1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 * Copyright (C) 2009-2014, International Business Machines
7 * Corporation and others. All Rights Reserved.
8 *
9 *******************************************************************************
10 * file name: normalizer2impl.cpp
11 * encoding: UTF-8
12 * tab size: 8 (not used)
13 * indentation:4
14 *
15 * created on: 2009nov22
16 * created by: Markus W. Scherer
17 */
18
19 // #define UCPTRIE_DEBUG
20
21 #include "unicode/utypes.h"
22
23 #if !UCONFIG_NO_NORMALIZATION
24
25 #include "unicode/bytestream.h"
26 #include "unicode/edits.h"
27 #include "unicode/normalizer2.h"
28 #include "unicode/stringoptions.h"
29 #include "unicode/ucptrie.h"
30 #include "unicode/udata.h"
31 #include "unicode/umutablecptrie.h"
32 #include "unicode/ustring.h"
33 #include "unicode/utf16.h"
34 #include "unicode/utf8.h"
35 #include "bytesinkutil.h"
36 #include "cmemory.h"
37 #include "mutex.h"
38 #include "normalizer2impl.h"
39 #include "putilimp.h"
40 #include "uassert.h"
41 #include "ucptrie_impl.h"
42 #include "uset_imp.h"
43 #include "uvector.h"
44
45 U_NAMESPACE_BEGIN
46
47 namespace {
48
49 /**
50 * UTF-8 lead byte for minNoMaybeCP.
51 * Can be lower than the actual lead byte for c.
52 * Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold.
53 */
leadByteForCP(UChar32 c)54 inline uint8_t leadByteForCP(UChar32 c) {
55 if (c <= 0x7f) {
56 return (uint8_t)c;
57 } else if (c <= 0x7ff) {
58 return (uint8_t)(0xc0+(c>>6));
59 } else {
60 // Should not occur because ccc(U+0300)!=0.
61 return 0xe0;
62 }
63 }
64
65 /**
66 * Returns the code point from one single well-formed UTF-8 byte sequence
67 * between cpStart and cpLimit.
68 *
69 * Trie UTF-8 macros do not assemble whole code points (for efficiency).
70 * When we do need the code point, we call this function.
71 * We should not need it for normalization-inert data (norm16==0).
72 * Illegal sequences yield the error value norm16==0 just like real normalization-inert code points.
73 */
codePointFromValidUTF8(const uint8_t * cpStart,const uint8_t * cpLimit)74 UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) {
75 // Similar to U8_NEXT_UNSAFE(s, i, c).
76 U_ASSERT(cpStart < cpLimit);
77 uint8_t c = *cpStart;
78 switch(cpLimit-cpStart) {
79 case 1:
80 return c;
81 case 2:
82 return ((c&0x1f)<<6) | (cpStart[1]&0x3f);
83 case 3:
84 // no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (char16_t)
85 return (char16_t)((c<<12) | ((cpStart[1]&0x3f)<<6) | (cpStart[2]&0x3f));
86 case 4:
87 return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f);
88 default:
89 UPRV_UNREACHABLE_EXIT; // Should not occur.
90 }
91 }
92
93 /**
94 * Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF.
95 * Otherwise returns a negative value.
96 */
previousHangulOrJamo(const uint8_t * start,const uint8_t * p)97 UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) {
98 if ((p - start) >= 3) {
99 p -= 3;
100 uint8_t l = *p;
101 uint8_t t1, t2;
102 if (0xe1 <= l && l <= 0xed &&
103 (t1 = (uint8_t)(p[1] - 0x80)) <= 0x3f &&
104 (t2 = (uint8_t)(p[2] - 0x80)) <= 0x3f &&
105 (l < 0xed || t1 <= 0x1f)) {
106 return ((l & 0xf) << 12) | (t1 << 6) | t2;
107 }
108 }
109 return U_SENTINEL;
110 }
111
112 /**
113 * Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point.
114 * Otherwise returns a negative value.
115 */
getJamoTMinusBase(const uint8_t * src,const uint8_t * limit)116 int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) {
117 // Jamo T: E1 86 A8..E1 87 82
118 if ((limit - src) >= 3 && *src == 0xe1) {
119 if (src[1] == 0x86) {
120 uint8_t t = src[2];
121 // The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7.
122 // Offset 0 does not correspond to any conjoining Jamo.
123 if (0xa8 <= t && t <= 0xbf) {
124 return t - 0xa7;
125 }
126 } else if (src[1] == 0x87) {
127 uint8_t t = src[2];
128 if ((int8_t)t <= (int8_t)0x82u) {
129 return t - (0xa7 - 0x40);
130 }
131 }
132 }
133 return -1;
134 }
135
136 void
appendCodePointDelta(const uint8_t * cpStart,const uint8_t * cpLimit,int32_t delta,ByteSink & sink,Edits * edits)137 appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta,
138 ByteSink &sink, Edits *edits) {
139 char buffer[U8_MAX_LENGTH];
140 int32_t length;
141 int32_t cpLength = (int32_t)(cpLimit - cpStart);
142 if (cpLength == 1) {
143 // The builder makes ASCII map to ASCII.
144 buffer[0] = (uint8_t)(*cpStart + delta);
145 length = 1;
146 } else {
147 int32_t trail = *(cpLimit-1) + delta;
148 if (0x80 <= trail && trail <= 0xbf) {
149 // The delta only changes the last trail byte.
150 --cpLimit;
151 length = 0;
152 do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit);
153 buffer[length++] = (uint8_t)trail;
154 } else {
155 // Decode the code point, add the delta, re-encode.
156 UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta;
157 length = 0;
158 U8_APPEND_UNSAFE(buffer, length, c);
159 }
160 }
161 if (edits != nullptr) {
162 edits->addReplace(cpLength, length);
163 }
164 sink.Append(buffer, length);
165 }
166
167 } // namespace
168
169 // ReorderingBuffer -------------------------------------------------------- ***
170
ReorderingBuffer(const Normalizer2Impl & ni,UnicodeString & dest,UErrorCode & errorCode)171 ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest,
172 UErrorCode &errorCode) :
173 impl(ni), str(dest),
174 start(str.getBuffer(8)), reorderStart(start), limit(start),
175 remainingCapacity(str.getCapacity()), lastCC(0) {
176 if (start == nullptr && U_SUCCESS(errorCode)) {
177 // getBuffer() already did str.setToBogus()
178 errorCode = U_MEMORY_ALLOCATION_ERROR;
179 }
180 }
181
init(int32_t destCapacity,UErrorCode & errorCode)182 UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
183 int32_t length=str.length();
184 start=str.getBuffer(destCapacity);
185 if(start==nullptr) {
186 // getBuffer() already did str.setToBogus()
187 errorCode=U_MEMORY_ALLOCATION_ERROR;
188 return false;
189 }
190 limit=start+length;
191 remainingCapacity=str.getCapacity()-length;
192 reorderStart=start;
193 if(start==limit) {
194 lastCC=0;
195 } else {
196 setIterator();
197 lastCC=previousCC();
198 // Set reorderStart after the last code point with cc<=1 if there is one.
199 if(lastCC>1) {
200 while(previousCC()>1) {}
201 }
202 reorderStart=codePointLimit;
203 }
204 return true;
205 }
206
equals(const char16_t * otherStart,const char16_t * otherLimit) const207 UBool ReorderingBuffer::equals(const char16_t *otherStart, const char16_t *otherLimit) const {
208 int32_t length=(int32_t)(limit-start);
209 return
210 length==(int32_t)(otherLimit-otherStart) &&
211 0==u_memcmp(start, otherStart, length);
212 }
213
equals(const uint8_t * otherStart,const uint8_t * otherLimit) const214 UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const {
215 U_ASSERT((otherLimit - otherStart) <= INT32_MAX); // ensured by caller
216 int32_t length = (int32_t)(limit - start);
217 int32_t otherLength = (int32_t)(otherLimit - otherStart);
218 // For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long.
219 if (otherLength < length || (otherLength / 3) > length) {
220 return false;
221 }
222 // Compare valid strings from between normalization boundaries.
223 // (Invalid sequences are normalization-inert.)
224 for (int32_t i = 0, j = 0;;) {
225 if (i >= length) {
226 return j >= otherLength;
227 } else if (j >= otherLength) {
228 return false;
229 }
230 // Not at the end of either string yet.
231 UChar32 c, other;
232 U16_NEXT_UNSAFE(start, i, c);
233 U8_NEXT_UNSAFE(otherStart, j, other);
234 if (c != other) {
235 return false;
236 }
237 }
238 }
239
appendSupplementary(UChar32 c,uint8_t cc,UErrorCode & errorCode)240 UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
241 if(remainingCapacity<2 && !resize(2, errorCode)) {
242 return false;
243 }
244 if(lastCC<=cc || cc==0) {
245 limit[0]=U16_LEAD(c);
246 limit[1]=U16_TRAIL(c);
247 limit+=2;
248 lastCC=cc;
249 if(cc<=1) {
250 reorderStart=limit;
251 }
252 } else {
253 insert(c, cc);
254 }
255 remainingCapacity-=2;
256 return true;
257 }
258
append(const char16_t * s,int32_t length,UBool isNFD,uint8_t leadCC,uint8_t trailCC,UErrorCode & errorCode)259 UBool ReorderingBuffer::append(const char16_t *s, int32_t length, UBool isNFD,
260 uint8_t leadCC, uint8_t trailCC,
261 UErrorCode &errorCode) {
262 if(length==0) {
263 return true;
264 }
265 if(remainingCapacity<length && !resize(length, errorCode)) {
266 return false;
267 }
268 remainingCapacity-=length;
269 if(lastCC<=leadCC || leadCC==0) {
270 if(trailCC<=1) {
271 reorderStart=limit+length;
272 } else if(leadCC<=1) {
273 reorderStart=limit+1; // Ok if not a code point boundary.
274 }
275 const char16_t *sLimit=s+length;
276 do { *limit++=*s++; } while(s!=sLimit);
277 lastCC=trailCC;
278 } else {
279 int32_t i=0;
280 UChar32 c;
281 U16_NEXT(s, i, length, c);
282 insert(c, leadCC); // insert first code point
283 while(i<length) {
284 U16_NEXT(s, i, length, c);
285 if(i<length) {
286 if (isNFD) {
287 leadCC = Normalizer2Impl::getCCFromYesOrMaybe(impl.getRawNorm16(c));
288 } else {
289 leadCC = impl.getCC(impl.getNorm16(c));
290 }
291 } else {
292 leadCC=trailCC;
293 }
294 append(c, leadCC, errorCode);
295 }
296 }
297 return true;
298 }
299
appendZeroCC(UChar32 c,UErrorCode & errorCode)300 UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
301 int32_t cpLength=U16_LENGTH(c);
302 if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
303 return false;
304 }
305 remainingCapacity-=cpLength;
306 if(cpLength==1) {
307 *limit++=(char16_t)c;
308 } else {
309 limit[0]=U16_LEAD(c);
310 limit[1]=U16_TRAIL(c);
311 limit+=2;
312 }
313 lastCC=0;
314 reorderStart=limit;
315 return true;
316 }
317
appendZeroCC(const char16_t * s,const char16_t * sLimit,UErrorCode & errorCode)318 UBool ReorderingBuffer::appendZeroCC(const char16_t *s, const char16_t *sLimit, UErrorCode &errorCode) {
319 if(s==sLimit) {
320 return true;
321 }
322 int32_t length=(int32_t)(sLimit-s);
323 if(remainingCapacity<length && !resize(length, errorCode)) {
324 return false;
325 }
326 u_memcpy(limit, s, length);
327 limit+=length;
328 remainingCapacity-=length;
329 lastCC=0;
330 reorderStart=limit;
331 return true;
332 }
333
remove()334 void ReorderingBuffer::remove() {
335 reorderStart=limit=start;
336 remainingCapacity=str.getCapacity();
337 lastCC=0;
338 }
339
removeSuffix(int32_t suffixLength)340 void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
341 if(suffixLength<(limit-start)) {
342 limit-=suffixLength;
343 remainingCapacity+=suffixLength;
344 } else {
345 limit=start;
346 remainingCapacity=str.getCapacity();
347 }
348 lastCC=0;
349 reorderStart=limit;
350 }
351
resize(int32_t appendLength,UErrorCode & errorCode)352 UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
353 int32_t reorderStartIndex=(int32_t)(reorderStart-start);
354 int32_t length=(int32_t)(limit-start);
355 str.releaseBuffer(length);
356 int32_t newCapacity=length+appendLength;
357 int32_t doubleCapacity=2*str.getCapacity();
358 if(newCapacity<doubleCapacity) {
359 newCapacity=doubleCapacity;
360 }
361 if(newCapacity<256) {
362 newCapacity=256;
363 }
364 start=str.getBuffer(newCapacity);
365 if(start==nullptr) {
366 // getBuffer() already did str.setToBogus()
367 errorCode=U_MEMORY_ALLOCATION_ERROR;
368 return false;
369 }
370 reorderStart=start+reorderStartIndex;
371 limit=start+length;
372 remainingCapacity=str.getCapacity()-length;
373 return true;
374 }
375
skipPrevious()376 void ReorderingBuffer::skipPrevious() {
377 codePointLimit=codePointStart;
378 char16_t c=*--codePointStart;
379 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) {
380 --codePointStart;
381 }
382 }
383
previousCC()384 uint8_t ReorderingBuffer::previousCC() {
385 codePointLimit=codePointStart;
386 if(reorderStart>=codePointStart) {
387 return 0;
388 }
389 UChar32 c=*--codePointStart;
390 char16_t c2;
391 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) {
392 --codePointStart;
393 c=U16_GET_SUPPLEMENTARY(c2, c);
394 }
395 return impl.getCCFromYesOrMaybeCP(c);
396 }
397
398 // Inserts c somewhere before the last character.
