // This allows us to work around the syntactic oddities of function/method
10482 // types.
10483 #define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)                                 \
10484   ::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \
10485                                               GMOCK_PP_REMOVE_PARENS,         \
10486                                               GMOCK_PP_IDENTITY)(_Ret)>(      \
10487       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args))
10488 
10489 #define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem)                          \
10490   GMOCK_PP_COMMA_IF(_i)                                                \
10491   GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \
10492               GMOCK_PP_IDENTITY)                                       \
10493   (_elem)
10494 
10495 #define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _)            \
10496   GMOCK_PP_COMMA_IF(_i)                                        \
10497   GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
10498   gmock_a##_i
10499 
10500 #define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \
10501   GMOCK_PP_COMMA_IF(_i)                               \
10502   ::std::forward<GMOCK_INTERNAL_ARG_O(                \
10503       _i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i)
10504 
10505 #define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _)        \
10506   GMOCK_PP_COMMA_IF(_i)                                            \
10507   GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
10508   gmock_a##_i
10509 
10510 #define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \
10511   GMOCK_PP_COMMA_IF(_i)                             \
10512   gmock_a##_i
10513 
10514 #define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \
10515   GMOCK_PP_COMMA_IF(_i)                                      \
10516   ::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>()
10517 
10518 #define GMOCK_INTERNAL_ARG_O(_i, ...) \
10519   typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type
10520 
10521 #define GMOCK_INTERNAL_MATCHER_O(_i, ...)                          \
10522   const ::testing::Matcher<typename ::testing::internal::Function< \
10523       __VA_ARGS__>::template Arg<_i>::type>&
10524 
10525 #define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__)
10526 #define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__)
10527 #define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__)
10528 #define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__)
10529 #define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__)
10530 #define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__)
10531 #define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__)
10532 #define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__)
10533 #define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__)
10534 #define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__)
10535 #define MOCK_METHOD10(m, ...) \
10536   GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__)
10537 
10538 #define MOCK_CONST_METHOD0(m, ...) \
10539   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__)
10540 #define MOCK_CONST_METHOD1(m, ...) \
10541   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__)
10542 #define MOCK_CONST_METHOD2(m, ...) \
10543   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__)
10544 #define MOCK_CONST_METHOD3(m, ...) \
10545   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__)
10546 #define MOCK_CONST_METHOD4(m, ...) \
10547   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__)
10548 #define MOCK_CONST_METHOD5(m, ...) \
10549   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__)
10550 #define MOCK_CONST_METHOD6(m, ...) \
10551   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__)
10552 #define MOCK_CONST_METHOD7(m, ...) \
10553   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__)
10554 #define MOCK_CONST_METHOD8(m, ...) \
10555   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__)
10556 #define MOCK_CONST_METHOD9(m, ...) \
10557   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__)
10558 #define MOCK_CONST_METHOD10(m, ...) \
10559   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__)
10560 
10561 #define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__)
10562 #define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__)
10563 #define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__)
10564 #define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__)
10565 #define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__)
10566 #define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__)
10567 #define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__)
10568 #define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__)
10569 #define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__)
10570 #define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__)
10571 #define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__)
10572 
10573 #define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__)
10574 #define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__)
10575 #define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__)
10576 #define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__)
10577 #define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__)
10578 #define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__)
10579 #define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__)
10580 #define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__)
10581 #define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__)
10582 #define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__)
10583 #define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__)
10584 
10585 #define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \
10586   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__)
10587 #define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \
10588   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__)
10589 #define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \
10590   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__)
10591 #define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \
10592   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__)
10593 #define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \
10594   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__)
10595 #define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \
10596   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__)
10597 #define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \
10598   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__)
10599 #define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \
10600   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__)
10601 #define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \
10602   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__)
10603 #define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \
10604   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__)
10605 #define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \
10606   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__)
10607 
10608 #define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \
10609   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__)
10610 #define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \
10611   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__)
10612 #define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \
10613   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__)
10614 #define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \
10615   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__)
10616 #define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \
10617   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__)
10618 #define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \
10619   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__)
10620 #define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \
10621   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__)
10622 #define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \
10623   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__)
10624 #define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \
10625   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__)
10626 #define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \
10627   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__)
10628 #define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \
10629   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__)
10630 
10631 #define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
10632   MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10633 #define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
10634   MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10635 #define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
10636   MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10637 #define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
10638   MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10639 #define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
10640   MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10641 #define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
10642   MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10643 #define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
10644   MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10645 #define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
10646   MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10647 #define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
10648   MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10649 #define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
10650   MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10651 #define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
10652   MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10653 
10654 #define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
10655   MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10656 #define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
10657   MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10658 #define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
10659   MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10660 #define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
10661   MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10662 #define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
10663   MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10664 #define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
10665   MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10666 #define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
10667   MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10668 #define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
10669   MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10670 #define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
10671   MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10672 #define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
10673   MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10674 #define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
10675   MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10676 
10677 #define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \
10678   GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(                                  \
10679       args_num, ::testing::internal::identity_t<__VA_ARGS__>);            \
10680   GMOCK_INTERNAL_MOCK_METHOD_IMPL(                                        \
10681       args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, ,          \
10682       (::testing::internal::identity_t<__VA_ARGS__>))
10683 
10684 #define GMOCK_MOCKER_(arity, constness, Method) \
10685   GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__)
10686 
10687 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_
10688 // Copyright 2007, Google Inc.
