• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /************************************************************************
4  * Copyright (C) 1996-2012, International Business Machines Corporation
5  * and others. All Rights Reserved.
6  ************************************************************************
7  *  2003-nov-07   srl       Port from Java
8  */
9 
10 #include "astro.h"
11 
12 #if !UCONFIG_NO_FORMATTING
13 
14 #include "unicode/calendar.h"
15 #include <math.h>
16 #include <float.h>
17 #include "unicode/putil.h"
18 #include "uhash.h"
19 #include "umutex.h"
20 #include "ucln_in.h"
21 #include "putilimp.h"
22 #include <stdio.h>  // for toString()
23 
24 #if defined (PI)
25 #undef PI
26 #endif
27 
28 #ifdef U_DEBUG_ASTRO
29 # include "uresimp.h" // for debugging
30 
debug_astro_loc(const char * f,int32_t l)31 static void debug_astro_loc(const char *f, int32_t l)
32 {
33   fprintf(stderr, "%s:%d: ", f, l);
34 }
35 
debug_astro_msg(const char * pat,...)36 static void debug_astro_msg(const char *pat, ...)
37 {
38   va_list ap;
39   va_start(ap, pat);
40   vfprintf(stderr, pat, ap);
41   fflush(stderr);
42 }
43 #include "unicode/datefmt.h"
44 #include "unicode/ustring.h"
debug_astro_date(UDate d)45 static const char * debug_astro_date(UDate d) {
46   static char gStrBuf[1024];
47   static DateFormat *df = nullptr;
48   if(df == nullptr) {
49     df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
50     df->adoptTimeZone(TimeZone::getGMT()->clone());
51   }
52   UnicodeString str;
53   df->format(d,str);
54   u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
55   return gStrBuf;
56 }
57 
58 // must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
59 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
60 #else
61 #define U_DEBUG_ASTRO_MSG(x)
62 #endif
63 
isINVALID(double d)64 static inline UBool isINVALID(double d) {
65   return(uprv_isNaN(d));
66 }
67 
68 static icu::UMutex ccLock;
69 
70 U_CDECL_BEGIN
calendar_astro_cleanup()71 static UBool calendar_astro_cleanup() {
72   return true;
73 }
74 U_CDECL_END
75 
76 U_NAMESPACE_BEGIN
77 
78 /**
79  * The number of standard hours in one sidereal day.
80  * Approximately 24.93.
81  * @internal
82  * @deprecated ICU 2.4. This class may be removed or modified.
83  */
84 #define SIDEREAL_DAY (23.93446960027)
85 
86 /**
87  * The number of sidereal hours in one mean solar day.
88  * Approximately 24.07.
89  * @internal
90  * @deprecated ICU 2.4. This class may be removed or modified.
91  */
92 #define SOLAR_DAY  (24.065709816)
93 
94 /**
95  * The average number of solar days from one new moon to the next.  This is the time
96  * it takes for the moon to return the same ecliptic longitude as the sun.
97  * It is longer than the sidereal month because the sun's longitude increases
98  * during the year due to the revolution of the earth around the sun.
99  * Approximately 29.53.
100  *
101  * @see #SIDEREAL_MONTH
102  * @internal
103  * @deprecated ICU 2.4. This class may be removed or modified.
104  */
105 const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;
106 
107 /**
108  * The average number of days it takes
109  * for the moon to return to the same ecliptic longitude relative to the
110  * stellar background.  This is referred to as the sidereal month.
111  * It is shorter than the synodic month due to
112  * the revolution of the earth around the sun.
113  * Approximately 27.32.
114  *
115  * @see #SYNODIC_MONTH
116  * @internal
117  * @deprecated ICU 2.4. This class may be removed or modified.
118  */
119 #define SIDEREAL_MONTH  27.32166
120 
121 /**
122  * The average number number of days between successive vernal equinoxes.
123  * Due to the precession of the earth's
124  * axis, this is not precisely the same as the sidereal year.
125  * Approximately 365.24
126  *
127  * @see #SIDEREAL_YEAR
128  * @internal
129  * @deprecated ICU 2.4. This class may be removed or modified.
