• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *   Copyright (C) 1997-2015, International Business Machines
6 *   Corporation and others.  All Rights Reserved.
7 ******************************************************************************
8 *   file name:  nfrule.cpp
9 *   encoding:   UTF-8
10 *   tab size:   8 (not used)
11 *   indentation:4
12 *
13 * Modification history
14 * Date        Name      Comments
15 * 10/11/2001  Doug      Ported from ICU4J
16 */
17 
18 #include "nfrule.h"
19 
20 #if U_HAVE_RBNF
21 
22 #include "unicode/localpointer.h"
23 #include "unicode/rbnf.h"
24 #include "unicode/tblcoll.h"
25 #include "unicode/plurfmt.h"
26 #include "unicode/upluralrules.h"
27 #include "unicode/coleitr.h"
28 #include "unicode/uchar.h"
29 #include "nfrs.h"
30 #include "nfrlist.h"
31 #include "nfsubs.h"
32 #include "patternprops.h"
33 #include "putilimp.h"
34 
35 U_NAMESPACE_BEGIN
36 
NFRule(const RuleBasedNumberFormat * _rbnf,const UnicodeString & _ruleText,UErrorCode & status)37 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
38   : baseValue((int32_t)0)
39   , radix(10)
40   , exponent(0)
41   , decimalPoint(0)
42   , fRuleText(_ruleText)
43   , sub1(nullptr)
44   , sub2(nullptr)
45   , formatter(_rbnf)
46   , rulePatternFormat(nullptr)
47 {
48     if (!fRuleText.isEmpty()) {
49         parseRuleDescriptor(fRuleText, status);
50     }
51 }
52 
~NFRule()53 NFRule::~NFRule()
54 {
55     if (sub1 != sub2) {
56         delete sub2;
57         sub2 = nullptr;
58     }
59     delete sub1;
60     sub1 = nullptr;
61     delete rulePatternFormat;
62     rulePatternFormat = nullptr;
63 }
64 
65 static const char16_t gLeftBracket = 0x005b;
66 static const char16_t gRightBracket = 0x005d;
67 static const char16_t gColon = 0x003a;
68 static const char16_t gZero = 0x0030;
69 static const char16_t gNine = 0x0039;
70 static const char16_t gSpace = 0x0020;
71 static const char16_t gSlash = 0x002f;
72 static const char16_t gGreaterThan = 0x003e;
73 static const char16_t gLessThan = 0x003c;
74 static const char16_t gComma = 0x002c;
75 static const char16_t gDot = 0x002e;
76 static const char16_t gTick = 0x0027;
77 //static const char16_t gMinus = 0x002d;
78 static const char16_t gSemicolon = 0x003b;
79 static const char16_t gX = 0x0078;
80 
81 static const char16_t gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
82 static const char16_t gInf[] =                     {0x49, 0x6E, 0x66, 0}; /* "Inf" */
83 static const char16_t gNaN[] =                     {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
84 
85 static const char16_t gDollarOpenParenthesis[] =   {0x24, 0x28, 0}; /* "$(" */
86 static const char16_t gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
87 
88 static const char16_t gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
89 static const char16_t gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
90 static const char16_t gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
91 static const char16_t gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
92 static const char16_t gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
93 static const char16_t gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
94 static const char16_t gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
95 static const char16_t gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
96 static const char16_t gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
97 static const char16_t gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
98 static const char16_t gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
99 static const char16_t gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
100 
101 static const char16_t * const RULE_PREFIXES[] = {
102     gLessLess, gLessPercent, gLessHash, gLessZero,
103     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
104     gEqualPercent, gEqualHash, gEqualZero, nullptr
105 };
106 
107 void
makeRules(UnicodeString & description,NFRuleSet * owner,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,NFRuleList & rules,UErrorCode & status)108 NFRule::makeRules(UnicodeString& description,
109                   NFRuleSet *owner,
110                   const NFRule *predecessor,
111                   const RuleBasedNumberFormat *rbnf,
112                   NFRuleList& rules,
113                   UErrorCode& status)
114 {
115     // we know we're making at least one rule, so go ahead and
116     // new it up and initialize its basevalue and divisor
117     // (this also strips the rule descriptor, if any, off the
118     // description string)
119     NFRule* rule1 = new NFRule(rbnf, description, status);
120     /* test for nullptr */
121     if (rule1 == nullptr) {
122         status = U_MEMORY_ALLOCATION_ERROR;
123         return;
124     }
125     description = rule1->fRuleText;
126 
127     // check the description to see whether there's text enclosed
128     // in brackets
129     int32_t brack1 = description.indexOf(gLeftBracket);
130     int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
131 
132     // if the description doesn't contain a matched pair of brackets,
133     // or if it's of a type that doesn't recognize bracketed text,
134     // then leave the description alone, initialize the rule's
135     // rule text and substitutions, and return that rule
136     if (brack2 < 0 || brack1 > brack2
137         || rule1->getType() == kProperFractionRule
138         || rule1->getType() == kNegativeNumberRule
139         || rule1->getType() == kInfinityRule
140         || rule1->getType() == kNaNRule)
141     {
142         rule1->extractSubstitutions(owner, description, predecessor, status);
143     }
144     else {
145         // if the description does contain a matched pair of brackets,
146         // then it's really shorthand for two rules (with one exception)
147         NFRule* rule2 = nullptr;
148         UnicodeString sbuf;
149 
150         // we'll actually only split the rule into two rules if its
151         // base value is an even multiple of its divisor (or it's one
152         // of the special rules)
153         if ((rule1->baseValue > 0
154             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
155             || rule1->getType() == kImproperFractionRule
156             || rule1->getType() == kDefaultRule) {
157 
158             // if it passes that test, new up the second rule.  If the
159             // rule set both rules will belong to is a fraction rule
160             // set, they both have the same base value; otherwise,
161             // increment the original rule's base value ("rule1" actually
162             // goes SECOND in the rule set's rule list)
163             rule2 = new NFRule(rbnf, UnicodeString(), status);
164             /* test for nullptr */
165             if (rule2 == nullptr) {
166                 status = U_MEMORY_ALLOCATION_ERROR;
167                 return;
168             }
169             if (rule1->baseValue >= 0) {
170                 rule2->baseValue = rule1->baseValue;
171                 if (!owner->isFractionRuleSet()) {
172                     ++rule1->baseValue;
173                 }
174             }
175 
176             // if the description began with "x.x" and contains bracketed
177             // text, it describes both the improper fraction rule and
178             // the proper fraction rule
179             else if (rule1->getType() == kImproperFractionRule) {
180                 rule2->setType(kProperFractionRule);
181             }
182 
183             // if the description began with "x.0" and contains bracketed
184             // text, it describes both the default rule and the
185             // improper fraction rule
186             else if (rule1->getType() == kDefaultRule) {
187                 rule2->baseValue = rule1->baseValue;
188                 rule1->setType(kImproperFractionRule);
189             }
190 
191             // both rules have the same radix and exponent (i.e., the
192             // same divisor)
193             rule2->radix = rule1->radix;
194             rule2->exponent = rule1->exponent;
195 
196             // rule2's rule text omits the stuff in brackets: initialize
197             // its rule text and substitutions accordingly
198             sbuf.append(description, 0, brack1);
199             if (brack2 + 1 < description.length()) {
200                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
201             }
202             rule2->extractSubstitutions(owner, sbuf, predecessor, status);
203         }
204 
205         // rule1's text includes the text in the brackets but omits
206         // the brackets themselves: initialize _its_ rule text and
207         // substitutions accordingly
208         sbuf.setTo(description, 0, brack1);
209         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
210         if (brack2 + 1 < description.length()) {
211             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
212         }
213         rule1->extractSubstitutions(owner, sbuf, predecessor, status);
214 
215         // if we only have one rule, return it; if we have two, return
216         // a two-element array containing them (notice that rule2 goes
217         // BEFORE rule1 in the list: in all cases, rule2 OMITS the
218         // material in the brackets and rule1 INCLUDES the material
219         // in the brackets)
220         if (rule2 != nullptr) {
221             if (rule2->baseValue >= kNoBase) {
222                 rules.add(rule2);
223             }
224             else {
225                 owner->setNonNumericalRule(rule2);
226             }
227         }
228     }
229     if (rule1->baseValue >= kNoBase) {
230         rules.add(rule1);
231     }
232     else {
233         owner->setNonNumericalRule(rule1);
234     }
235 }
236 
237 /**
238  * This function parses the rule's rule descriptor (i.e., the base
239  * value and/or other tokens that precede the rule's rule text
240  * in the description) and sets the rule's base value, radix, and
241  * exponent according to the descriptor.  (If the description doesn't
242  * include a rule descriptor, then this function sets everything to
243  * default values and the rule set sets the rule's real base value).
