1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The MATCHER* family of macros can be used in a namespace scope to
33 // define custom matchers easily.
34 //
35 // Basic Usage
36 // ===========
37 //
38 // The syntax
39 //
40 // MATCHER(name, description_string) { statements; }
41 //
42 // defines a matcher with the given name that executes the statements,
43 // which must return a bool to indicate if the match succeeds. Inside
44 // the statements, you can refer to the value being matched by 'arg',
45 // and refer to its type by 'arg_type'.
46 //
47 // The description string documents what the matcher does, and is used
48 // to generate the failure message when the match fails. Since a
49 // MATCHER() is usually defined in a header file shared by multiple
50 // C++ source files, we require the description to be a C-string
51 // literal to avoid possible side effects. It can be empty, in which
52 // case we'll use the sequence of words in the matcher name as the
53 // description.
54 //
55 // For example:
56 //
57 // MATCHER(IsEven, "") { return (arg % 2) == 0; }
58 //
59 // allows you to write
60 //
61 // // Expects mock_foo.Bar(n) to be called where n is even.
62 // EXPECT_CALL(mock_foo, Bar(IsEven()));
63 //
64 // or,
65 //
66 // // Verifies that the value of some_expression is even.
67 // EXPECT_THAT(some_expression, IsEven());
68 //
69 // If the above assertion fails, it will print something like:
70 //
71 // Value of: some_expression
72 // Expected: is even
73 // Actual: 7
74 //
75 // where the description "is even" is automatically calculated from the
76 // matcher name IsEven.
77 //
78 // Argument Type
79 // =============
80 //
81 // Note that the type of the value being matched (arg_type) is
82 // determined by the context in which you use the matcher and is
83 // supplied to you by the compiler, so you don't need to worry about
84 // declaring it (nor can you). This allows the matcher to be
85 // polymorphic. For example, IsEven() can be used to match any type
86 // where the value of "(arg % 2) == 0" can be implicitly converted to
87 // a bool. In the "Bar(IsEven())" example above, if method Bar()
88 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
89 // 'arg_type' will be unsigned long; and so on.
90 //
91 // Parameterizing Matchers
92 // =======================
93 //
94 // Sometimes you'll want to parameterize the matcher. For that you
95 // can use another macro:
96 //
97 // MATCHER_P(name, param_name, description_string) { statements; }
98 //
99 // For example:
100 //
101 // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
102 //
103 // will allow you to write:
104 //
105 // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
106 //
107 // which may lead to this message (assuming n is 10):
108 //
109 // Value of: Blah("a")
110 // Expected: has absolute value 10
111 // Actual: -9
112 //
113 // Note that both the matcher description and its parameter are
114 // printed, making the message human-friendly.
115 //
116 // In the matcher definition body, you can write 'foo_type' to
117 // reference the type of a parameter named 'foo'. For example, in the
118 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
119 // 'value_type' to refer to the type of 'value'.
120 //
121 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
122 // support multi-parameter matchers.
123 //
124 // Describing Parameterized Matchers
125 // =================================
126 //
127 // The last argument to MATCHER*() is a string-typed expression. The
128 // expression can reference all of the matcher's parameters and a
129 // special bool-typed variable named 'negation'. When 'negation' is
130 // false, the expression should evaluate to the matcher's description;
131 // otherwise it should evaluate to the description of the negation of
132 // the matcher. For example,
133 //
134 // using testing::PrintToString;
135 //
136 // MATCHER_P2(InClosedRange, low, hi,
137 // std::string(negation ? "is not" : "is") + " in range [" +
138 // PrintToString(low) + ", " + PrintToString(hi) + "]") {
139 // return low <= arg && arg <= hi;
140 // }
141 // ...
142 // EXPECT_THAT(3, InClosedRange(4, 6));
143 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
144 //
145 // would generate two failures that contain the text:
146 //
147 // Expected: is in range [4, 6]
148 // ...
149 // Expected: is not in range [2, 4]
150 //
151 // If you specify "" as the description, the failure message will
152 // contain the sequence of words in the matcher name followed by the
153 // parameter values printed as a tuple. For example,
154 //
155 // MATCHER_P2(InClosedRange, low, hi, "") { ... }
156 // ...
157 // EXPECT_THAT(3, InClosedRange(4, 6));
158 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
159 //
160 // would generate two failures that contain the text:
161 //
162 // Expected: in closed range (4, 6)
163 // ...
164 // Expected: not (in closed range (2, 4))
165 //
166 // Types of Matcher Parameters
167 // ===========================
168 //
169 // For the purpose of typing, you can view
170 //
171 // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
172 //
173 // as shorthand for
174 //
175 // template <typename p1_type, ..., typename pk_type>
176 // FooMatcherPk<p1_type, ..., pk_type>
177 // Foo(p1_type p1, ..., pk_type pk) { ... }
178 //
179 // When you write Foo(v1, ..., vk), the compiler infers the types of
180 // the parameters v1, ..., and vk for you. If you are not happy with
181 // the result of the type inference, you can specify the types by
182 // explicitly instantiating the template, as in Foo<long, bool>(5,
183 // false). As said earlier, you don't get to (or need to) specify
184 // 'arg_type' as that's determined by the context in which the matcher
185 // is used. You can assign the result of expression Foo(p1, ..., pk)
186 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
187 // can be useful when composing matchers.
188 //
189 // While you can instantiate a matcher template with reference types,
190 // passing the parameters by pointer usually makes your code more
191 // readable. If, however, you still want to pass a parameter by
192 // reference, be aware that in the failure message generated by the
193 // matcher you will see the value of the referenced object but not its
194 // address.
195 //
196 // Explaining Match Results
197 // ========================
198 //
199 // Sometimes the matcher description alone isn't enough to explain why
200 // the match has failed or succeeded. For example, when expecting a
201 // long string, it can be very helpful to also print the diff between
202 // the expected string and the actual one. To achieve that, you can
203 // optionally stream additional information to a special variable
204 // named result_listener, whose type is a pointer to class
205 // MatchResultListener:
206 //
207 // MATCHER_P(EqualsLongString, str, "") {
208 // if (arg == str) return true;
209 //
210 // *result_listener << "the difference: "
211 /// << DiffStrings(str, arg);
212 // return false;
213 // }
214 //
215 // Overloading Matchers
216 // ====================
217 //
218 // You can overload matchers with different numbers of parameters:
219 //
220 // MATCHER_P(Blah, a, description_string1) { ... }
221 // MATCHER_P2(Blah, a, b, description_string2) { ... }
222 //
223 // Caveats
224 // =======
225 //
226 // When defining a new matcher, you should also consider implementing
227 // MatcherInterface or using MakePolymorphicMatcher(). These
228 // approaches require more work than the MATCHER* macros, but also
229 // give you more control on the types of the value being matched and
230 // the matcher parameters, which may leads to better compiler error
231 // messages when the matcher is used wrong. They also allow
232 // overloading matchers based on parameter types (as opposed to just
233 // based on the number of parameters).
234 //
235 // MATCHER*() can only be used in a namespace scope as templates cannot be
236 // declared inside of a local class.
237 //
238 // More Information
239 // ================
240 //
241 // To learn more about using these macros, please search for 'MATCHER'
242 // on
243 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
244 //
245 // This file also implements some commonly used argument matchers. More
246 // matchers can be defined by the user implementing the
247 // MatcherInterface<T> interface if necessary.
248 //
249 // See googletest/include/gtest/gtest-matchers.h for the definition of class
250 // Matcher, class MatcherInterface, and others.
251
252 // IWYU pragma: private, include "gmock/gmock.h"
253 // IWYU pragma: friend gmock/.*
254
255 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257
258 #include <algorithm>
259 #include <cmath>
260 #include <exception>
261 #include <functional>
262 #include <initializer_list>
263 #include <ios>
264 #include <iterator>
265 #include <limits>
266 #include <memory>
267 #include <ostream> // NOLINT
268 #include <sstream>
269 #include <string>
270 #include <type_traits>
271 #include <utility>
272 #include <vector>
273
274 #include "gmock/internal/gmock-internal-utils.h"
275 #include "gmock/internal/gmock-port.h"
276 #include "gmock/internal/gmock-pp.h"
277 #include "gtest/gtest.h"
278
279 // MSVC warning C5046 is new as of VS2017 version 15.8.
280 #if defined(_MSC_VER) && _MSC_VER >= 1915
281 #define GMOCK_MAYBE_5046_ 5046
282 #else
283 #define GMOCK_MAYBE_5046_
284 #endif
285
286 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
287 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
288 clients of class B */
289 /* Symbol involving type with internal linkage not defined */)
290
291 #pragma GCC system_header
292
293 namespace testing {
294
295 // To implement a matcher Foo for type T, define:
296 // 1. a class FooMatcherImpl that implements the
297 // MatcherInterface<T> interface, and
298 // 2. a factory function that creates a Matcher<T> object from a
299 // FooMatcherImpl*.
300 //
301 // The two-level delegation design makes it possible to allow a user
302 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
303 // is impossible if we pass matchers by pointers. It also eases
304 // ownership management as Matcher objects can now be copied like
305 // plain values.
306
307 // A match result listener that stores the explanation in a string.
308 class StringMatchResultListener : public MatchResultListener {
309 public:
StringMatchResultListener()310 StringMatchResultListener() : MatchResultListener(&ss_) {}
311
312 // Returns the explanation accumulated so far.
str()313 std::string str() const { return ss_.str(); }
314
315 // Clears the explanation accumulated so far.
Clear()316 void Clear() { ss_.str(""); }
317
318 private:
319 ::std::stringstream ss_;
320
321 StringMatchResultListener(const StringMatchResultListener&) = delete;
322 StringMatchResultListener& operator=(const StringMatchResultListener&) =
323 delete;
324 };
325
326 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
327 // and MUST NOT BE USED IN USER CODE!!!
328 namespace internal {
329
330 // The MatcherCastImpl class template is a helper for implementing
331 // MatcherCast(). We need this helper in order to partially
332 // specialize the implementation of MatcherCast() (C++ allows
333 // class/struct templates to be partially specialized, but not
334 // function templates.).
335
336 // This general version is used when MatcherCast()'s argument is a
337 // polymorphic matcher (i.e. something that can be converted to a
338 // Matcher but is not one yet; for example, Eq(value)) or a value (for
339 // example, "hello").
340 template <typename T, typename M>
341 class MatcherCastImpl {
342 public:
Cast(const M & polymorphic_matcher_or_value)343 static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
344 // M can be a polymorphic matcher, in which case we want to use
345 // its conversion operator to create Matcher<T>. Or it can be a value
346 // that should be passed to the Matcher<T>'s constructor.
347 //
348 // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
349 // polymorphic matcher because it'll be ambiguous if T has an implicit
350 // constructor from M (this usually happens when T has an implicit
351 // constructor from any type).
352 //
353 // It won't work to unconditionally implicit_cast
354 // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
355 // a user-defined conversion from M to T if one exists (assuming M is
356 // a value).
357 return CastImpl(polymorphic_matcher_or_value,
358 std::is_convertible<M, Matcher<T>>{},
359 std::is_convertible<M, T>{});
360 }
361
362 private:
363 template <bool Ignore>
CastImpl(const M & polymorphic_matcher_or_value,std::true_type,std::integral_constant<bool,Ignore>)364 static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
365 std::true_type /* convertible_to_matcher */,
366 std::integral_constant<bool, Ignore>) {
367 // M is implicitly convertible to Matcher<T>, which means that either
368 // M is a polymorphic matcher or Matcher<T> has an implicit constructor
369 // from M. In both cases using the implicit conversion will produce a
370 // matcher.
371 //
372 // Even if T has an implicit constructor from M, it won't be called because
373 // creating Matcher<T> would require a chain of two user-defined conversions
374 // (first to create T from M and then to create Matcher<T> from T).
375 return polymorphic_matcher_or_value;
376 }
377
378 // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
379 // matcher. It's a value of a type implicitly convertible to T. Use direct
380 // initialization to create a matcher.
CastImpl(const M & value,std::false_type,std::true_type)381 static Matcher<T> CastImpl(const M& value,
382 std::false_type /* convertible_to_matcher */,
383 std::true_type /* convertible_to_T */) {
384 return Matcher<T>(ImplicitCast_<T>(value));
385 }
386
387 // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
388 // polymorphic matcher Eq(value) in this case.
389 //
390 // Note that we first attempt to perform an implicit cast on the value and
391 // only fall back to the polymorphic Eq() matcher afterwards because the
392 // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
393 // which might be undefined even when Rhs is implicitly convertible to Lhs
394 // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
395 //
396 // We don't define this method inline as we need the declaration of Eq().
397 static Matcher<T> CastImpl(const M& value,
398 std::false_type /* convertible_to_matcher */,
399 std::false_type /* convertible_to_T */);
400 };
401
402 // This more specialized version is used when MatcherCast()'s argument
403 // is already a Matcher. This only compiles when type T can be
404 // statically converted to type U.
405 template <typename T, typename U>
406 class MatcherCastImpl<T, Matcher<U>> {
407 public:
Cast(const Matcher<U> & source_matcher)408 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
409 return Matcher<T>(new Impl(source_matcher));
410 }
411
412 private:
413 class Impl : public MatcherInterface<T> {
414 public:
Impl(const Matcher<U> & source_matcher)415 explicit Impl(const Matcher<U>& source_matcher)
416 : source_matcher_(source_matcher) {}
417
418 // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)419 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
420 using FromType = typename std::remove_cv<typename std::remove_pointer<
421 typename std::remove_reference<T>::type>::type>::type;
422 using ToType = typename std::remove_cv<typename std::remove_pointer<
423 typename std::remove_reference<U>::type>::type>::type;
424 // Do not allow implicitly converting base*/& to derived*/&.
425 static_assert(
426 // Do not trigger if only one of them is a pointer. That implies a
427 // regular conversion and not a down_cast.
428 (std::is_pointer<typename std::remove_reference<T>::type>::value !=
429 std::is_pointer<typename std::remove_reference<U>::type>::value) ||
430 std::is_same<FromType, ToType>::value ||
431 !std::is_base_of<FromType, ToType>::value,
432 "Can't implicitly convert from <base> to <derived>");
433
434 // Do the cast to `U` explicitly if necessary.
435 // Otherwise, let implicit conversions do the trick.
436 using CastType =
437 typename std::conditional<std::is_convertible<T&, const U&>::value,
438 T&, U>::type;
439
440 return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
441 listener);
442 }
443
DescribeTo(::std::ostream * os)444 void DescribeTo(::std::ostream* os) const override {
445 source_matcher_.DescribeTo(os);
446 }
447
DescribeNegationTo(::std::ostream * os)448 void DescribeNegationTo(::std::ostream* os) const override {
449 source_matcher_.DescribeNegationTo(os);
450 }
451
452 private:
453 const Matcher<U> source_matcher_;
454 };
455 };
456
457 // This even more specialized version is used for efficiently casting
458 // a matcher to its own type.
459 template <typename T>
460 class MatcherCastImpl<T, Matcher<T>> {
461 public:
Cast(const Matcher<T> & matcher)462 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
463 };
464
465 // Template specialization for parameterless Matcher.
466 template <typename Derived>
467 class MatcherBaseImpl {
468 public:
469 MatcherBaseImpl() = default;
470
471 template <typename T>
472 operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
473 return ::testing::Matcher<T>(new
474 typename Derived::template gmock_Impl<T>());
475 }
476 };
477
478 // Template specialization for Matcher with parameters.
479 template <template <typename...> class Derived, typename... Ts>
480 class MatcherBaseImpl<Derived<Ts...>> {
481 public:
482 // Mark the constructor explicit for single argument T to avoid implicit
483 // conversions.
484 template <typename E = std::enable_if<sizeof...(Ts) == 1>,
485 typename E::type* = nullptr>
MatcherBaseImpl(Ts...params)486 explicit MatcherBaseImpl(Ts... params)
487 : params_(std::forward<Ts>(params)...) {}
488 template <typename E = std::enable_if<sizeof...(Ts) != 1>,
489 typename = typename E::type>
MatcherBaseImpl(Ts...params)490 MatcherBaseImpl(Ts... params) // NOLINT
491 : params_(std::forward<Ts>(params)...) {}
492
493 template <typename F>
494 operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
495 return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
496 }
497
498 private:
499 template <typename F, std::size_t... tuple_ids>
Apply(IndexSequence<tuple_ids...>)500 ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
501 return ::testing::Matcher<F>(
502 new typename Derived<Ts...>::template gmock_Impl<F>(
503 std::get<tuple_ids>(params_)...));
504 }
505
506 const std::tuple<Ts...> params_;
507 };
508
509 } // namespace internal
510
511 // In order to be safe and clear, casting between different matcher
512 // types is done explicitly via MatcherCast<T>(m), which takes a
513 // matcher m and returns a Matcher<T>. It compiles only when T can be
514 // statically converted to the argument type of m.
515 template <typename T, typename M>
MatcherCast(const M & matcher)516 inline Matcher<T> MatcherCast(const M& matcher) {
517 return internal::MatcherCastImpl<T, M>::Cast(matcher);
518 }
519
520 // This overload handles polymorphic matchers and values only since
521 // monomorphic matchers are handled by the next one.
522 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher_or_value)523 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
524 return MatcherCast<T>(polymorphic_matcher_or_value);
525 }
526
527 // This overload handles monomorphic matchers.
528 //
529 // In general, if type T can be implicitly converted to type U, we can
530 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
531 // contravariant): just keep a copy of the original Matcher<U>, convert the
532 // argument from type T to U, and then pass it to the underlying Matcher<U>.
533 // The only exception is when U is a reference and T is not, as the
534 // underlying Matcher<U> may be interested in the argument's address, which
535 // is not preserved in the conversion from T to U.
536 template <typename T, typename U>
SafeMatcherCast(const Matcher<U> & matcher)537 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
538 // Enforce that T can be implicitly converted to U.
539 static_assert(std::is_convertible<const T&, const U&>::value,
540 "T must be implicitly convertible to U");
541 // Enforce that we are not converting a non-reference type T to a reference
542 // type U.
543 static_assert(std::is_reference<T>::value || !std::is_reference<U>::value,
544 "cannot convert non reference arg to reference");
545 // In case both T and U are arithmetic types, enforce that the
546 // conversion is not lossy.
547 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
548 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
549 constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
550 constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
551 static_assert(
552 kTIsOther || kUIsOther ||
553 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
554 "conversion of arithmetic types must be lossless");
555 return MatcherCast<T>(matcher);
556 }
557
558 // A<T>() returns a matcher that matches any value of type T.
559 template <typename T>
560 Matcher<T> A();
561
562 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
563 // and MUST NOT BE USED IN USER CODE!!!
564 namespace internal {
565
566 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const std::string & explanation,::std::ostream * os)567 inline void PrintIfNotEmpty(const std::string& explanation,
568 ::std::ostream* os) {
569 if (!explanation.empty() && os != nullptr) {
570 *os << ", " << explanation;
571 }
572 }
573
574 // Returns true if the given type name is easy to read by a human.
575 // This is used to decide whether printing the type of a value might
576 // be helpful.
IsReadableTypeName(const std::string & type_name)577 inline bool IsReadableTypeName(const std::string& type_name) {
578 // We consider a type name readable if it's short or doesn't contain
579 // a template or function type.
580 return (type_name.length() <= 20 ||
581 type_name.find_first_of("<(") == std::string::npos);
582 }
583
584 // Matches the value against the given matcher, prints the value and explains
585 // the match result to the listener. Returns the match result.
586 // 'listener' must not be NULL.
587 // Value cannot be passed by const reference, because some matchers take a
588 // non-const argument.
589 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)590 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
591 MatchResultListener* listener) {
592 if (!listener->IsInterested()) {
593 // If the listener is not interested, we do not need to construct the
594 // inner explanation.
595 return matcher.Matches(value);
596 }
597
598 StringMatchResultListener inner_listener;
599 const bool match = matcher.MatchAndExplain(value, &inner_listener);
600
601 UniversalPrint(value, listener->stream());
602 #if GTEST_HAS_RTTI
603 const std::string& type_name = GetTypeName<Value>();
604 if (IsReadableTypeName(type_name))
605 *listener->stream() << " (of type " << type_name << ")";
606 #endif
607 PrintIfNotEmpty(inner_listener.str(), listener->stream());
608
609 return match;
610 }
611
612 // An internal helper class for doing compile-time loop on a tuple's
613 // fields.
614 template <size_t N>
615 class TuplePrefix {
616 public:
617 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
618 // if and only if the first N fields of matcher_tuple matches
619 // the first N fields of value_tuple, respectively.
620 template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)621 static bool Matches(const MatcherTuple& matcher_tuple,
622 const ValueTuple& value_tuple) {
623 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
624 std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
625 }
626
627 // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
628 // describes failures in matching the first N fields of matchers
629 // against the first N fields of values. If there is no failure,
630 // nothing will be streamed to os.
631 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)632 static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
633 const ValueTuple& values,
634 ::std::ostream* os) {
635 // First, describes failures in the first N - 1 fields.
636 TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
637
638 // Then describes the failure (if any) in the (N - 1)-th (0-based)
639 // field.
640 typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
641 std::get<N - 1>(matchers);
642 typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
643 const Value& value = std::get<N - 1>(values);
644 StringMatchResultListener listener;
645 if (!matcher.MatchAndExplain(value, &listener)) {
646 *os << " Expected arg #" << N - 1 << ": ";
647 std::get<N - 1>(matchers).DescribeTo(os);
648 *os << "\n Actual: ";
649 // We remove the reference in type Value to prevent the
650 // universal printer from printing the address of value, which
651 // isn't interesting to the user most of the time. The
652 // matcher's MatchAndExplain() method handles the case when
653 // the address is interesting.
654 internal::UniversalPrint(value, os);
655 PrintIfNotEmpty(listener.str(), os);
656 *os << "\n";
657 }
658 }
659 };
660
661 // The base case.
662 template <>
663 class TuplePrefix<0> {
664 public:
665 template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)666 static bool Matches(const MatcherTuple& /* matcher_tuple */,
667 const ValueTuple& /* value_tuple */) {
668 return true;
669 }
670
671 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)672 static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
673 const ValueTuple& /* values */,
674 ::std::ostream* /* os */) {}
675 };
676
677 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
678 // all matchers in matcher_tuple match the corresponding fields in
679 // value_tuple. It is a compiler error if matcher_tuple and
680 // value_tuple have different number of fields or incompatible field
681 // types.
682 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)683 bool TupleMatches(const MatcherTuple& matcher_tuple,
684 const ValueTuple& value_tuple) {
685 // Makes sure that matcher_tuple and value_tuple have the same
686 // number of fields.
687 static_assert(std::tuple_size<MatcherTuple>::value ==
688 std::tuple_size<ValueTuple>::value,
689 "matcher and value have different numbers of fields");
690 return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
691 value_tuple);
692 }
693
694 // Describes failures in matching matchers against values. If there
695 // is no failure, nothing will be streamed to os.