130  */
131 #define TROPICAL_YEAR  365.242191
132 
133 /**
134  * The average number of days it takes
135  * for the sun to return to the same position against the fixed stellar
136  * background.  This is the duration of one orbit of the earth about the sun
137  * as it would appear to an outside observer.
138  * Due to the precession of the earth's
139  * axis, this is not precisely the same as the tropical year.
140  * Approximately 365.25.
141  *
142  * @see #TROPICAL_YEAR
143  * @internal
144  * @deprecated ICU 2.4. This class may be removed or modified.
145  */
146 #define SIDEREAL_YEAR  365.25636
147 
148 //-------------------------------------------------------------------------
149 // Time-related constants
150 //-------------------------------------------------------------------------
151 
152 /**
153  * The number of milliseconds in one second.
154  * @internal
155  * @deprecated ICU 2.4. This class may be removed or modified.
156  */
157 #define SECOND_MS  U_MILLIS_PER_SECOND
158 
159 /**
160  * The number of milliseconds in one minute.
161  * @internal
162  * @deprecated ICU 2.4. This class may be removed or modified.
163  */
164 #define MINUTE_MS  U_MILLIS_PER_MINUTE
165 
166 /**
167  * The number of milliseconds in one hour.
168  * @internal
169  * @deprecated ICU 2.4. This class may be removed or modified.
170  */
171 #define HOUR_MS   U_MILLIS_PER_HOUR
172 
173 /**
174  * The number of milliseconds in one day.
175  * @internal
176  * @deprecated ICU 2.4. This class may be removed or modified.
177  */
178 #define DAY_MS U_MILLIS_PER_DAY
179 
180 /**
181  * The start of the julian day numbering scheme used by astronomers, which
182  * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
183  * since 1/1/1970 AD (Gregorian), a negative number.
184  * Note that julian day numbers and
185  * the Julian calendar are <em>not</em> the same thing.  Also note that
186  * julian days start at <em>noon</em>, not midnight.
187  * @internal
188  * @deprecated ICU 2.4. This class may be removed or modified.
189  */
190 #define JULIAN_EPOCH_MS  -210866760000000.0
191 
192 
193 /**
194  * Milliseconds value for 0.0 January 2000 AD.
195  */
196 #define EPOCH_2000_MS  946598400000.0
197 
198 //-------------------------------------------------------------------------
199 // Assorted private data used for conversions
200 //-------------------------------------------------------------------------
201 
202 // My own copies of these so compilers are more likely to optimize them away
203 const double CalendarAstronomer::PI = 3.14159265358979323846;
204 
205 #define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
206 #define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
207 #define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
208 #define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees
209 
210 /***
211  * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
212  * The modulus operator.
213  */
normalize(double value,double range)214 inline static double normalize(double value, double range)  {
215     return value - range * ClockMath::floorDivide(value, range);
216 }
217 
218 /**
219  * Normalize an angle so that it's in the range 0 - 2pi.
220  * For positive angles this is just (angle % 2pi), but the Java
221  * mod operator doesn't work that way for negative numbers....
222  */
norm2PI(double angle)223 inline static double norm2PI(double angle)  {
224     return normalize(angle, CalendarAstronomer::PI * 2.0);
225 }
226 
227 /**
228  * Normalize an angle into the range -PI - PI
229  */
normPI(double angle)230 inline static  double normPI(double angle)  {
231     return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
232 }
233 
234 //-------------------------------------------------------------------------
235 // Constructors
236 //-------------------------------------------------------------------------
237 
238 /**
239  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
240  * the current date and time.
241  * @internal
242  * @deprecated ICU 2.4. This class may be removed or modified.
243  */
CalendarAstronomer()244 CalendarAstronomer::CalendarAstronomer():
245   fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
246   clearCache();
247 }
248 
249 /**
250  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
251  * the specified date and time.
252  * @internal
253  * @deprecated ICU 2.4. This class may be removed or modified.
254  */
CalendarAstronomer(UDate d)255 CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) {
256   clearCache();
257 }
258 
~CalendarAstronomer()259 CalendarAstronomer::~CalendarAstronomer()
260 {
261 }
262 
263 //-------------------------------------------------------------------------
264 // Time and date getters and setters
265 //-------------------------------------------------------------------------
266 
267 /**
268  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
269  * astronomical calculations are performed based on this time setting.