244  * @param description The rule's description
245  * @return If "description" included a rule descriptor, this is
246  * "description" with the descriptor and any trailing whitespace
247  * stripped off.  Otherwise; it's "descriptor" unchangd.
248  */
249 void
parseRuleDescriptor(UnicodeString & description,UErrorCode & status)250 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
251 {
252     // the description consists of a rule descriptor and a rule body,
253     // separated by a colon.  The rule descriptor is optional.  If
254     // it's omitted, just set the base value to 0.
255     int32_t p = description.indexOf(gColon);
256     if (p != -1) {
257         // copy the descriptor out into its own string and strip it,
258         // along with any trailing whitespace, out of the original
259         // description
260         UnicodeString descriptor;
261         descriptor.setTo(description, 0, p);
262 
263         ++p;
264         while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
265             ++p;
266         }
267         description.removeBetween(0, p);
268 
269         // check first to see if the rule descriptor matches the token
270         // for one of the special rules.  If it does, set the base
271         // value to the correct identifier value
272         int descriptorLength = descriptor.length();
273         char16_t firstChar = descriptor.charAt(0);
274         char16_t lastChar = descriptor.charAt(descriptorLength - 1);
275         if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
276             // if the rule descriptor begins with a digit, it's a descriptor
277             // for a normal rule
278             // since we don't have Long.parseLong, and this isn't much work anyway,
279             // just build up the value as we encounter the digits.
280             int64_t val = 0;
281             p = 0;
282             char16_t c = gSpace;
283 
284             // begin parsing the descriptor: copy digits
285             // into "tempValue", skip periods, commas, and spaces,
286             // stop on a slash or > sign (or at the end of the string),
287             // and throw an exception on any other character
288             int64_t ll_10 = 10;
289             while (p < descriptorLength) {
290                 c = descriptor.charAt(p);
291                 if (c >= gZero && c <= gNine) {
292                     val = val * ll_10 + (int32_t)(c - gZero);
293                 }
294                 else if (c == gSlash || c == gGreaterThan) {
295                     break;
296                 }
297                 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
298                 }
299                 else {
300                     // throw new IllegalArgumentException("Illegal character in rule descriptor");
301                     status = U_PARSE_ERROR;
302                     return;
303                 }
304                 ++p;
305             }
306 
307             // we have the base value, so set it
308             setBaseValue(val, status);
309 
310             // if we stopped the previous loop on a slash, we're
311             // now parsing the rule's radix.  Again, accumulate digits
312             // in tempValue, skip punctuation, stop on a > mark, and
313             // throw an exception on anything else
314             if (c == gSlash) {
315                 val = 0;
316                 ++p;
317                 ll_10 = 10;
318                 while (p < descriptorLength) {
319                     c = descriptor.charAt(p);
320                     if (c >= gZero && c <= gNine) {
321                         val = val * ll_10 + (int32_t)(c - gZero);
322                     }
323                     else if (c == gGreaterThan) {
324                         break;
325                     }
326                     else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
327                     }
328                     else {
329                         // throw new IllegalArgumentException("Illegal character is rule descriptor");
330                         status = U_PARSE_ERROR;
331                         return;
332                     }
333                     ++p;
334                 }
335 
336                 // tempValue now contain's the rule's radix.  Set it
337                 // accordingly, and recalculate the rule's exponent
338                 radix = (int32_t)val;
339                 if (radix == 0) {
340                     // throw new IllegalArgumentException("Rule can't have radix of 0");
341                     status = U_PARSE_ERROR;
342                 }
343 
344                 exponent = expectedExponent();
345             }
346 
347             // if we stopped the previous loop on a > sign, then continue
348             // for as long as we still see > signs.  For each one,
349             // decrement the exponent (unless the exponent is already 0).
350             // If we see another character before reaching the end of
351             // the descriptor, that's also a syntax error.
352             if (c == gGreaterThan) {
353                 while (p < descriptor.length()) {
354                     c = descriptor.charAt(p);
355                     if (c == gGreaterThan && exponent > 0) {
356                         --exponent;
357                     } else {
358                         // throw new IllegalArgumentException("Illegal character in rule descriptor");
359                         status = U_PARSE_ERROR;
360                         return;
361                     }
362                     ++p;
363                 }
364             }
365         }
366         else if (0 == descriptor.compare(gMinusX, 2)) {
367             setType(kNegativeNumberRule);
368         }
369         else if (descriptorLength == 3) {
370             if (firstChar == gZero && lastChar == gX) {
371                 setBaseValue(kProperFractionRule, status);
372                 decimalPoint = descriptor.charAt(1);
373             }
374             else if (firstChar == gX && lastChar == gX) {
375                 setBaseValue(kImproperFractionRule, status);
376                 decimalPoint = descriptor.charAt(1);
377             }
378             else if (firstChar == gX && lastChar == gZero) {
379                 setBaseValue(kDefaultRule, status);
380                 decimalPoint = descriptor.charAt(1);
381             }
382             else if (descriptor.compare(gNaN, 3) == 0) {
383                 setBaseValue(kNaNRule, status);
384             }
385             else if (descriptor.compare(gInf, 3) == 0) {
386                 setBaseValue(kInfinityRule, status);
387             }
388         }
389     }
390     // else use the default base value for now.
391 
392     // finally, if the rule body begins with an apostrophe, strip it off
393     // (this is generally used to put whitespace at the beginning of
394     // a rule's rule text)
395     if (description.length() > 0 && description.charAt(0) == gTick) {
396         description.removeBetween(0, 1);
397     }
398 
399     // return the description with all the stuff we've just waded through
400     // stripped off the front.  It now contains just the rule body.
401     // return description;
402 }
403 
404 /**
405 * Searches the rule's rule text for the substitution tokens,
406 * creates the substitutions, and removes the substitution tokens
407 * from the rule's rule text.
408 * @param owner The rule set containing this rule
409 * @param predecessor The rule preseding this one in "owners" rule list
410 * @param ownersOwner The RuleBasedFormat that owns this rule
411 */
412 void
extractSubstitutions(const NFRuleSet * ruleSet,const UnicodeString & ruleText,const NFRule * predecessor,UErrorCode & status)413 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
414                              const UnicodeString &ruleText,
415                              const NFRule* predecessor,
416                              UErrorCode& status)
417 {
418     if (U_FAILURE(status)) {
419         return;
420     }
421     fRuleText = ruleText;
422     sub1 = extractSubstitution(ruleSet, predecessor, status);
423     if (sub1 == nullptr) {
424         // Small optimization. There is no need to create a redundant NullSubstitution.