696 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)697 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
698 const ValueTuple& values, ::std::ostream* os) {
699 TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
700 matchers, values, os);
701 }
702
703 // TransformTupleValues and its helper.
704 //
705 // TransformTupleValuesHelper hides the internal machinery that
706 // TransformTupleValues uses to implement a tuple traversal.
707 template <typename Tuple, typename Func, typename OutIter>
708 class TransformTupleValuesHelper {
709 private:
710 typedef ::std::tuple_size<Tuple> TupleSize;
711
712 public:
713 // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
714 // Returns the final value of 'out' in case the caller needs it.
Run(Func f,const Tuple & t,OutIter out)715 static OutIter Run(Func f, const Tuple& t, OutIter out) {
716 return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
717 }
718
719 private:
720 template <typename Tup, size_t kRemainingSize>
721 struct IterateOverTuple {
operatorIterateOverTuple722 OutIter operator()(Func f, const Tup& t, OutIter out) const {
723 *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
724 return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
725 }
726 };
727 template <typename Tup>
728 struct IterateOverTuple<Tup, 0> {
729 OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const {
730 return out;
731 }
732 };
733 };
734
735 // Successively invokes 'f(element)' on each element of the tuple 't',
736 // appending each result to the 'out' iterator. Returns the final value
737 // of 'out'.
738 template <typename Tuple, typename Func, typename OutIter>
739 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
740 return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
741 }
742
743 // Implements _, a matcher that matches any value of any
744 // type. This is a polymorphic matcher, so we need a template type
745 // conversion operator to make it appearing as a Matcher<T> for any
746 // type T.
747 class AnythingMatcher {
748 public:
749 using is_gtest_matcher = void;
750
751 template <typename T>
752 bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
753 return true;
754 }
755 void DescribeTo(std::ostream* os) const { *os << "is anything"; }
756 void DescribeNegationTo(::std::ostream* os) const {
757 // This is mostly for completeness' sake, as it's not very useful
758 // to write Not(A<bool>()). However we cannot completely rule out
759 // such a possibility, and it doesn't hurt to be prepared.
760 *os << "never matches";
761 }
762 };
763
764 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
765 // pointer that is NULL.
766 class IsNullMatcher {
767 public:
768 template <typename Pointer>
769 bool MatchAndExplain(const Pointer& p,
770 MatchResultListener* /* listener */) const {
771 return p == nullptr;
772 }
773
774 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
775 void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; }
776 };
777
778 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
779 // pointer that is not NULL.
780 class NotNullMatcher {
781 public:
782 template <typename Pointer>
783 bool MatchAndExplain(const Pointer& p,
784 MatchResultListener* /* listener */) const {
785 return p != nullptr;
786 }
787
788 void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
789 void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
790 };
791
792 // Ref(variable) matches any argument that is a reference to
793 // 'variable'. This matcher is polymorphic as it can match any
794 // super type of the type of 'variable'.
795 //
796 // The RefMatcher template class implements Ref(variable). It can
797 // only be instantiated with a reference type. This prevents a user
798 // from mistakenly using Ref(x) to match a non-reference function
799 // argument. For example, the following will righteously cause a
800 // compiler error:
801 //
802 // int n;
803 // Matcher<int> m1 = Ref(n); // This won't compile.
804 // Matcher<int&> m2 = Ref(n); // This will compile.
805 template <typename T>
806 class RefMatcher;
807
808 template <typename T>
809 class RefMatcher<T&> {
810 // Google Mock is a generic framework and thus needs to support
811 // mocking any function types, including those that take non-const
812 // reference arguments. Therefore the template parameter T (and
813 // Super below) can be instantiated to either a const type or a
814 // non-const type.
815 public:
816 // RefMatcher() takes a T& instead of const T&, as we want the
817 // compiler to catch using Ref(const_value) as a matcher for a
818 // non-const reference.
819 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
820
821 template <typename Super>
822 operator Matcher<Super&>() const {
823 // By passing object_ (type T&) to Impl(), which expects a Super&,
824 // we make sure that Super is a super type of T. In particular,
825 // this catches using Ref(const_value) as a matcher for a
826 // non-const reference, as you cannot implicitly convert a const
827 // reference to a non-const reference.
828 return MakeMatcher(new Impl<Super>(object_));
829 }
830
831 private:
832 template <typename Super>
833 class Impl : public MatcherInterface<Super&> {
834 public:
835 explicit Impl(Super& x) : object_(x) {} // NOLINT
836
837 // MatchAndExplain() takes a Super& (as opposed to const Super&)
838 // in order to match the interface MatcherInterface<Super&>.
839 bool MatchAndExplain(Super& x,
840 MatchResultListener* listener) const override {
841 *listener << "which is located @" << static_cast<const void*>(&x);
842 return &x == &object_;
843 }
844
845 void DescribeTo(::std::ostream* os) const override {
846 *os << "references the variable ";
847 UniversalPrinter<Super&>::Print(object_, os);
848 }
849
850 void DescribeNegationTo(::std::ostream* os) const override {
851 *os << "does not reference the variable ";
852 UniversalPrinter<Super&>::Print(object_, os);
853 }
854
855 private:
856 const Super& object_;
857 };
858
859 T& object_;
860 };
861
862 // Polymorphic helper functions for narrow and wide string matchers.
863 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
864 return String::CaseInsensitiveCStringEquals(lhs, rhs);
865 }
866
867 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
868 const wchar_t* rhs) {
869 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
870 }
871
872 // String comparison for narrow or wide strings that can have embedded NUL
873 // characters.
874 template <typename StringType>
875 bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) {
876 // Are the heads equal?
877 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
878 return false;
879 }
880
881 // Skip the equal heads.
882 const typename StringType::value_type nul = 0;
883 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
884
885 // Are we at the end of either s1 or s2?
886 if (i1 == StringType::npos || i2 == StringType::npos) {
887 return i1 == i2;
888 }
889
890 // Are the tails equal?
891 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
892 }
893
894 // String matchers.
895
896 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
897 template <typename StringType>
898 class StrEqualityMatcher {
899 public:
900 StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
901 : string_(std::move(str)),
902 expect_eq_(expect_eq),
903 case_sensitive_(case_sensitive) {}
904
905 #if GTEST_INTERNAL_HAS_STRING_VIEW
906 bool MatchAndExplain(const internal::StringView& s,
907 MatchResultListener* listener) const {
908 // This should fail to compile if StringView is used with wide
909 // strings.
910 const StringType& str = std::string(s);
911 return MatchAndExplain(str, listener);
912 }
913 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
914
915 // Accepts pointer types, particularly:
916 // const char*
917 // char*
918 // const wchar_t*
919 // wchar_t*
920 template <typename CharType>
921 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
922 if (s == nullptr) {
923 return !expect_eq_;
924 }
925 return MatchAndExplain(StringType(s), listener);
926 }
927
928 // Matches anything that can convert to StringType.
929 //
930 // This is a template, not just a plain function with const StringType&,
931 // because StringView has some interfering non-explicit constructors.
932 template <typename MatcheeStringType>
933 bool MatchAndExplain(const MatcheeStringType& s,
934 MatchResultListener* /* listener */) const {
935 const StringType s2(s);
936 const bool eq = case_sensitive_ ? s2 == string_
937 : CaseInsensitiveStringEquals(s2, string_);
938 return expect_eq_ == eq;
939 }
940
941 void DescribeTo(::std::ostream* os) const {
942 DescribeToHelper(expect_eq_, os);
943 }
944
945 void DescribeNegationTo(::std::ostream* os) const {
946 DescribeToHelper(!expect_eq_, os);
947 }
948
949 private:
950 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
951 *os << (expect_eq ? "is " : "isn't ");
952 *os << "equal to ";
953 if (!case_sensitive_) {
954 *os << "(ignoring case) ";
955 }
956 UniversalPrint(string_, os);
957 }
958
959 const StringType string_;
960 const bool expect_eq_;
961 const bool case_sensitive_;
962 };
963
964 // Implements the polymorphic HasSubstr(substring) matcher, which
965 // can be used as a Matcher<T> as long as T can be converted to a
966 // string.
967 template <typename StringType>
968 class HasSubstrMatcher {
969 public:
970 explicit HasSubstrMatcher(const StringType& substring)
971 : substring_(substring) {}
972
973 #if GTEST_INTERNAL_HAS_STRING_VIEW
974 bool MatchAndExplain(const internal::StringView& s,
975 MatchResultListener* listener) const {
976 // This should fail to compile if StringView is used with wide
977 // strings.
978 const StringType& str = std::string(s);
979 return MatchAndExplain(str, listener);
980 }
981 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
982
983 // Accepts pointer types, particularly:
984 // const char*
985 // char*
986 // const wchar_t*
987 // wchar_t*
988 template <typename CharType>
989 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
990 return s != nullptr && MatchAndExplain(StringType(s), listener);
991 }
992
993 // Matches anything that can convert to StringType.
994 //
995 // This is a template, not just a plain function with const StringType&,
996 // because StringView has some interfering non-explicit constructors.
997 template <typename MatcheeStringType>
998 bool MatchAndExplain(const MatcheeStringType& s,
999 MatchResultListener* /* listener */) const {
1000 return StringType(s).find(substring_) != StringType::npos;
1001 }
1002
1003 // Describes what this matcher matches.
1004 void DescribeTo(::std::ostream* os) const {
1005 *os << "has substring ";
1006 UniversalPrint(substring_, os);
1007 }
1008
1009 void DescribeNegationTo(::std::ostream* os) const {
1010 *os << "has no substring ";
1011 UniversalPrint(substring_, os);
1012 }
1013
1014 private:
1015 const StringType substring_;
1016 };
1017
1018 // Implements the polymorphic StartsWith(substring) matcher, which
1019 // can be used as a Matcher<T> as long as T can be converted to a
1020 // string.
1021 template <typename StringType>
1022 class StartsWithMatcher {
1023 public:
1024 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {}
1025
1026 #if GTEST_INTERNAL_HAS_STRING_VIEW
1027 bool MatchAndExplain(const internal::StringView& s,
1028 MatchResultListener* listener) const {
1029 // This should fail to compile if StringView is used with wide
1030 // strings.
1031 const StringType& str = std::string(s);
1032 return MatchAndExplain(str, listener);
1033 }
1034 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
1035
1036 // Accepts pointer types, particularly:
1037 // const char*
1038 // char*
1039 // const wchar_t*
1040 // wchar_t*
1041 template <typename CharType>
1042 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1043 return s != nullptr && MatchAndExplain(StringType(s), listener);
1044 }
1045
1046 // Matches anything that can convert to StringType.
1047 //
1048 // This is a template, not just a plain function with const StringType&,
1049 // because StringView has some interfering non-explicit constructors.
1050 template <typename MatcheeStringType>
1051 bool MatchAndExplain(const MatcheeStringType& s,
1052 MatchResultListener* /* listener */) const {
1053 const StringType s2(s);
1054 return s2.length() >= prefix_.length() &&
1055 s2.substr(0, prefix_.length()) == prefix_;
1056 }
1057
1058 void DescribeTo(::std::ostream* os) const {
1059 *os << "starts with ";
1060 UniversalPrint(prefix_, os);
1061 }
1062
1063 void DescribeNegationTo(::std::ostream* os) const {
1064 *os << "doesn't start with ";
1065 UniversalPrint(prefix_, os);
1066 }
1067
1068 private:
1069 const StringType prefix_;
1070 };
1071
1072 // Implements the polymorphic EndsWith(substring) matcher, which
1073 // can be used as a Matcher<T> as long as T can be converted to a
1074 // string.
1075 template <typename StringType>
1076 class EndsWithMatcher {
1077 public:
1078 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1079
1080 #if GTEST_INTERNAL_HAS_STRING_VIEW
1081 bool MatchAndExplain(const internal::StringView& s,
1082 MatchResultListener* listener) const {
1083 // This should fail to compile if StringView is used with wide
1084 // strings.
1085 const StringType& str = std::string(s);
1086 return MatchAndExplain(str, listener);
1087 }
1088 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
1089
1090 // Accepts pointer types, particularly:
1091 // const char*
1092 // char*
1093 // const wchar_t*
1094 // wchar_t*
1095 template <typename CharType>
1096 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1097 return s != nullptr && MatchAndExplain(StringType(s), listener);
1098 }
1099
1100 // Matches anything that can convert to StringType.
1101 //
1102 // This is a template, not just a plain function with const StringType&,
1103 // because StringView has some interfering non-explicit constructors.
1104 template <typename MatcheeStringType>
1105 bool MatchAndExplain(const MatcheeStringType& s,
1106 MatchResultListener* /* listener */) const {
1107 const StringType s2(s);
1108 return s2.length() >= suffix_.length() &&
1109 s2.substr(s2.length() - suffix_.length()) == suffix_;
1110 }
1111
1112 void DescribeTo(::std::ostream* os) const {
1113 *os << "ends with ";
1114 UniversalPrint(suffix_, os);
1115 }
1116
1117 void DescribeNegationTo(::std::ostream* os) const {
1118 *os << "doesn't end with ";
1119 UniversalPrint(suffix_, os);
1120 }
1121
1122 private:
1123 const StringType suffix_;
1124 };
1125
1126 // Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be
1127 // used as a Matcher<T> as long as T can be converted to a string.
1128 class WhenBase64UnescapedMatcher {
1129 public:
1130 using is_gtest_matcher = void;
1131
1132 explicit WhenBase64UnescapedMatcher(
1133 const Matcher<const std::string&>& internal_matcher)
1134 : internal_matcher_(internal_matcher) {}
1135
1136 // Matches anything that can convert to std::string.
1137 template <typename MatcheeStringType>
1138 bool MatchAndExplain(const MatcheeStringType& s,
1139 MatchResultListener* listener) const {
1140 const std::string s2(s); // NOLINT (needed for working with string_view).
1141 std::string unescaped;
1142 if (!internal::Base64Unescape(s2, &unescaped)) {
1143 if (listener != nullptr) {
1144 *listener << "is not a valid base64 escaped string";
1145 }
1146 return false;
1147 }
1148 return MatchPrintAndExplain(unescaped, internal_matcher_, listener);
1149 }
1150
1151 void DescribeTo(::std::ostream* os) const {
1152 *os << "matches after Base64Unescape ";
1153 internal_matcher_.DescribeTo(os);
1154 }
1155
1156 void DescribeNegationTo(::std::ostream* os) const {
1157 *os << "does not match after Base64Unescape ";
1158 internal_matcher_.DescribeTo(os);
1159 }
1160
1161 private:
1162 const Matcher<const std::string&> internal_matcher_;
1163 };
1164
1165 // Implements a matcher that compares the two fields of a 2-tuple
1166 // using one of the ==, <=, <, etc, operators. The two fields being
1167 // compared don't have to have the same type.
1168 //
1169 // The matcher defined here is polymorphic (for example, Eq() can be
1170 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1171 // etc). Therefore we use a template type conversion operator in the
1172 // implementation.
1173 template <typename D, typename Op>
1174 class PairMatchBase {
1175 public:
1176 template <typename T1, typename T2>
1177 operator Matcher<::std::tuple<T1, T2>>() const {
1178 return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1179 }
1180 template <typename T1, typename T2>
1181 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1182 return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1183 }
1184
1185 private:
1186 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1187 return os << D::Desc();
1188 }
1189
1190 template <typename Tuple>
1191 class Impl : public MatcherInterface<Tuple> {
1192 public:
1193 bool MatchAndExplain(Tuple args,
1194 MatchResultListener* /* listener */) const override {
1195 return Op()(::std::get<0>(args), ::std::get<1>(args));
1196 }
1197 void DescribeTo(::std::ostream* os) const override {
1198 *os << "are " << GetDesc;
1199 }
1200 void DescribeNegationTo(::std::ostream* os) const override {
1201 *os << "aren't " << GetDesc;
1202 }
1203 };
1204 };
1205
1206 class Eq2Matcher : public PairMatchBase<Eq2Matcher, std::equal_to<>> {
1207 public:
1208 static const char* Desc() { return "an equal pair"; }
1209 };
1210 class Ne2Matcher : public PairMatchBase<Ne2Matcher, std::not_equal_to<>> {
1211 public:
1212 static const char* Desc() { return "an unequal pair"; }
1213 };
1214 class Lt2Matcher : public PairMatchBase<Lt2Matcher, std::less<>> {
1215 public:
1216 static const char* Desc() { return "a pair where the first < the second"; }
1217 };
1218 class Gt2Matcher : public PairMatchBase<Gt2Matcher, std::greater<>> {
1219 public:
1220 static const char* Desc() { return "a pair where the first > the second"; }
1221 };
1222 class Le2Matcher : public PairMatchBase<Le2Matcher, std::less_equal<>> {
1223 public:
1224 static const char* Desc() { return "a pair where the first <= the second"; }
1225 };
1226 class Ge2Matcher : public PairMatchBase<Ge2Matcher, std::greater_equal<>> {
1227 public:
1228 static const char* Desc() { return "a pair where the first >= the second"; }
1229 };
1230
1231 // Implements the Not(...) matcher for a particular argument type T.
1232 // We do not nest it inside the NotMatcher class template, as that
1233 // will prevent different instantiations of NotMatcher from sharing
1234 // the same NotMatcherImpl<T> class.
1235 template <typename T>
1236 class NotMatcherImpl : public MatcherInterface<const T&> {
1237 public:
1238 explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
1239
1240 bool MatchAndExplain(const T& x,
1241 MatchResultListener* listener) const override {
1242 return !matcher_.MatchAndExplain(x, listener);
1243 }
1244
1245 void DescribeTo(::std::ostream* os) const override {
1246 matcher_.DescribeNegationTo(os);
1247 }
1248
1249 void DescribeNegationTo(::std::ostream* os) const override {
1250 matcher_.DescribeTo(os);
1251 }
1252
1253 private:
1254 const Matcher<T> matcher_;
1255 };
1256
1257 // Implements the Not(m) matcher, which matches a value that doesn't
1258 // match matcher m.
1259 template <typename InnerMatcher>
1260 class NotMatcher {
1261 public:
1262 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1263
1264 // This template type conversion operator allows Not(m) to be used
1265 // to match any type m can match.
1266 template <typename T>
1267 operator Matcher<T>() const {
1268 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1269 }
1270
1271 private:
1272 InnerMatcher matcher_;
1273 };
1274
1275 // Implements the AllOf(m1, m2) matcher for a particular argument type
1276 // T. We do not nest it inside the BothOfMatcher class template, as
1277 // that will prevent different instantiations of BothOfMatcher from
1278 // sharing the same BothOfMatcherImpl<T> class.
1279 template <typename T>
1280 class AllOfMatcherImpl : public MatcherInterface<const T&> {
1281 public:
1282 explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers)
1283 : matchers_(std::move(matchers)) {}
1284
1285 void DescribeTo(::std::ostream* os) const override {
1286 *os << "(";
1287 for (size_t i = 0; i < matchers_.size(); ++i) {
1288 if (i != 0) *os << ") and (";
1289 matchers_[i].DescribeTo(os);
1290 }
1291 *os << ")";
1292 }
1293
1294 void DescribeNegationTo(::std::ostream* os) const override {
1295 *os << "(";
1296 for (size_t i = 0; i < matchers_.size(); ++i) {
1297 if (i != 0) *os << ") or (";
1298 matchers_[i].DescribeNegationTo(os);
1299 }
1300 *os << ")";
1301 }
1302
1303 bool MatchAndExplain(const T& x,
1304 MatchResultListener* listener) const override {
1305 // If either matcher1_ or matcher2_ doesn't match x, we only need
1306 // to explain why one of them fails.
1307 std::string all_match_result;
1308
1309 for (size_t i = 0; i < matchers_.size(); ++i) {
1310 StringMatchResultListener slistener;
1311 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1312 if (all_match_result.empty()) {
1313 all_match_result = slistener.str();
1314 } else {
1315 std::string result = slistener.str();
1316 if (!result.empty()) {
1317 all_match_result += ", and ";
1318 all_match_result += result;
1319 }
1320 }
1321 } else {
1322 *listener << slistener.str();
1323 return false;
1324 }
1325 }
1326
1327 // Otherwise we need to explain why *both* of them match.
1328 *listener << all_match_result;
1329 return true;
1330 }
1331
1332 private:
1333 const std::vector<Matcher<T>> matchers_;
1334 };
1335
1336 // VariadicMatcher is used for the variadic implementation of
1337 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1338 // CombiningMatcher<T> is used to recursively combine the provided matchers
1339 // (of type Args...).
1340 template <template <typename T> class CombiningMatcher, typename... Args>
1341 class VariadicMatcher {
1342 public:
1343 VariadicMatcher(const Args&... matchers) // NOLINT
1344 : matchers_(matchers...) {
1345 static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1346 }
1347
1348 VariadicMatcher(const VariadicMatcher&) = default;
1349 VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1350
1351 // This template type conversion operator allows an
1352 // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1353 // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1354 template <typename T>
1355 operator Matcher<T>() const {
1356 std::vector<Matcher<T>> values;
1357 CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1358 return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1359 }
1360
1361 private:
1362 template <typename T, size_t I>
1363 void CreateVariadicMatcher(std::vector<Matcher<T>>* values,
1364 std::integral_constant<size_t, I>) const {
1365 values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1366 CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1367 }
1368
1369 template <typename T>
1370 void CreateVariadicMatcher(
1371 std::vector<Matcher<T>>*,
1372 std::integral_constant<size_t, sizeof...(Args)>) const {}
1373
1374 std::tuple<Args...> matchers_;
1375 };
1376
1377 template <typename... Args>
1378 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1379
1380 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1381 // T. We do not nest it inside the AnyOfMatcher class template, as
1382 // that will prevent different instantiations of AnyOfMatcher from
1383 // sharing the same EitherOfMatcherImpl<T> class.
1384 template <typename T>
1385 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1386 public:
1387 explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers)
1388 : matchers_(std::move(matchers)) {}
1389
1390 void DescribeTo(::std::ostream* os) const override {
1391 *os << "(";
1392 for (size_t i = 0; i < matchers_.size(); ++i) {
1393 if (i != 0) *os << ") or (";
1394 matchers_[i].DescribeTo(os);
1395 }
1396 *os << ")";
1397 }
1398
1399 void DescribeNegationTo(::std::ostream* os) const override {
1400 *os << "(";
1401 for (size_t i = 0; i < matchers_.size(); ++i) {
1402 if (i != 0) *os << ") and (";
1403 matchers_[i].DescribeNegationTo(os);
1404 }
1405 *os << ")";
1406 }
1407
1408 bool MatchAndExplain(const T& x,
1409 MatchResultListener* listener) const override {
1410 std::string no_match_result;
1411
1412 // If either matcher1_ or matcher2_ matches x, we just need to
1413 // explain why *one* of them matches.
1414 for (size_t i = 0; i < matchers_.size(); ++i) {
1415 StringMatchResultListener slistener;
1416 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1417 *listener << slistener.str();
1418 return true;
1419 } else {
1420 if (no_match_result.empty()) {
1421 no_match_result = slistener.str();
1422 } else {
1423 std::string result = slistener.str();
1424 if (!result.empty()) {
1425 no_match_result += ", and ";
1426 no_match_result += result;
1427 }
1428 }
1429 }
1430 }
1431
1432 // Otherwise we need to explain why *both* of them fail.