399 // Requires 0<cc<lastCC which implies reorderStart<limit.
insert(UChar32 c,uint8_t cc)400 void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
401 for(setIterator(), skipPrevious(); previousCC()>cc;) {}
402 // insert c at codePointLimit, after the character with prevCC<=cc
403 char16_t *q=limit;
404 char16_t *r=limit+=U16_LENGTH(c);
405 do {
406 *--r=*--q;
407 } while(codePointLimit!=q);
408 writeCodePoint(q, c);
409 if(cc<=1) {
410 reorderStart=r;
411 }
412 }
413
414 // Normalizer2Impl --------------------------------------------------------- ***
415
416 struct CanonIterData : public UMemory {
417 CanonIterData(UErrorCode &errorCode);
418 ~CanonIterData();
419 void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
420 UMutableCPTrie *mutableTrie;
421 UCPTrie *trie;
422 UVector canonStartSets; // contains UnicodeSet *
423 };
424
~Normalizer2Impl()425 Normalizer2Impl::~Normalizer2Impl() {
426 delete fCanonIterData;
427 }
428
429 void
init(const int32_t * inIndexes,const UCPTrie * inTrie,const uint16_t * inExtraData,const uint8_t * inSmallFCD)430 Normalizer2Impl::init(const int32_t *inIndexes, const UCPTrie *inTrie,
431 const uint16_t *inExtraData, const uint8_t *inSmallFCD) {
432 minDecompNoCP = static_cast<char16_t>(inIndexes[IX_MIN_DECOMP_NO_CP]);
433 minCompNoMaybeCP = static_cast<char16_t>(inIndexes[IX_MIN_COMP_NO_MAYBE_CP]);
434 minLcccCP = static_cast<char16_t>(inIndexes[IX_MIN_LCCC_CP]);
435
436 minYesNo = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO]);
437 minYesNoMappingsOnly = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]);
438 minNoNo = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO]);
439 minNoNoCompBoundaryBefore = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]);
440 minNoNoCompNoMaybeCC = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]);
441 minNoNoEmpty = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_EMPTY]);
442 limitNoNo = static_cast<uint16_t>(inIndexes[IX_LIMIT_NO_NO]);
443 minMaybeYes = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_YES]);
444 U_ASSERT((minMaybeYes & 7) == 0); // 8-aligned for noNoDelta bit fields
445 centerNoNoDelta = (minMaybeYes >> DELTA_SHIFT) - MAX_DELTA - 1;
446
447 normTrie=inTrie;
448
449 maybeYesCompositions=inExtraData;
450 extraData=maybeYesCompositions+((MIN_NORMAL_MAYBE_YES-minMaybeYes)>>OFFSET_SHIFT);
451
452 smallFCD=inSmallFCD;
453 }
454
455 U_CDECL_BEGIN
456
457 static uint32_t U_CALLCONV
segmentStarterMapper(const void *,uint32_t value)458 segmentStarterMapper(const void * /*context*/, uint32_t value) {
459 return value&CANON_NOT_SEGMENT_STARTER;
460 }
461
462 U_CDECL_END
463
464 void
addLcccChars(UnicodeSet & set) const465 Normalizer2Impl::addLcccChars(UnicodeSet &set) const {
466 UChar32 start = 0, end;
467 uint32_t norm16;
468 while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
469 nullptr, nullptr, &norm16)) >= 0) {
470 if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES &&
471 norm16 != Normalizer2Impl::JAMO_VT) {
472 set.add(start, end);
473 } else if (minNoNoCompNoMaybeCC <= norm16 && norm16 < limitNoNo) {
474 uint16_t fcd16 = getFCD16(start);
475 if (fcd16 > 0xff) { set.add(start, end); }
476 }
477 start = end + 1;
478 }
479 }
480
481 void
addPropertyStarts(const USetAdder * sa,UErrorCode &) const482 Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
483 // Add the start code point of each same-value range of the trie.
484 UChar32 start = 0, end;
485 uint32_t value;
486 while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT,
487 nullptr, nullptr, &value)) >= 0) {
488 sa->add(sa->set, start);
489 if (start != end && isAlgorithmicNoNo((uint16_t)value) &&
490 (value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) {
491 // Range of code points with same-norm16-value algorithmic decompositions.
492 // They might have different non-zero FCD16 values.
493 uint16_t prevFCD16 = getFCD16(start);
494 while (++start <= end) {
495 uint16_t fcd16 = getFCD16(start);
496 if (fcd16 != prevFCD16) {
497 sa->add(sa->set, start);
498 prevFCD16 = fcd16;
499 }
500 }
501 }
502 start = end + 1;
503 }
504
505 /* add Hangul LV syllables and LV+1 because of skippables */
506 for(char16_t c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
507 sa->add(sa->set, c);
508 sa->add(sa->set, c+1);
509 }
510 sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
511 }
512
513 void
addCanonIterPropertyStarts(const USetAdder * sa,UErrorCode & errorCode) const514 Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
515 // Add the start code point of each same-value range of the canonical iterator data trie.
516 if (!ensureCanonIterData(errorCode)) { return; }
517 // Currently only used for the SEGMENT_STARTER property.
518 UChar32 start = 0, end;
519 uint32_t value;
520 while ((end = ucptrie_getRange(fCanonIterData->trie, start, UCPMAP_RANGE_NORMAL, 0,
521 segmentStarterMapper, nullptr, &value)) >= 0) {
522 sa->add(sa->set, start);
523 start = end + 1;
524 }
525 }
526
527 const char16_t *
copyLowPrefixFromNulTerminated(const char16_t * src,UChar32 minNeedDataCP,ReorderingBuffer * buffer,UErrorCode & errorCode) const528 Normalizer2Impl::copyLowPrefixFromNulTerminated(const char16_t *src,
529 UChar32 minNeedDataCP,
530 ReorderingBuffer *buffer,
531 UErrorCode &errorCode) const {
532 // Make some effort to support NUL-terminated strings reasonably.
533 // Take the part of the fast quick check loop that does not look up
534 // data and check the first part of the string.
535 // After this prefix, determine the string length to simplify the rest
536 // of the code.
537 const char16_t *prevSrc=src;
538 char16_t c;
539 while((c=*src++)<minNeedDataCP && c!=0) {}
540 // Back out the last character for full processing.
541 // Copy this prefix.
542 if(--src!=prevSrc) {
543 if(buffer!=nullptr) {
544 buffer->appendZeroCC(prevSrc, src, errorCode);
545 }
546 }
547 return src;
548 }
549
550 UnicodeString &
decompose(const UnicodeString & src,UnicodeString & dest,UErrorCode & errorCode) const551 Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest,
552 UErrorCode &errorCode) const {
553 if(U_FAILURE(errorCode)) {
554 dest.setToBogus();
555 return dest;
556 }
557 const char16_t *sArray=src.getBuffer();
558 if(&dest==&src || sArray==nullptr) {
559 errorCode=U_ILLEGAL_ARGUMENT_ERROR;
560 dest.setToBogus();
561 return dest;
562 }
563 decompose(sArray, sArray+src.length(), dest, src.length(), errorCode);
564 return dest;
565 }
566
567 void
decompose(const char16_t * src,const char16_t * limit,UnicodeString & dest,int32_t destLengthEstimate,UErrorCode & errorCode) const568 Normalizer2Impl::decompose(const char16_t *src, const char16_t *limit,
569 UnicodeString &dest,
570 int32_t destLengthEstimate,
571 UErrorCode &errorCode) const {
572 if(destLengthEstimate<0 && limit!=nullptr) {
573 destLengthEstimate=(int32_t)(limit-src);
574 }
575 dest.remove();
576 ReorderingBuffer buffer(*this, dest);
577 if(buffer.init(destLengthEstimate, errorCode)) {
578 decompose(src, limit, &buffer, errorCode);
579 }
580 }
581
582 // Dual functionality:
583 // buffer!=nullptr: normalize
584 // buffer==nullptr: isNormalized/spanQuickCheckYes
585 const char16_t *
decompose(const char16_t * src,const char16_t * limit,ReorderingBuffer * buffer,UErrorCode & errorCode) const586 Normalizer2Impl::decompose(const char16_t *src, const char16_t *limit,
587 ReorderingBuffer *buffer,
588 UErrorCode &errorCode) const {
589 UChar32 minNoCP=minDecompNoCP;
590 if(limit==nullptr) {
591 src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
592 if(U_FAILURE(errorCode)) {
593 return src;
594 }
595 limit=u_strchr(src, 0);
596 }
597
598 const char16_t *prevSrc;
599 UChar32 c=0;
600 uint16_t norm16=0;
601
602 // only for quick check
603 const char16_t *prevBoundary=src;
604 uint8_t prevCC=0;
605
606 for(;;) {
607 // count code units below the minimum or with irrelevant data for the quick check
608 for(prevSrc=src; src!=limit;) {
609 if( (c=*src)<minNoCP ||
610 isMostDecompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
611 ) {
612 ++src;
613 } else if(!U16_IS_LEAD(c)) {
614 break;
615 } else {
616 char16_t c2;
617 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
618 c=U16_GET_SUPPLEMENTARY(c, c2);
619 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
620 if(isMostDecompYesAndZeroCC(norm16)) {
621 src+=2;
622 } else {
623 break;
624 }
625 } else {
626 ++src; // unpaired lead surrogate: inert
627 }
628 }
629 }
630 // copy these code units all at once
631 if(src!=prevSrc) {
632 if(buffer!=nullptr) {
633 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
634 break;
635 }
636 } else {
637 prevCC=0;
638 prevBoundary=src;
639 }
640 }
641 if(src==limit) {
642 break;
643 }
644
645 // Check one above-minimum, relevant code point.
646 src+=U16_LENGTH(c);
647 if(buffer!=nullptr) {
648 if(!decompose(c, norm16, *buffer, errorCode)) {
649 break;
650 }
651 } else {
652 if(isDecompYes(norm16)) {
653 uint8_t cc=getCCFromYesOrMaybe(norm16);
654 if(prevCC<=cc || cc==0) {
655 prevCC=cc;
656 if(cc<=1) {
657 prevBoundary=src;
658 }
659 continue;
660 }
661 }
662 return prevBoundary; // "no" or cc out of order
663 }
664 }
665 return src;
666 }
667
668 // Decompose a short piece of text which is likely to contain characters that
669 // fail the quick check loop and/or where the quick check loop's overhead
670 // is unlikely to be amortized.
671 // Called by the compose() and makeFCD() implementations.
672 const char16_t *
decomposeShort(const char16_t * src,const char16_t * limit,UBool stopAtCompBoundary,UBool onlyContiguous,ReorderingBuffer & buffer,UErrorCode & errorCode) const673 Normalizer2Impl::decomposeShort(const char16_t *src, const char16_t *limit,
674 UBool stopAtCompBoundary, UBool onlyContiguous,
675 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
676 if (U_FAILURE(errorCode)) {
677 return nullptr;
678 }
679 while(src<limit) {
680 if (stopAtCompBoundary && *src < minCompNoMaybeCP) {
681 return src;
682 }
683 const char16_t *prevSrc = src;
684 UChar32 c;
685 uint16_t norm16;
686 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16);
687 if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) {
688 return prevSrc;
689 }
690 if(!decompose(c, norm16, buffer, errorCode)) {
691 return nullptr;
692 }
693 if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
694 return src;
695 }
696 }
697 return src;
698 }
699
decompose(UChar32 c,uint16_t norm16,ReorderingBuffer & buffer,UErrorCode & errorCode) const700 UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
701 ReorderingBuffer &buffer,
702 UErrorCode &errorCode) const {
703 // get the decomposition and the lead and trail cc's
704 if (norm16 >= limitNoNo) {
705 if (isMaybeOrNonZeroCC(norm16)) {
706 return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
707 }
708 // Maps to an isCompYesAndZeroCC.