10689 // All rights reserved.
10690 //
10691 // Redistribution and use in source and binary forms, with or without
10692 // modification, are permitted provided that the following conditions are
10693 // met:
10694 //
10695 //     * Redistributions of source code must retain the above copyright
10696 // notice, this list of conditions and the following disclaimer.
10697 //     * Redistributions in binary form must reproduce the above
10698 // copyright notice, this list of conditions and the following disclaimer
10699 // in the documentation and/or other materials provided with the
10700 // distribution.
10701 //     * Neither the name of Google Inc. nor the names of its
10702 // contributors may be used to endorse or promote products derived from
10703 // this software without specific prior written permission.
10704 //
10705 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
10706 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
10707 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
10708 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
10709 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
10710 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
10711 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
10712 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
10713 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
10714 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
10715 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
10716 
10717 
10718 // Google Mock - a framework for writing C++ mock classes.
10719 //
10720 // This file implements some commonly used variadic actions.
10721 
10722 // GOOGLETEST_CM0002 DO NOT DELETE
10723 
10724 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
10725 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
10726 
10727 #include <memory>
10728 #include <utility>
10729 
10730 
10731 // Include any custom callback actions added by the local installation.
10732 // GOOGLETEST_CM0002 DO NOT DELETE
10733 
10734 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
10735 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
10736 
10737 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
10738 
10739 // Sometimes you want to give an action explicit template parameters
10740 // that cannot be inferred from its value parameters.  ACTION() and
10741 // ACTION_P*() don't support that.  ACTION_TEMPLATE() remedies that
10742 // and can be viewed as an extension to ACTION() and ACTION_P*().
10743 //
10744 // The syntax:
10745 //
10746 //   ACTION_TEMPLATE(ActionName,
10747 //                   HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
10748 //                   AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
10749 //
10750 // defines an action template that takes m explicit template
10751 // parameters and n value parameters.  name_i is the name of the i-th
10752 // template parameter, and kind_i specifies whether it's a typename,
10753 // an integral constant, or a template.  p_i is the name of the i-th
10754 // value parameter.
10755 //
10756 // Example:
10757 //
10758 //   // DuplicateArg<k, T>(output) converts the k-th argument of the mock
10759 //   // function to type T and copies it to *output.
10760 //   ACTION_TEMPLATE(DuplicateArg,
10761 //                   HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
10762 //                   AND_1_VALUE_PARAMS(output)) {
10763 //     *output = T(::std::get<k>(args));
10764 //   }
10765 //   ...
10766 //     int n;
10767 //     EXPECT_CALL(mock, Foo(_, _))
10768 //         .WillOnce(DuplicateArg<1, unsigned char>(&n));
10769 //
10770 // To create an instance of an action template, write:
10771 //
10772 //   ActionName<t1, ..., t_m>(v1, ..., v_n)
10773 //
10774 // where the ts are the template arguments and the vs are the value
10775 // arguments.  The value argument types are inferred by the compiler.
10776 // If you want to explicitly specify the value argument types, you can
10777 // provide additional template arguments:
10778 //
10779 //   ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
10780 //
10781 // where u_i is the desired type of v_i.
10782 //
10783 // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
10784 // number of value parameters, but not on the number of template
10785 // parameters.  Without the restriction, the meaning of the following
10786 // is unclear:
10787 //
10788 //   OverloadedAction<int, bool>(x);
10789 //
10790 // Are we using a single-template-parameter action where 'bool' refers
10791 // to the type of x, or are we using a two-template-parameter action
10792 // where the compiler is asked to infer the type of x?
10793 //
10794 // Implementation notes:
10795 //
10796 // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
10797 // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
10798 // implementing ACTION_TEMPLATE.  The main trick we use is to create
10799 // new macro invocations when expanding a macro.  For example, we have
10800 //
10801 //   #define ACTION_TEMPLATE(name, template_params, value_params)
10802 //       ... GMOCK_INTERNAL_DECL_##template_params ...
