1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /************************************************************************
4 * Copyright (C) 1996-2012, International Business Machines Corporation
5 * and others. All Rights Reserved.
6 ************************************************************************
7 * 2003-nov-07 srl Port from Java
8 */
9
10 #include "astro.h"
11
12 #if !UCONFIG_NO_FORMATTING
13
14 #include "unicode/calendar.h"
15 #include <math.h>
16 #include <float.h>
17 #include "unicode/putil.h"
18 #include "uhash.h"
19 #include "umutex.h"
20 #include "ucln_in.h"
21 #include "putilimp.h"
22 #include <stdio.h> // for toString()
23
24 #if defined (PI)
25 #undef PI
26 #endif
27
28 #ifdef U_DEBUG_ASTRO
29 # include "uresimp.h" // for debugging
30
debug_astro_loc(const char * f,int32_t l)31 static void debug_astro_loc(const char *f, int32_t l)
32 {
33 fprintf(stderr, "%s:%d: ", f, l);
34 }
35
debug_astro_msg(const char * pat,...)36 static void debug_astro_msg(const char *pat, ...)
37 {
38 va_list ap;
39 va_start(ap, pat);
40 vfprintf(stderr, pat, ap);
41 fflush(stderr);
42 }
43 #include "unicode/datefmt.h"
44 #include "unicode/ustring.h"
debug_astro_date(UDate d)45 static const char * debug_astro_date(UDate d) {
46 static char gStrBuf[1024];
47 static DateFormat *df = nullptr;
48 if(df == nullptr) {
49 df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
50 df->adoptTimeZone(TimeZone::getGMT()->clone());
51 }
52 UnicodeString str;
53 df->format(d,str);
54 u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
55 return gStrBuf;
56 }
57
58 // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4));
59 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
60 #else
61 #define U_DEBUG_ASTRO_MSG(x)
62 #endif
63
isINVALID(double d)64 static inline UBool isINVALID(double d) {
65 return(uprv_isNaN(d));
66 }
67
68 static icu::UMutex ccLock;
69
70 U_CDECL_BEGIN
calendar_astro_cleanup()71 static UBool calendar_astro_cleanup() {
72 return true;
73 }
74 U_CDECL_END
75
76 U_NAMESPACE_BEGIN
77
78 /**
79 * The number of standard hours in one sidereal day.
80 * Approximately 24.93.
81 * @internal
82 * @deprecated ICU 2.4. This class may be removed or modified.
83 */
84 #define SIDEREAL_DAY (23.93446960027)
85
86 /**
87 * The number of sidereal hours in one mean solar day.
88 * Approximately 24.07.
89 * @internal
90 * @deprecated ICU 2.4. This class may be removed or modified.
91 */
92 #define SOLAR_DAY (24.065709816)
93
94 /**
95 * The average number of solar days from one new moon to the next. This is the time
96 * it takes for the moon to return the same ecliptic longitude as the sun.
97 * It is longer than the sidereal month because the sun's longitude increases
98 * during the year due to the revolution of the earth around the sun.
99 * Approximately 29.53.
100 *
101 * @see #SIDEREAL_MONTH
102 * @internal
103 * @deprecated ICU 2.4. This class may be removed or modified.
104 */
105 const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853;
106
107 /**
108 * The average number of days it takes
109 * for the moon to return to the same ecliptic longitude relative to the
110 * stellar background. This is referred to as the sidereal month.
111 * It is shorter than the synodic month due to
112 * the revolution of the earth around the sun.
113 * Approximately 27.32.
114 *
115 * @see #SYNODIC_MONTH
116 * @internal
117 * @deprecated ICU 2.4. This class may be removed or modified.
118 */
119 #define SIDEREAL_MONTH 27.32166
120
121 /**
122 * The average number number of days between successive vernal equinoxes.
123 * Due to the precession of the earth's
124 * axis, this is not precisely the same as the sidereal year.
125 * Approximately 365.24
126 *
127 * @see #SIDEREAL_YEAR
128 * @internal
129 * @deprecated ICU 2.4. This class may be removed or modified.