709 c=mapAlgorithmic(c, norm16);
710 norm16=getRawNorm16(c);
711 }
712 if (norm16 < minYesNo) {
713 // c does not decompose
714 return buffer.append(c, 0, errorCode);
715 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
716 // Hangul syllable: decompose algorithmically
717 char16_t jamos[3];
718 return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
719 }
720 // c decomposes, get everything from the variable-length extra data
721 const uint16_t *mapping=getMapping(norm16);
722 uint16_t firstUnit=*mapping;
723 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
724 uint8_t leadCC, trailCC;
725 trailCC=(uint8_t)(firstUnit>>8);
726 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
727 leadCC=(uint8_t)(*(mapping-1)>>8);
728 } else {
729 leadCC=0;
730 }
731 return buffer.append((const char16_t *)mapping+1, length, true, leadCC, trailCC, errorCode);
732 }
733
734 // Dual functionality:
735 // sink != nullptr: normalize
736 // sink == nullptr: isNormalized/spanQuickCheckYes
737 const uint8_t *
decomposeUTF8(uint32_t options,const uint8_t * src,const uint8_t * limit,ByteSink * sink,Edits * edits,UErrorCode & errorCode) const738 Normalizer2Impl::decomposeUTF8(uint32_t options,
739 const uint8_t *src, const uint8_t *limit,
740 ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
741 U_ASSERT(limit != nullptr);
742 UnicodeString s16;
743 uint8_t minNoLead = leadByteForCP(minDecompNoCP);
744
745 const uint8_t *prevBoundary = src;
746 // only for quick check
747 uint8_t prevCC = 0;
748
749 for (;;) {
750 // Fast path: Scan over a sequence of characters below the minimum "no" code point,
751 // or with (decompYes && ccc==0) properties.
752 const uint8_t *fastStart = src;
753 const uint8_t *prevSrc;
754 uint16_t norm16 = 0;
755
756 for (;;) {
757 if (src == limit) {
758 if (prevBoundary != limit && sink != nullptr) {
759 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
760 *sink, options, edits, errorCode);
761 }
762 return src;
763 }
764 if (*src < minNoLead) {
765 ++src;
766 } else {
767 prevSrc = src;
768 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
769 if (!isMostDecompYesAndZeroCC(norm16)) {
770 break;
771 }
772 }
773 }
774 // isMostDecompYesAndZeroCC(norm16) is false, that is, norm16>=minYesNo,
775 // and the current character at [prevSrc..src[ is not a common case with cc=0
776 // (MIN_NORMAL_MAYBE_YES or JAMO_VT).
777 // It could still be a maybeYes with cc=0.
778 if (prevSrc != fastStart) {
779 // The fast path looped over yes/0 characters before the current one.
780 if (sink != nullptr &&
781 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
782 *sink, options, edits, errorCode)) {
783 break;
784 }
785 prevBoundary = prevSrc;
786 prevCC = 0;
787 }
788
789 // Medium-fast path: Quick check.
790 if (isMaybeOrNonZeroCC(norm16)) {
791 // Does not decompose.
792 uint8_t cc = getCCFromYesOrMaybe(norm16);
793 if (prevCC <= cc || cc == 0) {
794 prevCC = cc;
795 if (cc <= 1) {
796 if (sink != nullptr &&
797 !ByteSinkUtil::appendUnchanged(prevBoundary, src,
798 *sink, options, edits, errorCode)) {
799 break;
800 }
801 prevBoundary = src;
802 }
803 continue;
804 }
805 }
806 if (sink == nullptr) {
807 return prevBoundary; // quick check: "no" or cc out of order
808 }
809
810 // Slow path
811 // Decompose up to and including the current character.
812 if (prevBoundary != prevSrc && norm16HasDecompBoundaryBefore(norm16)) {
813 if (!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
814 *sink, options, edits, errorCode)) {
815 break;
816 }
817 prevBoundary = prevSrc;
818 }
819 ReorderingBuffer buffer(*this, s16, errorCode);
820 if (U_FAILURE(errorCode)) {
821 break;
822 }
823 decomposeShort(prevBoundary, src, STOP_AT_LIMIT, false /* onlyContiguous */,
824 buffer, errorCode);
825 // Decompose until the next boundary.
826 if (buffer.getLastCC() > 1) {
827 src = decomposeShort(src, limit, STOP_AT_DECOMP_BOUNDARY, false /* onlyContiguous */,
828 buffer, errorCode);
829 }
830 if (U_FAILURE(errorCode)) {
831 break;
832 }
833 if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
834 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
835 break;
836 }
837 // We already know there was a change if the original character decomposed;
838 // otherwise compare.
839 if (isMaybeOrNonZeroCC(norm16) && buffer.equals(prevBoundary, src)) {
840 if (!ByteSinkUtil::appendUnchanged(prevBoundary, src,
841 *sink, options, edits, errorCode)) {
842 break;
843 }
844 } else {
845 if (!ByteSinkUtil::appendChange(prevBoundary, src, buffer.getStart(), buffer.length(),
846 *sink, edits, errorCode)) {
847 break;
848 }
849 }
850 prevBoundary = src;
851 prevCC = 0;
852 }
853 return src;
854 }
855
856 const uint8_t *
decomposeShort(const uint8_t * src,const uint8_t * limit,StopAt stopAt,UBool onlyContiguous,ReorderingBuffer & buffer,UErrorCode & errorCode) const857 Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit,
858 StopAt stopAt, UBool onlyContiguous,
859 ReorderingBuffer &buffer, UErrorCode &errorCode) const {
860 if (U_FAILURE(errorCode)) {
861 return nullptr;
862 }
863 while (src < limit) {
864 const uint8_t *prevSrc = src;
865 uint16_t norm16;
866 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
867 // Get the decomposition and the lead and trail cc's.
868 UChar32 c = U_SENTINEL;
869 if (norm16 >= limitNoNo) {
870 if (isMaybeOrNonZeroCC(norm16)) {
871 // No comp boundaries around this character.
872 uint8_t cc = getCCFromYesOrMaybe(norm16);
873 if (cc == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) {
874 return prevSrc;
875 }
876 c = codePointFromValidUTF8(prevSrc, src);
877 if (!buffer.append(c, cc, errorCode)) {
878 return nullptr;
879 }
880 if (stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1) {
881 return src;
882 }
883 continue;
884 }
885 // Maps to an isCompYesAndZeroCC.
886 if (stopAt != STOP_AT_LIMIT) {
887 return prevSrc;
888 }
889 c = codePointFromValidUTF8(prevSrc, src);
890 c = mapAlgorithmic(c, norm16);
891 norm16 = getRawNorm16(c);
892 } else if (stopAt != STOP_AT_LIMIT && norm16 < minNoNoCompNoMaybeCC) {
893 return prevSrc;
894 }
895 // norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8.
896 // We do not see invalid UTF-8 here because
897 // its norm16==INERT is normalization-inert,
898 // so it gets copied unchanged in the fast path,
899 // and we stop the slow path where invalid UTF-8 begins.
900 // c >= 0 is the result of an algorithmic mapping.
901 U_ASSERT(c >= 0 || norm16 != INERT);
902 if (norm16 < minYesNo) {
903 if (c < 0) {
904 c = codePointFromValidUTF8(prevSrc, src);
905 }
906 // does not decompose
907 if (!buffer.append(c, 0, errorCode)) {
908 return nullptr;
909 }
910 } else if (isHangulLV(norm16) || isHangulLVT(norm16)) {
911 // Hangul syllable: decompose algorithmically
912 if (c < 0) {
913 c = codePointFromValidUTF8(prevSrc, src);
914 }
915 char16_t jamos[3];
916 if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) {
917 return nullptr;
918 }
919 } else {
920 // The character decomposes, get everything from the variable-length extra data.
921 const uint16_t *mapping = getMapping(norm16);
922 uint16_t firstUnit = *mapping;
923 int32_t length = firstUnit & MAPPING_LENGTH_MASK;
924 uint8_t trailCC = (uint8_t)(firstUnit >> 8);
925 uint8_t leadCC;
926 if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) {
927 leadCC = (uint8_t)(*(mapping-1) >> 8);
928 } else {
929 leadCC = 0;
930 }
931 if (leadCC == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) {
932 return prevSrc;
933 }
934 if (!buffer.append((const char16_t *)mapping+1, length, true, leadCC, trailCC, errorCode)) {
935 return nullptr;
936 }
937 }
938 if ((stopAt == STOP_AT_COMP_BOUNDARY && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) ||
939 (stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1)) {
940 return src;
941 }
942 }
943 return src;
944 }
945
946 const char16_t *
getDecomposition(UChar32 c,char16_t buffer[4],int32_t & length) const947 Normalizer2Impl::getDecomposition(UChar32 c, char16_t buffer[4], int32_t &length) const {
948 uint16_t norm16;
949 if(c<minDecompNoCP || isMaybeOrNonZeroCC(norm16=getNorm16(c))) {
950 // c does not decompose
951 return nullptr;
952 }
953 const char16_t *decomp = nullptr;
954 if(isDecompNoAlgorithmic(norm16)) {
955 // Maps to an isCompYesAndZeroCC.
956 c=mapAlgorithmic(c, norm16);
957 decomp=buffer;
958 length=0;
959 U16_APPEND_UNSAFE(buffer, length, c);
960 // The mapping might decompose further.
961 norm16 = getRawNorm16(c);
962 }
963 if (norm16 < minYesNo) {
964 return decomp;
965 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
966 // Hangul syllable: decompose algorithmically
967 length=Hangul::decompose(c, buffer);
968 return buffer;
969 }
970 // c decomposes, get everything from the variable-length extra data
971 const uint16_t *mapping=getMapping(norm16);
972 length=*mapping&MAPPING_LENGTH_MASK;
973 return (const char16_t *)mapping+1;
974 }
975
976 // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
977 // so that a raw mapping fits that consists of one unit ("rm0")
978 // plus all but the first two code units of the normal mapping.
979 // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
980 const char16_t *
getRawDecomposition(UChar32 c,char16_t buffer[30],int32_t & length) const981 Normalizer2Impl::getRawDecomposition(UChar32 c, char16_t buffer[30], int32_t &length) const {
982 uint16_t norm16;
983 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
984 // c does not decompose
985 return nullptr;
986 } else if(isHangulLV(norm16) || isHangulLVT(norm16)) {
987 // Hangul syllable: decompose algorithmically
988 Hangul::getRawDecomposition(c, buffer);
989 length=2;
990 return buffer;
991 } else if(isDecompNoAlgorithmic(norm16)) {
992 c=mapAlgorithmic(c, norm16);
993 length=0;
994 U16_APPEND_UNSAFE(buffer, length, c);
995 return buffer;
996 }
997 // c decomposes, get everything from the variable-length extra data
998 const uint16_t *mapping=getMapping(norm16);
999 uint16_t firstUnit=*mapping;
1000 int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping
1001 if(firstUnit&MAPPING_HAS_RAW_MAPPING) {
1002 // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
1003 // Bit 7=MAPPING_HAS_CCC_LCCC_WORD
1004 const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1;
1005 uint16_t rm0=*rawMapping;
1006 if(rm0<=MAPPING_LENGTH_MASK) {
1007 length=rm0;
1008 return (const char16_t *)rawMapping-rm0;
1009 } else {
1010 // Copy the normal mapping and replace its first two code units with rm0.
1011 buffer[0]=(char16_t)rm0;
1012 u_memcpy(buffer+1, (const char16_t *)mapping+1+2, mLength-2);
1013 length=mLength-1;
1014 return buffer;
1015 }
1016 } else {
1017 length=mLength;
1018 return (const char16_t *)mapping+1;
1019 }
1020 }
1021
decomposeAndAppend(const char16_t * src,const char16_t * limit,UBool doDecompose,UnicodeString & safeMiddle,ReorderingBuffer & buffer,UErrorCode & errorCode) const1022 void Normalizer2Impl::decomposeAndAppend(const char16_t *src, const char16_t *limit,
1023 UBool doDecompose,
1024 UnicodeString &safeMiddle,
1025 ReorderingBuffer &buffer,
1026 UErrorCode &errorCode) const {
1027 buffer.copyReorderableSuffixTo(safeMiddle);
1028 if(doDecompose) {
1029 decompose(src, limit, &buffer, errorCode);
1030 return;
1031 }
1032 // Just merge the strings at the boundary.