270  *
271  * @param aTime the date and time, expressed as the number of milliseconds since
272  *              1/1/1970 0:00 GMT (Gregorian).
273  *
274  * @see #setDate
275  * @see #getTime
276  * @internal
277  * @deprecated ICU 2.4. This class may be removed or modified.
278  */
setTime(UDate aTime)279 void CalendarAstronomer::setTime(UDate aTime) {
280     fTime = aTime;
281     clearCache();
282 }
283 
284 /**
285  * Get the current time of this <code>CalendarAstronomer</code> object,
286  * represented as the number of milliseconds since
287  * 1/1/1970 AD 0:00 GMT (Gregorian).
288  *
289  * @see #setTime
290  * @see #getDate
291  * @internal
292  * @deprecated ICU 2.4. This class may be removed or modified.
293  */
getTime()294 UDate CalendarAstronomer::getTime() {
295     return fTime;
296 }
297 
298 /**
299  * Get the current time of this <code>CalendarAstronomer</code> object,
300  * expressed as a "julian day number", which is the number of elapsed
301  * days since 1/1/4713 BC (Julian), 12:00 GMT.
302  *
303  * @see #setJulianDay
304  * @see #JULIAN_EPOCH_MS
305  * @internal
306  * @deprecated ICU 2.4. This class may be removed or modified.
307  */
getJulianDay()308 double CalendarAstronomer::getJulianDay() {
309     if (isINVALID(julianDay)) {
310         julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
311     }
312     return julianDay;
313 }
314 
315 //-------------------------------------------------------------------------
316 // Coordinate transformations, all based on the current time of this object
317 //-------------------------------------------------------------------------
318 
319 /**
320  * Convert from ecliptic to equatorial coordinates.
321  *
322  * @param eclipLong     The ecliptic longitude
323  * @param eclipLat      The ecliptic latitude
324  *
325  * @return              The corresponding point in equatorial coordinates.
326  * @internal
327  * @deprecated ICU 2.4. This class may be removed or modified.
328  */
eclipticToEquatorial(CalendarAstronomer::Equatorial & result,double eclipLong,double eclipLat)329 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
330 {
331     // See page 42 of "Practical Astronomy with your Calculator",
332     // by Peter Duffet-Smith, for details on the algorithm.
333 
334     double obliq = eclipticObliquity();
335     double sinE = ::sin(obliq);
336     double cosE = cos(obliq);
337 
338     double sinL = ::sin(eclipLong);
339     double cosL = cos(eclipLong);
340 
341     double sinB = ::sin(eclipLat);
342     double cosB = cos(eclipLat);
343     double tanB = tan(eclipLat);
344 
345     result.set(atan2(sinL*cosE - tanB*sinE, cosL),
346         asin(sinB*cosE + cosB*sinE*sinL) );
347     return result;
348 }
349 
350 //-------------------------------------------------------------------------
351 // The Sun
352 //-------------------------------------------------------------------------
353 
354 //
355 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
356 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
357 //
358 #define JD_EPOCH  2447891.5 // Julian day of epoch
359 
360 #define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
361 #define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
362 #define SUN_E         0.016713          // Eccentricity of orbit
363 //double sunR0        1.495585e8        // Semi-major axis in KM
364 //double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
365 
366 // The following three methods, which compute the sun parameters
367 // given above for an arbitrary epoch (whatever time the object is
368 // set to), make only a small difference as compared to using the
369 // above constants.  E.g., Sunset times might differ by ~12
370 // seconds.  Furthermore, the eta-g computation is befuddled by
371 // Duffet-Smith's incorrect coefficients (p.86).  I've corrected
372 // the first-order coefficient but the others may be off too - no
373 // way of knowing without consulting another source.
374 
375 //  /**
376 //   * Return the sun's ecliptic longitude at perigee for the current time.
377 //   * See Duffett-Smith, p. 86.
378 //   * @return radians
379 //   */
380 //  private double getSunOmegaG() {
381 //      double T = getJulianCentury();
382 //      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
383 //  }
384 
385 //  /**
386 //   * Return the sun's ecliptic longitude for the current time.