425         sub2 = nullptr;
426     }
427     else {
428         sub2 = extractSubstitution(ruleSet, predecessor, status);
429     }
430     int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
431     int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
432     if (pluralRuleEnd >= 0) {
433         int32_t endType = fRuleText.indexOf(gComma, pluralRuleStart);
434         if (endType < 0) {
435             status = U_PARSE_ERROR;
436             return;
437         }
438         UnicodeString type(fRuleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
439         UPluralType pluralType;
440         if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
441             pluralType = UPLURAL_TYPE_CARDINAL;
442         }
443         else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
444             pluralType = UPLURAL_TYPE_ORDINAL;
445         }
446         else {
447             status = U_ILLEGAL_ARGUMENT_ERROR;
448             return;
449         }
450         rulePatternFormat = formatter->createPluralFormat(pluralType,
451                 fRuleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
452     }
453 }
454 
455 /**
456 * Searches the rule's rule text for the first substitution token,
457 * creates a substitution based on it, and removes the token from
458 * the rule's rule text.
459 * @param owner The rule set containing this rule
460 * @param predecessor The rule preceding this one in the rule set's
461 * rule list
462 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
463 * @return The newly-created substitution.  This is never null; if
464 * the rule text doesn't contain any substitution tokens, this will
465 * be a NullSubstitution.
466 */
467 NFSubstitution *
extractSubstitution(const NFRuleSet * ruleSet,const NFRule * predecessor,UErrorCode & status)468 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
469                             const NFRule* predecessor,
470                             UErrorCode& status)
471 {
472     NFSubstitution* result = nullptr;
473 
474     // search the rule's rule text for the first two characters of
475     // a substitution token
476     int32_t subStart = indexOfAnyRulePrefix();
477     int32_t subEnd = subStart;
478 
479     // if we didn't find one, create a null substitution positioned
480     // at the end of the rule text
481     if (subStart == -1) {
482         return nullptr;
483     }
484 
485     // special-case the ">>>" token, since searching for the > at the
486     // end will actually find the > in the middle
487     if (fRuleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
488         subEnd = subStart + 2;
489 
490         // otherwise the substitution token ends with the same character
491         // it began with
492     } else {
493         char16_t c = fRuleText.charAt(subStart);
494         subEnd = fRuleText.indexOf(c, subStart + 1);
495         // special case for '<%foo<<'
496         if (c == gLessThan && subEnd != -1 && subEnd < fRuleText.length() - 1 && fRuleText.charAt(subEnd+1) == c) {
497             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
498             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
499             // to get around this.  Having the duplicate at the front would cause problems with
500             // rules like "<<%" to format, say, percents...
501             ++subEnd;
502         }
503    }
504 
505     // if we don't find the end of the token (i.e., if we're on a single,
506     // unmatched token character), create a null substitution positioned
507     // at the end of the rule
508     if (subEnd == -1) {
509         return nullptr;
510     }
511 
512     // if we get here, we have a real substitution token (or at least
513     // some text bounded by substitution token characters).  Use
514     // makeSubstitution() to create the right kind of substitution
515     UnicodeString subToken;
516     subToken.setTo(fRuleText, subStart, subEnd + 1 - subStart);
517     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
518         this->formatter, subToken, status);
519 
520     // remove the substitution from the rule text
521     fRuleText.removeBetween(subStart, subEnd+1);
522 
523     return result;
524 }
525 
526 /**
527  * Sets the rule's base value, and causes the radix and exponent
528  * to be recalculated.  This is used during construction when we
529  * don't know the rule's base value until after it's been
530  * constructed.  It should be used at any other time.
531  * @param The new base value for the rule.
532  */
533 void
setBaseValue(int64_t newBaseValue,UErrorCode & status)534 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
535 {
536     // set the base value
537     baseValue = newBaseValue;
538     radix = 10;
539 
540     // if this isn't a special rule, recalculate the radix and exponent
541     // (the radix always defaults to 10; if it's supposed to be something
542     // else, it's cleaned up by the caller and the exponent is
543     // recalculated again-- the only function that does this is
544     // NFRule.parseRuleDescriptor() )
545     if (baseValue >= 1) {
546         exponent = expectedExponent();
547 
548         // this function gets called on a fully-constructed rule whose
549         // description didn't specify a base value.  This means it
550         // has substitutions, and some substitutions hold on to copies
551         // of the rule's divisor.  Fix their copies of the divisor.
552         if (sub1 != nullptr) {
553             sub1->setDivisor(radix, exponent, status);
554         }
555         if (sub2 != nullptr) {
556             sub2->setDivisor(radix, exponent, status);
557         }
558 
559         // if this is a special rule, its radix and exponent are basically
560         // ignored.  Set them to "safe" default values
561     } else {
562         exponent = 0;
563     }
564 }
565 
566 /**
567 * This calculates the rule's exponent based on its radix and base
568 * value.  This will be the highest power the radix can be raised to
569 * and still produce a result less than or equal to the base value.
570 */
571 int16_t
expectedExponent() const572 NFRule::expectedExponent() const
573 {
574     // since the log of 0, or the log base 0 of something, causes an
575     // error, declare the exponent in these cases to be 0 (we also
576     // deal with the special-rule identifiers here)
577     if (radix == 0 || baseValue < 1) {
578         return 0;
579     }
580 
581     // we get rounding error in some cases-- for example, log 1000 / log 10
582     // gives us 1.9999999996 instead of 2.  The extra logic here is to take
583     // that into account
584     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
585     int64_t temp = util64_pow(radix, tempResult + 1);
586     if (temp <= baseValue) {
587         tempResult += 1;
588     }
589     return tempResult;
590 }
591 
592 /**
593  * Searches the rule's rule text for any of the specified strings.
594  * @return The index of the first match in the rule's rule text
595  * (i.e., the first substring in the rule's rule text that matches
596  * _any_ of the strings in "strings").  If none of the strings in
597  * "strings" is found in the rule's rule text, returns -1.
598  */
599 int32_t
indexOfAnyRulePrefix() const600 NFRule::indexOfAnyRulePrefix() const
601 {
602     int result = -1;
603     for (int i = 0; RULE_PREFIXES[i]; i++) {
604         int32_t pos = fRuleText.indexOf(*RULE_PREFIXES[i]);
605         if (pos != -1 && (result == -1 || pos < result)) {
606             result = pos;
607         }
608     }
609     return result;
610 }
611 
612 //-----------------------------------------------------------------------
613 // boilerplate
614 //-----------------------------------------------------------------------
615 
616 static UBool
util_equalSubstitutions(const NFSubstitution * sub1,const NFSubstitution * sub2)617 util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
618 {
619     if (sub1) {
620         if (sub2) {
621             return *sub1 == *sub2;
622         }
623     } else if (!sub2) {
624         return true;
625     }
626     return false;
627 }
628 
629 /**
630 * Tests two rules for equality.
631 * @param that The rule to compare this one against
632 * @return True is the two rules are functionally equivalent
633 */
634 bool
operator ==(const NFRule & rhs) const635 NFRule::operator==(const NFRule& rhs) const
636 {
637     return baseValue == rhs.baseValue
638         && radix == rhs.radix
639         && exponent == rhs.exponent
640         && fRuleText == rhs.fRuleText
641         && util_equalSubstitutions(sub1, rhs.sub1)
642         && util_equalSubstitutions(sub2, rhs.sub2);
643 }
644 
645 /**
646 * Returns a textual representation of the rule.  This won't
647 * necessarily be the same as the description that this rule
648 * was created with, but it will produce the same result.