1033 bool isFirst = true;
1034 uint8_t firstCC = 0, prevCC = 0, cc;
1035 const char16_t *p = src;
1036 while (p != limit) {
1037 const char16_t *codePointStart = p;
1038 UChar32 c;
1039 uint16_t norm16;
1040 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
1041 if ((cc = getCC(norm16)) == 0) {
1042 p = codePointStart;
1043 break;
1044 }
1045 if (isFirst) {
1046 firstCC = cc;
1047 isFirst = false;
1048 }
1049 prevCC = cc;
1050 }
1051 if(limit==nullptr) { // appendZeroCC() needs limit!=nullptr
1052 limit=u_strchr(p, 0);
1053 }
1054
1055 if (buffer.append(src, (int32_t)(p - src), false, firstCC, prevCC, errorCode)) {
1056 buffer.appendZeroCC(p, limit, errorCode);
1057 }
1058 }
1059
hasDecompBoundaryBefore(UChar32 c) const1060 UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const {
1061 return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) ||
1062 norm16HasDecompBoundaryBefore(getNorm16(c));
1063 }
1064
norm16HasDecompBoundaryBefore(uint16_t norm16) const1065 UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const {
1066 if (norm16 < minNoNoCompNoMaybeCC) {
1067 return true;
1068 }
1069 if (norm16 >= limitNoNo) {
1070 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
1071 }
1072 // c decomposes, get everything from the variable-length extra data
1073 const uint16_t *mapping=getMapping(norm16);
1074 uint16_t firstUnit=*mapping;
1075 // true if leadCC==0 (hasFCDBoundaryBefore())
1076 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
1077 }
1078
hasDecompBoundaryAfter(UChar32 c) const1079 UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const {
1080 if (c < minDecompNoCP) {
1081 return true;
1082 }
1083 if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) {
1084 return true;
1085 }
1086 return norm16HasDecompBoundaryAfter(getNorm16(c));
1087 }
1088
norm16HasDecompBoundaryAfter(uint16_t norm16) const1089 UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const {
1090 if(norm16 <= minYesNo || isHangulLVT(norm16)) {
1091 return true;
1092 }
1093 if (norm16 >= limitNoNo) {
1094 if (isMaybeOrNonZeroCC(norm16)) {
1095 return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT;
1096 }
1097 // Maps to an isCompYesAndZeroCC.
1098 return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1;
1099 }
1100 // c decomposes, get everything from the variable-length extra data
1101 const uint16_t *mapping=getMapping(norm16);
1102 uint16_t firstUnit=*mapping;
1103 // decomp after-boundary: same as hasFCDBoundaryAfter(),
1104 // fcd16<=1 || trailCC==0
1105 if(firstUnit>0x1ff) {
1106 return false; // trailCC>1
1107 }
1108 if(firstUnit<=0xff) {
1109 return true; // trailCC==0
1110 }
1111 // if(trailCC==1) test leadCC==0, same as checking for before-boundary
1112 // true if leadCC==0 (hasFCDBoundaryBefore())
1113 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0;
1114 }
1115
1116 /*
1117 * Finds the recomposition result for
1118 * a forward-combining "lead" character,
1119 * specified with a pointer to its compositions list,
1120 * and a backward-combining "trail" character.
1121 *
1122 * If the lead and trail characters combine, then this function returns
1123 * the following "compositeAndFwd" value:
1124 * Bits 21..1 composite character
1125 * Bit 0 set if the composite is a forward-combining starter
1126 * otherwise it returns -1.
1127 *
1128 * The compositions list has (trail, compositeAndFwd) pair entries,
1129 * encoded as either pairs or triples of 16-bit units.
1130 * The last entry has the high bit of its first unit set.
1131 *
1132 * The list is sorted by ascending trail characters (there are no duplicates).
1133 * A linear search is used.
1134 *
1135 * See normalizer2impl.h for a more detailed description
1136 * of the compositions list format.
1137 */
combine(const uint16_t * list,UChar32 trail)1138 int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
1139 uint16_t key1, firstUnit;
1140 if(trail<COMP_1_TRAIL_LIMIT) {
1141 // trail character is 0..33FF
1142 // result entry may have 2 or 3 units
1143 key1=(uint16_t)(trail<<1);
1144 while(key1>(firstUnit=*list)) {
1145 list+=2+(firstUnit&COMP_1_TRIPLE);
1146 }
1147 if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1148 if(firstUnit&COMP_1_TRIPLE) {
1149 return ((int32_t)list[1]<<16)|list[2];
1150 } else {
1151 return list[1];
1152 }
1153 }
1154 } else {
1155 // trail character is 3400..10FFFF
1156 // result entry has 3 units
1157 key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
1158 (((trail>>COMP_1_TRAIL_SHIFT))&
1159 ~COMP_1_TRIPLE));
1160 uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
1161 uint16_t secondUnit;
1162 for(;;) {
1163 if(key1>(firstUnit=*list)) {
1164 list+=2+(firstUnit&COMP_1_TRIPLE);
1165 } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
1166 if(key2>(secondUnit=list[1])) {
1167 if(firstUnit&COMP_1_LAST_TUPLE) {
1168 break;
1169 } else {
1170 list+=3;
1171 }
1172 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
1173 return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
1174 } else {
1175 break;
1176 }
1177 } else {
1178 break;
1179 }
1180 }
1181 }
1182 return -1;
1183 }
1184
1185 /**
1186 * @param list some character's compositions list
1187 * @param set recursively receives the composites from these compositions
1188 */
addComposites(const uint16_t * list,UnicodeSet & set) const1189 void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
1190 uint16_t firstUnit;
1191 int32_t compositeAndFwd;
1192 do {
1193 firstUnit=*list;
1194 if((firstUnit&COMP_1_TRIPLE)==0) {
1195 compositeAndFwd=list[1];
1196 list+=2;
1197 } else {
1198 compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
1199 list+=3;
1200 }
1201 UChar32 composite=compositeAndFwd>>1;
1202 if((compositeAndFwd&1)!=0) {
1203 addComposites(getCompositionsListForComposite(getRawNorm16(composite)), set);
1204 }
1205 set.add(composite);
1206 } while((firstUnit&COMP_1_LAST_TUPLE)==0);
1207 }
1208
1209 /*
1210 * Recomposes the buffer text starting at recomposeStartIndex
1211 * (which is in NFD - decomposed and canonically ordered),
1212 * and truncates the buffer contents.
1213 *
1214 * Note that recomposition never lengthens the text:
1215 * Any character consists of either one or two code units;
1216 * a composition may contain at most one more code unit than the original starter,
1217 * while the combining mark that is removed has at least one code unit.
1218 */
recompose(ReorderingBuffer & buffer,int32_t recomposeStartIndex,UBool onlyContiguous) const1219 void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
1220 UBool onlyContiguous) const {
1221 char16_t *p=buffer.getStart()+recomposeStartIndex;
1222 char16_t *limit=buffer.getLimit();
1223 if(p==limit) {
1224 return;
1225 }
1226
1227 char16_t *starter, *pRemove, *q, *r;
1228 const uint16_t *compositionsList;
1229 UChar32 c, compositeAndFwd;
1230 uint16_t norm16;
1231 uint8_t cc, prevCC;
1232 UBool starterIsSupplementary;
1233
1234 // Some of the following variables are not used until we have a forward-combining starter
1235 // and are only initialized now to avoid compiler warnings.
1236 compositionsList=nullptr; // used as indicator for whether we have a forward-combining starter
1237 starter=nullptr;
1238 starterIsSupplementary=false;
1239 prevCC=0;
1240
1241 for(;;) {
1242 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
1243 cc=getCCFromYesOrMaybe(norm16);
1244 if( // this character combines backward and
1245 isMaybe(norm16) &&
1246 // we have seen a starter that combines forward and
1247 compositionsList!=nullptr &&
1248 // the backward-combining character is not blocked
1249 (prevCC<cc || prevCC==0)
1250 ) {
1251 if(isJamoVT(norm16)) {
1252 // c is a Jamo V/T, see if we can compose it with the previous character.
1253 if(c<Hangul::JAMO_T_BASE) {
1254 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
1255 char16_t prev=(char16_t)(*starter-Hangul::JAMO_L_BASE);
1256 if(prev<Hangul::JAMO_L_COUNT) {
1257 pRemove=p-1;
1258 char16_t syllable=(char16_t)
1259 (Hangul::HANGUL_BASE+
1260 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
1261 Hangul::JAMO_T_COUNT);
1262 char16_t t;
1263 if(p!=limit && (t=(char16_t)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
1264 ++p;
1265 syllable+=t; // The next character was a Jamo T.
1266 }
1267 *starter=syllable;
1268 // remove the Jamo V/T
1269 q=pRemove;
1270 r=p;
1271 while(r<limit) {
1272 *q++=*r++;
1273 }
1274 limit=q;
1275 p=pRemove;
1276 }
1277 }
1278 /*
1279 * No "else" for Jamo T:
1280 * Since the input is in NFD, there are no Hangul LV syllables that
1281 * a Jamo T could combine with.
1282 * All Jamo Ts are combined above when handling Jamo Vs.
1283 */
1284 if(p==limit) {
1285 break;
1286 }
1287 compositionsList=nullptr;
1288 continue;
1289 } else if((compositeAndFwd=combine(compositionsList, c))>=0) {
1290 // The starter and the combining mark (c) do combine.
1291 UChar32 composite=compositeAndFwd>>1;
1292
1293 // Replace the starter with the composite, remove the combining mark.
1294 pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark
1295 if(starterIsSupplementary) {
1296 if(U_IS_SUPPLEMENTARY(composite)) {
1297 // both are supplementary
1298 starter[0]=U16_LEAD(composite);
1299 starter[1]=U16_TRAIL(composite);
1300 } else {
1301 *starter=(char16_t)composite;
1302 // The composite is shorter than the starter,
1303 // move the intermediate characters forward one.
1304 starterIsSupplementary=false;
1305 q=starter+1;
1306 r=q+1;
1307 while(r<pRemove) {
1308 *q++=*r++;
1309 }
1310 --pRemove;
1311 }
1312 } else if(U_IS_SUPPLEMENTARY(composite)) {
1313 // The composite is longer than the starter,
1314 // move the intermediate characters back one.
1315 starterIsSupplementary=true;
1316 ++starter; // temporarily increment for the loop boundary
1317 q=pRemove;
1318 r=++pRemove;
1319 while(starter<q) {
1320 *--r=*--q;
1321 }
1322 *starter=U16_TRAIL(composite);
1323 *--starter=U16_LEAD(composite); // undo the temporary increment
1324 } else {
1325 // both are on the BMP
1326 *starter=(char16_t)composite;
1327 }
1328
1329 /* remove the combining mark by moving the following text over it */
1330 if(pRemove<p) {
1331 q=pRemove;
1332 r=p;
1333 while(r<limit) {
1334 *q++=*r++;
1335 }
1336 limit=q;
1337 p=pRemove;
1338 }
1339 // Keep prevCC because we removed the combining mark.
1340
1341 if(p==limit) {
1342 break;
1343 }
1344 // Is the composite a starter that combines forward?
1345 if(compositeAndFwd&1) {
1346 compositionsList=
1347 getCompositionsListForComposite(getRawNorm16(composite));
1348 } else {
1349 compositionsList=nullptr;
1350 }
1351
1352 // We combined; continue with looking for compositions.
1353 continue;
1354 }
1355 }
1356
1357 // no combination this time
1358 prevCC=cc;
1359 if(p==limit) {
1360 break;
1361 }
1362
1363 // If c did not combine, then check if it is a starter.
1364 if(cc==0) {
1365 // Found a new starter.
1366 if((compositionsList=getCompositionsListForDecompYes(norm16))!=nullptr) {
1367 // It may combine with something, prepare for it.
1368 if(U_IS_BMP(c)) {
1369 starterIsSupplementary=false;
1370 starter=p-1;
1371 } else {
1372 starterIsSupplementary=true;
1373 starter=p-2;
1374 }
1375 }
1376 } else if(onlyContiguous) {
1377 // FCC: no discontiguous compositions; any intervening character blocks.
1378 compositionsList=nullptr;
1379 }
1380 }
1381 buffer.setReorderingLimit(limit);
1382 }
1383
1384 UChar32
composePair(UChar32 a,UChar32 b) const1385 Normalizer2Impl::composePair(UChar32 a, UChar32 b) const {
1386 uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16
1387 const uint16_t *list;
1388 if(isInert(norm16)) {
1389 return U_SENTINEL;
1390 } else if(norm16<minYesNoMappingsOnly) {
1391 // a combines forward.
1392 if(isJamoL(norm16)) {
1393 if (b < Hangul::JAMO_V_BASE) {
1394 return U_SENTINEL;
1395 }
1396 b-=Hangul::JAMO_V_BASE;
1397 if(b<Hangul::JAMO_V_COUNT) {
1398 return
1399 (Hangul::HANGUL_BASE+
1400 ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)*
1401 Hangul::JAMO_T_COUNT);
1402 } else {
1403 return U_SENTINEL;
1404 }
1405 } else if(isHangulLV(norm16)) {
1406 if (b <= Hangul::JAMO_T_BASE) {
1407 return U_SENTINEL;
1408 }
1409 b-=Hangul::JAMO_T_BASE;
1410 if(b<Hangul::JAMO_T_COUNT) { // not b==0!
