• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <arm_neon.h>
13 
14 #include "aom/aom_integer.h"
15 #include "aom_dsp/arm/mem_neon.h"
16 #include "aom_dsp/arm/sum_neon.h"
17 #include "aom_ports/mem.h"
18 #include "config/aom_config.h"
19 #include "config/aom_dsp_rtcd.h"
20 
variance_4xh_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int h,uint32_t * sse,int * sum)21 static INLINE void variance_4xh_neon(const uint8_t *src, int src_stride,
22                                      const uint8_t *ref, int ref_stride, int h,
23                                      uint32_t *sse, int *sum) {
24   int16x8_t sum_s16 = vdupq_n_s16(0);
25   int32x4_t sse_s32 = vdupq_n_s32(0);
26 
27   // Number of rows we can process before 'sum_s16' overflows:
28   // 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows.
29   assert(h <= 256);
30 
31   int i = h;
32   do {
33     uint8x8_t s = load_unaligned_u8(src, src_stride);
34     uint8x8_t r = load_unaligned_u8(ref, ref_stride);
35     int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
36 
37     sum_s16 = vaddq_s16(sum_s16, diff);
38 
39     sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff));
40     sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff));
41 
42     src += 2 * src_stride;
43     ref += 2 * ref_stride;
44     i -= 2;
45   } while (i != 0);
46 
47   *sum = horizontal_add_s16x8(sum_s16);
48   *sse = (uint32_t)horizontal_add_s32x4(sse_s32);
49 }
50 
variance_8xh_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int h,uint32_t * sse,int * sum)51 static INLINE void variance_8xh_neon(const uint8_t *src, int src_stride,
52                                      const uint8_t *ref, int ref_stride, int h,
53                                      uint32_t *sse, int *sum) {
54   int16x8_t sum_s16 = vdupq_n_s16(0);
55   int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
56 
57   // Number of rows we can process before 'sum_s16' overflows:
58   // 32767 / 255 ~= 128
59   assert(h <= 128);
60 
61   int i = h;
62   do {
63     uint8x8_t s = vld1_u8(src);
64     uint8x8_t r = vld1_u8(ref);
65     int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
66 
67     sum_s16 = vaddq_s16(sum_s16, diff);
68 
69     sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff));
70     sse_s32[1] =
71         vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff));
72 
73     src += src_stride;
74     ref += ref_stride;
75   } while (--i != 0);
76 
77   *sum = horizontal_add_s16x8(sum_s16);
78   *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
79 }
80 
variance_16xh_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int h,uint32_t * sse,int * sum)81 static INLINE void variance_16xh_neon(const uint8_t *src, int src_stride,
82                                       const uint8_t *ref, int ref_stride, int h,
83                                       uint32_t *sse, int *sum) {
84   int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
85   int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
86 
87   // Number of rows we can process before 'sum_s16' accumulators overflow:
88   // 32767 / 255 ~= 128, so 128 16-wide rows.
89   assert(h <= 128);
90 
91   int i = h;
92   do {
93     uint8x16_t s = vld1q_u8(src);
94     uint8x16_t r = vld1q_u8(ref);
95 
96     int16x8_t diff_l =
97         vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
98     int16x8_t diff_h =
99         vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
100 
101     sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
102     sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
103 
104     sse_s32[0] =
105         vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
106     sse_s32[1] =
107         vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
108     sse_s32[0] =
109         vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
110     sse_s32[1] =
111         vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
112 
113     src += src_stride;
114     ref += ref_stride;
115   } while (--i != 0);
116 
117   *sum = horizontal_add_s16x8(vaddq_s16(sum_s16[0], sum_s16[1]));
118   *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
119 }
120 
variance_large_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int w,int h,int h_limit,uint32_t * sse,int * sum)121 static INLINE void variance_large_neon(const uint8_t *src, int src_stride,
122                                        const uint8_t *ref, int ref_stride,
123                                        int w, int h, int h_limit, uint32_t *sse,
124                                        int *sum) {
125   int32x4_t sum_s32 = vdupq_n_s32(0);
126   int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
127 
128   // 'h_limit' is the number of 'w'-width rows we can process before our 16-bit
129   // accumulator overflows. After hitting this limit we accumulate into 32-bit
130   // elements.