649 * @return A textual description of the rule
650 */
util_append64(UnicodeString & result,int64_t n)651 static void util_append64(UnicodeString& result, int64_t n)
652 {
653     char16_t buffer[256];
654     int32_t len = util64_tou(n, buffer, sizeof(buffer));
655     UnicodeString temp(buffer, len);
656     result.append(temp);
657 }
658 
659 void
_appendRuleText(UnicodeString & result) const660 NFRule::_appendRuleText(UnicodeString& result) const
661 {
662     switch (getType()) {
663     case kNegativeNumberRule: result.append(gMinusX, 2); break;
664     case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
665     case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
666     case kDefaultRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
667     case kInfinityRule: result.append(gInf, 3); break;
668     case kNaNRule: result.append(gNaN, 3); break;
669     default:
670         // for a normal rule, write out its base value, and if the radix is
671         // something other than 10, write out the radix (with the preceding
672         // slash, of course).  Then calculate the expected exponent and if
673         // if isn't the same as the actual exponent, write an appropriate
674         // number of > signs.  Finally, terminate the whole thing with
675         // a colon.
676         util_append64(result, baseValue);
677         if (radix != 10) {
678             result.append(gSlash);
679             util_append64(result, radix);
680         }
681         int numCarets = expectedExponent() - exponent;
682         for (int i = 0; i < numCarets; i++) {
683             result.append(gGreaterThan);
684         }
685         break;
686     }
687     result.append(gColon);
688     result.append(gSpace);
689 
690     // if the rule text begins with a space, write an apostrophe
691     // (whitespace after the rule descriptor is ignored; the
692     // apostrophe is used to make the whitespace significant)
693     if (fRuleText.charAt(0) == gSpace && (sub1 == nullptr || sub1->getPos() != 0)) {
694         result.append(gTick);
695     }
696 
697     // now, write the rule's rule text, inserting appropriate
698     // substitution tokens in the appropriate places
699     UnicodeString ruleTextCopy;
700     ruleTextCopy.setTo(fRuleText);
701 
702     UnicodeString temp;
703     if (sub2 != nullptr) {
704         sub2->toString(temp);
705         ruleTextCopy.insert(sub2->getPos(), temp);
706     }
707     if (sub1 != nullptr) {
708         sub1->toString(temp);
709         ruleTextCopy.insert(sub1->getPos(), temp);
710     }
711 
712     result.append(ruleTextCopy);
713 
714     // and finally, top the whole thing off with a semicolon and
715     // return the result
716     result.append(gSemicolon);
717 }
718 
getDivisor() const719 int64_t NFRule::getDivisor() const
720 {
721     return util64_pow(radix, exponent);
722 }
723 
724 /**
725  * Internal function to facilitate numerical rounding.  See the explanation in MultiplierSubstitution::transformNumber().
726  */
hasModulusSubstitution() const727 bool NFRule::hasModulusSubstitution() const
728 {
729     return (sub1 != nullptr && sub1->isModulusSubstitution()) || (sub2 != nullptr && sub2->isModulusSubstitution());
730 }
731 
732 
733 //-----------------------------------------------------------------------
734 // formatting
735 //-----------------------------------------------------------------------
736 
737 /**
738 * Formats the number, and inserts the resulting text into
739 * toInsertInto.
740 * @param number The number being formatted
741 * @param toInsertInto The string where the resultant text should
742 * be inserted
743 * @param pos The position in toInsertInto where the resultant text
744 * should be inserted
745 */
746 void
doFormat(int64_t number,UnicodeString & toInsertInto,int32_t pos,int32_t recursionCount,UErrorCode & status) const747 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
748 {
749     // first, insert the rule's rule text into toInsertInto at the
750     // specified position, then insert the results of the substitutions
751     // into the right places in toInsertInto (notice we do the
752     // substitutions in reverse order so that the offsets don't get
753     // messed up)
754     int32_t pluralRuleStart = fRuleText.length();
755     int32_t lengthOffset = 0;
756     if (!rulePatternFormat) {
757         toInsertInto.insert(pos, fRuleText);
758     }
759     else {
760         pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
761         int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
762         int initialLength = toInsertInto.length();
763         if (pluralRuleEnd < fRuleText.length() - 1) {
764             toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
765         }
766         toInsertInto.insert(pos,
767             rulePatternFormat->format((int32_t)(number/util64_pow(radix, exponent)), status));
768         if (pluralRuleStart > 0) {
769             toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
770         }
771         lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
772     }
773 
774     if (sub2 != nullptr) {
775         sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
776     }
777     if (sub1 != nullptr) {
778         sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
779     }
780 }
781 
782 /**
783 * Formats the number, and inserts the resulting text into
784 * toInsertInto.
785 * @param number The number being formatted
786 * @param toInsertInto The string where the resultant text should
787 * be inserted
788 * @param pos The position in toInsertInto where the resultant text
789 * should be inserted
790 */
791 void
doFormat(double number,UnicodeString & toInsertInto,int32_t pos,int32_t recursionCount,UErrorCode & status) const792 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
793 {
794     // first, insert the rule's rule text into toInsertInto at the
795     // specified position, then insert the results of the substitutions
796     // into the right places in toInsertInto
797     // [again, we have two copies of this routine that do the same thing
798     // so that we don't sacrifice precision in a long by casting it
799     // to a double]
800     int32_t pluralRuleStart = fRuleText.length();
801     int32_t lengthOffset = 0;
802     if (!rulePatternFormat) {
803         toInsertInto.insert(pos, fRuleText);
804     }
805     else {
806         pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
807         int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
808         int initialLength = toInsertInto.length();
809         if (pluralRuleEnd < fRuleText.length() - 1) {
810             toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
811         }
812         double pluralVal = number;
813         if (0 <= pluralVal && pluralVal < 1) {
814             // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
815             // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
816             pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent));
817         }
818         else {
819             pluralVal = pluralVal / util64_pow(radix, exponent);
820         }
821         toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
822         if (pluralRuleStart > 0) {
823             toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
824         }
825         lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
826     }
827 
828     if (sub2 != nullptr) {
829         sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
830     }
831     if (sub1 != nullptr) {
832         sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
833     }
834 }
835 
836 /**
837 * Used by the owning rule set to determine whether to invoke the
838 * rollback rule (i.e., whether this rule or the one that precedes
839 * it in the rule set's list should be used to format the number)
840 * @param The number being formatted
841 * @return True if the rule set should use the rule that precedes
842 * this one in its list; false if it should use this rule
843 */
844 UBool
shouldRollBack(int64_t number) const845 NFRule::shouldRollBack(int64_t number) const
846 {
847     // we roll back if the rule contains a modulus substitution,
848     // the number being formatted is an even multiple of the rule's
849     // divisor, and the rule's base value is NOT an even multiple
850     // of its divisor
851     // In other words, if the original description had
852     //    100: << hundred[ >>];
853     // that expands into
854     //    100: << hundred;
855     //    101: << hundred >>;
856     // internally.  But when we're formatting 200, if we use the rule
857     // at 101, which would normally apply, we get "two hundred zero".
858     // To prevent this, we roll back and use the rule at 100 instead.
859     // This is the logic that makes this happen: the rule at 101 has
860     // a modulus substitution, its base value isn't an even multiple
861     // of 100, and the value we're trying to format _is_ an even
862     // multiple of 100.  This is called the "rollback rule."
863     if ((sub1 != nullptr && sub1->isModulusSubstitution()) || (sub2 != nullptr && sub2->isModulusSubstitution())) {
864         int64_t re = util64_pow(radix, exponent);
865         return (number % re) == 0 && (baseValue % re) != 0;
866     }
867     return false;
868 }
869 
870 //-----------------------------------------------------------------------
871 // parsing
872 //-----------------------------------------------------------------------
873 
874 /**
875 * Attempts to parse the string with this rule.