1411 return a+b;
1412 } else {
1413 return U_SENTINEL;
1414 }
1415 } else {
1416 // 'a' has a compositions list in extraData
1417 list=getMapping(norm16);
1418 if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list
1419 list+= // mapping pointer
1420 1+ // +1 to skip the first unit with the mapping length
1421 (*list&MAPPING_LENGTH_MASK); // + mapping length
1422 }
1423 }
1424 } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) {
1425 return U_SENTINEL;
1426 } else {
1427 list=getCompositionsListForMaybe(norm16);
1428 }
1429 if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b
1430 return U_SENTINEL;
1431 }
1432 #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC
1433 return combine(list, b)>>1;
1434 #else
1435 int32_t compositeAndFwd=combine(list, b);
1436 return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL;
1437 #endif
1438 }
1439
1440 // Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
1441 // doCompose: normalize
1442 // !doCompose: isNormalized (buffer must be empty and initialized)
1443 UBool
compose(const char16_t * src,const char16_t * limit,UBool onlyContiguous,UBool doCompose,ReorderingBuffer & buffer,UErrorCode & errorCode) const1444 Normalizer2Impl::compose(const char16_t *src, const char16_t *limit,
1445 UBool onlyContiguous,
1446 UBool doCompose,
1447 ReorderingBuffer &buffer,
1448 UErrorCode &errorCode) const {
1449 const char16_t *prevBoundary=src;
1450 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1451 if(limit==nullptr) {
1452 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
1453 doCompose ? &buffer : nullptr,
1454 errorCode);
1455 if(U_FAILURE(errorCode)) {
1456 return false;
1457 }
1458 limit=u_strchr(src, 0);
1459 if (prevBoundary != src) {
1460 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1461 prevBoundary = src;
1462 } else {
1463 buffer.removeSuffix(1);
1464 prevBoundary = --src;
1465 }
1466 }
1467 }
1468
1469 for (;;) {
1470 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1471 // or with (compYes && ccc==0) properties.
1472 const char16_t *prevSrc;
1473 UChar32 c = 0;
1474 uint16_t norm16 = 0;
1475 for (;;) {
1476 if (src == limit) {
1477 if (prevBoundary != limit && doCompose) {
1478 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1479 }
1480 return true;
1481 }
1482 if( (c=*src)<minNoMaybeCP ||
1483 isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
1484 ) {
1485 ++src;
1486 } else {
1487 prevSrc = src++;
1488 if(!U16_IS_LEAD(c)) {
1489 break;
1490 } else {
1491 char16_t c2;
1492 if(src!=limit && U16_IS_TRAIL(c2=*src)) {
1493 ++src;
1494 c=U16_GET_SUPPLEMENTARY(c, c2);
1495 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
1496 if(!isCompYesAndZeroCC(norm16)) {
1497 break;
1498 }
1499 }
1500 }
1501 }
1502 }
1503 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1504 // The current character is either a "noNo" (has a mapping)
1505 // or a "maybeYes" (combines backward)
1506 // or a "yesYes" with ccc!=0.
1507 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1508
1509 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1510 if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
1511 if (!doCompose) {
1512 return false;
1513 }
1514 // Fast path for mapping a character that is immediately surrounded by boundaries.
1515 // In this case, we need not decompose around the current character.
1516 if (isDecompNoAlgorithmic(norm16)) {
1517 // Maps to a single isCompYesAndZeroCC character
1518 // which also implies hasCompBoundaryBefore.
1519 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1520 hasCompBoundaryBefore(src, limit)) {
1521 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1522 break;
1523 }
1524 if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) {
1525 break;
1526 }
1527 prevBoundary = src;
1528 continue;
1529 }
1530 } else if (norm16 < minNoNoCompBoundaryBefore) {
1531 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1532 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1533 hasCompBoundaryBefore(src, limit)) {
1534 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1535 break;
1536 }
1537 const char16_t *mapping = reinterpret_cast<const char16_t *>(getMapping(norm16));
1538 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1539 if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) {
1540 break;
1541 }
1542 prevBoundary = src;
1543 continue;
1544 }
1545 } else if (norm16 >= minNoNoEmpty) {
1546 // The current character maps to nothing.
1547 // Simply omit it from the output if there is a boundary before _or_ after it.
1548 // The character itself implies no boundaries.
1549 if (hasCompBoundaryBefore(src, limit) ||
1550 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1551 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1552 break;
1553 }
1554 prevBoundary = src;
1555 continue;
1556 }
1557 }
1558 // Other "noNo" type, or need to examine more text around this character:
1559 // Fall through to the slow path.
1560 } else if (isJamoVT(norm16) && prevBoundary != prevSrc) {
1561 char16_t prev=*(prevSrc-1);
1562 if(c<Hangul::JAMO_T_BASE) {
1563 // The current character is a Jamo Vowel,
1564 // compose with previous Jamo L and following Jamo T.
1565 char16_t l = (char16_t)(prev-Hangul::JAMO_L_BASE);
1566 if(l<Hangul::JAMO_L_COUNT) {
1567 if (!doCompose) {
1568 return false;
1569 }
1570 int32_t t;
1571 if (src != limit &&
1572 0 < (t = ((int32_t)*src - Hangul::JAMO_T_BASE)) &&
1573 t < Hangul::JAMO_T_COUNT) {
1574 // The next character is a Jamo T.
1575 ++src;
1576 } else if (hasCompBoundaryBefore(src, limit)) {
1577 // No Jamo T follows, not even via decomposition.
1578 t = 0;
1579 } else {
1580 t = -1;
1581 }
1582 if (t >= 0) {
1583 UChar32 syllable = Hangul::HANGUL_BASE +
1584 (l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) *
1585 Hangul::JAMO_T_COUNT + t;
1586 --prevSrc; // Replace the Jamo L as well.
1587 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1588 break;
1589 }
1590 if(!buffer.appendBMP((char16_t)syllable, 0, errorCode)) {
1591 break;
1592 }
1593 prevBoundary = src;
1594 continue;
1595 }
1596 // If we see L+V+x where x!=T then we drop to the slow path,
1597 // decompose and recompose.
1598 // This is to deal with NFKC finding normal L and V but a
1599 // compatibility variant of a T.
1600 // We need to either fully compose that combination here
1601 // (which would complicate the code and may not work with strange custom data)
1602 // or use the slow path.
1603 }
1604 } else if (Hangul::isHangulLV(prev)) {
1605 // The current character is a Jamo Trailing consonant,
1606 // compose with previous Hangul LV that does not contain a Jamo T.
1607 if (!doCompose) {
1608 return false;
1609 }
1610 UChar32 syllable = prev + c - Hangul::JAMO_T_BASE;
1611 --prevSrc; // Replace the Hangul LV as well.
1612 if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1613 break;
1614 }
1615 if(!buffer.appendBMP((char16_t)syllable, 0, errorCode)) {
1616 break;
1617 }
1618 prevBoundary = src;
1619 continue;
1620 }
1621 // No matching context, or may need to decompose surrounding text first:
1622 // Fall through to the slow path.
1623 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
1624 // One or more combining marks that do not combine-back:
1625 // Check for canonical order, copy unchanged if ok and
1626 // if followed by a character with a boundary-before.
1627 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
1628 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
1629 // Fails FCD test, need to decompose and contiguously recompose.
1630 if (!doCompose) {
1631 return false;
1632 }
1633 } else {
1634 // If !onlyContiguous (not FCC), then we ignore the tccc of
1635 // the previous character which passed the quick check "yes && ccc==0" test.
1636 const char16_t *nextSrc;
1637 uint16_t n16;
1638 for (;;) {
1639 if (src == limit) {
1640 if (doCompose) {
1641 buffer.appendZeroCC(prevBoundary, limit, errorCode);
1642 }
1643 return true;
1644 }
1645 uint8_t prevCC = cc;
1646 nextSrc = src;
1647 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, n16);
1648 if (n16 >= MIN_YES_YES_WITH_CC) {
1649 cc = getCCFromNormalYesOrMaybe(n16);
1650 if (prevCC > cc) {
1651 if (!doCompose) {
1652 return false;
1653 }
1654 break;
1655 }
1656 } else {
1657 break;
1658 }
1659 src = nextSrc;
1660 }
1661 // src is after the last in-order combining mark.
1662 // If there is a boundary here, then we continue with no change.
1663 if (norm16HasCompBoundaryBefore(n16)) {
1664 if (isCompYesAndZeroCC(n16)) {
1665 src = nextSrc;
1666 }
1667 continue;
1668 }
1669 // Use the slow path. There is no boundary in [prevSrc, src[.
1670 }
1671 }
1672
1673 // Slow path: Find the nearest boundaries around the current character,
1674 // decompose and recompose.
1675 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
1676 const char16_t *p = prevSrc;
1677 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, norm16);
1678 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
1679 prevSrc = p;
1680 }
1681 }
1682 if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) {
1683 break;
1684 }
1685 int32_t recomposeStartIndex=buffer.length();
1686 // We know there is not a boundary here.
1687 decomposeShort(prevSrc, src, false /* !stopAtCompBoundary */, onlyContiguous,
1688 buffer, errorCode);
1689 // Decompose until the next boundary.
1690 src = decomposeShort(src, limit, true /* stopAtCompBoundary */, onlyContiguous,
1691 buffer, errorCode);
1692 if (U_FAILURE(errorCode)) {
1693 break;
1694 }
1695 if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
1696 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
1697 return true;
1698 }
1699 recompose(buffer, recomposeStartIndex, onlyContiguous);
1700 if(!doCompose) {
1701 if(!buffer.equals(prevSrc, src)) {
1702 return false;
1703 }
1704 buffer.remove();
1705 }
1706 prevBoundary=src;
1707 }
1708 return true;
1709 }
1710
1711 // Very similar to compose(): Make the same changes in both places if relevant.
1712 // pQCResult==nullptr: spanQuickCheckYes
1713 // pQCResult!=nullptr: quickCheck (*pQCResult must be UNORM_YES)
1714 const char16_t *
composeQuickCheck(const char16_t * src,const char16_t * limit,UBool onlyContiguous,UNormalizationCheckResult * pQCResult) const1715 Normalizer2Impl::composeQuickCheck(const char16_t *src, const char16_t *limit,
1716 UBool onlyContiguous,
1717 UNormalizationCheckResult *pQCResult) const {
1718 const char16_t *prevBoundary=src;
1719 UChar32 minNoMaybeCP=minCompNoMaybeCP;
1720 if(limit==nullptr) {
1721 UErrorCode errorCode=U_ZERO_ERROR;
1722 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, nullptr, errorCode);
1723 limit=u_strchr(src, 0);
1724 if (prevBoundary != src) {
1725 if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) {
1726 prevBoundary = src;
1727 } else {
1728 prevBoundary = --src;
1729 }
1730 }
1731 }
1732
1733 for(;;) {
1734 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1735 // or with (compYes && ccc==0) properties.
1736 const char16_t *prevSrc;
1737 UChar32 c = 0;
1738 uint16_t norm16 = 0;
1739 for (;;) {
1740 if(src==limit) {
1741 return src;
1742 }
1743 if( (c=*src)<minNoMaybeCP ||
1744 isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c))
1745 ) {
1746 ++src;
1747 } else {
1748 prevSrc = src++;
1749 if(!U16_IS_LEAD(c)) {
1750 break;
1751 } else {
1752 char16_t c2;
1753 if(src!=limit && U16_IS_TRAIL(c2=*src)) {
1754 ++src;
1755 c=U16_GET_SUPPLEMENTARY(c, c2);
1756 norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c);
1757 if(!isCompYesAndZeroCC(norm16)) {
1758 break;
1759 }
1760 }
1761 }
1762 }
1763 }
1764 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1765 // The current character is either a "noNo" (has a mapping)
1766 // or a "maybeYes" (combines backward)
1767 // or a "yesYes" with ccc!=0.
1768 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1769
1770 uint16_t prevNorm16 = INERT;
1771 if (prevBoundary != prevSrc) {
1772 if (norm16HasCompBoundaryBefore(norm16)) {
1773 prevBoundary = prevSrc;
1774 } else {
1775 const char16_t *p = prevSrc;
1776 uint16_t n16;
1777 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, n16);
1778 if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) {
1779 prevBoundary = prevSrc;
1780 } else {
1781 prevBoundary = p;
1782 prevNorm16 = n16;
1783 }
1784 }
1785 }
1786
1787 if(isMaybeOrNonZeroCC(norm16)) {
1788 uint8_t cc=getCCFromYesOrMaybe(norm16);
1789 if (onlyContiguous /* FCC */ && cc != 0 &&
1790 getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) {
1791 // The [prevBoundary..prevSrc[ character
1792 // passed the quick check "yes && ccc==0" test
1793 // but is out of canonical order with the current combining mark.