1433 *listener << no_match_result;
1434 return false;
1435 }
1436
1437 private:
1438 const std::vector<Matcher<T>> matchers_;
1439 };
1440
1441 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1442 template <typename... Args>
1443 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1444
1445 // ConditionalMatcher is the implementation of Conditional(cond, m1, m2)
1446 template <typename MatcherTrue, typename MatcherFalse>
1447 class ConditionalMatcher {
1448 public:
1449 ConditionalMatcher(bool condition, MatcherTrue matcher_true,
1450 MatcherFalse matcher_false)
1451 : condition_(condition),
1452 matcher_true_(std::move(matcher_true)),
1453 matcher_false_(std::move(matcher_false)) {}
1454
1455 template <typename T>
1456 operator Matcher<T>() const { // NOLINT(runtime/explicit)
1457 return condition_ ? SafeMatcherCast<T>(matcher_true_)
1458 : SafeMatcherCast<T>(matcher_false_);
1459 }
1460
1461 private:
1462 bool condition_;
1463 MatcherTrue matcher_true_;
1464 MatcherFalse matcher_false_;
1465 };
1466
1467 // Wrapper for implementation of Any/AllOfArray().
1468 template <template <class> class MatcherImpl, typename T>
1469 class SomeOfArrayMatcher {
1470 public:
1471 // Constructs the matcher from a sequence of element values or
1472 // element matchers.
1473 template <typename Iter>
1474 SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1475
1476 template <typename U>
1477 operator Matcher<U>() const { // NOLINT
1478 using RawU = typename std::decay<U>::type;
1479 std::vector<Matcher<RawU>> matchers;
1480 matchers.reserve(matchers_.size());
1481 for (const auto& matcher : matchers_) {
1482 matchers.push_back(MatcherCast<RawU>(matcher));
1483 }
1484 return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1485 }
1486
1487 private:
1488 const ::std::vector<T> matchers_;
1489 };
1490
1491 template <typename T>
1492 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1493
1494 template <typename T>
1495 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1496
1497 // Used for implementing Truly(pred), which turns a predicate into a
1498 // matcher.
1499 template <typename Predicate>
1500 class TrulyMatcher {
1501 public:
1502 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1503
1504 // This method template allows Truly(pred) to be used as a matcher
1505 // for type T where T is the argument type of predicate 'pred'. The
1506 // argument is passed by reference as the predicate may be
1507 // interested in the address of the argument.
1508 template <typename T>
1509 bool MatchAndExplain(T& x, // NOLINT
1510 MatchResultListener* listener) const {
1511 // Without the if-statement, MSVC sometimes warns about converting
1512 // a value to bool (warning 4800).
1513 //
1514 // We cannot write 'return !!predicate_(x);' as that doesn't work
1515 // when predicate_(x) returns a class convertible to bool but
1516 // having no operator!().
1517 if (predicate_(x)) return true;
1518 *listener << "didn't satisfy the given predicate";
1519 return false;
1520 }
1521
1522 void DescribeTo(::std::ostream* os) const {
1523 *os << "satisfies the given predicate";
1524 }
1525
1526 void DescribeNegationTo(::std::ostream* os) const {
1527 *os << "doesn't satisfy the given predicate";
1528 }
1529
1530 private:
1531 Predicate predicate_;
1532 };
1533
1534 // Used for implementing Matches(matcher), which turns a matcher into
1535 // a predicate.
1536 template <typename M>
1537 class MatcherAsPredicate {
1538 public:
1539 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1540
1541 // This template operator() allows Matches(m) to be used as a
1542 // predicate on type T where m is a matcher on type T.
1543 //
1544 // The argument x is passed by reference instead of by value, as
1545 // some matcher may be interested in its address (e.g. as in
1546 // Matches(Ref(n))(x)).
1547 template <typename T>
1548 bool operator()(const T& x) const {
1549 // We let matcher_ commit to a particular type here instead of
1550 // when the MatcherAsPredicate object was constructed. This
1551 // allows us to write Matches(m) where m is a polymorphic matcher
1552 // (e.g. Eq(5)).
1553 //
1554 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1555 // compile when matcher_ has type Matcher<const T&>; if we write
1556 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1557 // when matcher_ has type Matcher<T>; if we just write
1558 // matcher_.Matches(x), it won't compile when matcher_ is
1559 // polymorphic, e.g. Eq(5).
1560 //
1561 // MatcherCast<const T&>() is necessary for making the code work
1562 // in all of the above situations.
1563 return MatcherCast<const T&>(matcher_).Matches(x);
1564 }
1565
1566 private:
1567 M matcher_;
1568 };
1569
1570 // For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1571 // argument M must be a type that can be converted to a matcher.
1572 template <typename M>
1573 class PredicateFormatterFromMatcher {
1574 public:
1575 explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1576
1577 // This template () operator allows a PredicateFormatterFromMatcher
1578 // object to act as a predicate-formatter suitable for using with
1579 // Google Test's EXPECT_PRED_FORMAT1() macro.
1580 template <typename T>
1581 AssertionResult operator()(const char* value_text, const T& x) const {
1582 // We convert matcher_ to a Matcher<const T&> *now* instead of
1583 // when the PredicateFormatterFromMatcher object was constructed,
1584 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1585 // know which type to instantiate it to until we actually see the
1586 // type of x here.
1587 //
1588 // We write SafeMatcherCast<const T&>(matcher_) instead of
1589 // Matcher<const T&>(matcher_), as the latter won't compile when
1590 // matcher_ has type Matcher<T> (e.g. An<int>()).
1591 // We don't write MatcherCast<const T&> either, as that allows
1592 // potentially unsafe downcasting of the matcher argument.
1593 const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1594
1595 // The expected path here is that the matcher should match (i.e. that most
1596 // tests pass) so optimize for this case.
1597 if (matcher.Matches(x)) {
1598 return AssertionSuccess();
1599 }
1600
1601 ::std::stringstream ss;
1602 ss << "Value of: " << value_text << "\n"
1603 << "Expected: ";
1604 matcher.DescribeTo(&ss);
1605
1606 // Rerun the matcher to "PrintAndExplain" the failure.
1607 StringMatchResultListener listener;
1608 if (MatchPrintAndExplain(x, matcher, &listener)) {
1609 ss << "\n The matcher failed on the initial attempt; but passed when "
1610 "rerun to generate the explanation.";
1611 }
1612 ss << "\n Actual: " << listener.str();
1613 return AssertionFailure() << ss.str();
1614 }
1615
1616 private:
1617 const M matcher_;
1618 };
1619
1620 // A helper function for converting a matcher to a predicate-formatter
1621 // without the user needing to explicitly write the type. This is
1622 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1623 // Implementation detail: 'matcher' is received by-value to force decaying.
1624 template <typename M>
1625 inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(
1626 M matcher) {
1627 return PredicateFormatterFromMatcher<M>(std::move(matcher));
1628 }
1629
1630 // Implements the polymorphic IsNan() matcher, which matches any floating type
1631 // value that is Nan.
1632 class IsNanMatcher {
1633 public:
1634 template <typename FloatType>
1635 bool MatchAndExplain(const FloatType& f,
1636 MatchResultListener* /* listener */) const {
1637 return (::std::isnan)(f);
1638 }
1639
1640 void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1641 void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; }
1642 };
1643
1644 // Implements the polymorphic floating point equality matcher, which matches
1645 // two float values using ULP-based approximation or, optionally, a
1646 // user-specified epsilon. The template is meant to be instantiated with
1647 // FloatType being either float or double.
1648 template <typename FloatType>
1649 class FloatingEqMatcher {
1650 public:
1651 // Constructor for FloatingEqMatcher.
1652 // The matcher's input will be compared with expected. The matcher treats two
1653 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1654 // equality comparisons between NANs will always return false. We specify a
1655 // negative max_abs_error_ term to indicate that ULP-based approximation will
1656 // be used for comparison.
1657 FloatingEqMatcher(FloatType expected, bool nan_eq_nan)
1658 : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {}
1659
1660 // Constructor that supports a user-specified max_abs_error that will be used
1661 // for comparison instead of ULP-based approximation. The max absolute
1662 // should be non-negative.
1663 FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1664 FloatType max_abs_error)
1665 : expected_(expected),
1666 nan_eq_nan_(nan_eq_nan),
1667 max_abs_error_(max_abs_error) {
1668 GTEST_CHECK_(max_abs_error >= 0)
1669 << ", where max_abs_error is" << max_abs_error;
1670 }
1671
1672 // Implements floating point equality matcher as a Matcher<T>.
1673 template <typename T>
1674 class Impl : public MatcherInterface<T> {
1675 public:
1676 Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1677 : expected_(expected),
1678 nan_eq_nan_(nan_eq_nan),
1679 max_abs_error_(max_abs_error) {}
1680
1681 bool MatchAndExplain(T value,
1682 MatchResultListener* listener) const override {
1683 const FloatingPoint<FloatType> actual(value), expected(expected_);
1684
1685 // Compares NaNs first, if nan_eq_nan_ is true.
1686 if (actual.is_nan() || expected.is_nan()) {
1687 if (actual.is_nan() && expected.is_nan()) {
1688 return nan_eq_nan_;
1689 }
1690 // One is nan; the other is not nan.
1691 return false;
1692 }
1693 if (HasMaxAbsError()) {
1694 // We perform an equality check so that inf will match inf, regardless
1695 // of error bounds. If the result of value - expected_ would result in
1696 // overflow or if either value is inf, the default result is infinity,
1697 // which should only match if max_abs_error_ is also infinity.
1698 if (value == expected_) {
1699 return true;
1700 }
1701
1702 const FloatType diff = value - expected_;
1703 if (::std::fabs(diff) <= max_abs_error_) {
1704 return true;
1705 }
1706
1707 if (listener->IsInterested()) {
1708 *listener << "which is " << diff << " from " << expected_;
1709 }
1710 return false;
1711 } else {
1712 return actual.AlmostEquals(expected);
1713 }
1714 }
1715
1716 void DescribeTo(::std::ostream* os) const override {
1717 // os->precision() returns the previously set precision, which we
1718 // store to restore the ostream to its original configuration
1719 // after outputting.
1720 const ::std::streamsize old_precision =
1721 os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1722 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1723 if (nan_eq_nan_) {
1724 *os << "is NaN";
1725 } else {
1726 *os << "never matches";
1727 }
1728 } else {
1729 *os << "is approximately " << expected_;
1730 if (HasMaxAbsError()) {
1731 *os << " (absolute error <= " << max_abs_error_ << ")";
1732 }
1733 }
1734 os->precision(old_precision);
1735 }
1736
1737 void DescribeNegationTo(::std::ostream* os) const override {
1738 // As before, get original precision.
1739 const ::std::streamsize old_precision =
1740 os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1741 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1742 if (nan_eq_nan_) {
1743 *os << "isn't NaN";
1744 } else {
1745 *os << "is anything";
1746 }
1747 } else {
1748 *os << "isn't approximately " << expected_;
1749 if (HasMaxAbsError()) {
1750 *os << " (absolute error > " << max_abs_error_ << ")";
1751 }
1752 }
1753 // Restore original precision.
1754 os->precision(old_precision);
1755 }
1756
1757 private:
1758 bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
1759
1760 const FloatType expected_;
1761 const bool nan_eq_nan_;
1762 // max_abs_error will be used for value comparison when >= 0.
1763 const FloatType max_abs_error_;
1764 };
1765
1766 // The following 3 type conversion operators allow FloatEq(expected) and
1767 // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1768 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1769 operator Matcher<FloatType>() const {
1770 return MakeMatcher(
1771 new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1772 }
1773
1774 operator Matcher<const FloatType&>() const {
1775 return MakeMatcher(
1776 new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1777 }
1778
1779 operator Matcher<FloatType&>() const {
1780 return MakeMatcher(
1781 new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1782 }
1783
1784 private:
1785 const FloatType expected_;
1786 const bool nan_eq_nan_;
1787 // max_abs_error will be used for value comparison when >= 0.
1788 const FloatType max_abs_error_;
1789 };
1790
1791 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1792 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1793 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1794 // against y. The former implements "Eq", the latter "Near". At present, there
1795 // is no version that compares NaNs as equal.
1796 template <typename FloatType>
1797 class FloatingEq2Matcher {
1798 public:
1799 FloatingEq2Matcher() { Init(-1, false); }
1800
1801 explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1802
1803 explicit FloatingEq2Matcher(FloatType max_abs_error) {
1804 Init(max_abs_error, false);
1805 }
1806
1807 FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1808 Init(max_abs_error, nan_eq_nan);
1809 }
1810
1811 template <typename T1, typename T2>
1812 operator Matcher<::std::tuple<T1, T2>>() const {
1813 return MakeMatcher(
1814 new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1815 }
1816 template <typename T1, typename T2>
1817 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1818 return MakeMatcher(
1819 new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1820 }
1821
1822 private:
1823 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1824 return os << "an almost-equal pair";
1825 }
1826
1827 template <typename Tuple>
1828 class Impl : public MatcherInterface<Tuple> {
1829 public:
1830 Impl(FloatType max_abs_error, bool nan_eq_nan)
1831 : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
1832
1833 bool MatchAndExplain(Tuple args,
1834 MatchResultListener* listener) const override {
1835 if (max_abs_error_ == -1) {
1836 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1837 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1838 ::std::get<1>(args), listener);
1839 } else {
1840 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1841 max_abs_error_);
1842 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1843 ::std::get<1>(args), listener);
1844 }
1845 }
1846 void DescribeTo(::std::ostream* os) const override {
1847 *os << "are " << GetDesc;
1848 }
1849 void DescribeNegationTo(::std::ostream* os) const override {
1850 *os << "aren't " << GetDesc;
1851 }
1852
1853 private:
1854 FloatType max_abs_error_;
1855 const bool nan_eq_nan_;
1856 };
1857
1858 void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1859 max_abs_error_ = max_abs_error_val;
1860 nan_eq_nan_ = nan_eq_nan_val;
1861 }
1862 FloatType max_abs_error_;
1863 bool nan_eq_nan_;
1864 };
1865
1866 // Implements the Pointee(m) matcher for matching a pointer whose
1867 // pointee matches matcher m. The pointer can be either raw or smart.
1868 template <typename InnerMatcher>
1869 class PointeeMatcher {
1870 public:
1871 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1872
1873 // This type conversion operator template allows Pointee(m) to be
1874 // used as a matcher for any pointer type whose pointee type is
1875 // compatible with the inner matcher, where type Pointer can be
1876 // either a raw pointer or a smart pointer.
1877 //
1878 // The reason we do this instead of relying on
1879 // MakePolymorphicMatcher() is that the latter is not flexible
1880 // enough for implementing the DescribeTo() method of Pointee().
1881 template <typename Pointer>
1882 operator Matcher<Pointer>() const {
1883 return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1884 }
1885
1886 private:
1887 // The monomorphic implementation that works for a particular pointer type.
1888 template <typename Pointer>
1889 class Impl : public MatcherInterface<Pointer> {
1890 public:
1891 using Pointee =
1892 typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1893 Pointer)>::element_type;
1894
1895 explicit Impl(const InnerMatcher& matcher)
1896 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1897
1898 void DescribeTo(::std::ostream* os) const override {
1899 *os << "points to a value that ";
1900 matcher_.DescribeTo(os);
1901 }
1902
1903 void DescribeNegationTo(::std::ostream* os) const override {
1904 *os << "does not point to a value that ";
1905 matcher_.DescribeTo(os);
1906 }
1907
1908 bool MatchAndExplain(Pointer pointer,
1909 MatchResultListener* listener) const override {
1910 if (GetRawPointer(pointer) == nullptr) return false;
1911
1912 *listener << "which points to ";
1913 return MatchPrintAndExplain(*pointer, matcher_, listener);
1914 }
1915
1916 private:
1917 const Matcher<const Pointee&> matcher_;
1918 };
1919
1920 const InnerMatcher matcher_;
1921 };
1922
1923 // Implements the Pointer(m) matcher
1924 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
1925 // m. The pointer can be either raw or smart, and will match `m` against the
1926 // raw pointer.
1927 template <typename InnerMatcher>
1928 class PointerMatcher {
1929 public:
1930 explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1931
1932 // This type conversion operator template allows Pointer(m) to be
1933 // used as a matcher for any pointer type whose pointer type is
1934 // compatible with the inner matcher, where type PointerType can be
1935 // either a raw pointer or a smart pointer.
1936 //
1937 // The reason we do this instead of relying on
1938 // MakePolymorphicMatcher() is that the latter is not flexible
1939 // enough for implementing the DescribeTo() method of Pointer().
1940 template <typename PointerType>
1941 operator Matcher<PointerType>() const { // NOLINT
1942 return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1943 }
1944
1945 private:
1946 // The monomorphic implementation that works for a particular pointer type.
1947 template <typename PointerType>
1948 class Impl : public MatcherInterface<PointerType> {
1949 public:
1950 using Pointer =
1951 const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1952 PointerType)>::element_type*;
1953
1954 explicit Impl(const InnerMatcher& matcher)
1955 : matcher_(MatcherCast<Pointer>(matcher)) {}
1956
1957 void DescribeTo(::std::ostream* os) const override {
1958 *os << "is a pointer that ";
1959 matcher_.DescribeTo(os);
1960 }
1961
1962 void DescribeNegationTo(::std::ostream* os) const override {
1963 *os << "is not a pointer that ";
1964 matcher_.DescribeTo(os);
1965 }
1966
1967 bool MatchAndExplain(PointerType pointer,
1968 MatchResultListener* listener) const override {
1969 *listener << "which is a pointer that ";
1970 Pointer p = GetRawPointer(pointer);
1971 return MatchPrintAndExplain(p, matcher_, listener);
1972 }
1973
1974 private:
1975 Matcher<Pointer> matcher_;
1976 };
1977
1978 const InnerMatcher matcher_;
1979 };
1980
1981 #if GTEST_HAS_RTTI
1982 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1983 // reference that matches inner_matcher when dynamic_cast<T> is applied.
1984 // The result of dynamic_cast<To> is forwarded to the inner matcher.
1985 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
1986 // If To is a reference and the cast fails, this matcher returns false
1987 // immediately.
1988 template <typename To>
1989 class WhenDynamicCastToMatcherBase {
1990 public:
1991 explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
1992 : matcher_(matcher) {}
1993
1994 void DescribeTo(::std::ostream* os) const {
1995 GetCastTypeDescription(os);
1996 matcher_.DescribeTo(os);
1997 }
1998
1999 void DescribeNegationTo(::std::ostream* os) const {
2000 GetCastTypeDescription(os);
2001 matcher_.DescribeNegationTo(os);
2002 }
2003
2004 protected:
2005 const Matcher<To> matcher_;
2006
2007 static std::string GetToName() { return GetTypeName<To>(); }
2008
2009 private:
2010 static void GetCastTypeDescription(::std::ostream* os) {
2011 *os << "when dynamic_cast to " << GetToName() << ", ";
2012 }
2013 };
2014
2015 // Primary template.
2016 // To is a pointer. Cast and forward the result.
2017 template <typename To>
2018 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2019 public:
2020 explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2021 : WhenDynamicCastToMatcherBase<To>(matcher) {}
2022
2023 template <typename From>
2024 bool MatchAndExplain(From from, MatchResultListener* listener) const {
2025 To to = dynamic_cast<To>(from);
2026 return MatchPrintAndExplain(to, this->matcher_, listener);
2027 }
2028 };
2029
2030 // Specialize for references.
2031 // In this case we return false if the dynamic_cast fails.
2032 template <typename To>
2033 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2034 public:
2035 explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2036 : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2037
2038 template <typename From>
2039 bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2040 // We don't want an std::bad_cast here, so do the cast with pointers.
2041 To* to = dynamic_cast<To*>(&from);
2042 if (to == nullptr) {
2043 *listener << "which cannot be dynamic_cast to " << this->GetToName();
2044 return false;
2045 }
2046 return MatchPrintAndExplain(*to, this->matcher_, listener);
2047 }
2048 };
2049 #endif // GTEST_HAS_RTTI
2050
2051 // Implements the Field() matcher for matching a field (i.e. member
2052 // variable) of an object.
2053 template <typename Class, typename FieldType>
2054 class FieldMatcher {
2055 public:
2056 FieldMatcher(FieldType Class::*field,
2057 const Matcher<const FieldType&>& matcher)
2058 : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2059
2060 FieldMatcher(const std::string& field_name, FieldType Class::*field,
2061 const Matcher<const FieldType&>& matcher)
2062 : field_(field),
2063 matcher_(matcher),
2064 whose_field_("whose field `" + field_name + "` ") {}
2065
2066 void DescribeTo(::std::ostream* os) const {
2067 *os << "is an object " << whose_field_;
2068 matcher_.DescribeTo(os);
2069 }
2070
2071 void DescribeNegationTo(::std::ostream* os) const {
2072 *os << "is an object " << whose_field_;
2073 matcher_.DescribeNegationTo(os);
2074 }
2075
2076 template <typename T>
2077 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2078 // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2079 // a compiler bug, and can now be removed.
2080 return MatchAndExplainImpl(
2081 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2082 value, listener);
2083 }
2084
2085 private:
2086 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2087 const Class& obj,
2088 MatchResultListener* listener) const {
2089 *listener << whose_field_ << "is ";
2090 return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2091 }
2092
2093 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2094 MatchResultListener* listener) const {
2095 if (p == nullptr) return false;
2096
2097 *listener << "which points to an object ";
2098 // Since *p has a field, it must be a class/struct/union type and
2099 // thus cannot be a pointer. Therefore we pass false_type() as
2100 // the first argument.
2101 return MatchAndExplainImpl(std::false_type(), *p, listener);
2102 }
2103
2104 const FieldType Class::*field_;
2105 const Matcher<const FieldType&> matcher_;
2106
2107 // Contains either "whose given field " if the name of the field is unknown
2108 // or "whose field `name_of_field` " if the name is known.
2109 const std::string whose_field_;
2110 };
2111
2112 // Implements the Property() matcher for matching a property
2113 // (i.e. return value of a getter method) of an object.
2114 //
2115 // Property is a const-qualified member function of Class returning
2116 // PropertyType.
2117 template <typename Class, typename PropertyType, typename Property>
2118 class PropertyMatcher {
2119 public:
2120 typedef const PropertyType& RefToConstProperty;
2121
2122 PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2123 : property_(property),
2124 matcher_(matcher),
2125 whose_property_("whose given property ") {}
2126
2127 PropertyMatcher(const std::string& property_name, Property property,
2128 const Matcher<RefToConstProperty>& matcher)
2129 : property_(property),
2130 matcher_(matcher),
2131 whose_property_("whose property `" + property_name + "` ") {}
2132
2133 void DescribeTo(::std::ostream* os) const {
2134 *os << "is an object " << whose_property_;
2135 matcher_.DescribeTo(os);
2136 }
2137
2138 void DescribeNegationTo(::std::ostream* os) const {
2139 *os << "is an object " << whose_property_;
2140 matcher_.DescribeNegationTo(os);
2141 }
2142
2143 template <typename T>
2144 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2145 return MatchAndExplainImpl(
2146 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2147 value, listener);
2148 }
2149
2150 private:
2151 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2152 const Class& obj,
2153 MatchResultListener* listener) const {
2154 *listener << whose_property_ << "is ";
2155 // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2156 // which takes a non-const reference as argument.