10803 //
10804 // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
10805 // to expand to
10806 //
10807 //       ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
10808 //
10809 // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
10810 // preprocessor will continue to expand it to
10811 //
10812 //       ... typename T ...
10813 //
10814 // This technique conforms to the C++ standard and is portable.  It
10815 // allows us to implement action templates using O(N) code, where N is
10816 // the maximum number of template/value parameters supported.  Without
10817 // using it, we'd have to devote O(N^2) amount of code to implement all
10818 // combinations of m and n.
10819 
10820 // Declares the template parameters.
10821 #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0
10822 #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
10823     name1) kind0 name0, kind1 name1
10824 #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10825     kind2, name2) kind0 name0, kind1 name1, kind2 name2
10826 #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10827     kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \
10828     kind3 name3
10829 #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10830     kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \
10831     kind2 name2, kind3 name3, kind4 name4
10832 #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10833     kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \
10834     kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5
10835 #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10836     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10837     name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \
10838     kind5 name5, kind6 name6
10839 #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10840     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10841     kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \
10842     kind4 name4, kind5 name5, kind6 name6, kind7 name7
10843 #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10844     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10845     kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \
10846     kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \
10847     kind8 name8
10848 #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
10849     name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10850     name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \
10851     kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \
10852     kind6 name6, kind7 name7, kind8 name8, kind9 name9
10853 
10854 // Lists the template parameters.
10855 #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0
10856 #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
10857     name1) name0, name1
10858 #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10859     kind2, name2) name0, name1, name2
10860 #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10861     kind2, name2, kind3, name3) name0, name1, name2, name3
10862 #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10863     kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \
10864     name4
10865 #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10866     kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \
10867     name2, name3, name4, name5
10868 #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10869     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10870     name6) name0, name1, name2, name3, name4, name5, name6
10871 #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10872     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10873     kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7
10874 #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10875     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10876     kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \
10877     name6, name7, name8
10878 #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
10879     name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10880     name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \
10881     name3, name4, name5, name6, name7, name8, name9
10882 
10883 // Declares the types of value parameters.
10884 #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS()
10885 #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type
10886 #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \
10887     typename p0##_type, typename p1##_type
10888 #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \
10889     typename p0##_type, typename p1##_type, typename p2##_type
10890 #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
10891     typename p0##_type, typename p1##_type, typename p2##_type, \
10892     typename p3##_type
10893 #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
10894     typename p0##_type, typename p1##_type, typename p2##_type, \
10895     typename p3##_type, typename p4##_type
10896 #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
10897     typename p0##_type, typename p1##_type, typename p2##_type, \
10898     typename p3##_type, typename p4##_type, typename p5##_type
10899 #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10900     p6) , typename p0##_type, typename p1##_type, typename p2##_type, \
10901     typename p3##_type, typename p4##_type, typename p5##_type, \
10902     typename p6##_type
10903 #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10904     p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \
10905     typename p3##_type, typename p4##_type, typename p5##_type, \
10906     typename p6##_type, typename p7##_type
10907 #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10908     p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \
10909     typename p3##_type, typename p4##_type, typename p5##_type, \
10910     typename p6##_type, typename p7##_type, typename p8##_type
10911 #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10912     p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \
10913     typename p2##_type, typename p3##_type, typename p4##_type, \
10914     typename p5##_type, typename p6##_type, typename p7##_type, \
10915     typename p8##_type, typename p9##_type
10916 
10917 // Initializes the value parameters.
10918 #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\
10919     ()
10920 #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\
10921     (p0##_type gmock_p0) : p0(::std::move(gmock_p0))
10922 #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\
10923     (p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \
10924         p1(::std::move(gmock_p1))
10925 #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\
10926     (p0##_type gmock_p0, p1##_type gmock_p1, \
10927         p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \
10928         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2))
10929 #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\
10930     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10931         p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \
10932         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10933         p3(::std::move(gmock_p3))
10934 #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\
10935     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10936         p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \
10937         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10938         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4))
10939 #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\
10940     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10941         p3##_type gmock_p3, p4##_type gmock_p4, \
10942         p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \
10943         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10944         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10945         p5(::std::move(gmock_p5))
10946 #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\
10947     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10948         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10949         p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \
10950         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10951         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10952         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6))
10953 #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\
10954     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10955         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10956         p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \
10957         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10958         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10959         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
10960         p7(::std::move(gmock_p7))
10961 #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
10962     p7, p8)\
10963     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10964         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10965         p6##_type gmock_p6, p7##_type gmock_p7, \
10966         p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \
10967         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10968         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10969         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
10970         p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8))
10971 #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
10972     p7, p8, p9)\
10973     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10974         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10975         p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \
10976         p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \
10977         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10978         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10979         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
10980         p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \
10981         p9(::std::move(gmock_p9))
10982 
10983 // Defines the copy constructor
10984 #define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \
10985     {}  // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134
10986 #define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default;
10987 #define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default;
10988 #define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default;
10989 #define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default;
10990 #define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default;
10991 #define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default;
10992 #define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default;
10993 #define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default;
10994 #define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default;
10995 #define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default;
10996 
10997 // Declares the fields for storing the value parameters.