1794 } else {
1795 // If !onlyContiguous (not FCC), then we ignore the tccc of
1796 // the previous character which passed the quick check "yes && ccc==0" test.
1797 const char16_t *nextSrc;
1798 for (;;) {
1799 if (norm16 < MIN_YES_YES_WITH_CC) {
1800 if (pQCResult != nullptr) {
1801 *pQCResult = UNORM_MAYBE;
1802 } else {
1803 return prevBoundary;
1804 }
1805 }
1806 if (src == limit) {
1807 return src;
1808 }
1809 uint8_t prevCC = cc;
1810 nextSrc = src;
1811 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, norm16);
1812 if (isMaybeOrNonZeroCC(norm16)) {
1813 cc = getCCFromYesOrMaybe(norm16);
1814 if (!(prevCC <= cc || cc == 0)) {
1815 break;
1816 }
1817 } else {
1818 break;
1819 }
1820 src = nextSrc;
1821 }
1822 // src is after the last in-order combining mark.
1823 if (isCompYesAndZeroCC(norm16)) {
1824 prevBoundary = src;
1825 src = nextSrc;
1826 continue;
1827 }
1828 }
1829 }
1830 if(pQCResult!=nullptr) {
1831 *pQCResult=UNORM_NO;
1832 }
1833 return prevBoundary;
1834 }
1835 }
1836
composeAndAppend(const char16_t * src,const char16_t * limit,UBool doCompose,UBool onlyContiguous,UnicodeString & safeMiddle,ReorderingBuffer & buffer,UErrorCode & errorCode) const1837 void Normalizer2Impl::composeAndAppend(const char16_t *src, const char16_t *limit,
1838 UBool doCompose,
1839 UBool onlyContiguous,
1840 UnicodeString &safeMiddle,
1841 ReorderingBuffer &buffer,
1842 UErrorCode &errorCode) const {
1843 if(!buffer.isEmpty()) {
1844 const char16_t *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous);
1845 if(src!=firstStarterInSrc) {
1846 const char16_t *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
1847 buffer.getLimit(), onlyContiguous);
1848 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest);
1849 UnicodeString middle(lastStarterInDest, destSuffixLength);
1850 buffer.removeSuffix(destSuffixLength);
1851 safeMiddle=middle;
1852 middle.append(src, (int32_t)(firstStarterInSrc-src));
1853 const char16_t *middleStart=middle.getBuffer();
1854 compose(middleStart, middleStart+middle.length(), onlyContiguous,
1855 true, buffer, errorCode);
1856 if(U_FAILURE(errorCode)) {
1857 return;
1858 }
1859 src=firstStarterInSrc;
1860 }
1861 }
1862 if(doCompose) {
1863 compose(src, limit, onlyContiguous, true, buffer, errorCode);
1864 } else {
1865 if(limit==nullptr) { // appendZeroCC() needs limit!=nullptr
1866 limit=u_strchr(src, 0);
1867 }
1868 buffer.appendZeroCC(src, limit, errorCode);
1869 }
1870 }
1871
1872 UBool
composeUTF8(uint32_t options,UBool onlyContiguous,const uint8_t * src,const uint8_t * limit,ByteSink * sink,Edits * edits,UErrorCode & errorCode) const1873 Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous,
1874 const uint8_t *src, const uint8_t *limit,
1875 ByteSink *sink, Edits *edits, UErrorCode &errorCode) const {
1876 U_ASSERT(limit != nullptr);
1877 UnicodeString s16;
1878 uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP);
1879 const uint8_t *prevBoundary = src;
1880
1881 for (;;) {
1882 // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point,
1883 // or with (compYes && ccc==0) properties.
1884 const uint8_t *prevSrc;
1885 uint16_t norm16 = 0;
1886 for (;;) {
1887 if (src == limit) {
1888 if (prevBoundary != limit && sink != nullptr) {
1889 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
1890 *sink, options, edits, errorCode);
1891 }
1892 return true;
1893 }
1894 if (*src < minNoMaybeLead) {
1895 ++src;
1896 } else {
1897 prevSrc = src;
1898 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
1899 if (!isCompYesAndZeroCC(norm16)) {
1900 break;
1901 }
1902 }
1903 }
1904 // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1905 // The current character is either a "noNo" (has a mapping)
1906 // or a "maybeYes" (combines backward)
1907 // or a "yesYes" with ccc!=0.
1908 // It is not a Hangul syllable or Jamo L because those have "yes" properties.
1909
1910 // Medium-fast path: Handle cases that do not require full decomposition and recomposition.
1911 if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes
1912 if (sink == nullptr) {
1913 return false;
1914 }
1915 // Fast path for mapping a character that is immediately surrounded by boundaries.
1916 // In this case, we need not decompose around the current character.
1917 if (isDecompNoAlgorithmic(norm16)) {
1918 // Maps to a single isCompYesAndZeroCC character
1919 // which also implies hasCompBoundaryBefore.
1920 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1921 hasCompBoundaryBefore(src, limit)) {
1922 if (prevBoundary != prevSrc &&
1923 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1924 *sink, options, edits, errorCode)) {
1925 break;
1926 }
1927 appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits);
1928 prevBoundary = src;
1929 continue;
1930 }
1931 } else if (norm16 < minNoNoCompBoundaryBefore) {
1932 // The mapping is comp-normalized which also implies hasCompBoundaryBefore.
1933 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) ||
1934 hasCompBoundaryBefore(src, limit)) {
1935 if (prevBoundary != prevSrc &&
1936 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1937 *sink, options, edits, errorCode)) {
1938 break;
1939 }
1940 const uint16_t *mapping = getMapping(norm16);
1941 int32_t length = *mapping++ & MAPPING_LENGTH_MASK;
1942 if (!ByteSinkUtil::appendChange(prevSrc, src, (const char16_t *)mapping, length,
1943 *sink, edits, errorCode)) {
1944 break;
1945 }
1946 prevBoundary = src;
1947 continue;
1948 }
1949 } else if (norm16 >= minNoNoEmpty) {
1950 // The current character maps to nothing.
1951 // Simply omit it from the output if there is a boundary before _or_ after it.
1952 // The character itself implies no boundaries.
1953 if (hasCompBoundaryBefore(src, limit) ||
1954 hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) {
1955 if (prevBoundary != prevSrc &&
1956 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1957 *sink, options, edits, errorCode)) {
1958 break;
1959 }
1960 if (edits != nullptr) {
1961 edits->addReplace((int32_t)(src - prevSrc), 0);
1962 }
1963 prevBoundary = src;
1964 continue;
1965 }
1966 }
1967 // Other "noNo" type, or need to examine more text around this character:
1968 // Fall through to the slow path.
1969 } else if (isJamoVT(norm16)) {
1970 // Jamo L: E1 84 80..92
1971 // Jamo V: E1 85 A1..B5
1972 // Jamo T: E1 86 A8..E1 87 82
1973 U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1);
1974 UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc);
1975 if (prevSrc[1] == 0x85) {
1976 // The current character is a Jamo Vowel,
1977 // compose with previous Jamo L and following Jamo T.
1978 UChar32 l = prev - Hangul::JAMO_L_BASE;
1979 if ((uint32_t)l < Hangul::JAMO_L_COUNT) {
1980 if (sink == nullptr) {
1981 return false;
1982 }
1983 int32_t t = getJamoTMinusBase(src, limit);
1984 if (t >= 0) {
1985 // The next character is a Jamo T.
1986 src += 3;
1987 } else if (hasCompBoundaryBefore(src, limit)) {
1988 // No Jamo T follows, not even via decomposition.
1989 t = 0;
1990 }
1991 if (t >= 0) {
1992 UChar32 syllable = Hangul::HANGUL_BASE +
1993 (l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) *
1994 Hangul::JAMO_T_COUNT + t;
1995 prevSrc -= 3; // Replace the Jamo L as well.
1996 if (prevBoundary != prevSrc &&
1997 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
1998 *sink, options, edits, errorCode)) {
1999 break;
2000 }
2001 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
2002 prevBoundary = src;
2003 continue;
2004 }
2005 // If we see L+V+x where x!=T then we drop to the slow path,
2006 // decompose and recompose.
2007 // This is to deal with NFKC finding normal L and V but a
2008 // compatibility variant of a T.
2009 // We need to either fully compose that combination here
2010 // (which would complicate the code and may not work with strange custom data)
2011 // or use the slow path.
2012 }
2013 } else if (Hangul::isHangulLV(prev)) {
2014 // The current character is a Jamo Trailing consonant,
2015 // compose with previous Hangul LV that does not contain a Jamo T.
2016 if (sink == nullptr) {
2017 return false;
2018 }
2019 UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src);
2020 prevSrc -= 3; // Replace the Hangul LV as well.
2021 if (prevBoundary != prevSrc &&
2022 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
2023 *sink, options, edits, errorCode)) {
2024 break;
2025 }
2026 ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits);
2027 prevBoundary = src;
2028 continue;
2029 }
2030 // No matching context, or may need to decompose surrounding text first:
2031 // Fall through to the slow path.
2032 } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC
2033 // One or more combining marks that do not combine-back:
2034 // Check for canonical order, copy unchanged if ok and
2035 // if followed by a character with a boundary-before.
2036 uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0
2037 if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) {
2038 // Fails FCD test, need to decompose and contiguously recompose.
2039 if (sink == nullptr) {
2040 return false;
2041 }
2042 } else {
2043 // If !onlyContiguous (not FCC), then we ignore the tccc of
2044 // the previous character which passed the quick check "yes && ccc==0" test.
2045 const uint8_t *nextSrc;
2046 uint16_t n16;
2047 for (;;) {
2048 if (src == limit) {
2049 if (sink != nullptr) {
2050 ByteSinkUtil::appendUnchanged(prevBoundary, limit,
2051 *sink, options, edits, errorCode);
2052 }
2053 return true;
2054 }
2055 uint8_t prevCC = cc;
2056 nextSrc = src;
2057 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, n16);
2058 if (n16 >= MIN_YES_YES_WITH_CC) {
2059 cc = getCCFromNormalYesOrMaybe(n16);
2060 if (prevCC > cc) {
2061 if (sink == nullptr) {
2062 return false;
2063 }
2064 break;
2065 }
2066 } else {
2067 break;
2068 }
2069 src = nextSrc;
2070 }
2071 // src is after the last in-order combining mark.
2072 // If there is a boundary here, then we continue with no change.
2073 if (norm16HasCompBoundaryBefore(n16)) {
2074 if (isCompYesAndZeroCC(n16)) {
2075 src = nextSrc;
2076 }
2077 continue;
2078 }
2079 // Use the slow path. There is no boundary in [prevSrc, src[.
2080 }
2081 }
2082
2083 // Slow path: Find the nearest boundaries around the current character,
2084 // decompose and recompose.
2085 if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) {
2086 const uint8_t *p = prevSrc;
2087 UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, prevBoundary, p, norm16);
2088 if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2089 prevSrc = p;
2090 }
2091 }
2092 ReorderingBuffer buffer(*this, s16, errorCode);
2093 if (U_FAILURE(errorCode)) {
2094 break;
2095 }
2096 // We know there is not a boundary here.
2097 decomposeShort(prevSrc, src, STOP_AT_LIMIT, onlyContiguous,
2098 buffer, errorCode);
2099 // Decompose until the next boundary.