2157 RefToConstProperty result = (obj.*property_)();
2158 return MatchPrintAndExplain(result, matcher_, listener);
2159 }
2160
2161 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2162 MatchResultListener* listener) const {
2163 if (p == nullptr) return false;
2164
2165 *listener << "which points to an object ";
2166 // Since *p has a property method, it must be a class/struct/union
2167 // type and thus cannot be a pointer. Therefore we pass
2168 // false_type() as the first argument.
2169 return MatchAndExplainImpl(std::false_type(), *p, listener);
2170 }
2171
2172 Property property_;
2173 const Matcher<RefToConstProperty> matcher_;
2174
2175 // Contains either "whose given property " if the name of the property is
2176 // unknown or "whose property `name_of_property` " if the name is known.
2177 const std::string whose_property_;
2178 };
2179
2180 // Type traits specifying various features of different functors for ResultOf.
2181 // The default template specifies features for functor objects.
2182 template <typename Functor>
2183 struct CallableTraits {
2184 typedef Functor StorageType;
2185
2186 static void CheckIsValid(Functor /* functor */) {}
2187
2188 template <typename T>
2189 static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2190 return f(arg);
2191 }
2192 };
2193
2194 // Specialization for function pointers.
2195 template <typename ArgType, typename ResType>
2196 struct CallableTraits<ResType (*)(ArgType)> {
2197 typedef ResType ResultType;
2198 typedef ResType (*StorageType)(ArgType);
2199
2200 static void CheckIsValid(ResType (*f)(ArgType)) {
2201 GTEST_CHECK_(f != nullptr)
2202 << "NULL function pointer is passed into ResultOf().";
2203 }
2204 template <typename T>
2205 static ResType Invoke(ResType (*f)(ArgType), T arg) {
2206 return (*f)(arg);
2207 }
2208 };
2209
2210 // Implements the ResultOf() matcher for matching a return value of a
2211 // unary function of an object.
2212 template <typename Callable, typename InnerMatcher>
2213 class ResultOfMatcher {
2214 public:
2215 ResultOfMatcher(Callable callable, InnerMatcher matcher)
2216 : ResultOfMatcher(/*result_description=*/"", std::move(callable),
2217 std::move(matcher)) {}
2218
2219 ResultOfMatcher(const std::string& result_description, Callable callable,
2220 InnerMatcher matcher)
2221 : result_description_(result_description),
2222 callable_(std::move(callable)),
2223 matcher_(std::move(matcher)) {
2224 CallableTraits<Callable>::CheckIsValid(callable_);
2225 }
2226
2227 template <typename T>
2228 operator Matcher<T>() const {
2229 return Matcher<T>(
2230 new Impl<const T&>(result_description_, callable_, matcher_));
2231 }
2232
2233 private:
2234 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2235
2236 template <typename T>
2237 class Impl : public MatcherInterface<T> {
2238 using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2239 std::declval<CallableStorageType>(), std::declval<T>()));
2240
2241 public:
2242 template <typename M>
2243 Impl(const std::string& result_description,
2244 const CallableStorageType& callable, const M& matcher)
2245 : result_description_(result_description),
2246 callable_(callable),
2247 matcher_(MatcherCast<ResultType>(matcher)) {}
2248
2249 void DescribeTo(::std::ostream* os) const override {
2250 if (result_description_.empty()) {
2251 *os << "is mapped by the given callable to a value that ";
2252 } else {
2253 *os << "whose " << result_description_ << " ";
2254 }
2255 matcher_.DescribeTo(os);
2256 }
2257
2258 void DescribeNegationTo(::std::ostream* os) const override {
2259 if (result_description_.empty()) {
2260 *os << "is mapped by the given callable to a value that ";
2261 } else {
2262 *os << "whose " << result_description_ << " ";
2263 }
2264 matcher_.DescribeNegationTo(os);
2265 }
2266
2267 bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2268 if (result_description_.empty()) {
2269 *listener << "which is mapped by the given callable to ";
2270 } else {
2271 *listener << "whose " << result_description_ << " is ";
2272 }
2273 // Cannot pass the return value directly to MatchPrintAndExplain, which
2274 // takes a non-const reference as argument.
2275 // Also, specifying template argument explicitly is needed because T could
2276 // be a non-const reference (e.g. Matcher<Uncopyable&>).
2277 ResultType result =
2278 CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2279 return MatchPrintAndExplain(result, matcher_, listener);
2280 }
2281
2282 private:
2283 const std::string result_description_;
2284 // Functors often define operator() as non-const method even though
2285 // they are actually stateless. But we need to use them even when
2286 // 'this' is a const pointer. It's the user's responsibility not to
2287 // use stateful callables with ResultOf(), which doesn't guarantee
2288 // how many times the callable will be invoked.
2289 mutable CallableStorageType callable_;
2290 const Matcher<ResultType> matcher_;
2291 }; // class Impl
2292
2293 const std::string result_description_;
2294 const CallableStorageType callable_;
2295 const InnerMatcher matcher_;
2296 };
2297
2298 // Implements a matcher that checks the size of an STL-style container.
2299 template <typename SizeMatcher>
2300 class SizeIsMatcher {
2301 public:
2302 explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2303 : size_matcher_(size_matcher) {}
2304
2305 template <typename Container>
2306 operator Matcher<Container>() const {
2307 return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2308 }
2309
2310 template <typename Container>
2311 class Impl : public MatcherInterface<Container> {
2312 public:
2313 using SizeType = decltype(std::declval<Container>().size());
2314 explicit Impl(const SizeMatcher& size_matcher)
2315 : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2316
2317 void DescribeTo(::std::ostream* os) const override {
2318 *os << "has a size that ";
2319 size_matcher_.DescribeTo(os);
2320 }
2321 void DescribeNegationTo(::std::ostream* os) const override {
2322 *os << "has a size that ";
2323 size_matcher_.DescribeNegationTo(os);
2324 }
2325
2326 bool MatchAndExplain(Container container,
2327 MatchResultListener* listener) const override {
2328 SizeType size = container.size();
2329 StringMatchResultListener size_listener;
2330 const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2331 *listener << "whose size " << size
2332 << (result ? " matches" : " doesn't match");
2333 PrintIfNotEmpty(size_listener.str(), listener->stream());
2334 return result;
2335 }
2336
2337 private:
2338 const Matcher<SizeType> size_matcher_;
2339 };
2340
2341 private:
2342 const SizeMatcher size_matcher_;
2343 };
2344
2345 // Implements a matcher that checks the begin()..end() distance of an STL-style
2346 // container.
2347 template <typename DistanceMatcher>
2348 class BeginEndDistanceIsMatcher {
2349 public:
2350 explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2351 : distance_matcher_(distance_matcher) {}
2352
2353 template <typename Container>
2354 operator Matcher<Container>() const {
2355 return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2356 }
2357
2358 template <typename Container>
2359 class Impl : public MatcherInterface<Container> {
2360 public:
2361 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2362 Container)>
2363 ContainerView;
2364 typedef typename std::iterator_traits<
2365 typename ContainerView::type::const_iterator>::difference_type
2366 DistanceType;
2367 explicit Impl(const DistanceMatcher& distance_matcher)
2368 : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2369
2370 void DescribeTo(::std::ostream* os) const override {
2371 *os << "distance between begin() and end() ";
2372 distance_matcher_.DescribeTo(os);
2373 }
2374 void DescribeNegationTo(::std::ostream* os) const override {
2375 *os << "distance between begin() and end() ";
2376 distance_matcher_.DescribeNegationTo(os);
2377 }
2378
2379 bool MatchAndExplain(Container container,
2380 MatchResultListener* listener) const override {
2381 using std::begin;
2382 using std::end;
2383 DistanceType distance = std::distance(begin(container), end(container));
2384 StringMatchResultListener distance_listener;
2385 const bool result =
2386 distance_matcher_.MatchAndExplain(distance, &distance_listener);
2387 *listener << "whose distance between begin() and end() " << distance
2388 << (result ? " matches" : " doesn't match");
2389 PrintIfNotEmpty(distance_listener.str(), listener->stream());
2390 return result;
2391 }
2392
2393 private:
2394 const Matcher<DistanceType> distance_matcher_;
2395 };
2396
2397 private:
2398 const DistanceMatcher distance_matcher_;
2399 };
2400
2401 // Implements an equality matcher for any STL-style container whose elements
2402 // support ==. This matcher is like Eq(), but its failure explanations provide
2403 // more detailed information that is useful when the container is used as a set.
2404 // The failure message reports elements that are in one of the operands but not
2405 // the other. The failure messages do not report duplicate or out-of-order
2406 // elements in the containers (which don't properly matter to sets, but can
2407 // occur if the containers are vectors or lists, for example).
2408 //
2409 // Uses the container's const_iterator, value_type, operator ==,
2410 // begin(), and end().
2411 template <typename Container>
2412 class ContainerEqMatcher {
2413 public:
2414 typedef internal::StlContainerView<Container> View;
2415 typedef typename View::type StlContainer;
2416 typedef typename View::const_reference StlContainerReference;
2417
2418 static_assert(!std::is_const<Container>::value,
2419 "Container type must not be const");
2420 static_assert(!std::is_reference<Container>::value,
2421 "Container type must not be a reference");
2422
2423 // We make a copy of expected in case the elements in it are modified
2424 // after this matcher is created.
2425 explicit ContainerEqMatcher(const Container& expected)
2426 : expected_(View::Copy(expected)) {}
2427
2428 void DescribeTo(::std::ostream* os) const {
2429 *os << "equals ";
2430 UniversalPrint(expected_, os);
2431 }
2432 void DescribeNegationTo(::std::ostream* os) const {
2433 *os << "does not equal ";
2434 UniversalPrint(expected_, os);
2435 }
2436
2437 template <typename LhsContainer>
2438 bool MatchAndExplain(const LhsContainer& lhs,
2439 MatchResultListener* listener) const {
2440 typedef internal::StlContainerView<
2441 typename std::remove_const<LhsContainer>::type>
2442 LhsView;
2443 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2444 if (lhs_stl_container == expected_) return true;
2445
2446 ::std::ostream* const os = listener->stream();
2447 if (os != nullptr) {
2448 // Something is different. Check for extra values first.
2449 bool printed_header = false;
2450 for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end();
2451 ++it) {
2452 if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2453 expected_.end()) {
2454 if (printed_header) {
2455 *os << ", ";
2456 } else {
2457 *os << "which has these unexpected elements: ";
2458 printed_header = true;
2459 }
2460 UniversalPrint(*it, os);
2461 }
2462 }
2463
2464 // Now check for missing values.
2465 bool printed_header2 = false;
2466 for (auto it = expected_.begin(); it != expected_.end(); ++it) {
2467 if (internal::ArrayAwareFind(lhs_stl_container.begin(),
2468 lhs_stl_container.end(),
2469 *it) == lhs_stl_container.end()) {
2470 if (printed_header2) {
2471 *os << ", ";
2472 } else {
2473 *os << (printed_header ? ",\nand" : "which")
2474 << " doesn't have these expected elements: ";
2475 printed_header2 = true;
2476 }
2477 UniversalPrint(*it, os);
2478 }
2479 }
2480 }
2481
2482 return false;
2483 }
2484
2485 private:
2486 const StlContainer expected_;
2487 };
2488
2489 // A comparator functor that uses the < operator to compare two values.
2490 struct LessComparator {
2491 template <typename T, typename U>
2492 bool operator()(const T& lhs, const U& rhs) const {
2493 return lhs < rhs;
2494 }
2495 };
2496
2497 // Implements WhenSortedBy(comparator, container_matcher).
2498 template <typename Comparator, typename ContainerMatcher>
2499 class WhenSortedByMatcher {
2500 public:
2501 WhenSortedByMatcher(const Comparator& comparator,
2502 const ContainerMatcher& matcher)
2503 : comparator_(comparator), matcher_(matcher) {}
2504
2505 template <typename LhsContainer>
2506 operator Matcher<LhsContainer>() const {
2507 return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2508 }
2509
2510 template <typename LhsContainer>
2511 class Impl : public MatcherInterface<LhsContainer> {
2512 public:
2513 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2514 LhsContainer)>
2515 LhsView;
2516 typedef typename LhsView::type LhsStlContainer;
2517 typedef typename LhsView::const_reference LhsStlContainerReference;
2518 // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2519 // so that we can match associative containers.
2520 typedef
2521 typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type
2522 LhsValue;
2523
2524 Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2525 : comparator_(comparator), matcher_(matcher) {}
2526
2527 void DescribeTo(::std::ostream* os) const override {
2528 *os << "(when sorted) ";
2529 matcher_.DescribeTo(os);
2530 }
2531
2532 void DescribeNegationTo(::std::ostream* os) const override {
2533 *os << "(when sorted) ";
2534 matcher_.DescribeNegationTo(os);
2535 }
2536
2537 bool MatchAndExplain(LhsContainer lhs,
2538 MatchResultListener* listener) const override {
2539 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2540 ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2541 lhs_stl_container.end());
2542 ::std::sort(sorted_container.begin(), sorted_container.end(),
2543 comparator_);
2544
2545 if (!listener->IsInterested()) {
2546 // If the listener is not interested, we do not need to
2547 // construct the inner explanation.
2548 return matcher_.Matches(sorted_container);
2549 }
2550
2551 *listener << "which is ";
2552 UniversalPrint(sorted_container, listener->stream());
2553 *listener << " when sorted";
2554
2555 StringMatchResultListener inner_listener;
2556 const bool match =
2557 matcher_.MatchAndExplain(sorted_container, &inner_listener);
2558 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2559 return match;
2560 }
2561
2562 private:
2563 const Comparator comparator_;
2564 const Matcher<const ::std::vector<LhsValue>&> matcher_;
2565
2566 Impl(const Impl&) = delete;
2567 Impl& operator=(const Impl&) = delete;
2568 };
2569
2570 private:
2571 const Comparator comparator_;
2572 const ContainerMatcher matcher_;
2573 };
2574
2575 // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
2576 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
2577 // T2&> >, where T1 and T2 are the types of elements in the LHS
2578 // container and the RHS container respectively.
2579 template <typename TupleMatcher, typename RhsContainer>
2580 class PointwiseMatcher {
2581 static_assert(
2582 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2583 "use UnorderedPointwise with hash tables");
2584
2585 public:
2586 typedef internal::StlContainerView<RhsContainer> RhsView;
2587 typedef typename RhsView::type RhsStlContainer;
2588 typedef typename RhsStlContainer::value_type RhsValue;
2589
2590 static_assert(!std::is_const<RhsContainer>::value,
2591 "RhsContainer type must not be const");
2592 static_assert(!std::is_reference<RhsContainer>::value,
2593 "RhsContainer type must not be a reference");
2594
2595 // Like ContainerEq, we make a copy of rhs in case the elements in
2596 // it are modified after this matcher is created.
2597 PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2598 : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2599
2600 template <typename LhsContainer>
2601 operator Matcher<LhsContainer>() const {
2602 static_assert(
2603 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2604 "use UnorderedPointwise with hash tables");
2605
2606 return Matcher<LhsContainer>(
2607 new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2608 }
2609
2610 template <typename LhsContainer>
2611 class Impl : public MatcherInterface<LhsContainer> {
2612 public:
2613 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2614 LhsContainer)>
2615 LhsView;
2616 typedef typename LhsView::type LhsStlContainer;
2617 typedef typename LhsView::const_reference LhsStlContainerReference;
2618 typedef typename LhsStlContainer::value_type LhsValue;
2619 // We pass the LHS value and the RHS value to the inner matcher by
2620 // reference, as they may be expensive to copy. We must use tuple
2621 // instead of pair here, as a pair cannot hold references (C++ 98,
2622 // 20.2.2 [lib.pairs]).
2623 typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2624
2625 Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2626 // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2627 : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2628 rhs_(rhs) {}
2629
2630 void DescribeTo(::std::ostream* os) const override {
2631 *os << "contains " << rhs_.size()
2632 << " values, where each value and its corresponding value in ";
2633 UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2634 *os << " ";
2635 mono_tuple_matcher_.DescribeTo(os);
2636 }
2637 void DescribeNegationTo(::std::ostream* os) const override {
2638 *os << "doesn't contain exactly " << rhs_.size()
2639 << " values, or contains a value x at some index i"
2640 << " where x and the i-th value of ";
2641 UniversalPrint(rhs_, os);
2642 *os << " ";
2643 mono_tuple_matcher_.DescribeNegationTo(os);
2644 }
2645
2646 bool MatchAndExplain(LhsContainer lhs,
2647 MatchResultListener* listener) const override {
2648 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2649 const size_t actual_size = lhs_stl_container.size();
2650 if (actual_size != rhs_.size()) {
2651 *listener << "which contains " << actual_size << " values";
2652 return false;
2653 }
2654
2655 auto left = lhs_stl_container.begin();
2656 auto right = rhs_.begin();
2657 for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2658 if (listener->IsInterested()) {
2659 StringMatchResultListener inner_listener;
2660 // Create InnerMatcherArg as a temporarily object to avoid it outlives
2661 // *left and *right. Dereference or the conversion to `const T&` may
2662 // return temp objects, e.g. for vector<bool>.
2663 if (!mono_tuple_matcher_.MatchAndExplain(
2664 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2665 ImplicitCast_<const RhsValue&>(*right)),
2666 &inner_listener)) {
2667 *listener << "where the value pair (";
2668 UniversalPrint(*left, listener->stream());
2669 *listener << ", ";
2670 UniversalPrint(*right, listener->stream());
2671 *listener << ") at index #" << i << " don't match";
2672 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2673 return false;
2674 }
2675 } else {
2676 if (!mono_tuple_matcher_.Matches(
2677 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2678 ImplicitCast_<const RhsValue&>(*right))))
2679 return false;
2680 }
2681 }
2682
2683 return true;
2684 }
2685
2686 private:
2687 const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2688 const RhsStlContainer rhs_;
2689 };
2690
2691 private:
2692 const TupleMatcher tuple_matcher_;
2693 const RhsStlContainer rhs_;
2694 };
2695
2696 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2697 template <typename Container>
2698 class QuantifierMatcherImpl : public MatcherInterface<Container> {
2699 public:
2700 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2701 typedef StlContainerView<RawContainer> View;
2702 typedef typename View::type StlContainer;
2703 typedef typename View::const_reference StlContainerReference;
2704 typedef typename StlContainer::value_type Element;
2705
2706 template <typename InnerMatcher>
2707 explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2708 : inner_matcher_(
2709 testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2710
2711 // Checks whether:
2712 // * All elements in the container match, if all_elements_should_match.
2713 // * Any element in the container matches, if !all_elements_should_match.
2714 bool MatchAndExplainImpl(bool all_elements_should_match, Container container,
2715 MatchResultListener* listener) const {
2716 StlContainerReference stl_container = View::ConstReference(container);
2717 size_t i = 0;
2718 for (auto it = stl_container.begin(); it != stl_container.end();
2719 ++it, ++i) {
2720 StringMatchResultListener inner_listener;
2721 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2722
2723 if (matches != all_elements_should_match) {
2724 *listener << "whose element #" << i
2725 << (matches ? " matches" : " doesn't match");
2726 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2727 return !all_elements_should_match;
2728 }
2729 }
2730 return all_elements_should_match;
2731 }
2732
2733 bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher,
2734 Container container,
2735 MatchResultListener* listener) const {
2736 StlContainerReference stl_container = View::ConstReference(container);
2737 size_t i = 0;
2738 std::vector<size_t> match_elements;
2739 for (auto it = stl_container.begin(); it != stl_container.end();
2740 ++it, ++i) {
2741 StringMatchResultListener inner_listener;
2742 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2743 if (matches) {
2744 match_elements.push_back(i);
2745 }
2746 }
2747 if (listener->IsInterested()) {
2748 if (match_elements.empty()) {
2749 *listener << "has no element that matches";
2750 } else if (match_elements.size() == 1) {
2751 *listener << "whose element #" << match_elements[0] << " matches";
2752 } else {
2753 *listener << "whose elements (";
2754 std::string sep = "";
2755 for (size_t e : match_elements) {
2756 *listener << sep << e;
2757 sep = ", ";
2758 }
2759 *listener << ") match";
2760 }
2761 }
2762 StringMatchResultListener count_listener;
2763 if (count_matcher.MatchAndExplain(match_elements.size(), &count_listener)) {
2764 *listener << " and whose match quantity of " << match_elements.size()
2765 << " matches";
2766 PrintIfNotEmpty(count_listener.str(), listener->stream());
2767 return true;
2768 } else {
2769 if (match_elements.empty()) {
2770 *listener << " and";
2771 } else {
2772 *listener << " but";
2773 }
2774 *listener << " whose match quantity of " << match_elements.size()
2775 << " does not match";
2776 PrintIfNotEmpty(count_listener.str(), listener->stream());
2777 return false;
2778 }
2779 }
2780
2781 protected:
2782 const Matcher<const Element&> inner_matcher_;
2783 };
2784
2785 // Implements Contains(element_matcher) for the given argument type Container.
2786 // Symmetric to EachMatcherImpl.
2787 template <typename Container>
2788 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2789 public:
2790 template <typename InnerMatcher>
2791 explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2792 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2793
2794 // Describes what this matcher does.
2795 void DescribeTo(::std::ostream* os) const override {
2796 *os << "contains at least one element that ";
2797 this->inner_matcher_.DescribeTo(os);
2798 }
2799
2800 void DescribeNegationTo(::std::ostream* os) const override {
2801 *os << "doesn't contain any element that ";
2802 this->inner_matcher_.DescribeTo(os);
2803 }
2804
2805 bool MatchAndExplain(Container container,
2806 MatchResultListener* listener) const override {
2807 return this->MatchAndExplainImpl(false, container, listener);
2808 }
2809 };
2810
2811 // Implements Each(element_matcher) for the given argument type Container.
2812 // Symmetric to ContainsMatcherImpl.
2813 template <typename Container>
2814 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2815 public:
2816 template <typename InnerMatcher>
2817 explicit EachMatcherImpl(InnerMatcher inner_matcher)
2818 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2819
2820 // Describes what this matcher does.
2821 void DescribeTo(::std::ostream* os) const override {
2822 *os << "only contains elements that ";
2823 this->inner_matcher_.DescribeTo(os);
2824 }
2825
2826 void DescribeNegationTo(::std::ostream* os) const override {
2827 *os << "contains some element that ";
2828 this->inner_matcher_.DescribeNegationTo(os);
2829 }
2830
2831 bool MatchAndExplain(Container container,
2832 MatchResultListener* listener) const override {
2833 return this->MatchAndExplainImpl(true, container, listener);
2834 }
2835 };
2836
2837 // Implements Contains(element_matcher).Times(n) for the given argument type
2838 // Container.
