1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *****************************************************************************
5 * Copyright (C) 1996-2015, International Business Machines Corporation and
6 * others. All Rights Reserved.
7 *****************************************************************************
8 */
9
10 #include "unicode/utypes.h"
11
12 #if !UCONFIG_NO_NORMALIZATION
13
14 #include "unicode/caniter.h"
15 #include "unicode/normalizer2.h"
16 #include "unicode/uchar.h"
17 #include "unicode/uniset.h"
18 #include "unicode/usetiter.h"
19 #include "unicode/ustring.h"
20 #include "unicode/utf16.h"
21 #include "cmemory.h"
22 #include "hash.h"
23 #include "normalizer2impl.h"
24
25 /**
26 * This class allows one to iterate through all the strings that are canonically equivalent to a given
27 * string. For example, here are some sample results:
28 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
29 1: \u0041\u030A\u0064\u0307\u0327
30 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
31 2: \u0041\u030A\u0064\u0327\u0307
32 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
33 3: \u0041\u030A\u1E0B\u0327
34 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
35 4: \u0041\u030A\u1E11\u0307
36 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
37 5: \u00C5\u0064\u0307\u0327
38 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
39 6: \u00C5\u0064\u0327\u0307
40 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
41 7: \u00C5\u1E0B\u0327
42 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
43 8: \u00C5\u1E11\u0307
44 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
45 9: \u212B\u0064\u0307\u0327
46 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
47 10: \u212B\u0064\u0327\u0307
48 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
49 11: \u212B\u1E0B\u0327
50 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
51 12: \u212B\u1E11\u0307
52 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
53 *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
54 * since it has not been optimized for that situation.
55 *@author M. Davis
56 *@draft
57 */
58
59 // public
60
61 U_NAMESPACE_BEGIN
62
63 // TODO: add boilerplate methods.
64
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)65 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
66
67
68 /**
69 *@param source string to get results for
70 */
71 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
72 pieces(nullptr),
73 pieces_length(0),
74 pieces_lengths(nullptr),
75 current(nullptr),
76 current_length(0),
77 nfd(Normalizer2::getNFDInstance(status)),
78 nfcImpl(Normalizer2Factory::getNFCImpl(status))
79 {
80 if(U_SUCCESS(status) && nfcImpl->ensureCanonIterData(status)) {
81 setSource(sourceStr, status);
82 }
83 }
84
~CanonicalIterator()85 CanonicalIterator::~CanonicalIterator() {
86 cleanPieces();
87 }
88
cleanPieces()89 void CanonicalIterator::cleanPieces() {
90 int32_t i = 0;
91 if(pieces != nullptr) {
92 for(i = 0; i < pieces_length; i++) {
93 if(pieces[i] != nullptr) {
94 delete[] pieces[i];
95 }
96 }
97 uprv_free(pieces);
98 pieces = nullptr;
99 pieces_length = 0;
100 }
101 if(pieces_lengths != nullptr) {
102 uprv_free(pieces_lengths);
103 pieces_lengths = nullptr;
104 }
105 if(current != nullptr) {
106 uprv_free(current);
107 current = nullptr;
108 current_length = 0;
109 }
110 }
111
112 /**
113 *@return gets the source: NOTE: it is the NFD form of source
114 */
getSource()115 UnicodeString CanonicalIterator::getSource() {
116 return source;
117 }
118
119 /**
120 * Resets the iterator so that one can start again from the beginning.
121 */
reset()122 void CanonicalIterator::reset() {
123 done = false;
124 for (int i = 0; i < current_length; ++i) {
125 current[i] = 0;
126 }
127 }
128
129 /**
130 *@return the next string that is canonically equivalent. The value null is returned when
131 * the iteration is done.
132 */
next()133 UnicodeString CanonicalIterator::next() {
134 int32_t i = 0;
135
136 if (done) {
137 buffer.setToBogus();
138 return buffer;
139 }
140
141 // delete old contents
142 buffer.remove();
143
144 // construct return value
145
146 for (i = 0; i < pieces_length; ++i) {
147 buffer.append(pieces[i][current[i]]);
148 }
149 //String result = buffer.toString(); // not needed
150
151 // find next value for next time
152
153 for (i = current_length - 1; ; --i) {
154 if (i < 0) {
155 done = true;
156 break;
157 }
158 current[i]++;
159 if (current[i] < pieces_lengths[i]) break; // got sequence
160 current[i] = 0;
161 }
162 return buffer;
163 }
164
165 /**
166 *@param set the source string to iterate against. This allows the same iterator to be used
167 * while changing the source string, saving object creation.