387 //   * See Duffett-Smith, p. 86.
388 //   * @return radians
389 //   */
390 //  private double getSunEtaG() {
391 //      double T = getJulianCentury();
392 //      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
393 //      //
394 //      // The above line is from Duffett-Smith, and yields manifestly wrong
395 //      // results.  The below constant is derived empirically to match the
396 //      // constant he gives for the 1990 EPOCH.
397 //      //
398 //      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
399 //  }
400 
401 //  /**
402 //   * Return the sun's eccentricity of orbit for the current time.
403 //   * See Duffett-Smith, p. 86.
404 //   * @return double
405 //   */
406 //  private double getSunE() {
407 //      double T = getJulianCentury();
408 //      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
409 //  }
410 
411 /**
412  * Find the "true anomaly" (longitude) of an object from
413  * its mean anomaly and the eccentricity of its orbit.  This uses
414  * an iterative solution to Kepler's equation.
415  *
416  * @param meanAnomaly   The object's longitude calculated as if it were in
417  *                      a regular, circular orbit, measured in radians
418  *                      from the point of perigee.
419  *
420  * @param eccentricity  The eccentricity of the orbit
421  *
422  * @return The true anomaly (longitude) measured in radians
423  */
trueAnomaly(double meanAnomaly,double eccentricity)424 static double trueAnomaly(double meanAnomaly, double eccentricity)
425 {
426     // First, solve Kepler's equation iteratively
427     // Duffett-Smith, p.90
428     double delta;
429     double E = meanAnomaly;
430     do {
431         delta = E - eccentricity * ::sin(E) - meanAnomaly;
432         E = E - delta / (1 - eccentricity * ::cos(E));
433     }
434     while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
435 
436     return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
437                                              /(1-eccentricity) ) );
438 }
439 
440 /**
441  * The longitude of the sun at the time specified by this object.
442  * The longitude is measured in radians along the ecliptic
443  * from the "first point of Aries," the point at which the ecliptic
444  * crosses the earth's equatorial plane at the vernal equinox.
445  * <p>
446  * Currently, this method uses an approximation of the two-body Kepler's
447  * equation for the earth and the sun.  It does not take into account the
448  * perturbations caused by the other planets, the moon, etc.
449  * @internal
450  * @deprecated ICU 2.4. This class may be removed or modified.
451  */
getSunLongitude()452 double CalendarAstronomer::getSunLongitude()
453 {
454     // See page 86 of "Practical Astronomy with your Calculator",
455     // by Peter Duffet-Smith, for details on the algorithm.
456 
457     if (isINVALID(sunLongitude)) {
458         getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
459     }
460     return sunLongitude;
461 }
462 
463 /**
464  * TODO Make this public when the entire class is package-private.
465  */
getSunLongitude(double jDay,double & longitude,double & meanAnomaly)466 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
467 {
468     // See page 86 of "Practical Astronomy with your Calculator",
469     // by Peter Duffet-Smith, for details on the algorithm.
470 
471     double day = jDay - JD_EPOCH;       // Days since epoch
472 
473     // Find the angular distance the sun in a fictitious
474     // circular orbit has travelled since the epoch.
475     double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
476 
477     // The epoch wasn't at the sun's perigee; find the angular distance
478     // since perigee, which is called the "mean anomaly"
479     meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
480 
481     // Now find the "true anomaly", e.g. the real solar longitude
482     // by solving Kepler's equation for an elliptical orbit
483     // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
484     // equations; omega_g is to be correct.
485     longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
486 }
487 
488 /**
489  * Constant representing the winter solstice.
490  * For use with {@link #getSunTime getSunTime}.
491  * Note: In this case, "winter" refers to the northern hemisphere's seasons.
492  * @internal
493  * @deprecated ICU 2.4. This class may be removed or modified.
494  */
WINTER_SOLSTICE()495 double CalendarAstronomer::WINTER_SOLSTICE() {
496     return  ((CalendarAstronomer::PI*3)/2);
497 }
498 
~AngleFunc()499 CalendarAstronomer::AngleFunc::~AngleFunc() {}
500 
501 /**
502  * Find the next time at which the sun's ecliptic longitude will have
503  * the desired value.