130 */
131 #define TROPICAL_YEAR 365.242191
132
133 /**
134 * The average number of days it takes
135 * for the sun to return to the same position against the fixed stellar
136 * background. This is the duration of one orbit of the earth about the sun
137 * as it would appear to an outside observer.
138 * Due to the precession of the earth's
139 * axis, this is not precisely the same as the tropical year.
140 * Approximately 365.25.
141 *
142 * @see #TROPICAL_YEAR
143 * @internal
144 * @deprecated ICU 2.4. This class may be removed or modified.
145 */
146 #define SIDEREAL_YEAR 365.25636
147
148 //-------------------------------------------------------------------------
149 // Time-related constants
150 //-------------------------------------------------------------------------
151
152 /**
153 * The number of milliseconds in one second.
154 * @internal
155 * @deprecated ICU 2.4. This class may be removed or modified.
156 */
157 #define SECOND_MS U_MILLIS_PER_SECOND
158
159 /**
160 * The number of milliseconds in one minute.
161 * @internal
162 * @deprecated ICU 2.4. This class may be removed or modified.
163 */
164 #define MINUTE_MS U_MILLIS_PER_MINUTE
165
166 /**
167 * The number of milliseconds in one hour.
168 * @internal
169 * @deprecated ICU 2.4. This class may be removed or modified.
170 */
171 #define HOUR_MS U_MILLIS_PER_HOUR
172
173 /**
174 * The number of milliseconds in one day.
175 * @internal
176 * @deprecated ICU 2.4. This class may be removed or modified.
177 */
178 #define DAY_MS U_MILLIS_PER_DAY
179
180 /**
181 * The start of the julian day numbering scheme used by astronomers, which
182 * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds
183 * since 1/1/1970 AD (Gregorian), a negative number.
184 * Note that julian day numbers and
185 * the Julian calendar are <em>not</em> the same thing. Also note that
186 * julian days start at <em>noon</em>, not midnight.
187 * @internal
188 * @deprecated ICU 2.4. This class may be removed or modified.
189 */
190 #define JULIAN_EPOCH_MS -210866760000000.0
191
192
193 /**
194 * Milliseconds value for 0.0 January 2000 AD.
195 */
196 #define EPOCH_2000_MS 946598400000.0
197
198 //-------------------------------------------------------------------------
199 // Assorted private data used for conversions
200 //-------------------------------------------------------------------------
201
202 // My own copies of these so compilers are more likely to optimize them away
203 const double CalendarAstronomer::PI = 3.14159265358979323846;
204
205 #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0)
206 #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours
207 #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians
208 #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees
209
210 /***
211 * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
212 * The modulus operator.
213 */
normalize(double value,double range)214 inline static double normalize(double value, double range) {
215 return value - range * ClockMath::floorDivide(value, range);
216 }
217
218 /**
219 * Normalize an angle so that it's in the range 0 - 2pi.
220 * For positive angles this is just (angle % 2pi), but the Java
221 * mod operator doesn't work that way for negative numbers....
222 */
norm2PI(double angle)223 inline static double norm2PI(double angle) {
224 return normalize(angle, CalendarAstronomer::PI * 2.0);
225 }
226
227 /**
228 * Normalize an angle into the range -PI - PI
229 */
normPI(double angle)230 inline static double normPI(double angle) {
231 return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
232 }
233
234 //-------------------------------------------------------------------------
235 // Constructors
236 //-------------------------------------------------------------------------
237
238 /**
239 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
240 * the current date and time.
241 * @internal
242 * @deprecated ICU 2.4. This class may be removed or modified.
243 */
CalendarAstronomer()244 CalendarAstronomer::CalendarAstronomer():
245 fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
246 clearCache();
247 }
248
249 /**
250 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
251 * the specified date and time.
252 * @internal
253 * @deprecated ICU 2.4. This class may be removed or modified.
254 */
CalendarAstronomer(UDate d)255 CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) {
256 clearCache();
257 }
258
~CalendarAstronomer()259 CalendarAstronomer::~CalendarAstronomer()
260 {
261 }
262
263 //-------------------------------------------------------------------------
264 // Time and date getters and setters
265 //-------------------------------------------------------------------------
266
267 /**
268 * Set the current date and time of this <code>CalendarAstronomer</code> object. All
269 * astronomical calculations are performed based on this time setting.