10998 #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS()
10999 #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0;
11000 #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \
11001     p1##_type p1;
11002 #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \
11003     p1##_type p1; p2##_type p2;
11004 #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \
11005     p1##_type p1; p2##_type p2; p3##_type p3;
11006 #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
11007     p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4;
11008 #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
11009     p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
11010     p5##_type p5;
11011 #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11012     p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
11013     p5##_type p5; p6##_type p6;
11014 #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11015     p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
11016     p5##_type p5; p6##_type p6; p7##_type p7;
11017 #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11018     p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
11019     p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8;
11020 #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11021     p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
11022     p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \
11023     p9##_type p9;
11024 
11025 // Lists the value parameters.
11026 #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS()
11027 #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0
11028 #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1
11029 #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2
11030 #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3
11031 #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \
11032     p2, p3, p4
11033 #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \
11034     p1, p2, p3, p4, p5
11035 #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11036     p6) p0, p1, p2, p3, p4, p5, p6
11037 #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11038     p7) p0, p1, p2, p3, p4, p5, p6, p7
11039 #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11040     p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8
11041 #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11042     p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9
11043 
11044 // Lists the value parameter types.
11045 #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS()
11046 #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type
11047 #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \
11048     p1##_type
11049 #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \
11050     p1##_type, p2##_type
11051 #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
11052     p0##_type, p1##_type, p2##_type, p3##_type
11053 #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
11054     p0##_type, p1##_type, p2##_type, p3##_type, p4##_type
11055 #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
11056     p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type
11057 #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11058     p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \
11059     p6##_type
11060 #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11061     p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
11062     p5##_type, p6##_type, p7##_type
11063 #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11064     p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
11065     p5##_type, p6##_type, p7##_type, p8##_type
11066 #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11067     p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
11068     p5##_type, p6##_type, p7##_type, p8##_type, p9##_type
11069 
11070 // Declares the value parameters.
11071 #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS()
11072 #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0
11073 #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \
11074     p1##_type p1
11075 #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \
11076     p1##_type p1, p2##_type p2
11077 #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \
11078     p1##_type p1, p2##_type p2, p3##_type p3
11079 #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
11080     p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4
11081 #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
11082     p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
11083     p5##_type p5
11084 #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11085     p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
11086     p5##_type p5, p6##_type p6
11087 #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11088     p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
11089     p5##_type p5, p6##_type p6, p7##_type p7
11090 #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11091     p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
11092     p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8
11093 #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11094     p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
11095     p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \
11096     p9##_type p9
11097 
11098 // The suffix of the class template implementing the action template.
11099 #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS()
11100 #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P
11101 #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2
11102 #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3
11103 #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4
11104 #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5
11105 #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6
11106 #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7
11107 #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11108     p7) P8
11109 #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11110     p7, p8) P9
11111 #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11112     p7, p8, p9) P10
11113 
11114 // The name of the class template implementing the action template.
11115 #define GMOCK_ACTION_CLASS_(name, value_params)\
11116     GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
11117 
11118 #define ACTION_TEMPLATE(name, template_params, value_params)                   \
11119   template <GMOCK_INTERNAL_DECL_##template_params                              \
11120             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \
11121   class GMOCK_ACTION_CLASS_(name, value_params) {                              \
11122    public:                                                                     \
11123     explicit GMOCK_ACTION_CLASS_(name, value_params)(                          \
11124         GMOCK_INTERNAL_DECL_##value_params)                                    \
11125         GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params),    \
11126                     = default; ,                                               \
11127                     : impl_(std::make_shared<gmock_Impl>(                      \
11128                                 GMOCK_INTERNAL_LIST_##value_params)) { })      \