876 * @param text The string being parsed
877 * @param parsePosition On entry, the value is ignored and assumed to
878 * be 0. On exit, this has been updated with the position of the first
879 * character not consumed by matching the text against this rule
880 * (if this rule doesn't match the text at all, the parse position
881 * if left unchanged (presumably at 0) and the function returns
882 * new Long(0)).
883 * @param isFractionRule True if this rule is contained within a
884 * fraction rule set.  This is only used if the rule has no
885 * substitutions.
886 * @return If this rule matched the text, this is the rule's base value
887 * combined appropriately with the results of parsing the substitutions.
888 * If nothing matched, this is new Long(0) and the parse position is
889 * left unchanged.  The result will be an instance of Long if the
890 * result is an integer and Double otherwise.  The result is never null.
891 */
892 #ifdef RBNF_DEBUG
893 #include <stdio.h>
894 
dumpUS(FILE * f,const UnicodeString & us)895 static void dumpUS(FILE* f, const UnicodeString& us) {
896   int len = us.length();
897   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
898   if (buf != nullptr) {
899 	  us.extract(0, len, buf);
900 	  buf[len] = 0;
901 	  fprintf(f, "%s", buf);
902 	  uprv_free(buf); //delete[] buf;
903   }
904 }
905 #endif
906 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,UBool isFractionRule,double upperBound,uint32_t nonNumericalExecutedRuleMask,Formattable & resVal) const907 NFRule::doParse(const UnicodeString& text,
908                 ParsePosition& parsePosition,
909                 UBool isFractionRule,
910                 double upperBound,
911                 uint32_t nonNumericalExecutedRuleMask,
912                 Formattable& resVal) const
913 {
914     // internally we operate on a copy of the string being parsed
915     // (because we're going to change it) and use our own ParsePosition
916     ParsePosition pp;
917     UnicodeString workText(text);
918 
919     int32_t sub1Pos = sub1 != nullptr ? sub1->getPos() : fRuleText.length();
920     int32_t sub2Pos = sub2 != nullptr ? sub2->getPos() : fRuleText.length();
921 
922     // check to see whether the text before the first substitution
923     // matches the text at the beginning of the string being
924     // parsed.  If it does, strip that off the front of workText;
925     // otherwise, dump out with a mismatch
926     UnicodeString prefix;
927     prefix.setTo(fRuleText, 0, sub1Pos);
928 
929 #ifdef RBNF_DEBUG
930     fprintf(stderr, "doParse %p ", this);
931     {
932         UnicodeString rt;
933         _appendRuleText(rt);
934         dumpUS(stderr, rt);
935     }
936 
937     fprintf(stderr, " text: '");
938     dumpUS(stderr, text);
939     fprintf(stderr, "' prefix: '");
940     dumpUS(stderr, prefix);
941 #endif
942     stripPrefix(workText, prefix, pp);
943     int32_t prefixLength = text.length() - workText.length();
944 
945 #ifdef RBNF_DEBUG
946     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
947 #endif
948 
949     if (pp.getIndex() == 0 && sub1Pos != 0) {
950         // commented out because ParsePosition doesn't have error index in 1.1.x
951         // restored for ICU4C port
952         parsePosition.setErrorIndex(pp.getErrorIndex());
953         resVal.setLong(0);
954         return true;
955     }
956     if (baseValue == kInfinityRule) {
957         // If you match this, don't try to perform any calculations on it.
958         parsePosition.setIndex(pp.getIndex());
959         resVal.setDouble(uprv_getInfinity());
960         return true;
961     }
962     if (baseValue == kNaNRule) {
963         // If you match this, don't try to perform any calculations on it.
964         parsePosition.setIndex(pp.getIndex());
965         resVal.setDouble(uprv_getNaN());
966         return true;
967     }
968 
969     // this is the fun part.  The basic guts of the rule-matching
970     // logic is matchToDelimiter(), which is called twice.  The first
971     // time it searches the input string for the rule text BETWEEN
972     // the substitutions and tries to match the intervening text
973     // in the input string with the first substitution.  If that
974     // succeeds, it then calls it again, this time to look for the
975     // rule text after the second substitution and to match the
976     // intervening input text against the second substitution.
977     //
978     // For example, say we have a rule that looks like this:
979     //    first << middle >> last;
980     // and input text that looks like this:
981     //    first one middle two last
982     // First we use stripPrefix() to match "first " in both places and
983     // strip it off the front, leaving
984     //    one middle two last
985     // Then we use matchToDelimiter() to match " middle " and try to
986     // match "one" against a substitution.  If it's successful, we now
987     // have
988     //    two last
989     // We use matchToDelimiter() a second time to match " last" and
990     // try to match "two" against a substitution.  If "two" matches
991     // the substitution, we have a successful parse.
992     //
993     // Since it's possible in many cases to find multiple instances
994     // of each of these pieces of rule text in the input string,
995     // we need to try all the possible combinations of these
996     // locations.  This prevents us from prematurely declaring a mismatch,
997     // and makes sure we match as much input text as we can.
998     int highWaterMark = 0;
999     double result = 0;
1000     int start = 0;
1001     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
1002 
1003     UnicodeString temp;
1004     do {
1005         // our partial parse result starts out as this rule's base
1006         // value.  If it finds a successful match, matchToDelimiter()
1007         // will compose this in some way with what it gets back from
1008         // the substitution, giving us a new partial parse result
1009         pp.setIndex(0);
1010 
1011         temp.setTo(fRuleText, sub1Pos, sub2Pos - sub1Pos);
1012         double partialResult = matchToDelimiter(workText, start, tempBaseValue,
1013             temp, pp, sub1,
1014             nonNumericalExecutedRuleMask,
1015             upperBound);
1016 
1017         // if we got a successful match (or were trying to match a
1018         // null substitution), pp is now pointing at the first unmatched
1019         // character.  Take note of that, and try matchToDelimiter()
1020         // on the input text again
1021         if (pp.getIndex() != 0 || sub1 == nullptr) {
1022             start = pp.getIndex();
1023 
1024             UnicodeString workText2;
1025             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
1026             ParsePosition pp2;
1027 
1028             // the second matchToDelimiter() will compose our previous
1029             // partial result with whatever it gets back from its
1030             // substitution if there's a successful match, giving us
1031             // a real result
1032             temp.setTo(fRuleText, sub2Pos, fRuleText.length() - sub2Pos);
1033             partialResult = matchToDelimiter(workText2, 0, partialResult,
1034                 temp, pp2, sub2,
1035                 nonNumericalExecutedRuleMask,
1036                 upperBound);
1037 
1038             // if we got a successful match on this second
1039             // matchToDelimiter() call, update the high-water mark
1040             // and result (if necessary)
1041             if (pp2.getIndex() != 0 || sub2 == nullptr) {
1042                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
1043                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
1044                     result = partialResult;
1045                 }
1046             }
1047             else {
1048                 // commented out because ParsePosition doesn't have error index in 1.1.x
1049                 // restored for ICU4C port
1050                 int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
1051                 if (i_temp> parsePosition.getErrorIndex()) {
1052                     parsePosition.setErrorIndex(i_temp);
1053                 }
1054             }
1055         }
1056         else {
1057             // commented out because ParsePosition doesn't have error index in 1.1.x
1058             // restored for ICU4C port
1059             int32_t i_temp = sub1Pos + pp.getErrorIndex();
1060             if (i_temp > parsePosition.getErrorIndex()) {
1061                 parsePosition.setErrorIndex(i_temp);
1062             }
1063         }
1064         // keep trying to match things until the outer matchToDelimiter()
1065         // call fails to make a match (each time, it picks up where it
1066         // left off the previous time)
1067     } while (sub1Pos != sub2Pos
1068         && pp.getIndex() > 0
1069         && pp.getIndex() < workText.length()
1070         && pp.getIndex() != start);
1071 
1072     // update the caller's ParsePosition with our high-water mark
1073     // (i.e., it now points at the first character this function
1074     // didn't match-- the ParsePosition is therefore unchanged if
1075     // we didn't match anything)
1076     parsePosition.setIndex(highWaterMark);
1077     // commented out because ParsePosition doesn't have error index in 1.1.x
1078     // restored for ICU4C port
1079     if (highWaterMark > 0) {
1080         parsePosition.setErrorIndex(0);
1081     }
1082 
1083     // this is a hack for one unusual condition: Normally, whether this
1084     // rule belong to a fraction rule set or not is handled by its
1085     // substitutions.  But if that rule HAS NO substitutions, then
1086     // we have to account for it here.  By definition, if the matching
1087     // rule in a fraction rule set has no substitutions, its numerator
1088     // is 1, and so the result is the reciprocal of its base value.