2839 template <typename Container>
2840 class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> {
2841 public:
2842 template <typename InnerMatcher>
2843 explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher,
2844 Matcher<size_t> count_matcher)
2845 : QuantifierMatcherImpl<Container>(inner_matcher),
2846 count_matcher_(std::move(count_matcher)) {}
2847
2848 void DescribeTo(::std::ostream* os) const override {
2849 *os << "quantity of elements that match ";
2850 this->inner_matcher_.DescribeTo(os);
2851 *os << " ";
2852 count_matcher_.DescribeTo(os);
2853 }
2854
2855 void DescribeNegationTo(::std::ostream* os) const override {
2856 *os << "quantity of elements that match ";
2857 this->inner_matcher_.DescribeTo(os);
2858 *os << " ";
2859 count_matcher_.DescribeNegationTo(os);
2860 }
2861
2862 bool MatchAndExplain(Container container,
2863 MatchResultListener* listener) const override {
2864 return this->MatchAndExplainImpl(count_matcher_, container, listener);
2865 }
2866
2867 private:
2868 const Matcher<size_t> count_matcher_;
2869 };
2870
2871 // Implements polymorphic Contains(element_matcher).Times(n).
2872 template <typename M>
2873 class ContainsTimesMatcher {
2874 public:
2875 explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher)
2876 : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {}
2877
2878 template <typename Container>
2879 operator Matcher<Container>() const { // NOLINT
2880 return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>(
2881 inner_matcher_, count_matcher_));
2882 }
2883
2884 private:
2885 const M inner_matcher_;
2886 const Matcher<size_t> count_matcher_;
2887 };
2888
2889 // Implements polymorphic Contains(element_matcher).
2890 template <typename M>
2891 class ContainsMatcher {
2892 public:
2893 explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2894
2895 template <typename Container>
2896 operator Matcher<Container>() const { // NOLINT
2897 return Matcher<Container>(
2898 new ContainsMatcherImpl<const Container&>(inner_matcher_));
2899 }
2900
2901 ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const {
2902 return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher));
2903 }
2904
2905 private:
2906 const M inner_matcher_;
2907 };
2908
2909 // Implements polymorphic Each(element_matcher).
2910 template <typename M>
2911 class EachMatcher {
2912 public:
2913 explicit EachMatcher(M m) : inner_matcher_(m) {}
2914
2915 template <typename Container>
2916 operator Matcher<Container>() const { // NOLINT
2917 return Matcher<Container>(
2918 new EachMatcherImpl<const Container&>(inner_matcher_));
2919 }
2920
2921 private:
2922 const M inner_matcher_;
2923 };
2924
2925 struct Rank1 {};
2926 struct Rank0 : Rank1 {};
2927
2928 namespace pair_getters {
2929 using std::get;
2930 template <typename T>
2931 auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
2932 return get<0>(x);
2933 }
2934 template <typename T>
2935 auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
2936 return x.first;
2937 }
2938
2939 template <typename T>
2940 auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
2941 return get<1>(x);
2942 }
2943 template <typename T>
2944 auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
2945 return x.second;
2946 }
2947 } // namespace pair_getters
2948
2949 // Implements Key(inner_matcher) for the given argument pair type.
2950 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2951 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
2952 // std::map that contains at least one element whose key is >= 5.
2953 template <typename PairType>
2954 class KeyMatcherImpl : public MatcherInterface<PairType> {
2955 public:
2956 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2957 typedef typename RawPairType::first_type KeyType;
2958
2959 template <typename InnerMatcher>
2960 explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2961 : inner_matcher_(
2962 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {}
2963
2964 // Returns true if and only if 'key_value.first' (the key) matches the inner
2965 // matcher.
2966 bool MatchAndExplain(PairType key_value,
2967 MatchResultListener* listener) const override {
2968 StringMatchResultListener inner_listener;
2969 const bool match = inner_matcher_.MatchAndExplain(
2970 pair_getters::First(key_value, Rank0()), &inner_listener);
2971 const std::string explanation = inner_listener.str();
2972 if (!explanation.empty()) {
2973 *listener << "whose first field is a value " << explanation;
2974 }
2975 return match;
2976 }
2977
2978 // Describes what this matcher does.
2979 void DescribeTo(::std::ostream* os) const override {
2980 *os << "has a key that ";
2981 inner_matcher_.DescribeTo(os);
2982 }
2983
2984 // Describes what the negation of this matcher does.
2985 void DescribeNegationTo(::std::ostream* os) const override {
2986 *os << "doesn't have a key that ";
2987 inner_matcher_.DescribeTo(os);
2988 }
2989
2990 private:
2991 const Matcher<const KeyType&> inner_matcher_;
2992 };
2993
2994 // Implements polymorphic Key(matcher_for_key).
2995 template <typename M>
2996 class KeyMatcher {
2997 public:
2998 explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2999
3000 template <typename PairType>
3001 operator Matcher<PairType>() const {
3002 return Matcher<PairType>(
3003 new KeyMatcherImpl<const PairType&>(matcher_for_key_));
3004 }
3005
3006 private:
3007 const M matcher_for_key_;
3008 };
3009
3010 // Implements polymorphic Address(matcher_for_address).
3011 template <typename InnerMatcher>
3012 class AddressMatcher {
3013 public:
3014 explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
3015
3016 template <typename Type>
3017 operator Matcher<Type>() const { // NOLINT
3018 return Matcher<Type>(new Impl<const Type&>(matcher_));
3019 }
3020
3021 private:
3022 // The monomorphic implementation that works for a particular object type.
3023 template <typename Type>
3024 class Impl : public MatcherInterface<Type> {
3025 public:
3026 using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
3027 explicit Impl(const InnerMatcher& matcher)
3028 : matcher_(MatcherCast<Address>(matcher)) {}
3029
3030 void DescribeTo(::std::ostream* os) const override {
3031 *os << "has address that ";
3032 matcher_.DescribeTo(os);
3033 }
3034
3035 void DescribeNegationTo(::std::ostream* os) const override {
3036 *os << "does not have address that ";
3037 matcher_.DescribeTo(os);
3038 }
3039
3040 bool MatchAndExplain(Type object,
3041 MatchResultListener* listener) const override {
3042 *listener << "which has address ";
3043 Address address = std::addressof(object);
3044 return MatchPrintAndExplain(address, matcher_, listener);
3045 }
3046
3047 private:
3048 const Matcher<Address> matcher_;
3049 };
3050 const InnerMatcher matcher_;
3051 };
3052
3053 // Implements Pair(first_matcher, second_matcher) for the given argument pair
3054 // type with its two matchers. See Pair() function below.
3055 template <typename PairType>
3056 class PairMatcherImpl : public MatcherInterface<PairType> {
3057 public:
3058 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3059 typedef typename RawPairType::first_type FirstType;
3060 typedef typename RawPairType::second_type SecondType;
3061
3062 template <typename FirstMatcher, typename SecondMatcher>
3063 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3064 : first_matcher_(
3065 testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3066 second_matcher_(
3067 testing::SafeMatcherCast<const SecondType&>(second_matcher)) {}
3068
3069 // Describes what this matcher does.
3070 void DescribeTo(::std::ostream* os) const override {
3071 *os << "has a first field that ";
3072 first_matcher_.DescribeTo(os);
3073 *os << ", and has a second field that ";
3074 second_matcher_.DescribeTo(os);
3075 }
3076
3077 // Describes what the negation of this matcher does.
3078 void DescribeNegationTo(::std::ostream* os) const override {
3079 *os << "has a first field that ";
3080 first_matcher_.DescribeNegationTo(os);
3081 *os << ", or has a second field that ";
3082 second_matcher_.DescribeNegationTo(os);
3083 }
3084
3085 // Returns true if and only if 'a_pair.first' matches first_matcher and
3086 // 'a_pair.second' matches second_matcher.
3087 bool MatchAndExplain(PairType a_pair,
3088 MatchResultListener* listener) const override {
3089 if (!listener->IsInterested()) {
3090 // If the listener is not interested, we don't need to construct the
3091 // explanation.
3092 return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
3093 second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
3094 }
3095 StringMatchResultListener first_inner_listener;
3096 if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
3097 &first_inner_listener)) {
3098 *listener << "whose first field does not match";
3099 PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3100 return false;
3101 }
3102 StringMatchResultListener second_inner_listener;
3103 if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
3104 &second_inner_listener)) {
3105 *listener << "whose second field does not match";
3106 PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3107 return false;
3108 }
3109 ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3110 listener);
3111 return true;
3112 }
3113
3114 private:
3115 void ExplainSuccess(const std::string& first_explanation,
3116 const std::string& second_explanation,
3117 MatchResultListener* listener) const {
3118 *listener << "whose both fields match";
3119 if (!first_explanation.empty()) {
3120 *listener << ", where the first field is a value " << first_explanation;
3121 }
3122 if (!second_explanation.empty()) {
3123 *listener << ", ";
3124 if (!first_explanation.empty()) {
3125 *listener << "and ";
3126 } else {
3127 *listener << "where ";
3128 }
3129 *listener << "the second field is a value " << second_explanation;
3130 }
3131 }
3132
3133 const Matcher<const FirstType&> first_matcher_;
3134 const Matcher<const SecondType&> second_matcher_;
3135 };
3136
3137 // Implements polymorphic Pair(first_matcher, second_matcher).
3138 template <typename FirstMatcher, typename SecondMatcher>
3139 class PairMatcher {
3140 public:
3141 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3142 : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3143
3144 template <typename PairType>
3145 operator Matcher<PairType>() const {
3146 return Matcher<PairType>(
3147 new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
3148 }
3149
3150 private:
3151 const FirstMatcher first_matcher_;
3152 const SecondMatcher second_matcher_;
3153 };
3154
3155 template <typename T, size_t... I>
3156 auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
3157 -> decltype(std::tie(get<I>(t)...)) {
3158 static_assert(std::tuple_size<T>::value == sizeof...(I),
3159 "Number of arguments doesn't match the number of fields.");
3160 return std::tie(get<I>(t)...);
3161 }
3162
3163 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
3164 template <typename T>
3165 auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
3166 const auto& [a] = t;
3167 return std::tie(a);
3168 }
3169 template <typename T>
3170 auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
3171 const auto& [a, b] = t;
3172 return std::tie(a, b);
3173 }
3174 template <typename T>
3175 auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
3176 const auto& [a, b, c] = t;
3177 return std::tie(a, b, c);
3178 }
3179 template <typename T>
3180 auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
3181 const auto& [a, b, c, d] = t;
3182 return std::tie(a, b, c, d);
3183 }
3184 template <typename T>
3185 auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
3186 const auto& [a, b, c, d, e] = t;
3187 return std::tie(a, b, c, d, e);
3188 }
3189 template <typename T>
3190 auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
3191 const auto& [a, b, c, d, e, f] = t;
3192 return std::tie(a, b, c, d, e, f);
3193 }
3194 template <typename T>
3195 auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
3196 const auto& [a, b, c, d, e, f, g] = t;
3197 return std::tie(a, b, c, d, e, f, g);
3198 }
3199 template <typename T>
3200 auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
3201 const auto& [a, b, c, d, e, f, g, h] = t;
3202 return std::tie(a, b, c, d, e, f, g, h);
3203 }
3204 template <typename T>
3205 auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
3206 const auto& [a, b, c, d, e, f, g, h, i] = t;
3207 return std::tie(a, b, c, d, e, f, g, h, i);
3208 }
3209 template <typename T>
3210 auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
3211 const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3212 return std::tie(a, b, c, d, e, f, g, h, i, j);
3213 }
3214 template <typename T>
3215 auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
3216 const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3217 return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3218 }
3219 template <typename T>
3220 auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
3221 const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3222 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3223 }
3224 template <typename T>
3225 auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
3226 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3227 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3228 }
3229 template <typename T>
3230 auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
3231 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3232 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3233 }
3234 template <typename T>
3235 auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
3236 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3237 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3238 }
3239 template <typename T>
3240 auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
3241 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3242 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3243 }
3244 template <typename T>
3245 auto UnpackStructImpl(const T& t, MakeIndexSequence<17>, char) {
3246 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t;
3247 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q);
3248 }
3249 template <typename T>
3250 auto UnpackStructImpl(const T& t, MakeIndexSequence<18>, char) {
3251 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t;
3252 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r);
3253 }
3254 template <typename T>
3255 auto UnpackStructImpl(const T& t, MakeIndexSequence<19>, char) {
3256 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t;
3257 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s);
3258 }
3259 #endif // defined(__cpp_structured_bindings)
3260
3261 template <size_t I, typename T>
3262 auto UnpackStruct(const T& t)
3263 -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
3264 return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
3265 }
3266
3267 // Helper function to do comma folding in C++11.
3268 // The array ensures left-to-right order of evaluation.
3269 // Usage: VariadicExpand({expr...});
3270 template <typename T, size_t N>
3271 void VariadicExpand(const T (&)[N]) {}
3272
3273 template <typename Struct, typename StructSize>
3274 class FieldsAreMatcherImpl;
3275
3276 template <typename Struct, size_t... I>
3277 class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
3278 : public MatcherInterface<Struct> {
3279 using UnpackedType =
3280 decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3281 using MatchersType = std::tuple<
3282 Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3283
3284 public:
3285 template <typename Inner>
3286 explicit FieldsAreMatcherImpl(const Inner& matchers)
3287 : matchers_(testing::SafeMatcherCast<
3288 const typename std::tuple_element<I, UnpackedType>::type&>(
3289 std::get<I>(matchers))...) {}
3290
3291 void DescribeTo(::std::ostream* os) const override {
3292 const char* separator = "";
3293 VariadicExpand(
3294 {(*os << separator << "has field #" << I << " that ",
3295 std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3296 }
3297
3298 void DescribeNegationTo(::std::ostream* os) const override {
3299 const char* separator = "";
3300 VariadicExpand({(*os << separator << "has field #" << I << " that ",
3301 std::get<I>(matchers_).DescribeNegationTo(os),
3302 separator = ", or ")...});
3303 }
3304
3305 bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3306 return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3307 }
3308
3309 private:
3310 bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3311 if (!listener->IsInterested()) {
3312 // If the listener is not interested, we don't need to construct the
3313 // explanation.
3314 bool good = true;
3315 VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3316 std::get<I>(tuple))...});
3317 return good;
3318 }
3319
3320 size_t failed_pos = ~size_t{};
3321
3322 std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3323
3324 VariadicExpand(
3325 {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3326 std::get<I>(tuple), &inner_listener[I])
3327 ? failed_pos = I
3328 : 0 ...});
3329 if (failed_pos != ~size_t{}) {
3330 *listener << "whose field #" << failed_pos << " does not match";
3331 PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3332 return false;
3333 }
3334
3335 *listener << "whose all elements match";
3336 const char* separator = ", where";
3337 for (size_t index = 0; index < sizeof...(I); ++index) {
3338 const std::string str = inner_listener[index].str();
3339 if (!str.empty()) {
3340 *listener << separator << " field #" << index << " is a value " << str;
3341 separator = ", and";
3342 }
3343 }
3344
3345 return true;
3346 }
3347
3348 MatchersType matchers_;
3349 };
3350
3351 template <typename... Inner>
3352 class FieldsAreMatcher {
3353 public:
3354 explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3355
3356 template <typename Struct>
3357 operator Matcher<Struct>() const { // NOLINT
3358 return Matcher<Struct>(
3359 new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
3360 matchers_));
3361 }
3362
3363 private:
3364 std::tuple<Inner...> matchers_;
3365 };
3366
3367 // Implements ElementsAre() and ElementsAreArray().
3368 template <typename Container>
3369 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3370 public:
3371 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3372 typedef internal::StlContainerView<RawContainer> View;
3373 typedef typename View::type StlContainer;
3374 typedef typename View::const_reference StlContainerReference;
3375 typedef typename StlContainer::value_type Element;
3376
3377 // Constructs the matcher from a sequence of element values or
3378 // element matchers.
3379 template <typename InputIter>
3380 ElementsAreMatcherImpl(InputIter first, InputIter last) {
3381 while (first != last) {
3382 matchers_.push_back(MatcherCast<const Element&>(*first++));
3383 }
3384 }
3385
3386 // Describes what this matcher does.
3387 void DescribeTo(::std::ostream* os) const override {
3388 if (count() == 0) {
3389 *os << "is empty";
3390 } else if (count() == 1) {
3391 *os << "has 1 element that ";
3392 matchers_[0].DescribeTo(os);
3393 } else {
3394 *os << "has " << Elements(count()) << " where\n";
3395 for (size_t i = 0; i != count(); ++i) {
3396 *os << "element #" << i << " ";
3397 matchers_[i].DescribeTo(os);
3398 if (i + 1 < count()) {
3399 *os << ",\n";
3400 }
3401 }
3402 }
3403 }
3404
3405 // Describes what the negation of this matcher does.
3406 void DescribeNegationTo(::std::ostream* os) const override {
3407 if (count() == 0) {
3408 *os << "isn't empty";
3409 return;
3410 }
3411
3412 *os << "doesn't have " << Elements(count()) << ", or\n";
3413 for (size_t i = 0; i != count(); ++i) {
3414 *os << "element #" << i << " ";
3415 matchers_[i].DescribeNegationTo(os);
3416 if (i + 1 < count()) {
3417 *os << ", or\n";
3418 }
3419 }
3420 }
3421
3422 bool MatchAndExplain(Container container,
3423 MatchResultListener* listener) const override {
3424 // To work with stream-like "containers", we must only walk
3425 // through the elements in one pass.
3426
3427 const bool listener_interested = listener->IsInterested();
3428
3429 // explanations[i] is the explanation of the element at index i.
3430 ::std::vector<std::string> explanations(count());
3431 StlContainerReference stl_container = View::ConstReference(container);
3432 auto it = stl_container.begin();
3433 size_t exam_pos = 0;
3434 bool mismatch_found = false; // Have we found a mismatched element yet?
3435
3436 // Go through the elements and matchers in pairs, until we reach
3437 // the end of either the elements or the matchers, or until we find a
3438 // mismatch.
3439 for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3440 bool match; // Does the current element match the current matcher?
3441 if (listener_interested) {
3442 StringMatchResultListener s;
3443 match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3444 explanations[exam_pos] = s.str();
3445 } else {
3446 match = matchers_[exam_pos].Matches(*it);
3447 }
3448
3449 if (!match) {
3450 mismatch_found = true;
3451 break;
3452 }
3453 }
3454 // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3455
3456 // Find how many elements the actual container has. We avoid
3457 // calling size() s.t. this code works for stream-like "containers"
3458 // that don't define size().
3459 size_t actual_count = exam_pos;
3460 for (; it != stl_container.end(); ++it) {
3461 ++actual_count;
3462 }
3463
3464 if (actual_count != count()) {
3465 // The element count doesn't match. If the container is empty,
3466 // there's no need to explain anything as Google Mock already
3467 // prints the empty container. Otherwise we just need to show
3468 // how many elements there actually are.
3469 if (listener_interested && (actual_count != 0)) {
3470 *listener << "which has " << Elements(actual_count);
3471 }
3472 return false;
3473 }
3474
3475 if (mismatch_found) {
3476 // The element count matches, but the exam_pos-th element doesn't match.
3477 if (listener_interested) {
3478 *listener << "whose element #" << exam_pos << " doesn't match";
3479 PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3480 }
3481 return false;
3482 }
3483
3484 // Every element matches its expectation. We need to explain why
3485 // (the obvious ones can be skipped).
3486 if (listener_interested) {
3487 bool reason_printed = false;
3488 for (size_t i = 0; i != count(); ++i) {
3489 const std::string& s = explanations[i];
3490 if (!s.empty()) {
3491 if (reason_printed) {
3492 *listener << ",\nand ";
3493 }
3494 *listener << "whose element #" << i << " matches, " << s;
3495 reason_printed = true;
3496 }
3497 }
3498 }
3499 return true;
3500 }
3501
3502 private:
3503 static Message Elements(size_t count) {
3504 return Message() << count << (count == 1 ? " element" : " elements");
3505 }
3506
3507 size_t count() const { return matchers_.size(); }
3508
3509 ::std::vector<Matcher<const Element&>> matchers_;
3510 };
3511
3512 // Connectivity matrix of (elements X matchers), in element-major order.
3513 // Initially, there are no edges.
3514 // Use NextGraph() to iterate over all possible edge configurations.
3515 // Use Randomize() to generate a random edge configuration.
3516 class GTEST_API_ MatchMatrix {
3517 public:
3518 MatchMatrix(size_t num_elements, size_t num_matchers)
3519 : num_elements_(num_elements),
3520 num_matchers_(num_matchers),
3521 matched_(num_elements_ * num_matchers_, 0) {}
3522
3523 size_t LhsSize() const { return num_elements_; }
3524 size_t RhsSize() const { return num_matchers_; }
3525 bool HasEdge(size_t ilhs, size_t irhs) const {
3526 return matched_[SpaceIndex(ilhs, irhs)] == 1;
3527 }
3528 void SetEdge(size_t ilhs, size_t irhs, bool b) {
3529 matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3530 }
3531
3532 // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3533 // adds 1 to that number; returns false if incrementing the graph left it
3534 // empty.
3535 bool NextGraph();
3536
3537 void Randomize();
3538
3539 std::string DebugString() const;
3540
3541 private:
3542 size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3543 return ilhs * num_matchers_ + irhs;
3544 }
3545
3546 size_t num_elements_;
3547 size_t num_matchers_;
3548
3549 // Each element is a char interpreted as bool. They are stored as a
3550 // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3551 // a (ilhs, irhs) matrix coordinate into an offset.
3552 ::std::vector<char> matched_;
3553 };
3554
3555 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3556 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3557
3558 // Returns a maximum bipartite matching for the specified graph 'g'.
3559 // The matching is represented as a vector of {element, matcher} pairs.
3560 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
3561
3562 struct UnorderedMatcherRequire {
3563 enum Flags {
3564 Superset = 1 << 0,
3565 Subset = 1 << 1,
3566 ExactMatch = Superset | Subset,
3567 };
3568 };
3569
3570 // Untyped base class for implementing UnorderedElementsAre. By
3571 // putting logic that's not specific to the element type here, we
3572 // reduce binary bloat and increase compilation speed.
3573 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3574 protected:
3575 explicit UnorderedElementsAreMatcherImplBase(
3576 UnorderedMatcherRequire::Flags matcher_flags)
3577 : match_flags_(matcher_flags) {}
3578
3579 // A vector of matcher describers, one for each element matcher.
3580 // Does not own the describers (and thus can be used only when the
3581 // element matchers are alive).
3582 typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3583
3584 // Describes this UnorderedElementsAre matcher.
3585 void DescribeToImpl(::std::ostream* os) const;
3586
3587 // Describes the negation of this UnorderedElementsAre matcher.