270 *
271 * @param aTime the date and time, expressed as the number of milliseconds since
272 * 1/1/1970 0:00 GMT (Gregorian).
273 *
274 * @see #setDate
275 * @see #getTime
276 * @internal
277 * @deprecated ICU 2.4. This class may be removed or modified.
278 */
setTime(UDate aTime)279 void CalendarAstronomer::setTime(UDate aTime) {
280 fTime = aTime;
281 clearCache();
282 }
283
284 /**
285 * Get the current time of this <code>CalendarAstronomer</code> object,
286 * represented as the number of milliseconds since
287 * 1/1/1970 AD 0:00 GMT (Gregorian).
288 *
289 * @see #setTime
290 * @see #getDate
291 * @internal
292 * @deprecated ICU 2.4. This class may be removed or modified.
293 */
getTime()294 UDate CalendarAstronomer::getTime() {
295 return fTime;
296 }
297
298 /**
299 * Get the current time of this <code>CalendarAstronomer</code> object,
300 * expressed as a "julian day number", which is the number of elapsed
301 * days since 1/1/4713 BC (Julian), 12:00 GMT.
302 *
303 * @see #setJulianDay
304 * @see #JULIAN_EPOCH_MS
305 * @internal
306 * @deprecated ICU 2.4. This class may be removed or modified.
307 */
getJulianDay()308 double CalendarAstronomer::getJulianDay() {
309 if (isINVALID(julianDay)) {
310 julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
311 }
312 return julianDay;
313 }
314
315 //-------------------------------------------------------------------------
316 // Coordinate transformations, all based on the current time of this object
317 //-------------------------------------------------------------------------
318
319 /**
320 * Convert from ecliptic to equatorial coordinates.
321 *
322 * @param eclipLong The ecliptic longitude
323 * @param eclipLat The ecliptic latitude
324 *
325 * @return The corresponding point in equatorial coordinates.
326 * @internal
327 * @deprecated ICU 2.4. This class may be removed or modified.
328 */
eclipticToEquatorial(CalendarAstronomer::Equatorial & result,double eclipLong,double eclipLat)329 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
330 {
331 // See page 42 of "Practical Astronomy with your Calculator",
332 // by Peter Duffet-Smith, for details on the algorithm.
333
334 double obliq = eclipticObliquity();
335 double sinE = ::sin(obliq);
336 double cosE = cos(obliq);
337
338 double sinL = ::sin(eclipLong);
339 double cosL = cos(eclipLong);
340
341 double sinB = ::sin(eclipLat);
342 double cosB = cos(eclipLat);
343 double tanB = tan(eclipLat);
344
345 result.set(atan2(sinL*cosE - tanB*sinE, cosL),
346 asin(sinB*cosE + cosB*sinE*sinL) );
347 return result;
348 }
349
350 //-------------------------------------------------------------------------
351 // The Sun
352 //-------------------------------------------------------------------------
353
354 //
355 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
356 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
357 //
358 #define JD_EPOCH 2447891.5 // Julian day of epoch
359
360 #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
361 #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
362 #define SUN_E 0.016713 // Eccentricity of orbit
363 //double sunR0 1.495585e8 // Semi-major axis in KM
364 //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
365
366 // The following three methods, which compute the sun parameters
367 // given above for an arbitrary epoch (whatever time the object is
368 // set to), make only a small difference as compared to using the
369 // above constants. E.g., Sunset times might differ by ~12
370 // seconds. Furthermore, the eta-g computation is befuddled by
371 // Duffet-Smith's incorrect coefficients (p.86). I've corrected
372 // the first-order coefficient but the others may be off too - no
373 // way of knowing without consulting another source.
374
375 // /**
376 // * Return the sun's ecliptic longitude at perigee for the current time.
377 // * See Duffett-Smith, p. 86.
378 // * @return radians
379 // */
380 // private double getSunOmegaG() {
381 // double T = getJulianCentury();
382 // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
383 // }
384
385 // /**
386 // * Return the sun's ecliptic longitude for the current time.