504  * @internal
505  * @deprecated ICU 2.4. This class may be removed or modified.
506  */
507 class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
508 public:
509     virtual ~SunTimeAngleFunc();
eval(CalendarAstronomer & a)510     virtual double eval(CalendarAstronomer& a) override { return a.getSunLongitude(); }
511 };
512 
~SunTimeAngleFunc()513 SunTimeAngleFunc::~SunTimeAngleFunc() {}
514 
getSunTime(double desired,UBool next)515 UDate CalendarAstronomer::getSunTime(double desired, UBool next)
516 {
517     SunTimeAngleFunc func;
518     return timeOfAngle( func,
519                         desired,
520                         TROPICAL_YEAR,
521                         MINUTE_MS,
522                         next);
523 }
524 
525 //-------------------------------------------------------------------------
526 // The Moon
527 //-------------------------------------------------------------------------
528 
529 #define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
530 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
531 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
532 #define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
533 #define moonE  (   0.054900 )            // Eccentricity of orbit
534 
535 // These aren't used right now
536 #define moonA  (   3.84401e5 )           // semi-major axis (km)
537 #define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
538 #define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A
539 
540 /**
541  * The position of the moon at the time set on this
542  * object, in equatorial coordinates.
543  * @internal
544  * @deprecated ICU 2.4. This class may be removed or modified.
545  */
getMoonPosition()546 const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
547 {
548     //
549     // See page 142 of "Practical Astronomy with your Calculator",
550     // by Peter Duffet-Smith, for details on the algorithm.
551     //
552     if (moonPositionSet == false) {
553         // Calculate the solar longitude.  Has the side effect of
554         // filling in "meanAnomalySun" as well.
555         getSunLongitude();
556 
557         //
558         // Find the # of days since the epoch of our orbital parameters.
559         // TODO: Convert the time of day portion into ephemeris time
560         //
561         double day = getJulianDay() - JD_EPOCH;       // Days since epoch
562 
563         // Calculate the mean longitude and anomaly of the moon, based on
564         // a circular orbit.  Similar to the corresponding solar calculation.
565         double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
566         double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
567 
568         //
569         // Calculate the following corrections:
570         //  Evection:   the sun's gravity affects the moon's eccentricity
571         //  Annual Eqn: variation in the effect due to earth-sun distance
572         //  A3:         correction factor (for ???)
573         //
574         double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
575             - meanAnomalyMoon);
576         double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
577         double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);
578 
579         meanAnomalyMoon += evection - annual - a3;
580 
581         //
582         // More correction factors:
583         //  center  equation of the center correction
584         //  a4      yet another error correction (???)
585         //
586         // TODO: Skip the equation of the center correction and solve Kepler's eqn?
587         //
588         double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
589         double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
590 
591         // Now find the moon's corrected longitude
592         double moonLongitude = meanLongitude + evection + center - annual + a4;
593 
594         //
595         // And finally, find the variation, caused by the fact that the sun's
596         // gravitational pull on the moon varies depending on which side of
597         // the earth the moon is on
598         //
599         double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
600 
601         moonLongitude += variation;
602 
603         //
604         // What we've calculated so far is the moon's longitude in the plane
605         // of its own orbit.  Now map to the ecliptic to get the latitude
606         // and longitude.  First we need to find the longitude of the ascending
607         // node, the position on the ecliptic where it is crossed by the moon's
608         // orbit as it crosses from the southern to the northern hemisphere.
609         //
610         double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
611 
612         nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
613 
614         double y = ::sin(moonLongitude - nodeLongitude);
615         double x = cos(moonLongitude - nodeLongitude);
616 
617         moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
618         double moonEclipLat = ::asin(y * ::sin(moonI));
619 
620         eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
621         moonPositionSet = true;
622     }
623     return moonPosition;
624 }
625 
626 /**
627  * The "age" of the moon at the time specified in this object.
628  * This is really the angle between the
629  * current ecliptic longitudes of the sun and the moon,
630  * measured in radians.
631  *
632  * @internal
633  * @deprecated ICU 2.4. This class may be removed or modified.