11129     GMOCK_ACTION_CLASS_(name, value_params)(                                   \
11130         const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept               \
11131         GMOCK_INTERNAL_DEFN_COPY_##value_params                                \
11132     GMOCK_ACTION_CLASS_(name, value_params)(                                   \
11133         GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept                    \
11134         GMOCK_INTERNAL_DEFN_COPY_##value_params                                \
11135     template <typename F>                                                      \
11136     operator ::testing::Action<F>() const {                                    \
11137       return GMOCK_PP_IF(                                                      \
11138           GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params),              \
11139                       (::testing::internal::MakeAction<F, gmock_Impl>()),      \
11140                       (::testing::internal::MakeAction<F>(impl_)));            \
11141     }                                                                          \
11142    private:                                                                    \
11143     class gmock_Impl {                                                         \
11144      public:                                                                   \
11145       explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}                \
11146       template <typename function_type, typename return_type,                  \
11147                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>         \
11148       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const;  \
11149       GMOCK_INTERNAL_DEFN_##value_params                                       \
11150     };                                                                         \
11151     GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params),        \
11152                 , std::shared_ptr<const gmock_Impl> impl_;)                    \
11153   };                                                                           \
11154   template <GMOCK_INTERNAL_DECL_##template_params                              \
11155             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \
11156   GMOCK_ACTION_CLASS_(name, value_params)<                                     \
11157       GMOCK_INTERNAL_LIST_##template_params                                    \
11158       GMOCK_INTERNAL_LIST_TYPE_##value_params> name(                           \
11159           GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_;          \
11160   template <GMOCK_INTERNAL_DECL_##template_params                              \
11161             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \
11162   inline GMOCK_ACTION_CLASS_(name, value_params)<                              \
11163       GMOCK_INTERNAL_LIST_##template_params                                    \
11164       GMOCK_INTERNAL_LIST_TYPE_##value_params> name(                           \
11165           GMOCK_INTERNAL_DECL_##value_params) {                                \
11166     return GMOCK_ACTION_CLASS_(name, value_params)<                            \
11167         GMOCK_INTERNAL_LIST_##template_params                                  \
11168         GMOCK_INTERNAL_LIST_TYPE_##value_params>(                              \
11169             GMOCK_INTERNAL_LIST_##value_params);                               \
11170   }                                                                            \
11171   template <GMOCK_INTERNAL_DECL_##template_params                              \
11172             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \
11173   template <typename function_type, typename return_type, typename args_type,  \
11174             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                 \
11175   return_type GMOCK_ACTION_CLASS_(name, value_params)<                         \
11176       GMOCK_INTERNAL_LIST_##template_params                                    \
11177       GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \
11178           GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
11179 
11180 namespace testing {
11181 
11182 // The ACTION*() macros trigger warning C4100 (unreferenced formal
11183 // parameter) in MSVC with -W4.  Unfortunately they cannot be fixed in
11184 // the macro definition, as the warnings are generated when the macro
11185 // is expanded and macro expansion cannot contain #pragma.  Therefore
11186 // we suppress them here.
11187 #ifdef _MSC_VER
11188 # pragma warning(push)
11189 # pragma warning(disable:4100)
11190 #endif
11191 
11192 namespace internal {
11193 
11194 // internal::InvokeArgument - a helper for InvokeArgument action.
11195 // The basic overloads are provided here for generic functors.
11196 // Overloads for other custom-callables are provided in the
11197 // internal/custom/gmock-generated-actions.h header.
11198 template <typename F, typename... Args>
11199 auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) {
11200   return f(args...);
11201 }
11202 
11203 template <std::size_t index, typename... Params>
11204 struct InvokeArgumentAction {
11205   template <typename... Args>
11206   auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument(
11207       std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)),
11208       std::declval<const Params&>()...)) {
11209     internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{},
11210                                               std::forward<Args>(args)...);
11211     return params.Apply([&](const Params&... unpacked_params) {
11212       auto&& callable = args_tuple.template Get<index>();
11213       return internal::InvokeArgument(
11214           std::forward<decltype(callable)>(callable), unpacked_params...);
11215     });
11216   }
11217 
11218   internal::FlatTuple<Params...> params;
11219 };
11220 
11221 }  // namespace internal
11222 
11223 // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
11224 // (0-based) argument, which must be a k-ary callable, of the mock
11225 // function, with arguments a1, a2, ..., a_k.
11226 //
11227 // Notes:
11228 //
11229 //   1. The arguments are passed by value by default.  If you need to
11230 //   pass an argument by reference, wrap it inside std::ref().  For
11231 //   example,
11232 //
11233 //     InvokeArgument<1>(5, string("Hello"), std::ref(foo))
11234 //
11235 //   passes 5 and string("Hello") by value, and passes foo by
11236 //   reference.
11237 //
11238 //   2. If the callable takes an argument by reference but std::ref() is
11239 //   not used, it will receive the reference to a copy of the value,
11240 //   instead of the original value.  For example, when the 0-th
11241 //   argument of the mock function takes a const string&, the action
11242 //
11243 //     InvokeArgument<0>(string("Hello"))
11244 //
11245 //   makes a copy of the temporary string("Hello") object and passes a
11246 //   reference of the copy, instead of the original temporary object,
11247 //   to the callable.  This makes it easy for a user to define an
11248 //   InvokeArgument action from temporary values and have it performed
11249 //   later.