387 // * See Duffett-Smith, p. 86.
388 // * @return radians
389 // */
390 // private double getSunEtaG() {
391 // double T = getJulianCentury();
392 // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
393 // //
394 // // The above line is from Duffett-Smith, and yields manifestly wrong
395 // // results. The below constant is derived empirically to match the
396 // // constant he gives for the 1990 EPOCH.
397 // //
398 // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
399 // }
400
401 // /**
402 // * Return the sun's eccentricity of orbit for the current time.
403 // * See Duffett-Smith, p. 86.
404 // * @return double
405 // */
406 // private double getSunE() {
407 // double T = getJulianCentury();
408 // return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
409 // }
410
411 /**
412 * Find the "true anomaly" (longitude) of an object from
413 * its mean anomaly and the eccentricity of its orbit. This uses
414 * an iterative solution to Kepler's equation.
415 *
416 * @param meanAnomaly The object's longitude calculated as if it were in
417 * a regular, circular orbit, measured in radians
418 * from the point of perigee.
419 *
420 * @param eccentricity The eccentricity of the orbit
421 *
422 * @return The true anomaly (longitude) measured in radians
423 */
trueAnomaly(double meanAnomaly,double eccentricity)424 static double trueAnomaly(double meanAnomaly, double eccentricity)
425 {
426 // First, solve Kepler's equation iteratively
427 // Duffett-Smith, p.90
428 double delta;
429 double E = meanAnomaly;
430 do {
431 delta = E - eccentricity * ::sin(E) - meanAnomaly;
432 E = E - delta / (1 - eccentricity * ::cos(E));
433 }
434 while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
435
436 return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
437 /(1-eccentricity) ) );
438 }
439
440 /**
441 * The longitude of the sun at the time specified by this object.
442 * The longitude is measured in radians along the ecliptic
443 * from the "first point of Aries," the point at which the ecliptic
444 * crosses the earth's equatorial plane at the vernal equinox.
445 * <p>
446 * Currently, this method uses an approximation of the two-body Kepler's
447 * equation for the earth and the sun. It does not take into account the
448 * perturbations caused by the other planets, the moon, etc.
449 * @internal
450 * @deprecated ICU 2.4. This class may be removed or modified.
451 */
getSunLongitude()452 double CalendarAstronomer::getSunLongitude()
453 {
454 // See page 86 of "Practical Astronomy with your Calculator",
455 // by Peter Duffet-Smith, for details on the algorithm.
456
457 if (isINVALID(sunLongitude)) {
458 getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
459 }
460 return sunLongitude;
461 }
462
463 /**
464 * TODO Make this public when the entire class is package-private.
465 */
getSunLongitude(double jDay,double & longitude,double & meanAnomaly)466 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
467 {
468 // See page 86 of "Practical Astronomy with your Calculator",
469 // by Peter Duffet-Smith, for details on the algorithm.
470
471 double day = jDay - JD_EPOCH; // Days since epoch
472
473 // Find the angular distance the sun in a fictitious
474 // circular orbit has travelled since the epoch.
475 double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
476
477 // The epoch wasn't at the sun's perigee; find the angular distance
478 // since perigee, which is called the "mean anomaly"
479 meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
480
481 // Now find the "true anomaly", e.g. the real solar longitude
482 // by solving Kepler's equation for an elliptical orbit
483 // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
484 // equations; omega_g is to be correct.
485 longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
486 }
487
488 /**
489 * Constant representing the winter solstice.
490 * For use with {@link #getSunTime getSunTime}.
491 * Note: In this case, "winter" refers to the northern hemisphere's seasons.
492 * @internal
493 * @deprecated ICU 2.4. This class may be removed or modified.
494 */
WINTER_SOLSTICE()495 double CalendarAstronomer::WINTER_SOLSTICE() {
496 return ((CalendarAstronomer::PI*3)/2);
497 }
498
~AngleFunc()499 CalendarAstronomer::AngleFunc::~AngleFunc() {}
500
501 /**
502 * Find the next time at which the sun's ecliptic longitude will have
503 * the desired value.