634  */
getMoonAge()635 double CalendarAstronomer::getMoonAge() {
636     // See page 147 of "Practical Astronomy with your Calculator",
637     // by Peter Duffet-Smith, for details on the algorithm.
638     //
639     // Force the moon's position to be calculated.  We're going to use
640     // some the intermediate results cached during that calculation.
641     //
642     getMoonPosition();
643 
644     return norm2PI(moonEclipLong - sunLongitude);
645 }
646 
647 /**
648  * Constant representing a new moon.
649  * For use with {@link #getMoonTime getMoonTime}
650  * @internal
651  * @deprecated ICU 2.4. This class may be removed or modified.
652  */
NEW_MOON()653 CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
654     return  CalendarAstronomer::MoonAge(0);
655 }
656 
657 /**
658  * Constant representing the moon's last quarter.
659  * For use with {@link #getMoonTime getMoonTime}
660  * @internal
661  * @deprecated ICU 2.4. This class may be removed or modified.
662  */
663 
664 class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
665 public:
666     virtual ~MoonTimeAngleFunc();
eval(CalendarAstronomer & a)667     virtual double eval(CalendarAstronomer& a) override { return a.getMoonAge(); }
668 };
669 
~MoonTimeAngleFunc()670 MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
671 
672 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
673   return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
674 }*/
675 
676 /**
677  * Find the next or previous time at which the moon will be in the
678  * desired phase.
679  * <p>
680  * @param desired   The desired phase of the moon.
681  * @param next      <tt>true</tt> if the next occurrence of the phase
682  *                  is desired, <tt>false</tt> for the previous occurrence.
683  * @internal
684  * @deprecated ICU 2.4. This class may be removed or modified.
685  */
getMoonTime(const CalendarAstronomer::MoonAge & desired,UBool next)686 UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
687     MoonTimeAngleFunc func;
688     return timeOfAngle( func,
689                         desired.value,
690                         SYNODIC_MONTH,
691                         MINUTE_MS,
692                         next);
693 }
694 
695 //-------------------------------------------------------------------------
696 // Interpolation methods for finding the time at which a given event occurs
697 //-------------------------------------------------------------------------
698 
timeOfAngle(AngleFunc & func,double desired,double periodDays,double epsilon,UBool next)699 UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
700                                       double periodDays, double epsilon, UBool next)
701 {
702     // Find the value of the function at the current time
703     double lastAngle = func.eval(*this);
704 
705     // Find out how far we are from the desired angle
706     double deltaAngle = norm2PI(desired - lastAngle) ;
707 
708     // Using the average period, estimate the next (or previous) time at
709     // which the desired angle occurs.
710     double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
711 
712     double lastDeltaT = deltaT; // Liu
713     UDate startTime = fTime; // Liu
714 
715     setTime(fTime + uprv_ceil(deltaT));
716 
717     // Now iterate until we get the error below epsilon.  Throughout
718     // this loop we use normPI to get values in the range -Pi to Pi,
719     // since we're using them as correction factors rather than absolute angles.
720     do {
721         // Evaluate the function at the time we've estimated
722         double angle = func.eval(*this);
723 
724         // Find the # of milliseconds per radian at this point on the curve
725         double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
726 
727         // Correct the time estimate based on how far off the angle is
728         deltaT = normPI(desired - angle) * factor;
729 
730         // HACK:
731         //
732         // If abs(deltaT) begins to diverge we need to quit this loop.
733         // This only appears to happen when attempting to locate, for
734         // example, a new moon on the day of the new moon.  E.g.:
735         //
736         // This result is correct:
737         // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
738         //   Sun Jul 22 10:57:41 CST 1990
739         //
740         // But attempting to make the same call a day earlier causes deltaT
741         // to diverge:
742         // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
743         //   1.3649828540224032E9
744         // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
745         //   Sun Jul 08 13:56:15 CST 1990
746         //
747         // As a temporary solution, we catch this specific condition and
748         // adjust our start time by one eighth period days (either forward
749         // or backward) and try again.