2100 src = decomposeShort(src, limit, STOP_AT_COMP_BOUNDARY, onlyContiguous,
2101 buffer, errorCode);
2102 if (U_FAILURE(errorCode)) {
2103 break;
2104 }
2105 if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals()
2106 errorCode = U_INDEX_OUTOFBOUNDS_ERROR;
2107 return true;
2108 }
2109 recompose(buffer, 0, onlyContiguous);
2110 if (!buffer.equals(prevSrc, src)) {
2111 if (sink == nullptr) {
2112 return false;
2113 }
2114 if (prevBoundary != prevSrc &&
2115 !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc,
2116 *sink, options, edits, errorCode)) {
2117 break;
2118 }
2119 if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(),
2120 *sink, edits, errorCode)) {
2121 break;
2122 }
2123 prevBoundary = src;
2124 }
2125 }
2126 return true;
2127 }
2128
hasCompBoundaryBefore(const char16_t * src,const char16_t * limit) const2129 UBool Normalizer2Impl::hasCompBoundaryBefore(const char16_t *src, const char16_t *limit) const {
2130 if (src == limit || *src < minCompNoMaybeCP) {
2131 return true;
2132 }
2133 UChar32 c;
2134 uint16_t norm16;
2135 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16);
2136 return norm16HasCompBoundaryBefore(norm16);
2137 }
2138
hasCompBoundaryBefore(const uint8_t * src,const uint8_t * limit) const2139 UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const {
2140 if (src == limit) {
2141 return true;
2142 }
2143 uint16_t norm16;
2144 UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16);
2145 return norm16HasCompBoundaryBefore(norm16);
2146 }
2147
hasCompBoundaryAfter(const char16_t * start,const char16_t * p,UBool onlyContiguous) const2148 UBool Normalizer2Impl::hasCompBoundaryAfter(const char16_t *start, const char16_t *p,
2149 UBool onlyContiguous) const {
2150 if (start == p) {
2151 return true;
2152 }
2153 UChar32 c;
2154 uint16_t norm16;
2155 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
2156 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2157 }
2158
hasCompBoundaryAfter(const uint8_t * start,const uint8_t * p,UBool onlyContiguous) const2159 UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
2160 UBool onlyContiguous) const {
2161 if (start == p) {
2162 return true;
2163 }
2164 uint16_t norm16;
2165 UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, start, p, norm16);
2166 return norm16HasCompBoundaryAfter(norm16, onlyContiguous);
2167 }
2168
findPreviousCompBoundary(const char16_t * start,const char16_t * p,UBool onlyContiguous) const2169 const char16_t *Normalizer2Impl::findPreviousCompBoundary(const char16_t *start, const char16_t *p,
2170 UBool onlyContiguous) const {
2171 while (p != start) {
2172 const char16_t *codePointLimit = p;
2173 UChar32 c;
2174 uint16_t norm16;
2175 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
2176 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2177 return codePointLimit;
2178 }
2179 if (hasCompBoundaryBefore(c, norm16)) {
2180 return p;
2181 }
2182 }
2183 return p;
2184 }
2185
findNextCompBoundary(const char16_t * p,const char16_t * limit,UBool onlyContiguous) const2186 const char16_t *Normalizer2Impl::findNextCompBoundary(const char16_t *p, const char16_t *limit,
2187 UBool onlyContiguous) const {
2188 while (p != limit) {
2189 const char16_t *codePointStart = p;
2190 UChar32 c;
2191 uint16_t norm16;
2192 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
2193 if (hasCompBoundaryBefore(c, norm16)) {
2194 return codePointStart;
2195 }
2196 if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) {
2197 return p;
2198 }
2199 }
2200 return p;
2201 }
2202
getPreviousTrailCC(const char16_t * start,const char16_t * p) const2203 uint8_t Normalizer2Impl::getPreviousTrailCC(const char16_t *start, const char16_t *p) const {
2204 if (start == p) {
2205 return 0;
2206 }
2207 int32_t i = (int32_t)(p - start);
2208 UChar32 c;
2209 U16_PREV(start, 0, i, c);
2210 return (uint8_t)getFCD16(c);
2211 }
2212
getPreviousTrailCC(const uint8_t * start,const uint8_t * p) const2213 uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const {
2214 if (start == p) {
2215 return 0;
2216 }
2217 int32_t i = (int32_t)(p - start);
2218 UChar32 c;
2219 U8_PREV(start, 0, i, c);
2220 return (uint8_t)getFCD16(c);
2221 }
2222
2223 // Note: normalizer2impl.cpp r30982 (2011-nov-27)
2224 // still had getFCDTrie() which built and cached an FCD trie.
2225 // That provided faster access to FCD data than getFCD16FromNormData()
2226 // but required synchronization and consumed some 10kB of heap memory
2227 // in any process that uses FCD (e.g., via collation).
2228 // minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance,
2229 // at least for ASCII & CJK.
2230
2231 // Ticket 20907 - The optimizer in MSVC/Visual Studio versions below 16.4 has trouble with this
2232 // function on Windows ARM64. As a work-around, we disable optimizations for this function.
2233 // This work-around could/should be removed once the following versions of Visual Studio are no
2234 // longer supported: All versions of VS2017, and versions of VS2019 below 16.4.
2235 #if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
2236 #pragma optimize( "", off )
2237 #endif
2238 // Gets the FCD value from the regular normalization data.
getFCD16FromNormData(UChar32 c) const2239 uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const {
2240 uint16_t norm16=getNorm16(c);
2241 if (norm16 >= limitNoNo) {
2242 if(norm16>=MIN_NORMAL_MAYBE_YES) {
2243 // combining mark
2244 norm16=getCCFromNormalYesOrMaybe(norm16);
2245 return norm16|(norm16<<8);
2246 } else if(norm16>=minMaybeYes) {
2247 return 0;
2248 } else { // isDecompNoAlgorithmic(norm16)
2249 uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK;
2250 if (deltaTrailCC <= DELTA_TCCC_1) {
2251 return deltaTrailCC >> OFFSET_SHIFT;
2252 }
2253 // Maps to an isCompYesAndZeroCC.
2254 c=mapAlgorithmic(c, norm16);
2255 norm16=getRawNorm16(c);
2256 }
2257 }
2258 if(norm16<=minYesNo || isHangulLVT(norm16)) {
2259 // no decomposition or Hangul syllable, all zeros
2260 return 0;
2261 }
2262 // c decomposes, get everything from the variable-length extra data
2263 const uint16_t *mapping=getMapping(norm16);
2264 uint16_t firstUnit=*mapping;
2265 norm16=firstUnit>>8; // tccc
2266 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
2267 norm16|=*(mapping-1)&0xff00; // lccc
2268 }
2269 return norm16;
2270 }
2271 #if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924))
2272 #pragma optimize( "", on )
2273 #endif
2274
2275 // Dual functionality:
2276 // buffer!=nullptr: normalize
2277 // buffer==nullptr: isNormalized/quickCheck/spanQuickCheckYes
2278 const char16_t *
makeFCD(const char16_t * src,const char16_t * limit,ReorderingBuffer * buffer,UErrorCode & errorCode) const2279 Normalizer2Impl::makeFCD(const char16_t *src, const char16_t *limit,
2280 ReorderingBuffer *buffer,
2281 UErrorCode &errorCode) const {
2282 // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
2283 // Similar to the prevBoundary in the compose() implementation.
2284 const char16_t *prevBoundary=src;
2285 int32_t prevFCD16=0;
2286 if(limit==nullptr) {
2287 src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode);
2288 if(U_FAILURE(errorCode)) {
2289 return src;
2290 }
2291 if(prevBoundary<src) {
2292 prevBoundary=src;
2293 // We know that the previous character's lccc==0.
2294 // Fetching the fcd16 value was deferred for this below-U+0300 code point.
2295 prevFCD16=getFCD16(*(src-1));
2296 if(prevFCD16>1) {
2297 --prevBoundary;
2298 }
2299 }
2300 limit=u_strchr(src, 0);
2301 }
2302
2303 // Note: In this function we use buffer->appendZeroCC() because we track
2304 // the lead and trail combining classes here, rather than leaving it to
2305 // the ReorderingBuffer.
2306 // The exception is the call to decomposeShort() which uses the buffer
2307 // in the normal way.
2308
2309 const char16_t *prevSrc;
2310 UChar32 c=0;
2311 uint16_t fcd16=0;
2312
2313 for(;;) {
2314 // count code units with lccc==0
2315 for(prevSrc=src; src!=limit;) {
2316 if((c=*src)<minLcccCP) {
2317 prevFCD16=~c;
2318 ++src;
2319 } else if(!singleLeadMightHaveNonZeroFCD16(c)) {
2320 prevFCD16=0;
2321 ++src;
2322 } else {
2323 if(U16_IS_LEAD(c)) {
2324 char16_t c2;
2325 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
2326 c=U16_GET_SUPPLEMENTARY(c, c2);
2327 }
2328 }
2329 if((fcd16=getFCD16FromNormData(c))<=0xff) {
2330 prevFCD16=fcd16;
2331 src+=U16_LENGTH(c);
2332 } else {
2333 break;
2334 }
2335 }
2336 }
2337 // copy these code units all at once
2338 if(src!=prevSrc) {
2339 if(buffer!=nullptr && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
2340 break;
2341 }
2342 if(src==limit) {
2343 break;
2344 }
2345 prevBoundary=src;
2346 // We know that the previous character's lccc==0.
2347 if(prevFCD16<0) {
2348 // Fetching the fcd16 value was deferred for this below-minLcccCP code point.
2349 UChar32 prev=~prevFCD16;
2350 if(prev<minDecompNoCP) {
2351 prevFCD16=0;
2352 } else {
2353 prevFCD16=getFCD16FromNormData(prev);
2354 if(prevFCD16>1) {
2355 --prevBoundary;
2356 }
2357 }
2358 } else {
2359 const char16_t *p=src-1;
2360 if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) {
2361 --p;
2362 // Need to fetch the previous character's FCD value because
2363 // prevFCD16 was just for the trail surrogate code point.
2364 prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1]));
2365 // Still known to have lccc==0 because its lead surrogate unit had lccc==0.
2366 }
2367 if(prevFCD16>1) {
2368 prevBoundary=p;
2369 }
2370 }
2371 // The start of the current character (c).
2372 prevSrc=src;
2373 } else if(src==limit) {
2374 break;
2375 }
2376
2377 src+=U16_LENGTH(c);
2378 // The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
2379 // Check for proper order, and decompose locally if necessary.
2380 if((prevFCD16&0xff)<=(fcd16>>8)) {
2381 // proper order: prev tccc <= current lccc
2382 if((fcd16&0xff)<=1) {
2383 prevBoundary=src;
2384 }
2385 if(buffer!=nullptr && !buffer->appendZeroCC(c, errorCode)) {
2386 break;
2387 }
2388 prevFCD16=fcd16;
2389 continue;
2390 } else if(buffer==nullptr) {
2391 return prevBoundary; // quick check "no"
2392 } else {
2393 /*
2394 * Back out the part of the source that we copied or appended
2395 * already but is now going to be decomposed.
2396 * prevSrc is set to after what was copied/appended.
2397 */
2398 buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
2399 /*
2400 * Find the part of the source that needs to be decomposed,
2401 * up to the next safe boundary.
2402 */
2403 src=findNextFCDBoundary(src, limit);
2404 /*
2405 * The source text does not fulfill the conditions for FCD.
2406 * Decompose and reorder a limited piece of the text.
2407 */
2408 decomposeShort(prevBoundary, src, false, false, *buffer, errorCode);
2409 if (U_FAILURE(errorCode)) {
2410 break;
2411 }
2412 prevBoundary=src;
2413 prevFCD16=0;
2414 }
2415 }
2416 return src;
2417 }
2418
makeFCDAndAppend(const char16_t * src,const char16_t * limit,UBool doMakeFCD,UnicodeString & safeMiddle,ReorderingBuffer & buffer,UErrorCode & errorCode) const2419 void Normalizer2Impl::makeFCDAndAppend(const char16_t *src, const char16_t *limit,
2420 UBool doMakeFCD,
2421 UnicodeString &safeMiddle,
2422 ReorderingBuffer &buffer,
2423 UErrorCode &errorCode) const {
2424 if(!buffer.isEmpty()) {
2425 const char16_t *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
2426 if(src!=firstBoundaryInSrc) {
2427 const char16_t *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
2428 buffer.getLimit());
2429 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest);
2430 UnicodeString middle(lastBoundaryInDest, destSuffixLength);
2431 buffer.removeSuffix(destSuffixLength);
2432 safeMiddle=middle;
2433 middle.append(src, (int32_t)(firstBoundaryInSrc-src));
2434 const char16_t *middleStart=middle.getBuffer();
2435 makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
2436 if(U_FAILURE(errorCode)) {
2437 return;
2438 }
2439 src=firstBoundaryInSrc;
2440 }
2441 }
2442 if(doMakeFCD) {
2443 makeFCD(src, limit, &buffer, errorCode);
2444 } else {
2445 if(limit==nullptr) { // appendZeroCC() needs limit!=nullptr
2446 limit=u_strchr(src, 0);
2447 }
2448 buffer.appendZeroCC(src, limit, errorCode);
2449 }
2450 }
2451
findPreviousFCDBoundary(const char16_t * start,const char16_t * p) const2452 const char16_t *Normalizer2Impl::findPreviousFCDBoundary(const char16_t *start, const char16_t *p) const {
2453 while(start<p) {
2454 const char16_t *codePointLimit = p;
2455 UChar32 c;
2456 uint16_t norm16;
2457 UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16);
2458 if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) {
2459 return codePointLimit;
2460 }
2461 if (norm16HasDecompBoundaryBefore(norm16)) {
2462 return p;
2463 }
2464 }
2465 return p;
2466 }
2467
findNextFCDBoundary(const char16_t * p,const char16_t * limit) const2468 const char16_t *Normalizer2Impl::findNextFCDBoundary(const char16_t *p, const char16_t *limit) const {
2469 while(p<limit) {
2470 const char16_t *codePointStart=p;
2471 UChar32 c;
2472 uint16_t norm16;
2473 UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16);
2474 if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) {
2475 return codePointStart;
2476 }
2477 if (norm16HasDecompBoundaryAfter(norm16)) {
2478 return p;
2479 }
2480 }
2481 return p;
2482 }
2483
2484 // CanonicalIterator data -------------------------------------------------- ***
2485
CanonIterData(UErrorCode & errorCode)2486 CanonIterData::CanonIterData(UErrorCode &errorCode) :
2487 mutableTrie(umutablecptrie_open(0, 0, &errorCode)), trie(nullptr),
2488 canonStartSets(uprv_deleteUObject, nullptr, errorCode) {}
2489
~CanonIterData()2490 CanonIterData::~CanonIterData() {
2491 umutablecptrie_close(mutableTrie);
2492 ucptrie_close(trie);
2493 }
2494
addToStartSet(UChar32 origin,UChar32 decompLead,UErrorCode & errorCode)2495 void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
2496 uint32_t canonValue = umutablecptrie_get(mutableTrie, decompLead);
2497 if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
2498 // origin is the first character whose decomposition starts with
2499 // the character for which we are setting the value.