504 * @internal
505 * @deprecated ICU 2.4. This class may be removed or modified.
506 */
507 class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
508 public:
509 virtual ~SunTimeAngleFunc();
eval(CalendarAstronomer & a)510 virtual double eval(CalendarAstronomer& a) override { return a.getSunLongitude(); }
511 };
512
~SunTimeAngleFunc()513 SunTimeAngleFunc::~SunTimeAngleFunc() {}
514
getSunTime(double desired,UBool next)515 UDate CalendarAstronomer::getSunTime(double desired, UBool next)
516 {
517 SunTimeAngleFunc func;
518 return timeOfAngle( func,
519 desired,
520 TROPICAL_YEAR,
521 MINUTE_MS,
522 next);
523 }
524
525 //-------------------------------------------------------------------------
526 // The Moon
527 //-------------------------------------------------------------------------
528
529 #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch
530 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee
531 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node
532 #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit
533 #define moonE ( 0.054900 ) // Eccentricity of orbit
534
535 // These aren't used right now
536 #define moonA ( 3.84401e5 ) // semi-major axis (km)
537 #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A
538 #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A
539
540 /**
541 * The position of the moon at the time set on this
542 * object, in equatorial coordinates.
543 * @internal
544 * @deprecated ICU 2.4. This class may be removed or modified.
545 */
getMoonPosition()546 const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
547 {
548 //
549 // See page 142 of "Practical Astronomy with your Calculator",
550 // by Peter Duffet-Smith, for details on the algorithm.
551 //
552 if (moonPositionSet == false) {
553 // Calculate the solar longitude. Has the side effect of
554 // filling in "meanAnomalySun" as well.
555 getSunLongitude();
556
557 //
558 // Find the # of days since the epoch of our orbital parameters.
559 // TODO: Convert the time of day portion into ephemeris time
560 //
561 double day = getJulianDay() - JD_EPOCH; // Days since epoch
562
563 // Calculate the mean longitude and anomaly of the moon, based on
564 // a circular orbit. Similar to the corresponding solar calculation.
565 double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
566 double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
567
568 //
569 // Calculate the following corrections:
570 // Evection: the sun's gravity affects the moon's eccentricity
571 // Annual Eqn: variation in the effect due to earth-sun distance
572 // A3: correction factor (for ???)
573 //
574 double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
575 - meanAnomalyMoon);
576 double annual = 0.1858*PI/180 * ::sin(meanAnomalySun);
577 double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun);
578
579 meanAnomalyMoon += evection - annual - a3;
580
581 //
582 // More correction factors:
583 // center equation of the center correction
584 // a4 yet another error correction (???)
585 //
586 // TODO: Skip the equation of the center correction and solve Kepler's eqn?
587 //
588 double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
589 double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
590
591 // Now find the moon's corrected longitude
592 double moonLongitude = meanLongitude + evection + center - annual + a4;
593
594 //
595 // And finally, find the variation, caused by the fact that the sun's
596 // gravitational pull on the moon varies depending on which side of
597 // the earth the moon is on
598 //
599 double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
600
601 moonLongitude += variation;
602
603 //
604 // What we've calculated so far is the moon's longitude in the plane
605 // of its own orbit. Now map to the ecliptic to get the latitude
606 // and longitude. First we need to find the longitude of the ascending
607 // node, the position on the ecliptic where it is crossed by the moon's
608 // orbit as it crosses from the southern to the northern hemisphere.
609 //
610 double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
611
612 nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
613
614 double y = ::sin(moonLongitude - nodeLongitude);
615 double x = cos(moonLongitude - nodeLongitude);
616
617 moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
618 double moonEclipLat = ::asin(y * ::sin(moonI));
619
620 eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
621 moonPositionSet = true;
622 }
623 return moonPosition;
624 }
625
626 /**
627 * The "age" of the moon at the time specified in this object.
628 * This is really the angle between the
629 * current ecliptic longitudes of the sun and the moon,
630 * measured in radians.
631 *
632 * @internal
633 * @deprecated ICU 2.4. This class may be removed or modified.