1089     if (isFractionRule && highWaterMark > 0 && sub1 == nullptr) {
1090         result = 1 / result;
1091     }
1092 
1093     resVal.setDouble(result);
1094     return true; // ??? do we need to worry if it is a long or a double?
1095 }
1096 
1097 /**
1098 * This function is used by parse() to match the text being parsed
1099 * against a possible prefix string.  This function
1100 * matches characters from the beginning of the string being parsed
1101 * to characters from the prospective prefix.  If they match, pp is
1102 * updated to the first character not matched, and the result is
1103 * the unparsed part of the string.  If they don't match, the whole
1104 * string is returned, and pp is left unchanged.
1105 * @param text The string being parsed
1106 * @param prefix The text to match against
1107 * @param pp On entry, ignored and assumed to be 0.  On exit, points
1108 * to the first unmatched character (assuming the whole prefix matched),
1109 * or is unchanged (if the whole prefix didn't match).
1110 * @return If things match, this is the unparsed part of "text";
1111 * if they didn't match, this is "text".
1112 */
1113 void
stripPrefix(UnicodeString & text,const UnicodeString & prefix,ParsePosition & pp) const1114 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
1115 {
1116     // if the prefix text is empty, dump out without doing anything
1117     if (prefix.length() != 0) {
1118     	UErrorCode status = U_ZERO_ERROR;
1119         // use prefixLength() to match the beginning of
1120         // "text" against "prefix".  This function returns the
1121         // number of characters from "text" that matched (or 0 if
1122         // we didn't match the whole prefix)
1123         int32_t pfl = prefixLength(text, prefix, status);
1124         if (U_FAILURE(status)) { // Memory allocation error.
1125         	return;
1126         }
1127         if (pfl != 0) {
1128             // if we got a successful match, update the parse position
1129             // and strip the prefix off of "text"
1130             pp.setIndex(pp.getIndex() + pfl);
1131             text.remove(0, pfl);
1132         }
1133     }
1134 }
1135 
1136 /**
1137 * Used by parse() to match a substitution and any following text.
1138 * "text" is searched for instances of "delimiter".  For each instance
1139 * of delimiter, the intervening text is tested to see whether it
1140 * matches the substitution.  The longest match wins.
1141 * @param text The string being parsed
1142 * @param startPos The position in "text" where we should start looking
1143 * for "delimiter".
1144 * @param baseValue A partial parse result (often the rule's base value),
1145 * which is combined with the result from matching the substitution
1146 * @param delimiter The string to search "text" for.
1147 * @param pp Ignored and presumed to be 0 on entry.  If there's a match,
1148 * on exit this will point to the first unmatched character.
1149 * @param sub If we find "delimiter" in "text", this substitution is used
1150 * to match the text between the beginning of the string and the
1151 * position of "delimiter."  (If "delimiter" is the empty string, then
1152 * this function just matches against this substitution and updates
1153 * everything accordingly.)
1154 * @param upperBound When matching the substitution, it will only
1155 * consider rules with base values lower than this value.
1156 * @return If there's a match, this is the result of composing
1157 * baseValue with the result of matching the substitution.  Otherwise,
1158 * this is new Long(0).  It's never null.  If the result is an integer,
1159 * this will be an instance of Long; otherwise, it's an instance of
1160 * Double.
1161 *
1162 * !!! note {dlf} in point of fact, in the java code the caller always converts
1163 * the result to a double, so we might as well return one.
1164 */
1165 double
matchToDelimiter(const UnicodeString & text,int32_t startPos,double _baseValue,const UnicodeString & delimiter,ParsePosition & pp,const NFSubstitution * sub,uint32_t nonNumericalExecutedRuleMask,double upperBound) const1166 NFRule::matchToDelimiter(const UnicodeString& text,
1167                          int32_t startPos,
1168                          double _baseValue,
1169                          const UnicodeString& delimiter,
1170                          ParsePosition& pp,
1171                          const NFSubstitution* sub,
1172                          uint32_t nonNumericalExecutedRuleMask,
1173                          double upperBound) const
1174 {
1175 	UErrorCode status = U_ZERO_ERROR;
1176     // if "delimiter" contains real (i.e., non-ignorable) text, search
1177     // it for "delimiter" beginning at "start".  If that succeeds, then
1178     // use "sub"'s doParse() method to match the text before the
1179     // instance of "delimiter" we just found.
1180     if (!allIgnorable(delimiter, status)) {
1181     	if (U_FAILURE(status)) { //Memory allocation error.
1182     		return 0;
1183     	}
1184         ParsePosition tempPP;
1185         Formattable result;
1186 
1187         // use findText() to search for "delimiter".  It returns a two-
1188         // element array: element 0 is the position of the match, and
1189         // element 1 is the number of characters that matched
1190         // "delimiter".
1191         int32_t dLen;
1192         int32_t dPos = findText(text, delimiter, startPos, &dLen);
1193 
1194         // if findText() succeeded, isolate the text preceding the
1195         // match, and use "sub" to match that text
1196         while (dPos >= 0) {
1197             UnicodeString subText;
1198             subText.setTo(text, 0, dPos);
1199             if (subText.length() > 0) {
1200                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1201 #if UCONFIG_NO_COLLATION
1202                     false,
1203 #else
1204                     formatter->isLenient(),
1205 #endif
1206                     nonNumericalExecutedRuleMask,
1207                     result);
1208 
1209                 // if the substitution could match all the text up to
1210                 // where we found "delimiter", then this function has
1211                 // a successful match.  Bump the caller's parse position
1212                 // to point to the first character after the text
1213                 // that matches "delimiter", and return the result
1214                 // we got from parsing the substitution.
1215                 if (success && tempPP.getIndex() == dPos) {
1216                     pp.setIndex(dPos + dLen);
1217                     return result.getDouble();
1218                 }
1219                 else {
1220                     // commented out because ParsePosition doesn't have error index in 1.1.x
1221                     // restored for ICU4C port
1222                     if (tempPP.getErrorIndex() > 0) {
1223                         pp.setErrorIndex(tempPP.getErrorIndex());
1224                     } else {
1225                         pp.setErrorIndex(tempPP.getIndex());
1226                     }
1227                 }
1228             }
1229 
1230             // if we didn't match the substitution, search for another
1231             // copy of "delimiter" in "text" and repeat the loop if
1232             // we find it
1233             tempPP.setIndex(0);
1234             dPos = findText(text, delimiter, dPos + dLen, &dLen);
1235         }
1236         // if we make it here, this was an unsuccessful match, and we
1237         // leave pp unchanged and return 0
1238         pp.setIndex(0);
1239         return 0;
1240 
1241         // if "delimiter" is empty, or consists only of ignorable characters
1242         // (i.e., is semantically empty), thwe we obviously can't search
1243         // for "delimiter".  Instead, just use "sub" to parse as much of
1244         // "text" as possible.