11250 template <std::size_t index, typename... Params>
11251 internal::InvokeArgumentAction<index, typename std::decay<Params>::type...>
11252 InvokeArgument(Params&&... params) {
11253   return {internal::FlatTuple<typename std::decay<Params>::type...>(
11254       internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)};
11255 }
11256 
11257 #ifdef _MSC_VER
11258 # pragma warning(pop)
11259 #endif
11260 
11261 }  // namespace testing
11262 
11263 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
11264 // Copyright 2013, Google Inc.
11265 // All rights reserved.
11266 //
11267 // Redistribution and use in source and binary forms, with or without
11268 // modification, are permitted provided that the following conditions are
11269 // met:
11270 //
11271 //     * Redistributions of source code must retain the above copyright
11272 // notice, this list of conditions and the following disclaimer.
11273 //     * Redistributions in binary form must reproduce the above
11274 // copyright notice, this list of conditions and the following disclaimer
11275 // in the documentation and/or other materials provided with the
11276 // distribution.
11277 //     * Neither the name of Google Inc. nor the names of its
11278 // contributors may be used to endorse or promote products derived from
11279 // this software without specific prior written permission.
11280 //
11281 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
11282 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
11283 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
11284 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
11285 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
11286 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
11287 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
11288 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
11289 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
11290 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
11291 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
11292 
11293 
11294 // Google Mock - a framework for writing C++ mock classes.
11295 //
11296 // This file implements some matchers that depend on gmock-matchers.h.
11297 //
11298 // Note that tests are implemented in gmock-matchers_test.cc rather than
11299 // gmock-more-matchers-test.cc.
11300 
11301 // GOOGLETEST_CM0002 DO NOT DELETE
11302 
11303 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
11304 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
11305 
11306 
11307 namespace testing {
11308 
11309 // Silence C4100 (unreferenced formal
11310 // parameter) for MSVC
11311 #ifdef _MSC_VER
11312 # pragma warning(push)
11313 # pragma warning(disable:4100)
11314 #if (_MSC_VER == 1900)
11315 // and silence C4800 (C4800: 'int *const ': forcing value
11316 // to bool 'true' or 'false') for MSVC 14
11317 # pragma warning(disable:4800)
11318   #endif
11319 #endif
11320 
11321 // Defines a matcher that matches an empty container. The container must
11322 // support both size() and empty(), which all STL-like containers provide.
11323 MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") {
11324   if (arg.empty()) {
11325     return true;
11326   }
11327   *result_listener << "whose size is " << arg.size();
11328   return false;
11329 }
11330 
11331 // Define a matcher that matches a value that evaluates in boolean
11332 // context to true.  Useful for types that define "explicit operator
11333 // bool" operators and so can't be compared for equality with true
11334 // and false.
11335 MATCHER(IsTrue, negation ? "is false" : "is true") {
11336   return static_cast<bool>(arg);
11337 }
11338 
11339 // Define a matcher that matches a value that evaluates in boolean
11340 // context to false.  Useful for types that define "explicit operator
11341 // bool" operators and so can't be compared for equality with true
11342 // and false.
11343 MATCHER(IsFalse, negation ? "is true" : "is false") {
11344   return !static_cast<bool>(arg);
11345 }
11346 
11347 #ifdef _MSC_VER
11348 # pragma warning(pop)
11349 #endif
11350 
11351 
11352 }  // namespace testing
11353 
11354 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
11355 // Copyright 2008, Google Inc.
11356 // All rights reserved.
11357 //
11358 // Redistribution and use in source and binary forms, with or without
11359 // modification, are permitted provided that the following conditions are
11360 // met:
11361 //
11362 //     * Redistributions of source code must retain the above copyright
11363 // notice, this list of conditions and the following disclaimer.
11364 //     * Redistributions in binary form must reproduce the above
11365 // copyright notice, this list of conditions and the following disclaimer
11366 // in the documentation and/or other materials provided with the
11367 // distribution.
11368 //     * Neither the name of Google Inc. nor the names of its
11369 // contributors may be used to endorse or promote products derived from
11370 // this software without specific prior written permission.
11371 //
11372 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
11373 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
11374 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
11375 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
11376 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
11377 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
11378 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
11379 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
11380 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
11381 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
11382 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
11383 
11384 
11385 // Implements class templates NiceMock, NaggyMock, and StrictMock.
11386 //
11387 // Given a mock class MockFoo that is created using Google Mock,
11388 // NiceMock<MockFoo> is a subclass of MockFoo that allows
11389 // uninteresting calls (i.e. calls to mock methods that have no
11390 // EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo
11391 // that prints a warning when an uninteresting call occurs, and
11392 // StrictMock<MockFoo> is a subclass of MockFoo that treats all
11393 // uninteresting calls as errors.