168 */
setSource(const UnicodeString & newSource,UErrorCode & status)169 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
170 int32_t list_length = 0;
171 UChar32 cp = 0;
172 int32_t start = 0;
173 int32_t i = 0;
174 UnicodeString *list = nullptr;
175
176 nfd->normalize(newSource, source, status);
177 if(U_FAILURE(status)) {
178 return;
179 }
180 done = false;
181
182 cleanPieces();
183
184 // catch degenerate case
185 if (newSource.length() == 0) {
186 pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
187 pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
188 pieces_length = 1;
189 current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
190 current_length = 1;
191 if (pieces == nullptr || pieces_lengths == nullptr || current == nullptr) {
192 status = U_MEMORY_ALLOCATION_ERROR;
193 goto CleanPartialInitialization;
194 }
195 current[0] = 0;
196 pieces[0] = new UnicodeString[1];
197 pieces_lengths[0] = 1;
198 if (pieces[0] == nullptr) {
199 status = U_MEMORY_ALLOCATION_ERROR;
200 goto CleanPartialInitialization;
201 }
202 return;
203 }
204
205
206 list = new UnicodeString[source.length()];
207 if (list == nullptr) {
208 status = U_MEMORY_ALLOCATION_ERROR;
209 goto CleanPartialInitialization;
210 }
211
212 // i should initially be the number of code units at the
213 // start of the string
214 i = U16_LENGTH(source.char32At(0));
215 // int32_t i = 1;
216 // find the segments
217 // This code iterates through the source string and
218 // extracts segments that end up on a codepoint that
219 // doesn't start any decompositions. (Analysis is done
220 // on the NFD form - see above).
221 for (; i < source.length(); i += U16_LENGTH(cp)) {
222 cp = source.char32At(i);
223 if (nfcImpl->isCanonSegmentStarter(cp)) {
224 source.extract(start, i-start, list[list_length++]); // add up to i
225 start = i;
226 }
227 }
228 source.extract(start, i-start, list[list_length++]); // add last one
229
230
231 // allocate the arrays, and find the strings that are CE to each segment
232 pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
233 pieces_length = list_length;
234 pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
235 current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
236 current_length = list_length;
237 if (pieces == nullptr || pieces_lengths == nullptr || current == nullptr) {
238 status = U_MEMORY_ALLOCATION_ERROR;
239 goto CleanPartialInitialization;
240 }
241
242 for (i = 0; i < current_length; i++) {
243 current[i] = 0;
244 }
245 // for each segment, get all the combinations that can produce
246 // it after NFD normalization
247 for (i = 0; i < pieces_length; ++i) {
248 //if (PROGRESS) printf("SEGMENT\n");
249 pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
250 }
251
252 delete[] list;
253 return;
254 // Common section to cleanup all local variables and reset object variables.
255 CleanPartialInitialization:
256 delete[] list;
257 cleanPieces();
258 }
259
260 /**
261 * Dumb recursive implementation of permutation.
262 * TODO: optimize
263 * @param source the string to find permutations for
264 * @return the results in a set.
265 */
permute(UnicodeString & source,UBool skipZeros,Hashtable * result,UErrorCode & status,int32_t depth)266 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status, int32_t depth) {
267 if(U_FAILURE(status)) {
268 return;
269 }
270 // To avoid infinity loop caused by permute, we limit the depth of recursive
271 // call to permute and return U_UNSUPPORTED_ERROR.
272 // We know in some unit test we need at least 4. Set to 8 just in case some
273 // unforseen use cases.
274 constexpr int32_t kPermuteDepthLimit = 8;
275 if (depth > kPermuteDepthLimit) {
276 status = U_UNSUPPORTED_ERROR;
277 return;
278 }
279 //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
280 int32_t i = 0;
281
282 // optimization:
283 // if zero or one character, just return a set with it
284 // we check for length < 2 to keep from counting code points all the time
285 if (source.length() <= 2 && source.countChar32() <= 1) {
286 UnicodeString *toPut = new UnicodeString(source);
287 /* test for nullptr */
288 if (toPut == nullptr) {
289 status = U_MEMORY_ALLOCATION_ERROR;
290 return;
291 }
292 result->put(source, toPut, status);
293 return;
294 }
295
296 // otherwise iterate through the string, and recursively permute all the other characters
297 UChar32 cp;
298 Hashtable subpermute(status);
299 if(U_FAILURE(status)) {
300 return;
301 }
302 subpermute.setValueDeleter(uprv_deleteUObject);
303
304 for (i = 0; i < source.length(); i += U16_LENGTH(cp)) {
305 cp = source.char32At(i);
306 const UHashElement *ne = nullptr;
307 int32_t el = UHASH_FIRST;
308 UnicodeString subPermuteString = source;
309
310 // optimization:
311 // if the character is canonical combining class zero,
312 // don't permute it
313 if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
314 //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
315 continue;
316 }
317
318 subpermute.removeAll();
319
320 // see what the permutations of the characters before and after this one are
321 //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
322 permute(subPermuteString.remove(i, U16_LENGTH(cp)), skipZeros, &subpermute, status, depth+1);
323 /* Test for buffer overflows */
324 if(U_FAILURE(status)) {
325 return;
326 }
327 // The upper remove is destructive. The question is do we have to make a copy, or we don't care about the contents
328 // of source at this point.