3588 void DescribeNegationToImpl(::std::ostream* os) const;
3589
3590 bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3591 const MatchMatrix& matrix,
3592 MatchResultListener* listener) const;
3593
3594 bool FindPairing(const MatchMatrix& matrix,
3595 MatchResultListener* listener) const;
3596
3597 MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
3598
3599 static Message Elements(size_t n) {
3600 return Message() << n << " element" << (n == 1 ? "" : "s");
3601 }
3602
3603 UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3604
3605 private:
3606 UnorderedMatcherRequire::Flags match_flags_;
3607 MatcherDescriberVec matcher_describers_;
3608 };
3609
3610 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3611 // IsSupersetOf.
3612 template <typename Container>
3613 class UnorderedElementsAreMatcherImpl
3614 : public MatcherInterface<Container>,
3615 public UnorderedElementsAreMatcherImplBase {
3616 public:
3617 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3618 typedef internal::StlContainerView<RawContainer> View;
3619 typedef typename View::type StlContainer;
3620 typedef typename View::const_reference StlContainerReference;
3621 typedef typename StlContainer::value_type Element;
3622
3623 template <typename InputIter>
3624 UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3625 InputIter first, InputIter last)
3626 : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3627 for (; first != last; ++first) {
3628 matchers_.push_back(MatcherCast<const Element&>(*first));
3629 }
3630 for (const auto& m : matchers_) {
3631 matcher_describers().push_back(m.GetDescriber());
3632 }
3633 }
3634
3635 // Describes what this matcher does.
3636 void DescribeTo(::std::ostream* os) const override {
3637 return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3638 }
3639
3640 // Describes what the negation of this matcher does.
3641 void DescribeNegationTo(::std::ostream* os) const override {
3642 return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3643 }
3644
3645 bool MatchAndExplain(Container container,
3646 MatchResultListener* listener) const override {
3647 StlContainerReference stl_container = View::ConstReference(container);
3648 ::std::vector<std::string> element_printouts;
3649 MatchMatrix matrix =
3650 AnalyzeElements(stl_container.begin(), stl_container.end(),
3651 &element_printouts, listener);
3652
3653 return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3654 FindPairing(matrix, listener);
3655 }
3656
3657 private:
3658 template <typename ElementIter>
3659 MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3660 ::std::vector<std::string>* element_printouts,
3661 MatchResultListener* listener) const {
3662 element_printouts->clear();
3663 ::std::vector<char> did_match;
3664 size_t num_elements = 0;
3665 DummyMatchResultListener dummy;
3666 for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3667 if (listener->IsInterested()) {
3668 element_printouts->push_back(PrintToString(*elem_first));
3669 }
3670 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3671 did_match.push_back(
3672 matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3673 }
3674 }
3675
3676 MatchMatrix matrix(num_elements, matchers_.size());
3677 ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3678 for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3679 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3680 matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3681 }
3682 }
3683 return matrix;
3684 }
3685
3686 ::std::vector<Matcher<const Element&>> matchers_;
3687 };
3688
3689 // Functor for use in TransformTuple.
3690 // Performs MatcherCast<Target> on an input argument of any type.
3691 template <typename Target>
3692 struct CastAndAppendTransform {
3693 template <typename Arg>
3694 Matcher<Target> operator()(const Arg& a) const {
3695 return MatcherCast<Target>(a);
3696 }
3697 };
3698
3699 // Implements UnorderedElementsAre.
3700 template <typename MatcherTuple>
3701 class UnorderedElementsAreMatcher {
3702 public:
3703 explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3704 : matchers_(args) {}
3705
3706 template <typename Container>
3707 operator Matcher<Container>() const {
3708 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3709 typedef typename internal::StlContainerView<RawContainer>::type View;
3710 typedef typename View::value_type Element;
3711 typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3712 MatcherVec matchers;
3713 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3714 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3715 ::std::back_inserter(matchers));
3716 return Matcher<Container>(
3717 new UnorderedElementsAreMatcherImpl<const Container&>(
3718 UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3719 matchers.end()));
3720 }
3721
3722 private:
3723 const MatcherTuple matchers_;
3724 };
3725
3726 // Implements ElementsAre.
3727 template <typename MatcherTuple>
3728 class ElementsAreMatcher {
3729 public:
3730 explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3731
3732 template <typename Container>
3733 operator Matcher<Container>() const {
3734 static_assert(
3735 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3736 ::std::tuple_size<MatcherTuple>::value < 2,
3737 "use UnorderedElementsAre with hash tables");
3738
3739 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3740 typedef typename internal::StlContainerView<RawContainer>::type View;
3741 typedef typename View::value_type Element;
3742 typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3743 MatcherVec matchers;
3744 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3745 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3746 ::std::back_inserter(matchers));
3747 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3748 matchers.begin(), matchers.end()));
3749 }
3750
3751 private:
3752 const MatcherTuple matchers_;
3753 };
3754
3755 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3756 template <typename T>
3757 class UnorderedElementsAreArrayMatcher {
3758 public:
3759 template <typename Iter>
3760 UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3761 Iter first, Iter last)
3762 : match_flags_(match_flags), matchers_(first, last) {}
3763
3764 template <typename Container>
3765 operator Matcher<Container>() const {
3766 return Matcher<Container>(
3767 new UnorderedElementsAreMatcherImpl<const Container&>(
3768 match_flags_, matchers_.begin(), matchers_.end()));
3769 }
3770
3771 private:
3772 UnorderedMatcherRequire::Flags match_flags_;
3773 ::std::vector<T> matchers_;
3774 };
3775
3776 // Implements ElementsAreArray().
3777 template <typename T>
3778 class ElementsAreArrayMatcher {
3779 public:
3780 template <typename Iter>
3781 ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3782
3783 template <typename Container>
3784 operator Matcher<Container>() const {
3785 static_assert(
3786 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3787 "use UnorderedElementsAreArray with hash tables");
3788
3789 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3790 matchers_.begin(), matchers_.end()));
3791 }
3792
3793 private:
3794 const ::std::vector<T> matchers_;
3795 };
3796
3797 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3798 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3799 // second) is a polymorphic matcher that matches a value x if and only if
3800 // tm matches tuple (x, second). Useful for implementing
3801 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
3802 //
3803 // BoundSecondMatcher is copyable and assignable, as we need to put
3804 // instances of this class in a vector when implementing
3805 // UnorderedPointwise().
3806 template <typename Tuple2Matcher, typename Second>
3807 class BoundSecondMatcher {
3808 public:
3809 BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3810 : tuple2_matcher_(tm), second_value_(second) {}
3811
3812 BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3813
3814 template <typename T>
3815 operator Matcher<T>() const {
3816 return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3817 }
3818
3819 // We have to define this for UnorderedPointwise() to compile in
3820 // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3821 // which requires the elements to be assignable in C++98. The
3822 // compiler cannot generate the operator= for us, as Tuple2Matcher
3823 // and Second may not be assignable.
3824 //
3825 // However, this should never be called, so the implementation just
3826 // need to assert.
3827 void operator=(const BoundSecondMatcher& /*rhs*/) {
3828 GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3829 }
3830
3831 private:
3832 template <typename T>
3833 class Impl : public MatcherInterface<T> {
3834 public:
3835 typedef ::std::tuple<T, Second> ArgTuple;
3836
3837 Impl(const Tuple2Matcher& tm, const Second& second)
3838 : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3839 second_value_(second) {}
3840
3841 void DescribeTo(::std::ostream* os) const override {
3842 *os << "and ";
3843 UniversalPrint(second_value_, os);
3844 *os << " ";
3845 mono_tuple2_matcher_.DescribeTo(os);
3846 }
3847
3848 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3849 return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3850 listener);
3851 }
3852
3853 private:
3854 const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3855 const Second second_value_;
3856 };
3857
3858 const Tuple2Matcher tuple2_matcher_;
3859 const Second second_value_;
3860 };
3861
3862 // Given a 2-tuple matcher tm and a value second,
3863 // MatcherBindSecond(tm, second) returns a matcher that matches a
3864 // value x if and only if tm matches tuple (x, second). Useful for
3865 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3866 template <typename Tuple2Matcher, typename Second>
3867 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3868 const Tuple2Matcher& tm, const Second& second) {
3869 return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3870 }
3871
3872 // Returns the description for a matcher defined using the MATCHER*()
3873 // macro where the user-supplied description string is "", if
3874 // 'negation' is false; otherwise returns the description of the
3875 // negation of the matcher. 'param_values' contains a list of strings
3876 // that are the print-out of the matcher's parameters.
3877 GTEST_API_ std::string FormatMatcherDescription(
3878 bool negation, const char* matcher_name,
3879 const std::vector<const char*>& param_names, const Strings& param_values);
3880
3881 // Implements a matcher that checks the value of a optional<> type variable.
3882 template <typename ValueMatcher>
3883 class OptionalMatcher {
3884 public:
3885 explicit OptionalMatcher(const ValueMatcher& value_matcher)
3886 : value_matcher_(value_matcher) {}
3887
3888 template <typename Optional>
3889 operator Matcher<Optional>() const {
3890 return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3891 }
3892
3893 template <typename Optional>
3894 class Impl : public MatcherInterface<Optional> {
3895 public:
3896 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3897 typedef typename OptionalView::value_type ValueType;
3898 explicit Impl(const ValueMatcher& value_matcher)
3899 : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3900
3901 void DescribeTo(::std::ostream* os) const override {
3902 *os << "value ";
3903 value_matcher_.DescribeTo(os);
3904 }
3905
3906 void DescribeNegationTo(::std::ostream* os) const override {
3907 *os << "value ";
3908 value_matcher_.DescribeNegationTo(os);
3909 }
3910
3911 bool MatchAndExplain(Optional optional,
3912 MatchResultListener* listener) const override {
3913 if (!optional) {
3914 *listener << "which is not engaged";
3915 return false;
3916 }
3917 const ValueType& value = *optional;
3918 StringMatchResultListener value_listener;
3919 const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3920 *listener << "whose value " << PrintToString(value)
3921 << (match ? " matches" : " doesn't match");
3922 PrintIfNotEmpty(value_listener.str(), listener->stream());
3923 return match;
3924 }
3925
3926 private:
3927 const Matcher<ValueType> value_matcher_;
3928 };
3929
3930 private:
3931 const ValueMatcher value_matcher_;
3932 };
3933
3934 namespace variant_matcher {
3935 // Overloads to allow VariantMatcher to do proper ADL lookup.
3936 template <typename T>
3937 void holds_alternative() {}
3938 template <typename T>
3939 void get() {}
3940
3941 // Implements a matcher that checks the value of a variant<> type variable.
3942 template <typename T>
3943 class VariantMatcher {
3944 public:
3945 explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3946 : matcher_(std::move(matcher)) {}
3947
3948 template <typename Variant>
3949 bool MatchAndExplain(const Variant& value,
3950 ::testing::MatchResultListener* listener) const {
3951 using std::get;
3952 if (!listener->IsInterested()) {
3953 return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3954 }
3955
3956 if (!holds_alternative<T>(value)) {
3957 *listener << "whose value is not of type '" << GetTypeName() << "'";
3958 return false;
3959 }
3960
3961 const T& elem = get<T>(value);
3962 StringMatchResultListener elem_listener;
3963 const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3964 *listener << "whose value " << PrintToString(elem)
3965 << (match ? " matches" : " doesn't match");
3966 PrintIfNotEmpty(elem_listener.str(), listener->stream());
3967 return match;
3968 }
3969
3970 void DescribeTo(std::ostream* os) const {
3971 *os << "is a variant<> with value of type '" << GetTypeName()
3972 << "' and the value ";
3973 matcher_.DescribeTo(os);
3974 }
3975
3976 void DescribeNegationTo(std::ostream* os) const {
3977 *os << "is a variant<> with value of type other than '" << GetTypeName()
3978 << "' or the value ";
3979 matcher_.DescribeNegationTo(os);
3980 }
3981
3982 private:
3983 static std::string GetTypeName() {
3984 #if GTEST_HAS_RTTI
3985 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3986 return internal::GetTypeName<T>());
3987 #endif
3988 return "the element type";
3989 }
3990
3991 const ::testing::Matcher<const T&> matcher_;
3992 };
3993
3994 } // namespace variant_matcher
3995
3996 namespace any_cast_matcher {
3997
3998 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
3999 template <typename T>
4000 void any_cast() {}
4001
4002 // Implements a matcher that any_casts the value.
4003 template <typename T>
4004 class AnyCastMatcher {
4005 public:
4006 explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
4007 : matcher_(matcher) {}
4008
4009 template <typename AnyType>
4010 bool MatchAndExplain(const AnyType& value,
4011 ::testing::MatchResultListener* listener) const {
4012 if (!listener->IsInterested()) {
4013 const T* ptr = any_cast<T>(&value);
4014 return ptr != nullptr && matcher_.Matches(*ptr);
4015 }
4016
4017 const T* elem = any_cast<T>(&value);
4018 if (elem == nullptr) {
4019 *listener << "whose value is not of type '" << GetTypeName() << "'";
4020 return false;
4021 }
4022
4023 StringMatchResultListener elem_listener;
4024 const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4025 *listener << "whose value " << PrintToString(*elem)
4026 << (match ? " matches" : " doesn't match");
4027 PrintIfNotEmpty(elem_listener.str(), listener->stream());
4028 return match;
4029 }
4030
4031 void DescribeTo(std::ostream* os) const {
4032 *os << "is an 'any' type with value of type '" << GetTypeName()
4033 << "' and the value ";
4034 matcher_.DescribeTo(os);
4035 }
4036
4037 void DescribeNegationTo(std::ostream* os) const {
4038 *os << "is an 'any' type with value of type other than '" << GetTypeName()
4039 << "' or the value ";
4040 matcher_.DescribeNegationTo(os);
4041 }
4042
4043 private:
4044 static std::string GetTypeName() {
4045 #if GTEST_HAS_RTTI
4046 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4047 return internal::GetTypeName<T>());
4048 #endif
4049 return "the element type";
4050 }
4051
4052 const ::testing::Matcher<const T&> matcher_;
4053 };
4054
4055 } // namespace any_cast_matcher
4056
4057 // Implements the Args() matcher.
4058 template <class ArgsTuple, size_t... k>
4059 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
4060 public:
4061 using RawArgsTuple = typename std::decay<ArgsTuple>::type;
4062 using SelectedArgs =
4063 std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
4064 using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
4065
4066 template <typename InnerMatcher>
4067 explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
4068 : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
4069
4070 bool MatchAndExplain(ArgsTuple args,
4071 MatchResultListener* listener) const override {
4072 // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
4073 (void)args;
4074 const SelectedArgs& selected_args =
4075 std::forward_as_tuple(std::get<k>(args)...);
4076 if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
4077
4078 PrintIndices(listener->stream());
4079 *listener << "are " << PrintToString(selected_args);
4080
4081 StringMatchResultListener inner_listener;
4082 const bool match =
4083 inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
4084 PrintIfNotEmpty(inner_listener.str(), listener->stream());
4085 return match;
4086 }
4087
4088 void DescribeTo(::std::ostream* os) const override {
4089 *os << "are a tuple ";
4090 PrintIndices(os);
4091 inner_matcher_.DescribeTo(os);
4092 }
4093
4094 void DescribeNegationTo(::std::ostream* os) const override {
4095 *os << "are a tuple ";
4096 PrintIndices(os);
4097 inner_matcher_.DescribeNegationTo(os);
4098 }
4099
4100 private:
4101 // Prints the indices of the selected fields.
4102 static void PrintIndices(::std::ostream* os) {
4103 *os << "whose fields (";
4104 const char* sep = "";
4105 // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
4106 (void)sep;
4107 // The static_cast to void is needed to silence Clang's -Wcomma warning.
4108 // This pattern looks suspiciously like we may have mismatched parentheses
4109 // and may have been trying to use the first operation of the comma operator
4110 // as a member of the array, so Clang warns that we may have made a mistake.
4111 const char* dummy[] = {
4112 "", (static_cast<void>(*os << sep << "#" << k), sep = ", ")...};
4113 (void)dummy;
4114 *os << ") ";
4115 }
4116
4117 MonomorphicInnerMatcher inner_matcher_;
4118 };
4119
4120 template <class InnerMatcher, size_t... k>
4121 class ArgsMatcher {
4122 public:
4123 explicit ArgsMatcher(InnerMatcher inner_matcher)
4124 : inner_matcher_(std::move(inner_matcher)) {}
4125
4126 template <typename ArgsTuple>
4127 operator Matcher<ArgsTuple>() const { // NOLINT
4128 return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
4129 }
4130
4131 private:
4132 InnerMatcher inner_matcher_;
4133 };
4134
4135 } // namespace internal
4136
4137 // ElementsAreArray(iterator_first, iterator_last)
4138 // ElementsAreArray(pointer, count)
4139 // ElementsAreArray(array)
4140 // ElementsAreArray(container)
4141 // ElementsAreArray({ e1, e2, ..., en })
4142 //
4143 // The ElementsAreArray() functions are like ElementsAre(...), except
4144 // that they are given a homogeneous sequence rather than taking each
4145 // element as a function argument. The sequence can be specified as an
4146 // array, a pointer and count, a vector, an initializer list, or an
4147 // STL iterator range. In each of these cases, the underlying sequence
4148 // can be either a sequence of values or a sequence of matchers.
4149 //
4150 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
4151
4152 template <typename Iter>
4153 inline internal::ElementsAreArrayMatcher<
4154 typename ::std::iterator_traits<Iter>::value_type>
4155 ElementsAreArray(Iter first, Iter last) {
4156 typedef typename ::std::iterator_traits<Iter>::value_type T;
4157 return internal::ElementsAreArrayMatcher<T>(first, last);
4158 }
4159
4160 template <typename T>
4161 inline auto ElementsAreArray(const T* pointer, size_t count)
4162 -> decltype(ElementsAreArray(pointer, pointer + count)) {
4163 return ElementsAreArray(pointer, pointer + count);
4164 }
4165
4166 template <typename T, size_t N>
4167 inline auto ElementsAreArray(const T (&array)[N])
4168 -> decltype(ElementsAreArray(array, N)) {
4169 return ElementsAreArray(array, N);
4170 }
4171
4172 template <typename Container>
4173 inline auto ElementsAreArray(const Container& container)
4174 -> decltype(ElementsAreArray(container.begin(), container.end())) {
4175 return ElementsAreArray(container.begin(), container.end());
4176 }
4177
4178 template <typename T>
4179 inline auto ElementsAreArray(::std::initializer_list<T> xs)
4180 -> decltype(ElementsAreArray(xs.begin(), xs.end())) {
4181 return ElementsAreArray(xs.begin(), xs.end());
4182 }
4183
4184 // UnorderedElementsAreArray(iterator_first, iterator_last)
4185 // UnorderedElementsAreArray(pointer, count)
4186 // UnorderedElementsAreArray(array)
4187 // UnorderedElementsAreArray(container)
4188 // UnorderedElementsAreArray({ e1, e2, ..., en })
4189 //
4190 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
4191 // collection of matchers exists.
4192 //
4193 // The matchers can be specified as an array, a pointer and count, a container,
4194 // an initializer list, or an STL iterator range. In each of these cases, the
4195 // underlying matchers can be either values or matchers.
4196
4197 template <typename Iter>
4198 inline internal::UnorderedElementsAreArrayMatcher<
4199 typename ::std::iterator_traits<Iter>::value_type>
4200 UnorderedElementsAreArray(Iter first, Iter last) {
4201 typedef typename ::std::iterator_traits<Iter>::value_type T;
4202 return internal::UnorderedElementsAreArrayMatcher<T>(
4203 internal::UnorderedMatcherRequire::ExactMatch, first, last);
4204 }
4205
4206 template <typename T>
4207 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4208 const T* pointer, size_t count) {
4209 return UnorderedElementsAreArray(pointer, pointer + count);
4210 }
4211
4212 template <typename T, size_t N>
4213 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4214 const T (&array)[N]) {
4215 return UnorderedElementsAreArray(array, N);
4216 }
4217
4218 template <typename Container>
4219 inline internal::UnorderedElementsAreArrayMatcher<
4220 typename Container::value_type>
4221 UnorderedElementsAreArray(const Container& container) {
4222 return UnorderedElementsAreArray(container.begin(), container.end());
4223 }
4224
4225 template <typename T>
4226 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4227 ::std::initializer_list<T> xs) {
4228 return UnorderedElementsAreArray(xs.begin(), xs.end());
4229 }
4230
4231 // _ is a matcher that matches anything of any type.
4232 //
4233 // This definition is fine as:
4234 //
4235 // 1. The C++ standard permits using the name _ in a namespace that
4236 // is not the global namespace or ::std.
4237 // 2. The AnythingMatcher class has no data member or constructor,
4238 // so it's OK to create global variables of this type.
4239 // 3. c-style has approved of using _ in this case.
4240 const internal::AnythingMatcher _ = {};
4241 // Creates a matcher that matches any value of the given type T.
4242 template <typename T>
4243 inline Matcher<T> A() {
4244 return _;
4245 }
4246
4247 // Creates a matcher that matches any value of the given type T.
4248 template <typename T>
4249 inline Matcher<T> An() {
4250 return _;
4251 }
4252
4253 template <typename T, typename M>
4254 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4255 const M& value, std::false_type /* convertible_to_matcher */,
4256 std::false_type /* convertible_to_T */) {
4257 return Eq(value);
4258 }
4259
4260 // Creates a polymorphic matcher that matches any NULL pointer.
4261 inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() {
4262 return MakePolymorphicMatcher(internal::IsNullMatcher());
4263 }
4264
4265 // Creates a polymorphic matcher that matches any non-NULL pointer.
4266 // This is convenient as Not(NULL) doesn't compile (the compiler
4267 // thinks that that expression is comparing a pointer with an integer).
4268 inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() {
4269 return MakePolymorphicMatcher(internal::NotNullMatcher());
4270 }
4271
4272 // Creates a polymorphic matcher that matches any argument that
4273 // references variable x.
4274 template <typename T>
4275 inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
4276 return internal::RefMatcher<T&>(x);
4277 }
4278
4279 // Creates a polymorphic matcher that matches any NaN floating point.
4280 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4281 return MakePolymorphicMatcher(internal::IsNanMatcher());
4282 }
4283
4284 // Creates a matcher that matches any double argument approximately
4285 // equal to rhs, where two NANs are considered unequal.
4286 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4287 return internal::FloatingEqMatcher<double>(rhs, false);
4288 }
4289
4290 // Creates a matcher that matches any double argument approximately
4291 // equal to rhs, including NaN values when rhs is NaN.
4292 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4293 return internal::FloatingEqMatcher<double>(rhs, true);
4294 }
4295
4296 // Creates a matcher that matches any double argument approximately equal to
4297 // rhs, up to the specified max absolute error bound, where two NANs are
4298 // considered unequal. The max absolute error bound must be non-negative.