131   int h_tmp = h > h_limit ? h_limit : h;
132 
133   int i = 0;
134   do {
135     int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
136     do {
137       int j = 0;
138       do {
139         uint8x16_t s = vld1q_u8(src + j);
140         uint8x16_t r = vld1q_u8(ref + j);
141 
142         int16x8_t diff_l =
143             vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
144         int16x8_t diff_h =
145             vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
146 
147         sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
148         sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
149 
150         sse_s32[0] =
151             vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
152         sse_s32[1] =
153             vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
154         sse_s32[0] =
155             vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
156         sse_s32[1] =
157             vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
158 
159         j += 16;
160       } while (j < w);
161 
162       src += src_stride;
163       ref += ref_stride;
164       i++;
165     } while (i < h_tmp);
166 
167     sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]);
168     sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]);
169 
170     h_tmp += h_limit;
171   } while (i < h);
172 
173   *sum = horizontal_add_s32x4(sum_s32);
174   *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
175 }
176 
variance_32xh_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int h,uint32_t * sse,int * sum)177 static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride,
178                                       const uint8_t *ref, int ref_stride, int h,
179                                       uint32_t *sse, int *sum) {
180   variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum);
181 }
182 
variance_64xh_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int h,uint32_t * sse,int * sum)183 static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride,
184                                       const uint8_t *ref, int ref_stride, int h,
185                                       uint32_t *sse, int *sum) {
186   variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum);
187 }
188 
variance_128xh_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int h,uint32_t * sse,int * sum)189 static INLINE void variance_128xh_neon(const uint8_t *src, int src_stride,
190                                        const uint8_t *ref, int ref_stride,
191                                        int h, uint32_t *sse, int *sum) {
192   variance_large_neon(src, src_stride, ref, ref_stride, 128, h, 16, sse, sum);
193 }
194 
195 #define VARIANCE_WXH_NEON(w, h, shift)                                        \
196   unsigned int aom_variance##w##x##h##_neon(                                  \
197       const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
198       unsigned int *sse) {                                                    \
199     int sum;                                                                  \
200     variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum);    \
201     return *sse - (uint32_t)(((int64_t)sum * sum) >> shift);                  \
202   }
203 
204 VARIANCE_WXH_NEON(4, 4, 4)
205 VARIANCE_WXH_NEON(4, 8, 5)
206 VARIANCE_WXH_NEON(4, 16, 6)
207 
208 VARIANCE_WXH_NEON(8, 4, 5)
209 VARIANCE_WXH_NEON(8, 8, 6)
210 VARIANCE_WXH_NEON(8, 16, 7)
211 VARIANCE_WXH_NEON(8, 32, 8)
212 
213 VARIANCE_WXH_NEON(16, 4, 6)
214 VARIANCE_WXH_NEON(16, 8, 7)
215 VARIANCE_WXH_NEON(16, 16, 8)
216 VARIANCE_WXH_NEON(16, 32, 9)
217 VARIANCE_WXH_NEON(16, 64, 10)
218 
219 VARIANCE_WXH_NEON(32, 8, 8)
220 VARIANCE_WXH_NEON(32, 16, 9)
221 VARIANCE_WXH_NEON(32, 32, 10)
222 VARIANCE_WXH_NEON(32, 64, 11)
223 
224 VARIANCE_WXH_NEON(64, 16, 10)
225 VARIANCE_WXH_NEON(64, 32, 11)
226 VARIANCE_WXH_NEON(64, 64, 12)
227 VARIANCE_WXH_NEON(64, 128, 13)
228 
229 VARIANCE_WXH_NEON(128, 64, 13)
230 VARIANCE_WXH_NEON(128, 128, 14)
231 
232 #undef VARIANCE_WXH_NEON
233 
234 // TODO(yunqingwang): Perform variance of two/four 8x8 blocks similar to that of
235 // AVX2. Also, implement the NEON for variance computation present in this
236 // function.