329
330 // prefix this character to all of them
331 ne = subpermute.nextElement(el);
332 while (ne != nullptr) {
333 UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
334 UnicodeString *chStr = new UnicodeString(cp);
335 //test for nullptr
336 if (chStr == nullptr) {
337 status = U_MEMORY_ALLOCATION_ERROR;
338 return;
339 }
340 chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
341 //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr));
342 result->put(*chStr, chStr, status);
343 ne = subpermute.nextElement(el);
344 }
345 }
346 //return result;
347 }
348
349 // privates
350
351 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
getEquivalents(const UnicodeString & segment,int32_t & result_len,UErrorCode & status)352 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
353 Hashtable result(status);
354 Hashtable permutations(status);
355 Hashtable basic(status);
356 if (U_FAILURE(status)) {
357 return nullptr;
358 }
359 result.setValueDeleter(uprv_deleteUObject);
360 permutations.setValueDeleter(uprv_deleteUObject);
361 basic.setValueDeleter(uprv_deleteUObject);
362
363 char16_t USeg[256];
364 int32_t segLen = segment.extract(USeg, 256, status);
365 getEquivalents2(&basic, USeg, segLen, status);
366
367 // now get all the permutations
368 // add only the ones that are canonically equivalent
369 // TODO: optimize by not permuting any class zero.
370
371 const UHashElement *ne = nullptr;
372 int32_t el = UHASH_FIRST;
373 //Iterator it = basic.iterator();
374 ne = basic.nextElement(el);
375 //while (it.hasNext())
376 while (ne != nullptr) {
377 //String item = (String) it.next();
378 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
379
380 permutations.removeAll();
381 permute(item, CANITER_SKIP_ZEROES, &permutations, status);
382 const UHashElement *ne2 = nullptr;
383 int32_t el2 = UHASH_FIRST;
384 //Iterator it2 = permutations.iterator();
385 ne2 = permutations.nextElement(el2);
386 //while (it2.hasNext())
387 while (ne2 != nullptr) {
388 //String possible = (String) it2.next();
389 //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
390 UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
391 UnicodeString attempt;
392 nfd->normalize(possible, attempt, status);
393
394 // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
395 if (attempt==segment) {
396 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
397 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
398 result.put(possible, new UnicodeString(possible), status); //add(possible);
399 } else {
400 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
401 }
402
403 ne2 = permutations.nextElement(el2);
404 }
405 ne = basic.nextElement(el);
406 }
407
408 /* Test for buffer overflows */
409 if(U_FAILURE(status)) {
410 return nullptr;
411 }
412 // convert into a String[] to clean up storage
413 //String[] finalResult = new String[result.size()];
414 UnicodeString *finalResult = nullptr;
415 int32_t resultCount;
416 if((resultCount = result.count()) != 0) {
417 finalResult = new UnicodeString[resultCount];
418 if (finalResult == nullptr) {
419 status = U_MEMORY_ALLOCATION_ERROR;
420 return nullptr;
421 }
422 }
423 else {
424 status = U_ILLEGAL_ARGUMENT_ERROR;
425 return nullptr;
426 }
427 //result.toArray(finalResult);
428 result_len = 0;
429 el = UHASH_FIRST;
430 ne = result.nextElement(el);
431 while(ne != nullptr) {
432 finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
433 ne = result.nextElement(el);
434 }
435
436
437 return finalResult;
438 }
439
getEquivalents2(Hashtable * fillinResult,const char16_t * segment,int32_t segLen,UErrorCode & status)440 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const char16_t *segment, int32_t segLen, UErrorCode &status) {
441
442 if (U_FAILURE(status)) {
443 return nullptr;
444 }
445
446 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
447
448 UnicodeString toPut(segment, segLen);
449
450 fillinResult->put(toPut, new UnicodeString(toPut), status);
451
452 UnicodeSet starts;
453
454 // cycle through all the characters
455 UChar32 cp;
456 for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) {
457 // see if any character is at the start of some decomposition
458 U16_GET(segment, 0, i, segLen, cp);
459 if (!nfcImpl->getCanonStartSet(cp, starts)) {
460 continue;
461 }
462 // if so, see which decompositions match
463 UnicodeSetIterator iter(starts);
464 while (iter.next()) {
465 UChar32 cp2 = iter.getCodepoint();
466 Hashtable remainder(status);
467 remainder.setValueDeleter(uprv_deleteUObject);
468 if (extract(&remainder, cp2, segment, segLen, i, status) == nullptr) {
469 continue;
470 }
471
472 // there were some matches, so add all the possibilities to the set.