634 */
getMoonAge()635 double CalendarAstronomer::getMoonAge() {
636 // See page 147 of "Practical Astronomy with your Calculator",
637 // by Peter Duffet-Smith, for details on the algorithm.
638 //
639 // Force the moon's position to be calculated. We're going to use
640 // some the intermediate results cached during that calculation.
641 //
642 getMoonPosition();
643
644 return norm2PI(moonEclipLong - sunLongitude);
645 }
646
647 /**
648 * Constant representing a new moon.
649 * For use with {@link #getMoonTime getMoonTime}
650 * @internal
651 * @deprecated ICU 2.4. This class may be removed or modified.
652 */
NEW_MOON()653 CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
654 return CalendarAstronomer::MoonAge(0);
655 }
656
657 /**
658 * Constant representing the moon's last quarter.
659 * For use with {@link #getMoonTime getMoonTime}
660 * @internal
661 * @deprecated ICU 2.4. This class may be removed or modified.
662 */
663
664 class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
665 public:
666 virtual ~MoonTimeAngleFunc();
eval(CalendarAstronomer & a)667 virtual double eval(CalendarAstronomer& a) override { return a.getMoonAge(); }
668 };
669
~MoonTimeAngleFunc()670 MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
671
672 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
673 return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
674 }*/
675
676 /**
677 * Find the next or previous time at which the moon will be in the
678 * desired phase.
679 * <p>
680 * @param desired The desired phase of the moon.
681 * @param next <tt>true</tt> if the next occurrence of the phase
682 * is desired, <tt>false</tt> for the previous occurrence.
683 * @internal
684 * @deprecated ICU 2.4. This class may be removed or modified.
685 */
getMoonTime(const CalendarAstronomer::MoonAge & desired,UBool next)686 UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
687 MoonTimeAngleFunc func;
688 return timeOfAngle( func,
689 desired.value,
690 SYNODIC_MONTH,
691 MINUTE_MS,
692 next);
693 }
694
695 //-------------------------------------------------------------------------
696 // Interpolation methods for finding the time at which a given event occurs
697 //-------------------------------------------------------------------------
698
timeOfAngle(AngleFunc & func,double desired,double periodDays,double epsilon,UBool next)699 UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
700 double periodDays, double epsilon, UBool next)
701 {
702 // Find the value of the function at the current time
703 double lastAngle = func.eval(*this);
704
705 // Find out how far we are from the desired angle
706 double deltaAngle = norm2PI(desired - lastAngle) ;
707
708 // Using the average period, estimate the next (or previous) time at
709 // which the desired angle occurs.
710 double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
711
712 double lastDeltaT = deltaT; // Liu
713 UDate startTime = fTime; // Liu
714
715 setTime(fTime + uprv_ceil(deltaT));
716
717 // Now iterate until we get the error below epsilon. Throughout
718 // this loop we use normPI to get values in the range -Pi to Pi,
719 // since we're using them as correction factors rather than absolute angles.
720 do {
721 // Evaluate the function at the time we've estimated
722 double angle = func.eval(*this);
723
724 // Find the # of milliseconds per radian at this point on the curve
725 double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
726
727 // Correct the time estimate based on how far off the angle is
728 deltaT = normPI(desired - angle) * factor;
729
730 // HACK:
731 //
732 // If abs(deltaT) begins to diverge we need to quit this loop.
733 // This only appears to happen when attempting to locate, for
734 // example, a new moon on the day of the new moon. E.g.:
735 //
736 // This result is correct:
737 // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
738 // Sun Jul 22 10:57:41 CST 1990
739 //
740 // But attempting to make the same call a day earlier causes deltaT
741 // to diverge:
742 // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
743 // 1.3649828540224032E9
744 // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
745 // Sun Jul 08 13:56:15 CST 1990
746 //
747 // As a temporary solution, we catch this specific condition and
748 // adjust our start time by one eighth period days (either forward
749 // or backward) and try again.