11394 //
11395 // Currently a mock is naggy by default, so MockFoo and
11396 // NaggyMock<MockFoo> behave like the same.  However, we will soon
11397 // switch the default behavior of mocks to be nice, as that in general
11398 // leads to more maintainable tests.  When that happens, MockFoo will
11399 // stop behaving like NaggyMock<MockFoo> and start behaving like
11400 // NiceMock<MockFoo>.
11401 //
11402 // NiceMock, NaggyMock, and StrictMock "inherit" the constructors of
11403 // their respective base class.  Therefore you can write
11404 // NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo
11405 // has a constructor that accepts (int, const char*), for example.
11406 //
11407 // A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>,
11408 // and StrictMock<MockFoo> only works for mock methods defined using
11409 // the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class.
11410 // If a mock method is defined in a base class of MockFoo, the "nice"
11411 // or "strict" modifier may not affect it, depending on the compiler.
11412 // In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT
11413 // supported.
11414 
11415 // GOOGLETEST_CM0002 DO NOT DELETE
11416 
11417 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
11418 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
11419 
11420 #include <type_traits>
11421 
11422 
11423 namespace testing {
11424 template <class MockClass>
11425 class NiceMock;
11426 template <class MockClass>
11427 class NaggyMock;
11428 template <class MockClass>
11429 class StrictMock;
11430 
11431 namespace internal {
11432 template <typename T>
11433 std::true_type StrictnessModifierProbe(const NiceMock<T>&);
11434 template <typename T>
11435 std::true_type StrictnessModifierProbe(const NaggyMock<T>&);
11436 template <typename T>
11437 std::true_type StrictnessModifierProbe(const StrictMock<T>&);
11438 std::false_type StrictnessModifierProbe(...);
11439 
11440 template <typename T>
11441 constexpr bool HasStrictnessModifier() {
11442   return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value;
11443 }
11444 
11445 // Base classes that register and deregister with testing::Mock to alter the
11446 // default behavior around uninteresting calls. Inheriting from one of these
11447 // classes first and then MockClass ensures the MockClass constructor is run
11448 // after registration, and that the MockClass destructor runs before
11449 // deregistration. This guarantees that MockClass's constructor and destructor
11450 // run with the same level of strictness as its instance methods.
11451 
11452 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \
11453     (defined(_MSC_VER) || defined(__clang__))
11454 // We need to mark these classes with this declspec to ensure that
11455 // the empty base class optimization is performed.
11456 #define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases)
11457 #else
11458 #define GTEST_INTERNAL_EMPTY_BASE_CLASS
11459 #endif
11460 
11461 template <typename Base>
11462 class NiceMockImpl {
11463  public:
11464   NiceMockImpl() { ::testing::Mock::AllowUninterestingCalls(this); }
11465 
11466   ~NiceMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
11467 };
11468 
11469 template <typename Base>
11470 class NaggyMockImpl {
11471  public:
11472   NaggyMockImpl() { ::testing::Mock::WarnUninterestingCalls(this); }
11473 
11474   ~NaggyMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
11475 };
11476 
11477 template <typename Base>
11478 class StrictMockImpl {
11479  public:
11480   StrictMockImpl() { ::testing::Mock::FailUninterestingCalls(this); }
11481 
11482   ~StrictMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
11483 };
11484 
11485 }  // namespace internal
11486 
11487 template <class MockClass>
11488 class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock
11489     : private internal::NiceMockImpl<MockClass>,
11490       public MockClass {
11491  public:
11492   static_assert(!internal::HasStrictnessModifier<MockClass>(),
11493                 "Can't apply NiceMock to a class hierarchy that already has a "
11494                 "strictness modifier. See "
11495                 "https://google.github.io/googletest/"
11496                 "gmock_cook_book.html#NiceStrictNaggy");
11497   NiceMock() : MockClass() {
11498     static_assert(sizeof(*this) == sizeof(MockClass),
11499                   "The impl subclass shouldn't introduce any padding");
11500   }
11501 
11502   // Ideally, we would inherit base class's constructors through a using
11503   // declaration, which would preserve their visibility. However, many existing
11504   // tests rely on the fact that current implementation reexports protected
11505   // constructors as public. These tests would need to be cleaned up first.
11506 
11507   // Single argument constructor is special-cased so that it can be
11508   // made explicit.