aom_get_var_sse_sum_8x8_quad_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,uint32_t * sse8x8,int * sum8x8,unsigned int * tot_sse,int * tot_sum,uint32_t * var8x8)237 void aom_get_var_sse_sum_8x8_quad_neon(const uint8_t *src, int src_stride,
238                                        const uint8_t *ref, int ref_stride,
239                                        uint32_t *sse8x8, int *sum8x8,
240                                        unsigned int *tot_sse, int *tot_sum,
241                                        uint32_t *var8x8) {
242   // Loop over four 8x8 blocks. Process one 8x32 block.
243   for (int k = 0; k < 4; k++) {
244     variance_8xh_neon(src + (k * 8), src_stride, ref + (k * 8), ref_stride, 8,
245                       &sse8x8[k], &sum8x8[k]);
246   }
247 
248   *tot_sse += sse8x8[0] + sse8x8[1] + sse8x8[2] + sse8x8[3];
249   *tot_sum += sum8x8[0] + sum8x8[1] + sum8x8[2] + sum8x8[3];
250   for (int i = 0; i < 4; i++) {
251     var8x8[i] = sse8x8[i] - (uint32_t)(((int64_t)sum8x8[i] * sum8x8[i]) >> 6);
252   }
253 }
254 
aom_get_var_sse_sum_16x16_dual_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,uint32_t * sse16x16,unsigned int * tot_sse,int * tot_sum,uint32_t * var16x16)255 void aom_get_var_sse_sum_16x16_dual_neon(const uint8_t *src, int src_stride,
256                                          const uint8_t *ref, int ref_stride,
257                                          uint32_t *sse16x16,
258                                          unsigned int *tot_sse, int *tot_sum,
259                                          uint32_t *var16x16) {
260   int sum16x16[2] = { 0 };
261   // Loop over two 16x16 blocks. Process one 16x32 block.
262   for (int k = 0; k < 2; k++) {
263     variance_16xh_neon(src + (k * 16), src_stride, ref + (k * 16), ref_stride,
264                        16, &sse16x16[k], &sum16x16[k]);
265   }
266 
267   *tot_sse += sse16x16[0] + sse16x16[1];
268   *tot_sum += sum16x16[0] + sum16x16[1];
269   for (int i = 0; i < 2; i++) {
270     var16x16[i] =
271         sse16x16[i] - (uint32_t)(((int64_t)sum16x16[i] * sum16x16[i]) >> 8);
272   }
273 }
274 
mse8xh_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,unsigned int * sse,int h)275 static INLINE unsigned int mse8xh_neon(const uint8_t *src, int src_stride,
276                                        const uint8_t *ref, int ref_stride,
277                                        unsigned int *sse, int h) {
278   uint8x8_t s[2], r[2];
279   int16x4_t diff_lo[2], diff_hi[2];
280   uint16x8_t diff[2];
281   int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
282 
283   int i = h;
284   do {
285     s[0] = vld1_u8(src);
286     src += src_stride;
287     s[1] = vld1_u8(src);
288     src += src_stride;
289     r[0] = vld1_u8(ref);
290     ref += ref_stride;
291     r[1] = vld1_u8(ref);
292     ref += ref_stride;
293 
294     diff[0] = vsubl_u8(s[0], r[0]);
295     diff[1] = vsubl_u8(s[1], r[1]);
296 
297     diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0]));
298     diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1]));
299     sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]);
300     sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]);
301 
302     diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0]));
303     diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1]));
304     sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]);
305     sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]);