2500 umutablecptrie_set(mutableTrie, decompLead, canonValue|origin, &errorCode);
2501 } else {
2502 // origin is not the first character, or it is U+0000.
2503 UnicodeSet *set;
2504 if((canonValue&CANON_HAS_SET)==0) {
2505 LocalPointer<UnicodeSet> lpSet(new UnicodeSet, errorCode);
2506 set=lpSet.getAlias();
2507 if(U_FAILURE(errorCode)) {
2508 return;
2509 }
2510 UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK);
2511 canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size();
2512 umutablecptrie_set(mutableTrie, decompLead, canonValue, &errorCode);
2513 canonStartSets.adoptElement(lpSet.orphan(), errorCode);
2514 if (U_FAILURE(errorCode)) {
2515 return;
2516 }
2517 if(firstOrigin!=0) {
2518 set->add(firstOrigin);
2519 }
2520 } else {
2521 set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)];
2522 }
2523 set->add(origin);
2524 }
2525 }
2526
2527 // C++ class for friend access to private Normalizer2Impl members.
2528 class InitCanonIterData {
2529 public:
2530 static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode);
2531 };
2532
2533 U_CDECL_BEGIN
2534
2535 // UInitOnce instantiation function for CanonIterData
2536 static void U_CALLCONV
initCanonIterData(Normalizer2Impl * impl,UErrorCode & errorCode)2537 initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) {
2538 InitCanonIterData::doInit(impl, errorCode);
2539 }
2540
2541 U_CDECL_END
2542
doInit(Normalizer2Impl * impl,UErrorCode & errorCode)2543 void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) {
2544 U_ASSERT(impl->fCanonIterData == nullptr);
2545 impl->fCanonIterData = new CanonIterData(errorCode);
2546 if (impl->fCanonIterData == nullptr) {
2547 errorCode=U_MEMORY_ALLOCATION_ERROR;
2548 }
2549 if (U_SUCCESS(errorCode)) {
2550 UChar32 start = 0, end;
2551 uint32_t value;
2552 while ((end = ucptrie_getRange(impl->normTrie, start,
2553 UCPMAP_RANGE_FIXED_LEAD_SURROGATES, Normalizer2Impl::INERT,
2554 nullptr, nullptr, &value)) >= 0) {
2555 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
2556 if (value != Normalizer2Impl::INERT) {
2557 impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode);
2558 }
2559 start = end + 1;
2560 }
2561 #ifdef UCPTRIE_DEBUG
2562 umutablecptrie_setName(impl->fCanonIterData->mutableTrie, "CanonIterData");
2563 #endif
2564 impl->fCanonIterData->trie = umutablecptrie_buildImmutable(
2565 impl->fCanonIterData->mutableTrie, UCPTRIE_TYPE_SMALL, UCPTRIE_VALUE_BITS_32, &errorCode);
2566 umutablecptrie_close(impl->fCanonIterData->mutableTrie);
2567 impl->fCanonIterData->mutableTrie = nullptr;
2568 }
2569 if (U_FAILURE(errorCode)) {
2570 delete impl->fCanonIterData;
2571 impl->fCanonIterData = nullptr;
2572 }
2573 }
2574
makeCanonIterDataFromNorm16(UChar32 start,UChar32 end,const uint16_t norm16,CanonIterData & newData,UErrorCode & errorCode) const2575 void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
2576 CanonIterData &newData,
2577 UErrorCode &errorCode) const {
2578 if(isInert(norm16) || (minYesNo<=norm16 && norm16<minNoNo)) {
2579 // Inert, or 2-way mapping (including Hangul syllable).
2580 // We do not write a canonStartSet for any yesNo character.
2581 // Composites from 2-way mappings are added at runtime from the
2582 // starter's compositions list, and the other characters in
2583 // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
2584 // "maybe" characters.
2585 return;
2586 }
2587 for(UChar32 c=start; c<=end; ++c) {
2588 uint32_t oldValue = umutablecptrie_get(newData.mutableTrie, c);
2589 uint32_t newValue=oldValue;
2590 if(isMaybeOrNonZeroCC(norm16)) {
2591 // not a segment starter if it occurs in a decomposition or has cc!=0
2592 newValue|=CANON_NOT_SEGMENT_STARTER;
2593 if(norm16<MIN_NORMAL_MAYBE_YES) {
2594 newValue|=CANON_HAS_COMPOSITIONS;
2595 }
2596 } else if(norm16<minYesNo) {
2597 newValue|=CANON_HAS_COMPOSITIONS;
2598 } else {
2599 // c has a one-way decomposition
2600 UChar32 c2=c;
2601 // Do not modify the whole-range norm16 value.
2602 uint16_t norm16_2=norm16;
2603 if (isDecompNoAlgorithmic(norm16_2)) {
2604 // Maps to an isCompYesAndZeroCC.
2605 c2 = mapAlgorithmic(c2, norm16_2);
2606 norm16_2 = getRawNorm16(c2);
2607 // No compatibility mappings for the CanonicalIterator.
2608 U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2)));
2609 }
2610 if (norm16_2 > minYesNo) {
2611 // c decomposes, get everything from the variable-length extra data
2612 const uint16_t *mapping=getMapping(norm16_2);
2613 uint16_t firstUnit=*mapping;
2614 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
2615 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
2616 if(c==c2 && (*(mapping-1)&0xff)!=0) {
2617 newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0
2618 }
2619 }
2620 // Skip empty mappings (no characters in the decomposition).
2621 if(length!=0) {
2622 ++mapping; // skip over the firstUnit
2623 // add c to first code point's start set
2624 int32_t i=0;
2625 U16_NEXT_UNSAFE(mapping, i, c2);
2626 newData.addToStartSet(c, c2, errorCode);
2627 // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
2628 // one-way mapping. A 2-way mapping is possible here after
2629 // intermediate algorithmic mapping.
2630 if(norm16_2>=minNoNo) {
2631 while(i<length) {
2632 U16_NEXT_UNSAFE(mapping, i, c2);
2633 uint32_t c2Value = umutablecptrie_get(newData.mutableTrie, c2);
2634 if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
2635 umutablecptrie_set(newData.mutableTrie, c2,
2636 c2Value|CANON_NOT_SEGMENT_STARTER, &errorCode);
2637 }
2638 }
2639 }
2640 }
2641 } else {
2642 // c decomposed to c2 algorithmically; c has cc==0
2643 newData.addToStartSet(c, c2, errorCode);
2644 }
2645 }
2646 if(newValue!=oldValue) {
2647 umutablecptrie_set(newData.mutableTrie, c, newValue, &errorCode);
2648 }
2649 }
2650 }
2651
ensureCanonIterData(UErrorCode & errorCode) const2652 UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
2653 // Logically const: Synchronized instantiation.
2654 Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
2655 umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode);
2656 return U_SUCCESS(errorCode);
2657 }
2658
getCanonValue(UChar32 c) const2659 int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
2660 return (int32_t)ucptrie_get(fCanonIterData->trie, c);
2661 }
2662
getCanonStartSet(int32_t n) const2663 const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
2664 return *(const UnicodeSet *)fCanonIterData->canonStartSets[n];
2665 }
2666
isCanonSegmentStarter(UChar32 c) const2667 UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
2668 return getCanonValue(c)>=0;
2669 }
2670
getCanonStartSet(UChar32 c,UnicodeSet & set) const2671 UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
2672 int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER;
2673 if(canonValue==0) {
2674 return false;
2675 }
2676 set.clear();
2677 int32_t value=canonValue&CANON_VALUE_MASK;
2678 if((canonValue&CANON_HAS_SET)!=0) {
2679 set.addAll(getCanonStartSet(value));
2680 } else if(value!=0) {
2681 set.add(value);
2682 }
2683 if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
2684 uint16_t norm16=getRawNorm16(c);
2685 if(norm16==JAMO_L) {
2686 UChar32 syllable=
2687 (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
2688 set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
2689 } else {
2690 addComposites(getCompositionsList(norm16), set);
2691 }
2692 }
2693 return true;
2694 }
2695
2696 U_NAMESPACE_END
2697
2698 // Normalizer2 data swapping ----------------------------------------------- ***
2699
2700 U_NAMESPACE_USE
2701
2702 U_CAPI int32_t U_EXPORT2
unorm2_swap(const UDataSwapper * ds,const void * inData,int32_t length,void * outData,UErrorCode * pErrorCode)2703 unorm2_swap(const UDataSwapper *ds,
2704 const void *inData, int32_t length, void *outData,
2705 UErrorCode *pErrorCode) {
2706 const UDataInfo *pInfo;
2707 int32_t headerSize;
2708
2709 const uint8_t *inBytes;
2710 uint8_t *outBytes;
2711
2712 const int32_t *inIndexes;
2713 int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1];
2714
2715 int32_t i, offset, nextOffset, size;
2716
2717 /* udata_swapDataHeader checks the arguments */
2718 headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
2719 if(pErrorCode==nullptr || U_FAILURE(*pErrorCode)) {
2720 return 0;
2721 }
2722
2723 /* check data format and format version */
2724 pInfo=(const UDataInfo *)((const char *)inData+4);
2725 uint8_t formatVersion0=pInfo->formatVersion[0];
2726 if(!(
2727 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */
2728 pInfo->dataFormat[1]==0x72 &&
2729 pInfo->dataFormat[2]==0x6d &&
2730 pInfo->dataFormat[3]==0x32 &&
2731 (1<=formatVersion0 && formatVersion0<=4)
2732 )) {
2733 udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
2734 pInfo->dataFormat[0], pInfo->dataFormat[1],
2735 pInfo->dataFormat[2], pInfo->dataFormat[3],
2736 pInfo->formatVersion[0]);
2737 *pErrorCode=U_UNSUPPORTED_ERROR;
2738 return 0;
2739 }
2740
2741 inBytes=(const uint8_t *)inData+headerSize;
2742 outBytes=(outData == nullptr) ? nullptr : (uint8_t *)outData+headerSize;
2743
2744 inIndexes=(const int32_t *)inBytes;
2745 int32_t minIndexesLength;
2746 if(formatVersion0==1) {
2747 minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1;
2748 } else if(formatVersion0==2) {
2749 minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1;
2750 } else {
2751 minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1;
2752 }
2753
2754 if(length>=0) {
2755 length-=headerSize;
2756 if(length<minIndexesLength*4) {
2757 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
2758 length);
2759 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2760 return 0;
2761 }
2762 }
2763
2764 /* read the first few indexes */
2765 for(i=0; i<UPRV_LENGTHOF(indexes); ++i) {
2766 indexes[i]=udata_readInt32(ds, inIndexes[i]);
2767 }
2768
2769 /* get the total length of the data */
2770 size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
2771
2772 if(length>=0) {
2773 if(length<size) {
2774 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
2775 length);
2776 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2777 return 0;
2778 }
2779
2780 /* copy the data for inaccessible bytes */
2781 if(inBytes!=outBytes) {
2782 uprv_memcpy(outBytes, inBytes, size);
2783 }
2784
2785 offset=0;
2786
2787 /* swap the int32_t indexes[] */
2788 nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
2789 ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
2790 offset=nextOffset;
2791
2792 /* swap the trie */
2793 nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
2794 utrie_swapAnyVersion(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2795 offset=nextOffset;
2796
2797 /* swap the uint16_t extraData[] */
2798 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET];
2799 ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
2800 offset=nextOffset;
2801
2802 /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
2803 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1];
2804 offset=nextOffset;
2805
2806 U_ASSERT(offset==size);
2807 }
2808
2809 return headerSize+size;
2810 }
2811
2812 #endif // !UCONFIG_NO_NORMALIZATION
2813