11509   template <typename A>
11510   explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) {
11511     static_assert(sizeof(*this) == sizeof(MockClass),
11512                   "The impl subclass shouldn't introduce any padding");
11513   }
11514 
11515   template <typename TArg1, typename TArg2, typename... An>
11516   NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
11517       : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
11518                   std::forward<An>(args)...) {
11519     static_assert(sizeof(*this) == sizeof(MockClass),
11520                   "The impl subclass shouldn't introduce any padding");
11521   }
11522 
11523  private:
11524   GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock);
11525 };
11526 
11527 template <class MockClass>
11528 class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock
11529     : private internal::NaggyMockImpl<MockClass>,
11530       public MockClass {
11531   static_assert(!internal::HasStrictnessModifier<MockClass>(),
11532                 "Can't apply NaggyMock to a class hierarchy that already has a "
11533                 "strictness modifier. See "
11534                 "https://google.github.io/googletest/"
11535                 "gmock_cook_book.html#NiceStrictNaggy");
11536 
11537  public:
11538   NaggyMock() : MockClass() {
11539     static_assert(sizeof(*this) == sizeof(MockClass),
11540                   "The impl subclass shouldn't introduce any padding");
11541   }
11542 
11543   // Ideally, we would inherit base class's constructors through a using
11544   // declaration, which would preserve their visibility. However, many existing
11545   // tests rely on the fact that current implementation reexports protected
11546   // constructors as public. These tests would need to be cleaned up first.
11547 
11548   // Single argument constructor is special-cased so that it can be
11549   // made explicit.
11550   template <typename A>
11551   explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) {
11552     static_assert(sizeof(*this) == sizeof(MockClass),
11553                   "The impl subclass shouldn't introduce any padding");
11554   }
11555 
11556   template <typename TArg1, typename TArg2, typename... An>
11557   NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
11558       : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
11559                   std::forward<An>(args)...) {
11560     static_assert(sizeof(*this) == sizeof(MockClass),
11561                   "The impl subclass shouldn't introduce any padding");
11562   }
11563 
11564  private:
11565   GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock);
11566 };
11567 
11568 template <class MockClass>
11569 class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock
11570     : private internal::StrictMockImpl<MockClass>,
11571       public MockClass {
11572  public:
11573   static_assert(
11574       !internal::HasStrictnessModifier<MockClass>(),
11575       "Can't apply StrictMock to a class hierarchy that already has a "
11576       "strictness modifier. See "
11577       "https://google.github.io/googletest/"
11578       "gmock_cook_book.html#NiceStrictNaggy");
11579   StrictMock() : MockClass() {
11580     static_assert(sizeof(*this) == sizeof(MockClass),
11581                   "The impl subclass shouldn't introduce any padding");
11582   }
11583 
11584   // Ideally, we would inherit base class's constructors through a using
11585   // declaration, which would preserve their visibility. However, many existing
11586   // tests rely on the fact that current implementation reexports protected
11587   // constructors as public. These tests would need to be cleaned up first.
11588 
11589   // Single argument constructor is special-cased so that it can be
11590   // made explicit.
11591   template <typename A>
11592   explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) {
11593     static_assert(sizeof(*this) == sizeof(MockClass),
11594                   "The impl subclass shouldn't introduce any padding");
11595   }
11596 
11597   template <typename TArg1, typename TArg2, typename... An>
11598   StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
11599       : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
11600                   std::forward<An>(args)...) {
11601     static_assert(sizeof(*this) == sizeof(MockClass),
11602                   "The impl subclass shouldn't introduce any padding");
11603   }
11604 
11605  private:
11606   GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock);
11607 };
11608 
11609 #undef GTEST_INTERNAL_EMPTY_BASE_CLASS
11610 
11611 }  // namespace testing
11612 
11613 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
11614 
11615 namespace testing {
11616 
11617 // Declares Google Mock flags that we want a user to use programmatically.
11618 GMOCK_DECLARE_bool_(catch_leaked_mocks);
11619 GMOCK_DECLARE_string_(verbose);
11620 GMOCK_DECLARE_int32_(default_mock_behavior);
11621 
11622 // Initializes Google Mock.  This must be called before running the
11623 // tests.  In particular, it parses the command line for the flags
11624 // that Google Mock recognizes.  Whenever a Google Mock flag is seen,
11625 // it is removed from argv, and *argc is decremented.
11626 //
11627 // No value is returned.  Instead, the Google Mock flag variables are
11628 // updated.
11629 //
11630 // Since Google Test is needed for Google Mock to work, this function
11631 // also initializes Google Test and parses its flags, if that hasn't
11632 // been done.
11633 GTEST_API_ void InitGoogleMock(int* argc, char** argv);
11634 
11635 // This overloaded version can be used in Windows programs compiled in
11636 // UNICODE mode.
11637 GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv);
11638 
11639 // This overloaded version can be used on Arduino/embedded platforms where
11640 // there is no argc/argv.
11641 GTEST_API_ void InitGoogleMock();
11642 
11643 }  // namespace testing
11644 
11645 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
11646