1245     }
1246     else if (sub == nullptr) {
1247         return _baseValue;
1248     }
1249     else {
1250         ParsePosition tempPP;
1251         Formattable result;
1252 
1253         // try to match the whole string against the substitution
1254         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1255 #if UCONFIG_NO_COLLATION
1256             false,
1257 #else
1258             formatter->isLenient(),
1259 #endif
1260             nonNumericalExecutedRuleMask,
1261             result);
1262         if (success && (tempPP.getIndex() != 0)) {
1263             // if there's a successful match (or it's a null
1264             // substitution), update pp to point to the first
1265             // character we didn't match, and pass the result from
1266             // sub.doParse() on through to the caller
1267             pp.setIndex(tempPP.getIndex());
1268             return result.getDouble();
1269         }
1270         else {
1271             // commented out because ParsePosition doesn't have error index in 1.1.x
1272             // restored for ICU4C port
1273             pp.setErrorIndex(tempPP.getErrorIndex());
1274         }
1275 
1276         // and if we get to here, then nothing matched, so we return
1277         // 0 and leave pp alone
1278         return 0;
1279     }
1280 }
1281 
1282 /**
1283 * Used by stripPrefix() to match characters.  If lenient parse mode
1284 * is off, this just calls startsWith().  If lenient parse mode is on,
1285 * this function uses CollationElementIterators to match characters in
1286 * the strings (only primary-order differences are significant in
1287 * determining whether there's a match).
1288 * @param str The string being tested
1289 * @param prefix The text we're hoping to see at the beginning
1290 * of "str"
1291 * @return If "prefix" is found at the beginning of "str", this
1292 * is the number of characters in "str" that were matched (this
1293 * isn't necessarily the same as the length of "prefix" when matching
1294 * text with a collator).  If there's no match, this is 0.
1295 */
1296 int32_t
prefixLength(const UnicodeString & str,const UnicodeString & prefix,UErrorCode & status) const1297 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1298 {
1299     // if we're looking for an empty prefix, it obviously matches
1300     // zero characters.  Just go ahead and return 0.
1301     if (prefix.length() == 0) {
1302         return 0;
1303     }
1304 
1305 #if !UCONFIG_NO_COLLATION
1306     // go through all this grief if we're in lenient-parse mode
1307     if (formatter->isLenient()) {
1308         // Check if non-lenient rule finds the text before call lenient parsing
1309         if (str.startsWith(prefix)) {
1310             return prefix.length();
1311         }
1312         // get the formatter's collator and use it to create two
1313         // collation element iterators, one over the target string
1314         // and another over the prefix (right now, we'll throw an
1315         // exception if the collator we get back from the formatter
1316         // isn't a RuleBasedCollator, because RuleBasedCollator defines
1317         // the CollationElementIterator protocol.  Hopefully, this
1318         // will change someday.)
1319         const RuleBasedCollator* collator = formatter->getCollator();
1320         if (collator == nullptr) {
1321             status = U_MEMORY_ALLOCATION_ERROR;
1322             return 0;
1323         }
1324         LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1325         LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1326         // Check for memory allocation error.
1327         if (strIter.isNull() || prefixIter.isNull()) {
1328             status = U_MEMORY_ALLOCATION_ERROR;
1329             return 0;
1330         }
1331 
1332         UErrorCode err = U_ZERO_ERROR;
1333 
1334         // The original code was problematic.  Consider this match:
1335         // prefix = "fifty-"
1336         // string = " fifty-7"
1337         // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1338         // in the string.  Unfortunately, we were getting a match, and then computing where
1339         // the match terminated by rematching the string.  The rematch code was using as an
1340         // initial guess the substring of string between 0 and prefix.length.  Because of
1341         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1342         // the position before the hyphen in the string.  Recursing down, we then parsed the
1343         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1344         // This was not pretty, especially since the string "fifty-7" parsed just fine.
1345         //
1346         // We have newer APIs now, so we can use calls on the iterator to determine what we
1347         // matched up to.  If we terminate because we hit the last element in the string,
1348         // our match terminates at this length.  If we terminate because we hit the last element
1349         // in the target, our match terminates at one before the element iterator position.
1350 
1351         // match collation elements between the strings
1352         int32_t oStr = strIter->next(err);
1353         int32_t oPrefix = prefixIter->next(err);
1354 
1355         while (oPrefix != CollationElementIterator::NULLORDER) {
1356             // skip over ignorable characters in the target string
1357             while (CollationElementIterator::primaryOrder(oStr) == 0
1358                 && oStr != CollationElementIterator::NULLORDER) {
1359                 oStr = strIter->next(err);
1360             }
1361 
1362             // skip over ignorable characters in the prefix
1363             while (CollationElementIterator::primaryOrder(oPrefix) == 0
1364                 && oPrefix != CollationElementIterator::NULLORDER) {
1365                 oPrefix = prefixIter->next(err);
1366             }
1367 
1368             // dlf: move this above following test, if we consume the
1369             // entire target, aren't we ok even if the source was also
1370             // entirely consumed?
1371 
1372             // if skipping over ignorables brought to the end of
1373             // the prefix, we DID match: drop out of the loop
1374             if (oPrefix == CollationElementIterator::NULLORDER) {
1375                 break;
1376             }
1377 
1378             // if skipping over ignorables brought us to the end
1379             // of the target string, we didn't match and return 0
1380             if (oStr == CollationElementIterator::NULLORDER) {
1381                 return 0;
1382             }
1383 
1384             // match collation elements from the two strings
1385             // (considering only primary differences).  If we
1386             // get a mismatch, dump out and return 0
1387             if (CollationElementIterator::primaryOrder(oStr)
1388                 != CollationElementIterator::primaryOrder(oPrefix)) {
1389                 return 0;
1390 
1391                 // otherwise, advance to the next character in each string
1392                 // and loop (we drop out of the loop when we exhaust
1393                 // collation elements in the prefix)
1394             } else {
1395                 oStr = strIter->next(err);
1396                 oPrefix = prefixIter->next(err);
1397             }
1398         }
1399 
1400         int32_t result = strIter->getOffset();
1401         if (oStr != CollationElementIterator::NULLORDER) {
1402             --result; // back over character that we don't want to consume;
1403         }
1404 
1405 #ifdef RBNF_DEBUG
1406         fprintf(stderr, "prefix length: %d\n", result);
1407 #endif
1408         return result;
1409 #if 0
1410         //----------------------------------------------------------------
1411         // JDK 1.2-specific API call
1412         // return strIter.getOffset();
1413         //----------------------------------------------------------------
1414         // JDK 1.1 HACK (take out for 1.2-specific code)
1415 
1416         // if we make it to here, we have a successful match.  Now we
1417         // have to find out HOW MANY characters from the target string
1418         // matched the prefix (there isn't necessarily a one-to-one
1419         // mapping between collation elements and characters).
1420         // In JDK 1.2, there's a simple getOffset() call we can use.
1421         // In JDK 1.1, on the other hand, we have to go through some
1422         // ugly contortions.  First, use the collator to compare the
1423         // same number of characters from the prefix and target string.
1424         // If they're equal, we're done.