473 UnicodeString prefix(segment, i);
474 prefix += cp2;
475
476 int32_t el = UHASH_FIRST;
477 const UHashElement *ne = remainder.nextElement(el);
478 while (ne != nullptr) {
479 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
480 UnicodeString *toAdd = new UnicodeString(prefix);
481 /* test for nullptr */
482 if (toAdd == nullptr) {
483 status = U_MEMORY_ALLOCATION_ERROR;
484 return nullptr;
485 }
486 *toAdd += item;
487 fillinResult->put(*toAdd, toAdd, status);
488
489 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
490
491 ne = remainder.nextElement(el);
492 }
493 }
494 }
495
496 /* Test for buffer overflows */
497 if(U_FAILURE(status)) {
498 return nullptr;
499 }
500 return fillinResult;
501 }
502
503 /**
504 * See if the decomposition of cp2 is at segment starting at segmentPos
505 * (with canonical rearrangement!)
506 * If so, take the remainder, and return the equivalents
507 */
extract(Hashtable * fillinResult,UChar32 comp,const char16_t * segment,int32_t segLen,int32_t segmentPos,UErrorCode & status)508 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const char16_t *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
509 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
510 //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
511 //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
512
513 if (U_FAILURE(status)) {
514 return nullptr;
515 }
516
517 UnicodeString temp(comp);
518 int32_t inputLen=temp.length();
519 UnicodeString decompString;
520 nfd->normalize(temp, decompString, status);
521 if (U_FAILURE(status)) {
522 return nullptr;
523 }
524 if (decompString.isBogus()) {
525 status = U_MEMORY_ALLOCATION_ERROR;
526 return nullptr;
527 }
528 const char16_t *decomp=decompString.getBuffer();
529 int32_t decompLen=decompString.length();
530
531 // See if it matches the start of segment (at segmentPos)
532 UBool ok = false;
533 UChar32 cp;
534 int32_t decompPos = 0;
535 UChar32 decompCp;
536 U16_NEXT(decomp, decompPos, decompLen, decompCp);
537
538 int32_t i = segmentPos;
539 while(i < segLen) {
540 U16_NEXT(segment, i, segLen, cp);
541
542 if (cp == decompCp) { // if equal, eat another cp from decomp
543
544 //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp))));
545
546 if (decompPos == decompLen) { // done, have all decomp characters!
547 temp.append(segment+i, segLen-i);
548 ok = true;
549 break;
550 }
551 U16_NEXT(decomp, decompPos, decompLen, decompCp);
552 } else {
553 //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp))));
554
555 // brute force approach
556 temp.append(cp);
557
558 /* TODO: optimize
559 // since we know that the classes are monotonically increasing, after zero
560 // e.g. 0 5 7 9 0 3
561 // we can do an optimization
562 // there are only a few cases that work: zero, less, same, greater
563 // if both classes are the same, we fail
564 // if the decomp class < the segment class, we fail
565
566 segClass = getClass(cp);
567 if (decompClass <= segClass) return null;
568 */
569 }
570 }
571 if (!ok)
572 return nullptr; // we failed, characters left over
573
574 //if (PROGRESS) printf("Matches\n");
575
576 if (inputLen == temp.length()) {
577 fillinResult->put(UnicodeString(), new UnicodeString(), status);
578 return fillinResult; // succeed, but no remainder
579 }
580
581 // brute force approach
582 // check to make sure result is canonically equivalent
583 UnicodeString trial;
584 nfd->normalize(temp, trial, status);
585 if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
586 return nullptr;
587 }
588
589 return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
590 }
591
592 U_NAMESPACE_END
593
594 #endif /* #if !UCONFIG_NO_NORMALIZATION */
595