750         // Liu 11/9/00
751         if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
752             double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
753             setTime(startTime + (next ? delta : -delta));
754             return timeOfAngle(func, desired, periodDays, epsilon, next);
755         }
756 
757         lastDeltaT = deltaT;
758         lastAngle = angle;
759 
760         setTime(fTime + uprv_ceil(deltaT));
761     }
762     while (uprv_fabs(deltaT) > epsilon);
763 
764     return fTime;
765 }
766 
767 /**
768  * Return the obliquity of the ecliptic (the angle between the ecliptic
769  * and the earth's equator) at the current time.  This varies due to
770  * the precession of the earth's axis.
771  *
772  * @return  the obliquity of the ecliptic relative to the equator,
773  *          measured in radians.
774  */
eclipticObliquity()775 double CalendarAstronomer::eclipticObliquity() {
776     const double epoch = 2451545.0;     // 2000 AD, January 1.5
777 
778     double T = (getJulianDay() - epoch) / 36525;
779 
780     double eclipObliquity = 23.439292
781         - 46.815/3600 * T
782         - 0.0006/3600 * T*T
783         + 0.00181/3600 * T*T*T;
784 
785     return eclipObliquity * DEG_RAD;
786 }
787 
788 
789 //-------------------------------------------------------------------------
790 // Private data
791 //-------------------------------------------------------------------------
clearCache()792 void CalendarAstronomer::clearCache() {
793     const double INVALID = uprv_getNaN();
794 
795     julianDay       = INVALID;
796     sunLongitude    = INVALID;
797     meanAnomalySun  = INVALID;
798     moonEclipLong   = INVALID;
799 
800     moonPositionSet = false;
801 }
802 
803 // Debugging functions
toString() const804 UnicodeString CalendarAstronomer::Ecliptic::toString() const
805 {
806 #ifdef U_DEBUG_ASTRO
807     char tmp[800];
808     snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
809     return UnicodeString(tmp, "");
810 #else
811     return {};
812 #endif
813 }
814 
toString() const815 UnicodeString CalendarAstronomer::Equatorial::toString() const
816 {
817 #ifdef U_DEBUG_ASTRO
818     char tmp[400];
819     snprintf(tmp, sizeof(tmp), "%f,%f",
820         (ascension*RAD_DEG), (declination*RAD_DEG));
821     return UnicodeString(tmp, "");
822 #else
823     return {};
824 #endif
825 }
826 
827 
828 // =============== Calendar Cache ================
829 
createCache(CalendarCache ** cache,UErrorCode & status)830 void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
831     ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
832     if(cache == nullptr) {
833         status = U_MEMORY_ALLOCATION_ERROR;
834     } else {
835         *cache = new CalendarCache(32, status);
836         if(U_FAILURE(status)) {
837             delete *cache;
838             *cache = nullptr;
839         }
840     }
841 }
842 
get(CalendarCache ** cache,int32_t key,UErrorCode & status)843 int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
844     int32_t res;
845 
846     if(U_FAILURE(status)) {
847         return 0;
848     }
849     umtx_lock(&ccLock);
850 
851     if(*cache == nullptr) {
852         createCache(cache, status);
853         if(U_FAILURE(status)) {
854             umtx_unlock(&ccLock);
855             return 0;
856         }
857     }
858 
859     res = uhash_igeti((*cache)->fTable, key);
860     U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
861 
862     umtx_unlock(&ccLock);
863     return res;
864 }
865 
put(CalendarCache ** cache,int32_t key,int32_t value,UErrorCode & status)866 void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
867     if(U_FAILURE(status)) {
868         return;
869     }
870     umtx_lock(&ccLock);
871 
872     if(*cache == nullptr) {
873         createCache(cache, status);
874         if(U_FAILURE(status)) {
875             umtx_unlock(&ccLock);
876             return;
877         }
878     }
879 
880     uhash_iputi((*cache)->fTable, key, value, &status);
881     U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
882 
883     umtx_unlock(&ccLock);
884 }
885 
CalendarCache(int32_t size,UErrorCode & status)886 CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
887     fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, nullptr, size, &status);
888     U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
889 }
890 
~CalendarCache()891 CalendarCache::~CalendarCache() {
892     if(fTable != nullptr) {
893         U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
894         uhash_close(fTable);
895     }
896 }
897 
898 U_NAMESPACE_END
899 
900 #endif //  !UCONFIG_NO_FORMATTING
901