750 // Liu 11/9/00
751 if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
752 double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
753 setTime(startTime + (next ? delta : -delta));
754 return timeOfAngle(func, desired, periodDays, epsilon, next);
755 }
756
757 lastDeltaT = deltaT;
758 lastAngle = angle;
759
760 setTime(fTime + uprv_ceil(deltaT));
761 }
762 while (uprv_fabs(deltaT) > epsilon);
763
764 return fTime;
765 }
766
767 /**
768 * Return the obliquity of the ecliptic (the angle between the ecliptic
769 * and the earth's equator) at the current time. This varies due to
770 * the precession of the earth's axis.
771 *
772 * @return the obliquity of the ecliptic relative to the equator,
773 * measured in radians.
774 */
eclipticObliquity()775 double CalendarAstronomer::eclipticObliquity() {
776 const double epoch = 2451545.0; // 2000 AD, January 1.5
777
778 double T = (getJulianDay() - epoch) / 36525;
779
780 double eclipObliquity = 23.439292
781 - 46.815/3600 * T
782 - 0.0006/3600 * T*T
783 + 0.00181/3600 * T*T*T;
784
785 return eclipObliquity * DEG_RAD;
786 }
787
788
789 //-------------------------------------------------------------------------
790 // Private data
791 //-------------------------------------------------------------------------
clearCache()792 void CalendarAstronomer::clearCache() {
793 const double INVALID = uprv_getNaN();
794
795 julianDay = INVALID;
796 sunLongitude = INVALID;
797 meanAnomalySun = INVALID;
798 moonEclipLong = INVALID;
799
800 moonPositionSet = false;
801 }
802
803 // Debugging functions
toString() const804 UnicodeString CalendarAstronomer::Ecliptic::toString() const
805 {
806 #ifdef U_DEBUG_ASTRO
807 char tmp[800];
808 snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
809 return UnicodeString(tmp, "");
810 #else
811 return {};
812 #endif
813 }
814
toString() const815 UnicodeString CalendarAstronomer::Equatorial::toString() const
816 {
817 #ifdef U_DEBUG_ASTRO
818 char tmp[400];
819 snprintf(tmp, sizeof(tmp), "%f,%f",
820 (ascension*RAD_DEG), (declination*RAD_DEG));
821 return UnicodeString(tmp, "");
822 #else
823 return {};
824 #endif
825 }
826
827
828 // =============== Calendar Cache ================
829
createCache(CalendarCache ** cache,UErrorCode & status)830 void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
831 ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
832 if(cache == nullptr) {
833 status = U_MEMORY_ALLOCATION_ERROR;
834 } else {
835 *cache = new CalendarCache(32, status);
836 if(U_FAILURE(status)) {
837 delete *cache;
838 *cache = nullptr;
839 }
840 }
841 }
842
get(CalendarCache ** cache,int32_t key,UErrorCode & status)843 int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
844 int32_t res;
845
846 if(U_FAILURE(status)) {
847 return 0;
848 }
849 umtx_lock(&ccLock);
850
851 if(*cache == nullptr) {
852 createCache(cache, status);
853 if(U_FAILURE(status)) {
854 umtx_unlock(&ccLock);
855 return 0;
856 }
857 }
858
859 res = uhash_igeti((*cache)->fTable, key);
860 U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
861
862 umtx_unlock(&ccLock);
863 return res;
864 }
865
put(CalendarCache ** cache,int32_t key,int32_t value,UErrorCode & status)866 void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
867 if(U_FAILURE(status)) {
868 return;
869 }
870 umtx_lock(&ccLock);
871
872 if(*cache == nullptr) {
873 createCache(cache, status);
874 if(U_FAILURE(status)) {
875 umtx_unlock(&ccLock);
876 return;
877 }
878 }
879
880 uhash_iputi((*cache)->fTable, key, value, &status);
881 U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
882
883 umtx_unlock(&ccLock);
884 }
885
CalendarCache(int32_t size,UErrorCode & status)886 CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
887 fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, nullptr, size, &status);
888 U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
889 }
890
~CalendarCache()891 CalendarCache::~CalendarCache() {
892 if(fTable != nullptr) {
893 U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
894 uhash_close(fTable);
895 }
896 }
897
898 U_NAMESPACE_END
899
900 #endif // !UCONFIG_NO_FORMATTING
901