306 
307     i -= 2;
308   } while (i != 0);
309 
310   sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]);
311 
312   *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
313   return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
314 }
315 
mse16xh_neon(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,unsigned int * sse,int h)316 static INLINE unsigned int mse16xh_neon(const uint8_t *src, int src_stride,
317                                         const uint8_t *ref, int ref_stride,
318                                         unsigned int *sse, int h) {
319   uint8x16_t s[2], r[2];
320   int16x4_t diff_lo[4], diff_hi[4];
321   uint16x8_t diff[4];
322   int32x4_t sse_s32[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0),
323                            vdupq_n_s32(0) };
324 
325   int i = h;
326   do {
327     s[0] = vld1q_u8(src);
328     src += src_stride;
329     s[1] = vld1q_u8(src);
330     src += src_stride;
331     r[0] = vld1q_u8(ref);
332     ref += ref_stride;
333     r[1] = vld1q_u8(ref);
334     ref += ref_stride;
335 
336     diff[0] = vsubl_u8(vget_low_u8(s[0]), vget_low_u8(r[0]));
337     diff[1] = vsubl_u8(vget_high_u8(s[0]), vget_high_u8(r[0]));
338     diff[2] = vsubl_u8(vget_low_u8(s[1]), vget_low_u8(r[1]));
339     diff[3] = vsubl_u8(vget_high_u8(s[1]), vget_high_u8(r[1]));
340 
341     diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0]));
342     diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1]));
343     sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]);
344     sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]);
345 
346     diff_lo[2] = vreinterpret_s16_u16(vget_low_u16(diff[2]));
347     diff_lo[3] = vreinterpret_s16_u16(vget_low_u16(diff[3]));
348     sse_s32[2] = vmlal_s16(sse_s32[2], diff_lo[2], diff_lo[2]);
349     sse_s32[3] = vmlal_s16(sse_s32[3], diff_lo[3], diff_lo[3]);
350 
351     diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0]));
352     diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1]));
353     sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]);
354     sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]);
355 
356     diff_hi[2] = vreinterpret_s16_u16(vget_high_u16(diff[2]));
357     diff_hi[3] = vreinterpret_s16_u16(vget_high_u16(diff[3]));
358     sse_s32[2] = vmlal_s16(sse_s32[2], diff_hi[2], diff_hi[2]);
359     sse_s32[3] = vmlal_s16(sse_s32[3], diff_hi[3], diff_hi[3]);
360 
361     i -= 2;
362   } while (i != 0);
363 
364   sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]);
365   sse_s32[2] = vaddq_s32(sse_s32[2], sse_s32[3]);
366   sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[2]);
367 
368   *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
369   return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0]));
370 }
371 
372 #define MSE_WXH_NEON(w, h)                                                 \
373   unsigned int aom_mse##w##x##h##_neon(const uint8_t *src, int src_stride, \
374                                        const uint8_t *ref, int ref_stride, \
375                                        unsigned int *sse) {                \
376     return mse##w##xh_neon(src, src_stride, ref, ref_stride, sse, h);      \
377   }
378 
379 MSE_WXH_NEON(8, 8)
380 MSE_WXH_NEON(8, 16)
381 
382 MSE_WXH_NEON(16, 8)
383 MSE_WXH_NEON(16, 16)
384 
385 #undef MSE_WXH_NEON
386 
mse_accumulate_u16_u8_8x2(uint64x2_t sum,uint16x8_t s0,uint16x8_t s1,uint8x8_t d0,uint8x8_t d1)387 static INLINE uint64x2_t mse_accumulate_u16_u8_8x2(uint64x2_t sum,