4299 inline internal::FloatingEqMatcher<double> DoubleNear(double rhs,
4300 double max_abs_error) {
4301 return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4302 }
4303
4304 // Creates a matcher that matches any double argument approximately equal to
4305 // rhs, up to the specified max absolute error bound, including NaN values when
4306 // rhs is NaN. The max absolute error bound must be non-negative.
4307 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4308 double rhs, double max_abs_error) {
4309 return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4310 }
4311
4312 // Creates a matcher that matches any float argument approximately
4313 // equal to rhs, where two NANs are considered unequal.
4314 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4315 return internal::FloatingEqMatcher<float>(rhs, false);
4316 }
4317
4318 // Creates a matcher that matches any float argument approximately
4319 // equal to rhs, including NaN values when rhs is NaN.
4320 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4321 return internal::FloatingEqMatcher<float>(rhs, true);
4322 }
4323
4324 // Creates a matcher that matches any float argument approximately equal to
4325 // rhs, up to the specified max absolute error bound, where two NANs are
4326 // considered unequal. The max absolute error bound must be non-negative.
4327 inline internal::FloatingEqMatcher<float> FloatNear(float rhs,
4328 float max_abs_error) {
4329 return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4330 }
4331
4332 // Creates a matcher that matches any float argument approximately equal to
4333 // rhs, up to the specified max absolute error bound, including NaN values when
4334 // rhs is NaN. The max absolute error bound must be non-negative.
4335 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4336 float rhs, float max_abs_error) {
4337 return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4338 }
4339
4340 // Creates a matcher that matches a pointer (raw or smart) that points
4341 // to a value that matches inner_matcher.
4342 template <typename InnerMatcher>
4343 inline internal::PointeeMatcher<InnerMatcher> Pointee(
4344 const InnerMatcher& inner_matcher) {
4345 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4346 }
4347
4348 #if GTEST_HAS_RTTI
4349 // Creates a matcher that matches a pointer or reference that matches
4350 // inner_matcher when dynamic_cast<To> is applied.
4351 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4352 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4353 // If To is a reference and the cast fails, this matcher returns false
4354 // immediately.
4355 template <typename To>
4356 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>>
4357 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4358 return MakePolymorphicMatcher(
4359 internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4360 }
4361 #endif // GTEST_HAS_RTTI
4362
4363 // Creates a matcher that matches an object whose given field matches
4364 // 'matcher'. For example,
4365 // Field(&Foo::number, Ge(5))
4366 // matches a Foo object x if and only if x.number >= 5.
4367 template <typename Class, typename FieldType, typename FieldMatcher>
4368 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4369 FieldType Class::*field, const FieldMatcher& matcher) {
4370 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4371 field, MatcherCast<const FieldType&>(matcher)));
4372 // The call to MatcherCast() is required for supporting inner
4373 // matchers of compatible types. For example, it allows
4374 // Field(&Foo::bar, m)
4375 // to compile where bar is an int32 and m is a matcher for int64.
4376 }
4377
4378 // Same as Field() but also takes the name of the field to provide better error
4379 // messages.
4380 template <typename Class, typename FieldType, typename FieldMatcher>
4381 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4382 const std::string& field_name, FieldType Class::*field,
4383 const FieldMatcher& matcher) {
4384 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4385 field_name, field, MatcherCast<const FieldType&>(matcher)));
4386 }
4387
4388 // Creates a matcher that matches an object whose given property
4389 // matches 'matcher'. For example,
4390 // Property(&Foo::str, StartsWith("hi"))
4391 // matches a Foo object x if and only if x.str() starts with "hi".
4392 template <typename Class, typename PropertyType, typename PropertyMatcher>
4393 inline PolymorphicMatcher<internal::PropertyMatcher<
4394 Class, PropertyType, PropertyType (Class::*)() const>>
4395 Property(PropertyType (Class::*property)() const,
4396 const PropertyMatcher& matcher) {
4397 return MakePolymorphicMatcher(
4398 internal::PropertyMatcher<Class, PropertyType,
4399 PropertyType (Class::*)() const>(
4400 property, MatcherCast<const PropertyType&>(matcher)));
4401 // The call to MatcherCast() is required for supporting inner
4402 // matchers of compatible types. For example, it allows
4403 // Property(&Foo::bar, m)
4404 // to compile where bar() returns an int32 and m is a matcher for int64.
4405 }
4406
4407 // Same as Property() above, but also takes the name of the property to provide
4408 // better error messages.
4409 template <typename Class, typename PropertyType, typename PropertyMatcher>
4410 inline PolymorphicMatcher<internal::PropertyMatcher<
4411 Class, PropertyType, PropertyType (Class::*)() const>>
4412 Property(const std::string& property_name,
4413 PropertyType (Class::*property)() const,
4414 const PropertyMatcher& matcher) {
4415 return MakePolymorphicMatcher(
4416 internal::PropertyMatcher<Class, PropertyType,
4417 PropertyType (Class::*)() const>(
4418 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4419 }
4420
4421 // The same as above but for reference-qualified member functions.
4422 template <typename Class, typename PropertyType, typename PropertyMatcher>
4423 inline PolymorphicMatcher<internal::PropertyMatcher<
4424 Class, PropertyType, PropertyType (Class::*)() const&>>
4425 Property(PropertyType (Class::*property)() const&,
4426 const PropertyMatcher& matcher) {
4427 return MakePolymorphicMatcher(
4428 internal::PropertyMatcher<Class, PropertyType,
4429 PropertyType (Class::*)() const&>(
4430 property, MatcherCast<const PropertyType&>(matcher)));
4431 }
4432
4433 // Three-argument form for reference-qualified member functions.
4434 template <typename Class, typename PropertyType, typename PropertyMatcher>
4435 inline PolymorphicMatcher<internal::PropertyMatcher<
4436 Class, PropertyType, PropertyType (Class::*)() const&>>
4437 Property(const std::string& property_name,
4438 PropertyType (Class::*property)() const&,
4439 const PropertyMatcher& matcher) {
4440 return MakePolymorphicMatcher(
4441 internal::PropertyMatcher<Class, PropertyType,
4442 PropertyType (Class::*)() const&>(
4443 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4444 }
4445
4446 // Creates a matcher that matches an object if and only if the result of
4447 // applying a callable to x matches 'matcher'. For example,
4448 // ResultOf(f, StartsWith("hi"))
4449 // matches a Foo object x if and only if f(x) starts with "hi".
4450 // `callable` parameter can be a function, function pointer, or a functor. It is
4451 // required to keep no state affecting the results of the calls on it and make
4452 // no assumptions about how many calls will be made. Any state it keeps must be
4453 // protected from the concurrent access.
4454 template <typename Callable, typename InnerMatcher>
4455 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4456 Callable callable, InnerMatcher matcher) {
4457 return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable),
4458 std::move(matcher));
4459 }
4460
4461 // Same as ResultOf() above, but also takes a description of the `callable`
4462 // result to provide better error messages.
4463 template <typename Callable, typename InnerMatcher>
4464 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4465 const std::string& result_description, Callable callable,
4466 InnerMatcher matcher) {
4467 return internal::ResultOfMatcher<Callable, InnerMatcher>(
4468 result_description, std::move(callable), std::move(matcher));
4469 }
4470
4471 // String matchers.
4472
4473 // Matches a string equal to str.
4474 template <typename T = std::string>
4475 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq(
4476 const internal::StringLike<T>& str) {
4477 return MakePolymorphicMatcher(
4478 internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4479 }
4480
4481 // Matches a string not equal to str.
4482 template <typename T = std::string>
4483 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe(
4484 const internal::StringLike<T>& str) {
4485 return MakePolymorphicMatcher(
4486 internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4487 }
4488
4489 // Matches a string equal to str, ignoring case.
4490 template <typename T = std::string>
4491 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq(
4492 const internal::StringLike<T>& str) {
4493 return MakePolymorphicMatcher(
4494 internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4495 }
4496
4497 // Matches a string not equal to str, ignoring case.
4498 template <typename T = std::string>
4499 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe(
4500 const internal::StringLike<T>& str) {
4501 return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4502 std::string(str), false, false));
4503 }
4504
4505 // Creates a matcher that matches any string, std::string, or C string
4506 // that contains the given substring.
4507 template <typename T = std::string>
4508 PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr(
4509 const internal::StringLike<T>& substring) {
4510 return MakePolymorphicMatcher(
4511 internal::HasSubstrMatcher<std::string>(std::string(substring)));
4512 }
4513
4514 // Matches a string that starts with 'prefix' (case-sensitive).
4515 template <typename T = std::string>
4516 PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith(
4517 const internal::StringLike<T>& prefix) {
4518 return MakePolymorphicMatcher(
4519 internal::StartsWithMatcher<std::string>(std::string(prefix)));
4520 }
4521
4522 // Matches a string that ends with 'suffix' (case-sensitive).
4523 template <typename T = std::string>
4524 PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith(
4525 const internal::StringLike<T>& suffix) {
4526 return MakePolymorphicMatcher(
4527 internal::EndsWithMatcher<std::string>(std::string(suffix)));
4528 }
4529
4530 #if GTEST_HAS_STD_WSTRING
4531 // Wide string matchers.
4532
4533 // Matches a string equal to str.
4534 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq(
4535 const std::wstring& str) {
4536 return MakePolymorphicMatcher(
4537 internal::StrEqualityMatcher<std::wstring>(str, true, true));
4538 }
4539
4540 // Matches a string not equal to str.
4541 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe(
4542 const std::wstring& str) {
4543 return MakePolymorphicMatcher(
4544 internal::StrEqualityMatcher<std::wstring>(str, false, true));
4545 }
4546
4547 // Matches a string equal to str, ignoring case.
4548 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq(
4549 const std::wstring& str) {
4550 return MakePolymorphicMatcher(
4551 internal::StrEqualityMatcher<std::wstring>(str, true, false));
4552 }
4553
4554 // Matches a string not equal to str, ignoring case.
4555 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe(
4556 const std::wstring& str) {
4557 return MakePolymorphicMatcher(
4558 internal::StrEqualityMatcher<std::wstring>(str, false, false));
4559 }
4560
4561 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4562 // that contains the given substring.
4563 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr(
4564 const std::wstring& substring) {
4565 return MakePolymorphicMatcher(
4566 internal::HasSubstrMatcher<std::wstring>(substring));
4567 }
4568
4569 // Matches a string that starts with 'prefix' (case-sensitive).
4570 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith(
4571 const std::wstring& prefix) {
4572 return MakePolymorphicMatcher(
4573 internal::StartsWithMatcher<std::wstring>(prefix));
4574 }
4575
4576 // Matches a string that ends with 'suffix' (case-sensitive).
4577 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith(
4578 const std::wstring& suffix) {
4579 return MakePolymorphicMatcher(
4580 internal::EndsWithMatcher<std::wstring>(suffix));
4581 }
4582
4583 #endif // GTEST_HAS_STD_WSTRING
4584
4585 // Creates a polymorphic matcher that matches a 2-tuple where the
4586 // first field == the second field.
4587 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4588
4589 // Creates a polymorphic matcher that matches a 2-tuple where the
4590 // first field >= the second field.
4591 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4592
4593 // Creates a polymorphic matcher that matches a 2-tuple where the
4594 // first field > the second field.
4595 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4596
4597 // Creates a polymorphic matcher that matches a 2-tuple where the
4598 // first field <= the second field.
4599 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4600
4601 // Creates a polymorphic matcher that matches a 2-tuple where the
4602 // first field < the second field.
4603 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4604
4605 // Creates a polymorphic matcher that matches a 2-tuple where the
4606 // first field != the second field.
4607 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4608
4609 // Creates a polymorphic matcher that matches a 2-tuple where
4610 // FloatEq(first field) matches the second field.
4611 inline internal::FloatingEq2Matcher<float> FloatEq() {
4612 return internal::FloatingEq2Matcher<float>();
4613 }
4614
4615 // Creates a polymorphic matcher that matches a 2-tuple where
4616 // DoubleEq(first field) matches the second field.
4617 inline internal::FloatingEq2Matcher<double> DoubleEq() {
4618 return internal::FloatingEq2Matcher<double>();
4619 }
4620
4621 // Creates a polymorphic matcher that matches a 2-tuple where
4622 // FloatEq(first field) matches the second field with NaN equality.
4623 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4624 return internal::FloatingEq2Matcher<float>(true);
4625 }
4626
4627 // Creates a polymorphic matcher that matches a 2-tuple where
4628 // DoubleEq(first field) matches the second field with NaN equality.
4629 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4630 return internal::FloatingEq2Matcher<double>(true);
4631 }
4632
4633 // Creates a polymorphic matcher that matches a 2-tuple where
4634 // FloatNear(first field, max_abs_error) matches the second field.
4635 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4636 return internal::FloatingEq2Matcher<float>(max_abs_error);
4637 }
4638
4639 // Creates a polymorphic matcher that matches a 2-tuple where
4640 // DoubleNear(first field, max_abs_error) matches the second field.
4641 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4642 return internal::FloatingEq2Matcher<double>(max_abs_error);
4643 }
4644
4645 // Creates a polymorphic matcher that matches a 2-tuple where
4646 // FloatNear(first field, max_abs_error) matches the second field with NaN
4647 // equality.
4648 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4649 float max_abs_error) {
4650 return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4651 }
4652
4653 // Creates a polymorphic matcher that matches a 2-tuple where
4654 // DoubleNear(first field, max_abs_error) matches the second field with NaN
4655 // equality.
4656 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4657 double max_abs_error) {
4658 return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4659 }
4660
4661 // Creates a matcher that matches any value of type T that m doesn't
4662 // match.
4663 template <typename InnerMatcher>
4664 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4665 return internal::NotMatcher<InnerMatcher>(m);
4666 }
4667
4668 // Returns a matcher that matches anything that satisfies the given
4669 // predicate. The predicate can be any unary function or functor
4670 // whose return type can be implicitly converted to bool.
4671 template <typename Predicate>
4672 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly(
4673 Predicate pred) {
4674 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4675 }
4676
4677 // Returns a matcher that matches the container size. The container must
4678 // support both size() and size_type which all STL-like containers provide.
4679 // Note that the parameter 'size' can be a value of type size_type as well as
4680 // matcher. For instance:
4681 // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
4682 // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
4683 template <typename SizeMatcher>
4684 inline internal::SizeIsMatcher<SizeMatcher> SizeIs(
4685 const SizeMatcher& size_matcher) {
4686 return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4687 }
4688
4689 // Returns a matcher that matches the distance between the container's begin()
4690 // iterator and its end() iterator, i.e. the size of the container. This matcher
4691 // can be used instead of SizeIs with containers such as std::forward_list which
4692 // do not implement size(). The container must provide const_iterator (with
4693 // valid iterator_traits), begin() and end().
4694 template <typename DistanceMatcher>
4695 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(
4696 const DistanceMatcher& distance_matcher) {
4697 return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4698 }
4699
4700 // Returns a matcher that matches an equal container.
4701 // This matcher behaves like Eq(), but in the event of mismatch lists the
4702 // values that are included in one container but not the other. (Duplicate
4703 // values and order differences are not explained.)
4704 template <typename Container>
4705 inline PolymorphicMatcher<
4706 internal::ContainerEqMatcher<typename std::remove_const<Container>::type>>
4707 ContainerEq(const Container& rhs) {
4708 return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4709 }
4710
4711 // Returns a matcher that matches a container that, when sorted using
4712 // the given comparator, matches container_matcher.
4713 template <typename Comparator, typename ContainerMatcher>
4714 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(
4715 const Comparator& comparator, const ContainerMatcher& container_matcher) {
4716 return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4717 comparator, container_matcher);
4718 }
4719
4720 // Returns a matcher that matches a container that, when sorted using
4721 // the < operator, matches container_matcher.
4722 template <typename ContainerMatcher>
4723 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4724 WhenSorted(const ContainerMatcher& container_matcher) {
4725 return internal::WhenSortedByMatcher<internal::LessComparator,
4726 ContainerMatcher>(
4727 internal::LessComparator(), container_matcher);
4728 }
4729
4730 // Matches an STL-style container or a native array that contains the
4731 // same number of elements as in rhs, where its i-th element and rhs's
4732 // i-th element (as a pair) satisfy the given pair matcher, for all i.
4733 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4734 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
4735 // LHS container and the RHS container respectively.
4736 template <typename TupleMatcher, typename Container>
4737 inline internal::PointwiseMatcher<TupleMatcher,
4738 typename std::remove_const<Container>::type>
4739 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4740 return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4741 rhs);
4742 }
4743
4744 // Supports the Pointwise(m, {a, b, c}) syntax.
4745 template <typename TupleMatcher, typename T>
4746 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise(
4747 const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4748 return Pointwise(tuple_matcher, std::vector<T>(rhs));
4749 }
4750
4751 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4752 // container or a native array that contains the same number of
4753 // elements as in rhs, where in some permutation of the container, its
4754 // i-th element and rhs's i-th element (as a pair) satisfy the given
4755 // pair matcher, for all i. Tuple2Matcher must be able to be safely
4756 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4757 // the types of elements in the LHS container and the RHS container
4758 // respectively.
4759 //
4760 // This is like Pointwise(pair_matcher, rhs), except that the element
4761 // order doesn't matter.
4762 template <typename Tuple2Matcher, typename RhsContainer>
4763 inline internal::UnorderedElementsAreArrayMatcher<
4764 typename internal::BoundSecondMatcher<
4765 Tuple2Matcher,
4766 typename internal::StlContainerView<
4767 typename std::remove_const<RhsContainer>::type>::type::value_type>>
4768 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4769 const RhsContainer& rhs_container) {
4770 // RhsView allows the same code to handle RhsContainer being a
4771 // STL-style container and it being a native C-style array.
4772 typedef typename internal::StlContainerView<RhsContainer> RhsView;
4773 typedef typename RhsView::type RhsStlContainer;
4774 typedef typename RhsStlContainer::value_type Second;
4775 const RhsStlContainer& rhs_stl_container =
4776 RhsView::ConstReference(rhs_container);
4777
4778 // Create a matcher for each element in rhs_container.
4779 ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers;
4780 for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end();
4781 ++it) {
4782 matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it));
4783 }
4784
4785 // Delegate the work to UnorderedElementsAreArray().
4786 return UnorderedElementsAreArray(matchers);
4787 }
4788
4789 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4790 template <typename Tuple2Matcher, typename T>
4791 inline internal::UnorderedElementsAreArrayMatcher<
4792 typename internal::BoundSecondMatcher<Tuple2Matcher, T>>
4793 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4794 std::initializer_list<T> rhs) {
4795 return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4796 }
4797
4798 // Matches an STL-style container or a native array that contains at
4799 // least one element matching the given value or matcher.
4800 //
4801 // Examples:
4802 // ::std::set<int> page_ids;
4803 // page_ids.insert(3);
4804 // page_ids.insert(1);
4805 // EXPECT_THAT(page_ids, Contains(1));
4806 // EXPECT_THAT(page_ids, Contains(Gt(2)));
4807 // EXPECT_THAT(page_ids, Not(Contains(4))); // See below for Times(0)
4808 //
4809 // ::std::map<int, size_t> page_lengths;
4810 // page_lengths[1] = 100;
4811 // EXPECT_THAT(page_lengths,
4812 // Contains(::std::pair<const int, size_t>(1, 100)));
4813 //
4814 // const char* user_ids[] = { "joe", "mike", "tom" };
4815 // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4816 //
4817 // The matcher supports a modifier `Times` that allows to check for arbitrary
4818 // occurrences including testing for absence with Times(0).
4819 //
4820 // Examples:
4821 // ::std::vector<int> ids;
4822 // ids.insert(1);
4823 // ids.insert(1);
4824 // ids.insert(3);
4825 // EXPECT_THAT(ids, Contains(1).Times(2)); // 1 occurs 2 times
4826 // EXPECT_THAT(ids, Contains(2).Times(0)); // 2 is not present
4827 // EXPECT_THAT(ids, Contains(3).Times(Ge(1))); // 3 occurs at least once
4828
4829 template <typename M>
4830 inline internal::ContainsMatcher<M> Contains(M matcher) {
4831 return internal::ContainsMatcher<M>(matcher);
4832 }
4833
4834 // IsSupersetOf(iterator_first, iterator_last)
4835 // IsSupersetOf(pointer, count)
4836 // IsSupersetOf(array)
4837 // IsSupersetOf(container)
4838 // IsSupersetOf({e1, e2, ..., en})
4839 //
4840 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
4841 // of matchers exists. In other words, a container matches
4842 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4843 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
4844 // ..., and yn matches en. Obviously, the size of the container must be >= n
4845 // in order to have a match. Examples:
4846 //
4847 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4848 // 1 matches Ne(0).
4849 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4850 // both Eq(1) and Lt(2). The reason is that different matchers must be used
4851 // for elements in different slots of the container.
4852 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4853 // Eq(1) and (the second) 1 matches Lt(2).
4854 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4855 // Gt(1) and 3 matches (the second) Gt(1).
4856 //
4857 // The matchers can be specified as an array, a pointer and count, a container,
4858 // an initializer list, or an STL iterator range. In each of these cases, the
4859 // underlying matchers can be either values or matchers.
4860
4861 template <typename Iter>
4862 inline internal::UnorderedElementsAreArrayMatcher<
4863 typename ::std::iterator_traits<Iter>::value_type>
4864 IsSupersetOf(Iter first, Iter last) {
4865 typedef typename ::std::iterator_traits<Iter>::value_type T;
4866 return internal::UnorderedElementsAreArrayMatcher<T>(
4867 internal::UnorderedMatcherRequire::Superset, first, last);
4868 }
4869
4870 template <typename T>
4871 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4872 const T* pointer, size_t count) {
4873 return IsSupersetOf(pointer, pointer + count);
4874 }
4875
4876 template <typename T, size_t N>
4877 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4878 const T (&array)[N]) {
4879 return IsSupersetOf(array, N);
4880 }
4881
4882 template <typename Container>
4883 inline internal::UnorderedElementsAreArrayMatcher<
4884 typename Container::value_type>
4885 IsSupersetOf(const Container& container) {
4886 return IsSupersetOf(container.begin(), container.end());
4887 }
4888
4889 template <typename T>
4890 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4891 ::std::initializer_list<T> xs) {
4892 return IsSupersetOf(xs.begin(), xs.end());
4893 }
4894
4895 // IsSubsetOf(iterator_first, iterator_last)
4896 // IsSubsetOf(pointer, count)
4897 // IsSubsetOf(array)
4898 // IsSubsetOf(container)
4899 // IsSubsetOf({e1, e2, ..., en})
4900 //
4901 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4902 // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4903 // only if there is a subset of matchers {m1, ..., mk} which would match the
4904 // container using UnorderedElementsAre. Obviously, the size of the container
4905 // must be <= n in order to have a match. Examples:
4906 //
4907 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4908 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4909 // matches Lt(0).
4910 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4911 // match Gt(0). The reason is that different matchers must be used for
4912 // elements in different slots of the container.
4913 //
4914 // The matchers can be specified as an array, a pointer and count, a container,
4915 // an initializer list, or an STL iterator range. In each of these cases, the
4916 // underlying matchers can be either values or matchers.