1425         collator->setStrength(Collator::PRIMARY);
1426         if (str.length() >= prefix.length()) {
1427             UnicodeString temp;
1428             temp.setTo(str, 0, prefix.length());
1429             if (collator->equals(temp, prefix)) {
1430 #ifdef RBNF_DEBUG
1431                 fprintf(stderr, "returning: %d\n", prefix.length());
1432 #endif
1433                 return prefix.length();
1434             }
1435         }
1436 
1437         // if they're not equal, then we have to compare successively
1438         // larger and larger substrings of the target string until we
1439         // get to one that matches the prefix.  At that point, we know
1440         // how many characters matched the prefix, and we can return.
1441         int32_t p = 1;
1442         while (p <= str.length()) {
1443             UnicodeString temp;
1444             temp.setTo(str, 0, p);
1445             if (collator->equals(temp, prefix)) {
1446                 return p;
1447             } else {
1448                 ++p;
1449             }
1450         }
1451 
1452         // SHOULD NEVER GET HERE!!!
1453         return 0;
1454         //----------------------------------------------------------------
1455 #endif
1456 
1457         // If lenient parsing is turned off, forget all that crap above.
1458         // Just use String.startsWith() and be done with it.
1459   } else
1460 #endif
1461   {
1462       if (str.startsWith(prefix)) {
1463           return prefix.length();
1464       } else {
1465           return 0;
1466       }
1467   }
1468 }
1469 
1470 /**
1471 * Searches a string for another string.  If lenient parsing is off,
1472 * this just calls indexOf().  If lenient parsing is on, this function
1473 * uses CollationElementIterator to match characters, and only
1474 * primary-order differences are significant in determining whether
1475 * there's a match.
1476 * @param str The string to search
1477 * @param key The string to search "str" for
1478 * @param startingAt The index into "str" where the search is to
1479 * begin
1480 * @return A two-element array of ints.  Element 0 is the position
1481 * of the match, or -1 if there was no match.  Element 1 is the
1482 * number of characters in "str" that matched (which isn't necessarily
1483 * the same as the length of "key")
1484 */
1485 int32_t
findText(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1486 NFRule::findText(const UnicodeString& str,
1487                  const UnicodeString& key,
1488                  int32_t startingAt,
1489                  int32_t* length) const
1490 {
1491     if (rulePatternFormat) {
1492         Formattable result;
1493         FieldPosition position(UNUM_INTEGER_FIELD);
1494         position.setBeginIndex(startingAt);
1495         rulePatternFormat->parseType(str, this, result, position);
1496         int start = position.getBeginIndex();
1497         if (start >= 0) {
1498             int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
1499             int32_t pluralRuleSuffix = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
1500             int32_t matchLen = position.getEndIndex() - start;
1501             UnicodeString prefix(fRuleText.tempSubString(0, pluralRuleStart));
1502             UnicodeString suffix(fRuleText.tempSubString(pluralRuleSuffix));
1503             if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
1504                     && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
1505             {
1506                 *length = matchLen + prefix.length() + suffix.length();
1507                 return start - prefix.length();
1508             }
1509         }
1510         *length = 0;
1511         return -1;
1512     }
1513     if (!formatter->isLenient()) {
1514         // if lenient parsing is turned off, this is easy: just call
1515         // String.indexOf() and we're done
1516         *length = key.length();
1517         return str.indexOf(key, startingAt);
1518     }
1519     else {
1520         // Check if non-lenient rule finds the text before call lenient parsing
1521         *length = key.length();
1522         int32_t pos = str.indexOf(key, startingAt);
1523         if(pos >= 0) {
1524             return pos;
1525         } else {
1526             // but if lenient parsing is turned ON, we've got some work ahead of us
1527             return findTextLenient(str, key, startingAt, length);
1528         }
1529     }
1530 }
1531 
1532 int32_t
findTextLenient(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1533 NFRule::findTextLenient(const UnicodeString& str,
1534                  const UnicodeString& key,
1535                  int32_t startingAt,
1536                  int32_t* length) const
1537 {
1538     //----------------------------------------------------------------
1539     // JDK 1.1 HACK (take out of 1.2-specific code)
1540 
1541     // in JDK 1.2, CollationElementIterator provides us with an
1542     // API to map between character offsets and collation elements
1543     // and we can do this by marching through the string comparing
1544     // collation elements.  We can't do that in JDK 1.1.  Instead,
1545     // we have to go through this horrible slow mess:
1546     int32_t p = startingAt;
1547     int32_t keyLen = 0;
1548 
1549     // basically just isolate smaller and smaller substrings of
1550     // the target string (each running to the end of the string,
1551     // and with the first one running from startingAt to the end)
1552     // and then use prefixLength() to see if the search key is at
1553     // the beginning of each substring.  This is excruciatingly
1554     // slow, but it will locate the key and tell use how long the
1555     // matching text was.
1556     UnicodeString temp;
1557     UErrorCode status = U_ZERO_ERROR;
1558     while (p < str.length() && keyLen == 0) {
1559         temp.setTo(str, p, str.length() - p);
1560         keyLen = prefixLength(temp, key, status);
1561         if (U_FAILURE(status)) {
1562             break;
1563         }
1564         if (keyLen != 0) {
1565             *length = keyLen;
1566             return p;
1567         }
1568         ++p;
1569     }
1570     // if we make it to here, we didn't find it.  Return -1 for the
1571     // location.  The length should be ignored, but set it to 0,
1572     // which should be "safe"
1573     *length = 0;
1574     return -1;
1575 }
1576 
1577 /**
1578 * Checks to see whether a string consists entirely of ignorable
1579 * characters.
1580 * @param str The string to test.
1581 * @return true if the string is empty of consists entirely of
1582 * characters that the number formatter's collator says are
1583 * ignorable at the primary-order level.  false otherwise.
1584 */
1585 UBool
allIgnorable(const UnicodeString & str,UErrorCode & status) const1586 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1587 {
1588     // if the string is empty, we can just return true
1589     if (str.length() == 0) {
1590         return true;
1591     }
1592 
1593 #if !UCONFIG_NO_COLLATION
1594     // if lenient parsing is turned on, walk through the string with
1595     // a collation element iterator and make sure each collation
1596     // element is 0 (ignorable) at the primary level
1597     if (formatter->isLenient()) {
1598         const RuleBasedCollator* collator = formatter->getCollator();
1599         if (collator == nullptr) {
1600             status = U_MEMORY_ALLOCATION_ERROR;
1601             return false;
1602         }
1603         LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1604 
1605         // Memory allocation error check.
1606         if (iter.isNull()) {
1607             status = U_MEMORY_ALLOCATION_ERROR;
1608             return false;
1609         }
1610 
1611         UErrorCode err = U_ZERO_ERROR;
1612         int32_t o = iter->next(err);
1613         while (o != CollationElementIterator::NULLORDER
1614             && CollationElementIterator::primaryOrder(o) == 0) {
1615             o = iter->next(err);
1616         }
1617 
1618         return o == CollationElementIterator::NULLORDER;
1619     }
1620 #endif
1621 
1622     // if lenient parsing is turned off, there is no such thing as
1623     // an ignorable character: return true only if the string is empty
1624     return false;
1625 }
1626 
1627 void
setDecimalFormatSymbols(const DecimalFormatSymbols & newSymbols,UErrorCode & status)1628 NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
1629     if (sub1 != nullptr) {
1630         sub1->setDecimalFormatSymbols(newSymbols, status);
1631     }
1632     if (sub2 != nullptr) {
1633         sub2->setDecimalFormatSymbols(newSymbols, status);
1634     }
1635 }
1636 
1637 U_NAMESPACE_END
1638 
1639 /* U_HAVE_RBNF */
1640 #endif
1641