388                                                    uint16x8_t s0, uint16x8_t s1,
389                                                    uint8x8_t d0, uint8x8_t d1) {
390   int16x8_t e0 = vreinterpretq_s16_u16(vsubw_u8(s0, d0));
391   int16x8_t e1 = vreinterpretq_s16_u16(vsubw_u8(s1, d1));
392 
393   int32x4_t mse = vmull_s16(vget_low_s16(e0), vget_low_s16(e0));
394   mse = vmlal_s16(mse, vget_high_s16(e0), vget_high_s16(e0));
395   mse = vmlal_s16(mse, vget_low_s16(e1), vget_low_s16(e1));
396   mse = vmlal_s16(mse, vget_high_s16(e1), vget_high_s16(e1));
397 
398   return vpadalq_u32(sum, vreinterpretq_u32_s32(mse));
399 }
400 
mse_wxh_16bit(uint8_t * dst,int dstride,const uint16_t * src,int sstride,int w,int h)401 static uint64x2_t mse_wxh_16bit(uint8_t *dst, int dstride, const uint16_t *src,
402                                 int sstride, int w, int h) {
403   assert((w == 8 || w == 4) && (h == 8 || h == 4));
404 
405   uint64x2_t sum = vdupq_n_u64(0);
406 
407   if (w == 8) {
408     do {
409       uint8x8_t d0 = vld1_u8(dst + 0 * dstride);
410       uint8x8_t d1 = vld1_u8(dst + 1 * dstride);
411       uint16x8_t s0 = vld1q_u16(src + 0 * sstride);
412       uint16x8_t s1 = vld1q_u16(src + 1 * sstride);
413 
414       sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1);
415 
416       dst += 2 * dstride;
417       src += 2 * sstride;
418       h -= 2;
419     } while (h != 0);
420   } else {
421     do {
422       uint8x8_t d0 = load_unaligned_u8_4x2(dst + 0 * dstride, dstride);
423       uint8x8_t d1 = load_unaligned_u8_4x2(dst + 2 * dstride, dstride);
424       uint16x8_t s0 = load_unaligned_u16_4x2(src + 0 * sstride, sstride);
425       uint16x8_t s1 = load_unaligned_u16_4x2(src + 2 * sstride, sstride);
426 
427       sum = mse_accumulate_u16_u8_8x2(sum, s0, s1, d0, d1);
428 
429       dst += 4 * dstride;
430       src += 4 * sstride;
431       h -= 4;
432     } while (h != 0);
433   }
434 
435   return sum;
436 }
437 
438 // Computes mse for a given block size. This function gets called for specific
439 // block sizes, which are 8x8, 8x4, 4x8 and 4x4.
aom_mse_wxh_16bit_neon(uint8_t * dst,int dstride,uint16_t * src,int sstride,int w,int h)440 uint64_t aom_mse_wxh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src,
441                                 int sstride, int w, int h) {
442   return horizontal_add_u64x2(mse_wxh_16bit(dst, dstride, src, sstride, w, h));
443 }
444 
aom_get_mb_ss_neon(const int16_t * a)445 uint32_t aom_get_mb_ss_neon(const int16_t *a) {
446   int32x4_t sse[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
447 
448   for (int i = 0; i < 256; i = i + 8) {
449     int16x8_t a_s16 = vld1q_s16(a + i);
450 
451     sse[0] = vmlal_s16(sse[0], vget_low_s16(a_s16), vget_low_s16(a_s16));
452     sse[1] = vmlal_s16(sse[1], vget_high_s16(a_s16), vget_high_s16(a_s16));
453   }
454 
455   return horizontal_add_s32x4(vaddq_s32(sse[0], sse[1]));
456 }
457 
aom_mse_16xh_16bit_neon(uint8_t * dst,int dstride,uint16_t * src,int w,int h)458 uint64_t aom_mse_16xh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src,
459                                  int w, int h) {
460   uint64x2_t sum = vdupq_n_u64(0);
461 
462   int num_blks = 16 / w;
463   do {
464     sum = vaddq_u64(sum, mse_wxh_16bit(dst, dstride, src, w, w, h));
465     dst += w;
466     src += w * h;
467   } while (--num_blks != 0);
468 
469   return horizontal_add_u64x2(sum);
470 }
471