4917
4918 template <typename Iter>
4919 inline internal::UnorderedElementsAreArrayMatcher<
4920 typename ::std::iterator_traits<Iter>::value_type>
4921 IsSubsetOf(Iter first, Iter last) {
4922 typedef typename ::std::iterator_traits<Iter>::value_type T;
4923 return internal::UnorderedElementsAreArrayMatcher<T>(
4924 internal::UnorderedMatcherRequire::Subset, first, last);
4925 }
4926
4927 template <typename T>
4928 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4929 const T* pointer, size_t count) {
4930 return IsSubsetOf(pointer, pointer + count);
4931 }
4932
4933 template <typename T, size_t N>
4934 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4935 const T (&array)[N]) {
4936 return IsSubsetOf(array, N);
4937 }
4938
4939 template <typename Container>
4940 inline internal::UnorderedElementsAreArrayMatcher<
4941 typename Container::value_type>
4942 IsSubsetOf(const Container& container) {
4943 return IsSubsetOf(container.begin(), container.end());
4944 }
4945
4946 template <typename T>
4947 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4948 ::std::initializer_list<T> xs) {
4949 return IsSubsetOf(xs.begin(), xs.end());
4950 }
4951
4952 // Matches an STL-style container or a native array that contains only
4953 // elements matching the given value or matcher.
4954 //
4955 // Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only
4956 // the messages are different.
4957 //
4958 // Examples:
4959 // ::std::set<int> page_ids;
4960 // // Each(m) matches an empty container, regardless of what m is.
4961 // EXPECT_THAT(page_ids, Each(Eq(1)));
4962 // EXPECT_THAT(page_ids, Each(Eq(77)));
4963 //
4964 // page_ids.insert(3);
4965 // EXPECT_THAT(page_ids, Each(Gt(0)));
4966 // EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4967 // page_ids.insert(1);
4968 // EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4969 //
4970 // ::std::map<int, size_t> page_lengths;
4971 // page_lengths[1] = 100;
4972 // page_lengths[2] = 200;
4973 // page_lengths[3] = 300;
4974 // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4975 // EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4976 //
4977 // const char* user_ids[] = { "joe", "mike", "tom" };
4978 // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4979 template <typename M>
4980 inline internal::EachMatcher<M> Each(M matcher) {
4981 return internal::EachMatcher<M>(matcher);
4982 }
4983
4984 // Key(inner_matcher) matches an std::pair whose 'first' field matches
4985 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
4986 // std::map that contains at least one element whose key is >= 5.
4987 template <typename M>
4988 inline internal::KeyMatcher<M> Key(M inner_matcher) {
4989 return internal::KeyMatcher<M>(inner_matcher);
4990 }
4991
4992 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4993 // matches first_matcher and whose 'second' field matches second_matcher. For
4994 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4995 // to match a std::map<int, string> that contains exactly one element whose key
4996 // is >= 5 and whose value equals "foo".
4997 template <typename FirstMatcher, typename SecondMatcher>
4998 inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(
4999 FirstMatcher first_matcher, SecondMatcher second_matcher) {
5000 return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher,
5001 second_matcher);
5002 }
5003
5004 namespace no_adl {
5005 // Conditional() creates a matcher that conditionally uses either the first or
5006 // second matcher provided. For example, we could create an `equal if, and only
5007 // if' matcher using the Conditional wrapper as follows:
5008 //
5009 // EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected)));
5010 template <typename MatcherTrue, typename MatcherFalse>
5011 internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional(
5012 bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) {
5013 return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>(
5014 condition, std::move(matcher_true), std::move(matcher_false));
5015 }
5016
5017 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
5018 // These include those that support `get<I>(obj)`, and when structured bindings
5019 // are enabled any class that supports them.
5020 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
5021 template <typename... M>
5022 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
5023 M&&... matchers) {
5024 return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
5025 std::forward<M>(matchers)...);
5026 }
5027
5028 // Creates a matcher that matches a pointer (raw or smart) that matches
5029 // inner_matcher.
5030 template <typename InnerMatcher>
5031 inline internal::PointerMatcher<InnerMatcher> Pointer(
5032 const InnerMatcher& inner_matcher) {
5033 return internal::PointerMatcher<InnerMatcher>(inner_matcher);
5034 }
5035
5036 // Creates a matcher that matches an object that has an address that matches
5037 // inner_matcher.
5038 template <typename InnerMatcher>
5039 inline internal::AddressMatcher<InnerMatcher> Address(
5040 const InnerMatcher& inner_matcher) {
5041 return internal::AddressMatcher<InnerMatcher>(inner_matcher);
5042 }
5043
5044 // Matches a base64 escaped string, when the unescaped string matches the
5045 // internal matcher.
5046 template <typename MatcherType>
5047 internal::WhenBase64UnescapedMatcher WhenBase64Unescaped(
5048 const MatcherType& internal_matcher) {
5049 return internal::WhenBase64UnescapedMatcher(internal_matcher);
5050 }
5051 } // namespace no_adl
5052
5053 // Returns a predicate that is satisfied by anything that matches the
5054 // given matcher.
5055 template <typename M>
5056 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5057 return internal::MatcherAsPredicate<M>(matcher);
5058 }
5059
5060 // Returns true if and only if the value matches the matcher.
5061 template <typename T, typename M>
5062 inline bool Value(const T& value, M matcher) {
5063 return testing::Matches(matcher)(value);
5064 }
5065
5066 // Matches the value against the given matcher and explains the match
5067 // result to listener.
5068 template <typename T, typename M>
5069 inline bool ExplainMatchResult(M matcher, const T& value,
5070 MatchResultListener* listener) {
5071 return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5072 }
5073
5074 // Returns a string representation of the given matcher. Useful for description
5075 // strings of matchers defined using MATCHER_P* macros that accept matchers as
5076 // their arguments. For example:
5077 //
5078 // MATCHER_P(XAndYThat, matcher,
5079 // "X that " + DescribeMatcher<int>(matcher, negation) +
5080 // (negation ? " or" : " and") + " Y that " +
5081 // DescribeMatcher<double>(matcher, negation)) {
5082 // return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5083 // ExplainMatchResult(matcher, arg.y(), result_listener);
5084 // }
5085 template <typename T, typename M>
5086 std::string DescribeMatcher(const M& matcher, bool negation = false) {
5087 ::std::stringstream ss;
5088 Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5089 if (negation) {
5090 monomorphic_matcher.DescribeNegationTo(&ss);
5091 } else {
5092 monomorphic_matcher.DescribeTo(&ss);
5093 }
5094 return ss.str();
5095 }
5096
5097 template <typename... Args>
5098 internal::ElementsAreMatcher<
5099 std::tuple<typename std::decay<const Args&>::type...>>
5100 ElementsAre(const Args&... matchers) {
5101 return internal::ElementsAreMatcher<
5102 std::tuple<typename std::decay<const Args&>::type...>>(
5103 std::make_tuple(matchers...));
5104 }
5105
5106 template <typename... Args>
5107 internal::UnorderedElementsAreMatcher<
5108 std::tuple<typename std::decay<const Args&>::type...>>
5109 UnorderedElementsAre(const Args&... matchers) {
5110 return internal::UnorderedElementsAreMatcher<
5111 std::tuple<typename std::decay<const Args&>::type...>>(
5112 std::make_tuple(matchers...));
5113 }
5114
5115 // Define variadic matcher versions.
5116 template <typename... Args>
5117 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5118 const Args&... matchers) {
5119 return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5120 matchers...);
5121 }
5122
5123 template <typename... Args>
5124 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5125 const Args&... matchers) {
5126 return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5127 matchers...);
5128 }
5129
5130 // AnyOfArray(array)
5131 // AnyOfArray(pointer, count)
5132 // AnyOfArray(container)
5133 // AnyOfArray({ e1, e2, ..., en })
5134 // AnyOfArray(iterator_first, iterator_last)
5135 //
5136 // AnyOfArray() verifies whether a given value matches any member of a
5137 // collection of matchers.
5138 //
5139 // AllOfArray(array)
5140 // AllOfArray(pointer, count)
5141 // AllOfArray(container)
5142 // AllOfArray({ e1, e2, ..., en })
5143 // AllOfArray(iterator_first, iterator_last)
5144 //
5145 // AllOfArray() verifies whether a given value matches all members of a
5146 // collection of matchers.
5147 //
5148 // The matchers can be specified as an array, a pointer and count, a container,
5149 // an initializer list, or an STL iterator range. In each of these cases, the
5150 // underlying matchers can be either values or matchers.
5151
5152 template <typename Iter>
5153 inline internal::AnyOfArrayMatcher<
5154 typename ::std::iterator_traits<Iter>::value_type>
5155 AnyOfArray(Iter first, Iter last) {
5156 return internal::AnyOfArrayMatcher<
5157 typename ::std::iterator_traits<Iter>::value_type>(first, last);
5158 }
5159
5160 template <typename Iter>
5161 inline internal::AllOfArrayMatcher<
5162 typename ::std::iterator_traits<Iter>::value_type>
5163 AllOfArray(Iter first, Iter last) {
5164 return internal::AllOfArrayMatcher<
5165 typename ::std::iterator_traits<Iter>::value_type>(first, last);
5166 }
5167
5168 template <typename T>
5169 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
5170 return AnyOfArray(ptr, ptr + count);
5171 }
5172
5173 template <typename T>
5174 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
5175 return AllOfArray(ptr, ptr + count);
5176 }
5177
5178 template <typename T, size_t N>
5179 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
5180 return AnyOfArray(array, N);
5181 }
5182
5183 template <typename T, size_t N>
5184 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
5185 return AllOfArray(array, N);
5186 }
5187
5188 template <typename Container>
5189 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
5190 const Container& container) {
5191 return AnyOfArray(container.begin(), container.end());
5192 }
5193
5194 template <typename Container>
5195 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
5196 const Container& container) {
5197 return AllOfArray(container.begin(), container.end());
5198 }
5199
5200 template <typename T>
5201 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
5202 ::std::initializer_list<T> xs) {
5203 return AnyOfArray(xs.begin(), xs.end());
5204 }
5205
5206 template <typename T>
5207 inline internal::AllOfArrayMatcher<T> AllOfArray(
5208 ::std::initializer_list<T> xs) {
5209 return AllOfArray(xs.begin(), xs.end());
5210 }
5211
5212 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5213 // fields of it matches a_matcher. C++ doesn't support default
5214 // arguments for function templates, so we have to overload it.
5215 template <size_t... k, typename InnerMatcher>
5216 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5217 InnerMatcher&& matcher) {
5218 return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5219 std::forward<InnerMatcher>(matcher));
5220 }
5221
5222 // AllArgs(m) is a synonym of m. This is useful in
5223 //
5224 // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5225 //
5226 // which is easier to read than
5227 //
5228 // EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5229 template <typename InnerMatcher>
5230 inline InnerMatcher AllArgs(const InnerMatcher& matcher) {
5231 return matcher;
5232 }
5233
5234 // Returns a matcher that matches the value of an optional<> type variable.
5235 // The matcher implementation only uses '!arg' and requires that the optional<>
5236 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
5237 // and is printable using 'PrintToString'. It is compatible with
5238 // std::optional/std::experimental::optional.
5239 // Note that to compare an optional type variable against nullopt you should
5240 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5241 // optional value contains an optional itself.
5242 template <typename ValueMatcher>
5243 inline internal::OptionalMatcher<ValueMatcher> Optional(
5244 const ValueMatcher& value_matcher) {
5245 return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5246 }
5247
5248 // Returns a matcher that matches the value of a absl::any type variable.
5249 template <typename T>
5250 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith(
5251 const Matcher<const T&>& matcher) {
5252 return MakePolymorphicMatcher(
5253 internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5254 }
5255
5256 // Returns a matcher that matches the value of a variant<> type variable.
5257 // The matcher implementation uses ADL to find the holds_alternative and get
5258 // functions.
5259 // It is compatible with std::variant.
5260 template <typename T>
5261 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith(
5262 const Matcher<const T&>& matcher) {
5263 return MakePolymorphicMatcher(
5264 internal::variant_matcher::VariantMatcher<T>(matcher));
5265 }
5266
5267 #if GTEST_HAS_EXCEPTIONS
5268
5269 // Anything inside the `internal` namespace is internal to the implementation
5270 // and must not be used in user code!
5271 namespace internal {
5272
5273 class WithWhatMatcherImpl {
5274 public:
5275 WithWhatMatcherImpl(Matcher<std::string> matcher)
5276 : matcher_(std::move(matcher)) {}
5277
5278 void DescribeTo(std::ostream* os) const {
5279 *os << "contains .what() that ";
5280 matcher_.DescribeTo(os);
5281 }
5282
5283 void DescribeNegationTo(std::ostream* os) const {
5284 *os << "contains .what() that does not ";
5285 matcher_.DescribeTo(os);
5286 }
5287
5288 template <typename Err>
5289 bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5290 *listener << "which contains .what() (of value = " << err.what()
5291 << ") that ";
5292 return matcher_.MatchAndExplain(err.what(), listener);
5293 }
5294
5295 private:
5296 const Matcher<std::string> matcher_;
5297 };
5298
5299 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5300 Matcher<std::string> m) {
5301 return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5302 }
5303
5304 template <typename Err>
5305 class ExceptionMatcherImpl {
5306 class NeverThrown {
5307 public:
5308 const char* what() const noexcept {
5309 return "this exception should never be thrown";
5310 }
5311 };
5312
5313 // If the matchee raises an exception of a wrong type, we'd like to
5314 // catch it and print its message and type. To do that, we add an additional
5315 // catch clause:
5316 //
5317 // try { ... }
5318 // catch (const Err&) { /* an expected exception */ }
5319 // catch (const std::exception&) { /* exception of a wrong type */ }
5320 //
5321 // However, if the `Err` itself is `std::exception`, we'd end up with two
5322 // identical `catch` clauses:
5323 //
5324 // try { ... }
5325 // catch (const std::exception&) { /* an expected exception */ }
5326 // catch (const std::exception&) { /* exception of a wrong type */ }
5327 //
5328 // This can cause a warning or an error in some compilers. To resolve
5329 // the issue, we use a fake error type whenever `Err` is `std::exception`:
5330 //
5331 // try { ... }
5332 // catch (const std::exception&) { /* an expected exception */ }
5333 // catch (const NeverThrown&) { /* exception of a wrong type */ }
5334 using DefaultExceptionType = typename std::conditional<
5335 std::is_same<typename std::remove_cv<
5336 typename std::remove_reference<Err>::type>::type,
5337 std::exception>::value,
5338 const NeverThrown&, const std::exception&>::type;
5339
5340 public:
5341 ExceptionMatcherImpl(Matcher<const Err&> matcher)
5342 : matcher_(std::move(matcher)) {}
5343
5344 void DescribeTo(std::ostream* os) const {
5345 *os << "throws an exception which is a " << GetTypeName<Err>();
5346 *os << " which ";
5347 matcher_.DescribeTo(os);
5348 }
5349
5350 void DescribeNegationTo(std::ostream* os) const {
5351 *os << "throws an exception which is not a " << GetTypeName<Err>();
5352 *os << " which ";
5353 matcher_.DescribeNegationTo(os);
5354 }
5355
5356 template <typename T>
5357 bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5358 try {
5359 (void)(std::forward<T>(x)());
5360 } catch (const Err& err) {
5361 *listener << "throws an exception which is a " << GetTypeName<Err>();
5362 *listener << " ";
5363 return matcher_.MatchAndExplain(err, listener);
5364 } catch (DefaultExceptionType err) {
5365 #if GTEST_HAS_RTTI
5366 *listener << "throws an exception of type " << GetTypeName(typeid(err));
5367 *listener << " ";
5368 #else
5369 *listener << "throws an std::exception-derived type ";
5370 #endif
5371 *listener << "with description \"" << err.what() << "\"";
5372 return false;
5373 } catch (...) {
5374 *listener << "throws an exception of an unknown type";
5375 return false;
5376 }
5377
5378 *listener << "does not throw any exception";
5379 return false;
5380 }
5381
5382 private:
5383 const Matcher<const Err&> matcher_;
5384 };
5385
5386 } // namespace internal
5387
5388 // Throws()
5389 // Throws(exceptionMatcher)
5390 // ThrowsMessage(messageMatcher)
5391 //
5392 // This matcher accepts a callable and verifies that when invoked, it throws
5393 // an exception with the given type and properties.
5394 //
5395 // Examples:
5396 //
5397 // EXPECT_THAT(
5398 // []() { throw std::runtime_error("message"); },
5399 // Throws<std::runtime_error>());
5400 //
5401 // EXPECT_THAT(
5402 // []() { throw std::runtime_error("message"); },
5403 // ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5404 //
5405 // EXPECT_THAT(
5406 // []() { throw std::runtime_error("message"); },
5407 // Throws<std::runtime_error>(
5408 // Property(&std::runtime_error::what, HasSubstr("message"))));
5409
5410 template <typename Err>
5411 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5412 return MakePolymorphicMatcher(
5413 internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5414 }
5415
5416 template <typename Err, typename ExceptionMatcher>
5417 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5418 const ExceptionMatcher& exception_matcher) {
5419 // Using matcher cast allows users to pass a matcher of a more broad type.
5420 // For example user may want to pass Matcher<std::exception>
5421 // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5422 return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5423 SafeMatcherCast<const Err&>(exception_matcher)));
5424 }
5425
5426 template <typename Err, typename MessageMatcher>
5427 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5428 MessageMatcher&& message_matcher) {
5429 static_assert(std::is_base_of<std::exception, Err>::value,
5430 "expected an std::exception-derived type");
5431 return Throws<Err>(internal::WithWhat(
5432 MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5433 }
5434
5435 #endif // GTEST_HAS_EXCEPTIONS
5436
5437 // These macros allow using matchers to check values in Google Test
5438 // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5439 // succeed if and only if the value matches the matcher. If the assertion
5440 // fails, the value and the description of the matcher will be printed.
5441 #define ASSERT_THAT(value, matcher) \
5442 ASSERT_PRED_FORMAT1( \
5443 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5444 #define EXPECT_THAT(value, matcher) \
5445 EXPECT_PRED_FORMAT1( \
5446 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5447
5448 // MATCHER* macros itself are listed below.
5449 #define MATCHER(name, description) \
5450 class name##Matcher \
5451 : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
5452 public: \
5453 template <typename arg_type> \
5454 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5455 public: \
5456 gmock_Impl() {} \
5457 bool MatchAndExplain( \
5458 const arg_type& arg, \
5459 ::testing::MatchResultListener* result_listener) const override; \
5460 void DescribeTo(::std::ostream* gmock_os) const override { \
5461 *gmock_os << FormatDescription(false); \
5462 } \
5463 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5464 *gmock_os << FormatDescription(true); \
5465 } \
5466 \
5467 private: \
5468 ::std::string FormatDescription(bool negation) const { \
5469 /* NOLINTNEXTLINE readability-redundant-string-init */ \
5470 ::std::string gmock_description = (description); \
5471 if (!gmock_description.empty()) { \
5472 return gmock_description; \
5473 } \
5474 return ::testing::internal::FormatMatcherDescription(negation, #name, \
5475 {}, {}); \
5476 } \
5477 }; \
5478 }; \
5479 inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH() \
5480 GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function") \
5481 GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function") \
5482 name GMOCK_INTERNAL_WARNING_POP()() { \
5483 return {}; \
5484 } \
5485 template <typename arg_type> \
5486 bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
5487 const arg_type& arg, \
5488 ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
5489 const
5490
5491 #define MATCHER_P(name, p0, description) \
5492 GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0))
5493 #define MATCHER_P2(name, p0, p1, description) \
5494 GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \
5495 (p0, p1))
5496 #define MATCHER_P3(name, p0, p1, p2, description) \
5497 GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \
5498 (p0, p1, p2))
5499 #define MATCHER_P4(name, p0, p1, p2, p3, description) \
5500 GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \
5501 (#p0, #p1, #p2, #p3), (p0, p1, p2, p3))
5502 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
5503 GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5504 (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4))
5505 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5506 GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
5507 (#p0, #p1, #p2, #p3, #p4, #p5), \
5508 (p0, p1, p2, p3, p4, p5))
5509 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5510 GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
5511 (#p0, #p1, #p2, #p3, #p4, #p5, #p6), \
5512 (p0, p1, p2, p3, p4, p5, p6))
5513 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5514 GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
5515 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7), \
5516 (p0, p1, p2, p3, p4, p5, p6, p7))
5517 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5518 GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
5519 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8), \
5520 (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5521 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5522 GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
5523 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9), \
5524 (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5525
5526 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args) \
5527 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5528 class full_name : public ::testing::internal::MatcherBaseImpl< \
5529 full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5530 public: \
5531 using full_name::MatcherBaseImpl::MatcherBaseImpl; \
5532 template <typename arg_type> \
5533 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5534 public: \
5535 explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
5536 : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
5537 bool MatchAndExplain( \
5538 const arg_type& arg, \
5539 ::testing::MatchResultListener* result_listener) const override; \
5540 void DescribeTo(::std::ostream* gmock_os) const override { \
5541 *gmock_os << FormatDescription(false); \
5542 } \
5543 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5544 *gmock_os << FormatDescription(true); \
5545 } \
5546 GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5547 \
5548 private: \
5549 ::std::string FormatDescription(bool negation) const { \
5550 ::std::string gmock_description; \
5551 gmock_description = (description); \
5552 if (!gmock_description.empty()) { \
5553 return gmock_description; \
5554 } \
5555 return ::testing::internal::FormatMatcherDescription( \
5556 negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)}, \
5557 ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
5558 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5559 GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
5560 } \
5561 }; \
5562 }; \
5563 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5564 inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
5565 GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
5566 return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5567 GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
5568 } \
5569 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5570 template <typename arg_type> \
5571 bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \
5572 arg_type>::MatchAndExplain(const arg_type& arg, \
5573 ::testing::MatchResultListener* \
5574 result_listener GTEST_ATTRIBUTE_UNUSED_) \
5575 const
5576
5577 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5578 GMOCK_PP_TAIL( \
5579 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5580 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5581 , typename arg##_type
5582
5583 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5584 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5585 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5586 , arg##_type
5587
5588 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5589 GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
5590 GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5591 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5592 , arg##_type gmock_p##i
5593
5594 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5595 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5596 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5597 , arg(::std::forward<arg##_type>(gmock_p##i))
5598
5599 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5600 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5601 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5602 const arg##_type arg;
5603
5604 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5605 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5606 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5607
5608 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5609 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5610 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
5611 , gmock_p##i
5612
5613 // To prevent ADL on certain functions we put them on a separate namespace.
5614 using namespace no_adl; // NOLINT
5615
5616 } // namespace testing
5617
5618 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
5619
5620 // Include any custom callback matchers added by the local installation.
5621 // We must include this header at the end to make sure it can use the
5622 // declarations from this file.
5623 #include "gmock/internal/custom/gmock-matchers.h"
5624
5625 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5626